1
|
Intracellular Transposition and Capture of Mobile Genetic Elements following Intercellular Conjugation of Multidrug Resistance Conjugative Plasmids from Clinical Enterobacteriaceae Isolates. Microbiol Spectr 2022; 10:e0214021. [PMID: 35044219 PMCID: PMC8768599 DOI: 10.1128/spectrum.02140-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mobile genetic elements (MGEs) are often associated with antimicrobial resistance genes (ARGs). They are responsible for intracellular transposition between different replicons and intercellular conjugation and are therefore important agents of ARG dissemination. Detection and characterization of functional MGEs, especially in clinical isolates, would increase our understanding of the underlying pathways of transposition and recombination and allow us to determine interventional strategies to interrupt this process. Entrapment vectors can be used to capture active MGEs, as they contain a positive selection genetic system conferring a selectable phenotype upon the insertion of an MGE within certain regions of that system. Previously, we developed the pBACpAK entrapment vector that results in a tetracycline-resistant phenotype when MGEs translocate and disrupt the cI repressor gene. We have previously used pBACpAK to capture MGEs in clinical Escherichia coli isolates following transformation with pBACpAK. In this study, we aimed to extend the utilization of pBACpAK to other bacterial taxa. We utilized an MGE-free recipient E. coli strain containing pBACpAK to capture MGEs on conjugative, ARG-containing plasmids following conjugation from clinical Enterobacteriaceae donors. Following the conjugative transfer of multiple conjugative plasmids and screening for tetracycline resistance in these transconjugants, we captured several insertion sequence (IS) elements and novel transposons (Tn7350 and Tn7351) and detected the de novo formation of novel putative composite transposons where the pBACpAK-located tet(A) is flanked by ISKpn25 from the transferred conjugative plasmid, as well as the ISKpn14-mediated integration of an entire 119-kb, blaNDM-1-containing conjugative plasmid from Klebsiella pneumoniae. IMPORTANCE By analyzing transposition activity within our MGE-free recipient, we can gain insights into the interaction and evolution of multidrug resistance-conferring MGEs following conjugation, including the movement of multiple ISs, the formation of composite transposons, and cointegration and/or recombination between different replicons in the same cell. This combination of recipient and entrapment vector will allow fine-scale experimental studies of factors affecting intracellular transposition and MGE formation in and from ARG-encoding MGEs from multiple species of clinically relevant Enterobacteriaceae.
Collapse
|
2
|
Qin X, Wang H, Miao C, Yang X, Zhang Y, Feng J, Forsythe SJ, Man C, Jiang Y. Comparative genomics reveals environmental adaptation differences between Cronobacter species. Food Res Int 2021; 147:110541. [PMID: 34399518 DOI: 10.1016/j.foodres.2021.110541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 10/21/2022]
Abstract
The genus Cronobacter is an opportunistic food-borne pathogen which is able to adapt to diverse environments and shows considerable genetic diversity. Genomic analysis can be used to reveal the variation across the genus with respect to virulence, drug resistance and factors involved in horizontal gene transfer mechanisms, such as integrons, conjugative plasmids, and recombinases. In this study, whole-genome comparative analysis of 27 Cronobacter genomes (12 existing and 15 newly assembled genomes) was performed. A total of 110,010 protein-coding genes were grouped into 11,262 clusters, including 2637 core genes, 4814 strain-specific genes and 3811 dispensable genes. Clusters of Orthologous Groups (COG) analysis indicated that 97.35% of the core genes were for substrate transport and metabolism, and the antibiotic resistance genetic determinants were classified into 136 antibiotic resistance ontologies (AROs). A total of 80 genomic islands (GIs) were identified which contained several type VI secretion system gene clusters, and these were likely to have been acquired by horizontal gene transfer. This study has generated a comprehensive characterization of the genus Cronobacter, leading to a better understanding of the mechanisms and ecological functions among the genome features, speciation, and environmental adaptation strategies.
Collapse
Affiliation(s)
- Xue Qin
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Hao Wang
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Chao Miao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Xinyan Yang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Yanming Zhang
- SinoGenoMax Co., Ltd./Chinese National Human Genome Center, Beijing 100176, China
| | - Jing Feng
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin 150030, China
| | | | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin 150030, China.
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
3
|
Zhu L, Shahid MA, Markham J, Browning GF, Noormohammadi AH, Marenda MS. Genome analysis of Mycoplasma synoviae strain MS-H, the most common M. synoviae strain with a worldwide distribution. BMC Genomics 2018; 19:117. [PMID: 29394882 PMCID: PMC5797395 DOI: 10.1186/s12864-018-4501-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 01/28/2018] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The bacterial pathogen Mycoplasma synoviae can cause subclinical respiratory disease, synovitis, airsacculitis and reproductive tract disease in poultry and is a major cause of economic loss worldwide. The M. synoviae strain MS-H was developed by chemical mutagenesis of an Australian isolate and has been used as a live attenuated vaccine in many countries over the past two decades. As a result it may now be the most prevalent strain of M. synoviae globally. Differentiation of the MS-H vaccine from local field strains is important for epidemiological investigations and is often required for registration of the vaccine. RESULTS The complete genomic sequence of the MS-H strain was determined using a combination of Illumina and Nanopore methods and compared to WVU-1853, the M. synoviae type strain isolated in the USA 30 years before the parent strain of MS-H, and MS53, a more recent isolate from Brazil. The vaccine strain genome had a slightly larger number of pseudogenes than the two other strains and contained a unique 55 kb chromosomal inversion partially affecting a putative genomic island. Variations in gene content were also noted, including a deoxyribose-phosphate aldolase (deoC) fragment and an ATP-dependent DNA helicase gene found only in MS-H. Some of these sequences may have been acquired horizontally from other avian mycoplasma species. CONCLUSIONS MS-H was somewhat more similar to WVU-1853 than to MS53. The genome sequence of MS-H will enable identification of vaccine-specific genetic markers for use as diagnostic and epidemiological tools to better control M. synoviae.
Collapse
Affiliation(s)
- Ling Zhu
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, VIC 3030 Australia
| | - Muhammad A. Shahid
- Department of Pathobiology, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Punjab 60800 Pakistan
| | - John Markham
- Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, VIC 3000 Australia
| | - Glenn F. Browning
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010 Australia
| | - Amir H. Noormohammadi
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, VIC 3030 Australia
| | - Marc S. Marenda
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, VIC 3030 Australia
| |
Collapse
|
4
|
Commensal-to-pathogen transition: One-single transposon insertion results in two pathoadaptive traits in Escherichia coli -macrophage interaction. Sci Rep 2017; 7:4504. [PMID: 28674418 PMCID: PMC5495878 DOI: 10.1038/s41598-017-04081-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/09/2017] [Indexed: 01/01/2023] Open
Abstract
Escherichia coli is both a harmless commensal in the intestines of many mammals, as well as a dangerous pathogen. The evolutionary paths taken by strains of this species in the commensal-to-pathogen transition are complex and can involve changes both in the core genome, as well in the pan-genome. One way to understand the likely paths that a commensal strain of E. coli takes when evolving pathogenicity is through experimentally evolving the strain under the selective pressures that it will have to withstand as a pathogen. Here, we report that a commensal strain, under continuous pressure from macrophages, recurrently acquired a transposable element insertion, which resulted in two key phenotypic changes: increased intracellular survival, through the delay of phagosome maturation and increased ability to escape macrophages. We further show that the acquisition of the pathoadaptive traits was accompanied by small but significant changes in the transcriptome of macrophages upon infection. These results show that under constant pressures from a key component of the host immune system, namely macrophage phagocytosis, commensal E. coli rapidly acquires pathoadaptive mutations that cause transcriptome changes associated to the host-microbe duet.
Collapse
|
5
|
Minkin I, Patel A, Kolmogorov M, Vyahhi N, Pham S. Sibelia: A Scalable and Comprehensive Synteny Block Generation Tool for Closely Related Microbial Genomes. LECTURE NOTES IN COMPUTER SCIENCE 2013. [DOI: 10.1007/978-3-642-40453-5_17] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Lin H, Li TY, Xie MH, Zhang Y. Characterization of the variants, flanking genes, and promoter activity of the Leifsonia xyli subsp. cynodontis insertion sequence IS1237. J Bacteriol 2007; 189:3217-27. [PMID: 17293427 PMCID: PMC1855863 DOI: 10.1128/jb.01403-06] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We performed a comprehensive study of the distribution and function of an insertion sequence (IS) element, IS1237, in the genome of Leifsonia xyli subsp. cynodontis, a useful genetic carrier for expressing beneficial foreign genes in plants. Two shorter IS1237 isoforms, IS1237d1 and IS1237d2 resulting from precise deletion between two nonperfect repeats, were found in the bacterial genome at a level that was one-fifth the level of wild-type IS1237. Both the genome and native plasmid pCXC100 harbor a truncated toxin-antitoxin cassette that is precisely fused with a 5'-truncated IS1237 sequence at one nonperfect repeat, indicating that it is a hot site for DNA rearrangement. Nevertheless, no transposition activity was detected when the putative transposase of IS1237 was overexpressed in Escherichia coli. Using thermal asymmetric interlaced PCR, we identified 13 upstream and 10 downstream unique flanking sequences, and two pairs of these sequences were from the same loci, suggesting that IS1237 has up to 65 unique loci in the L. xyli subsp. cynodontis chromosome. The presence of TAA or TTA direct repeat sequences at most insertion sites indicated that IS1237 inserts into the loci by active transposition. IS1237 showed a high propensity for insertion into other IS elements, such as ISLxc1 and ISLxc2, which could offer IS1237 a nonautonomous transposition pathway through the host IS elements. Interestingly, we showed that IS1237 has a strong promoter at the 3' end and a weak promoter at the 5' end, and both promoters promote the transcription of adjacent genes in different gram-positive bacteria. The high-copy-number nature of IS1237 and its promoter activity may contribute to bacterial fitness.
Collapse
Affiliation(s)
- Hui Lin
- State Key Laboratory of Virology, Department of Biochemistry and Molecular Biology, College of Life Sciences, Wuhan University, Hubei 430072, China
| | | | | | | |
Collapse
|
7
|
Baranov PV, Hammer AW, Zhou J, Gesteland RF, Atkins JF. Transcriptional slippage in bacteria: distribution in sequenced genomes and utilization in IS element gene expression. Genome Biol 2005; 6:R25. [PMID: 15774026 PMCID: PMC1088944 DOI: 10.1186/gb-2005-6-3-r25] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Revised: 12/16/2004] [Accepted: 01/25/2005] [Indexed: 11/13/2022] Open
Abstract
To find a length of slippage-prone sequences at which selection against transcriptional slippage is evident, the transcription of repetitive runs of A and T of different lengths in 108 bacterial genomes was analyzed. IS element genes were found to exploit transcriptional slippage for regulation of gene expression. Background Transcription slippage occurs on certain patterns of repeat mononucleotides, resulting in synthesis of a heterogeneous population of mRNAs. Individual mRNA molecules within this population differ in the number of nucleotides they contain that are not specified by the template. When transcriptional slippage occurs in a coding sequence, translation of the resulting mRNAs yields more than one protein product. Except where the products of the resulting mRNAs have distinct functions, transcription slippage occurring in a coding region is expected to be disadvantageous. This probably leads to selection against most slippage-prone sequences in coding regions. Results To find a length at which such selection is evident, we analyzed the distribution of repetitive runs of A and T of different lengths in 108 bacterial genomes. This length varies significantly among different bacteria, but in a large proportion of available genomes corresponds to nine nucleotides. Comparative sequence analysis of these genomes was used to identify occurrences of 9A and 9T transcriptional slippage-prone sequences used for gene expression. Conclusions IS element genes are the largest group found to exploit this phenomenon. A number of genes with disrupted open reading frames (ORFs) have slippage-prone sequences at which transcriptional slippage would result in uninterrupted ORF restoration at the mRNA level. The ability of such genes to encode functional full-length protein products brings into question their annotation as pseudogenes and in these cases is pertinent to the significance of the term 'authentic frameshift' frequently assigned to such genes.
Collapse
Affiliation(s)
- Pavel V Baranov
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112-5330, USA
- Bioscience Institute, University College Cork, Cork, Ireland
| | - Andrew W Hammer
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112-5330, USA
| | - Jiadong Zhou
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112-5330, USA
- Current address: Gene Technology Division, Nitto Denko Technical Corporation, 401 Jones Road, Oceanside, CA 92054, USA
| | - Raymond F Gesteland
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112-5330, USA
| | - John F Atkins
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112-5330, USA
- Bioscience Institute, University College Cork, Cork, Ireland
| |
Collapse
|
8
|
Choi S, Ohta S, Ohtsubo E. A novel IS element, IS621, of the IS110/IS492 family transposes to a specific site in repetitive extragenic palindromic sequences in Escherichia coli. J Bacteriol 2003; 185:4891-900. [PMID: 12897009 PMCID: PMC166490 DOI: 10.1128/jb.185.16.4891-4900.2003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An Escherichia coli strain, ECOR28, was found to have insertions of an identical sequence (1,279 bp in length) at 10 loci in its genome. This insertion sequence (named IS621) has one large open reading frame encoding a putative protein that is 326 amino acids in length. A computer-aided homology search using the DNA sequence as the query revealed that IS621 was homologous to the piv genes, encoding pilin gene invertase (PIV). A homology search using the amino acid sequence of the putative protein encoded by IS621 as the query revealed that the protein also has partial homology to transposases encoded by the IS110/IS492 family elements, which were known to have partial homology to PIV. This indicates that IS621 belongs to the IS110/IS492 family but is most closely related to the piv genes. In fact, a phylogenetic tree constructed on the basis of amino acid sequences of PIV proteins and transposases revealed that IS621 belongs to the piv gene group, which is distinct from the IS110/IS492 family elements, which form several groups. PIV proteins and transposases encoded by the IS110/IS492 family elements, including IS621, have four acidic amino acid residues, which are conserved at positions in their N-terminal regions. These residues may constitute a tetrad D-E(or D)-D-D motif as the catalytic center. Interestingly, IS621 was inserted at specific sites within repetitive extragenic palindromic (REP) sequences at 10 loci in the ECOR28 genome. IS621 may not recognize the entire REP sequence in transposition, but it recognizes a 15-bp sequence conserved in the REP sequences around the target site. There are several elements belonging to the IS110/IS492 family that also transpose to specific sites in the repeated sequences, as does IS621. IS621 does not have terminal inverted repeats like most of the IS110/IS492 family elements. The terminal sequences of IS621 have homology with the 26-bp inverted repeat sequences of pilin gene inversion sites that are recognized and used for inversion of pilin genes by PIV. This suggests that IS621 initiates transposition through recognition of their terminal regions and cleavage at the ends by a mechanism similar to that used for PIV to promote inversion at the pilin gene inversion sites.
Collapse
Affiliation(s)
- Sunju Choi
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | |
Collapse
|
9
|
Kato N, Yamazoe K, Han CG, Ohtsubo E. New insertion sequence elements in the upstream region of cfiA in imipenem-resistant Bacteroides fragilis strains. Antimicrob Agents Chemother 2003; 47:979-85. [PMID: 12604530 PMCID: PMC149317 DOI: 10.1128/aac.47.3.979-985.2003] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The 747-bp cfiA gene, which encodes a metallo-beta-lactamase, and the regions flanking cfiA in six imipenem-resistant and four imipenem-susceptible Bacteroides fragilis strains isolated in Japan were analyzed by PCR and DNA sequencing. The nucleotide sequences of the cfiA genes (designated cfiA(1) to cfiA(10)) of all 10 strains tested varied from that of the standard cfiA gene from B. fragilis TAL2480. However, putative proteins encoded by the cfiA variants contained conserved amino acid residues important for zinc binding and hairpin loop formation, suggesting that cfiA variants have the capability of producing metallo-beta-lactamases with full catalytic activities. PCR assay indicated that six metallo-beta-lactamase-producing, imipenem-resistant strains had an insertion mutation in the region immediately upstream of cfiA. Nucleotide sequencing of the PCR-amplified fragments along with the upstream region of cfiA revealed that there were five new kinds of insertion sequence (IS) elements (designated IS612, IS613, IS614, IS615, and IS616, with a size range of 1,594 to 1,691 bp), of which only IS616 was found to be almost identical to IS1188, one of the IS elements previously identified in the upstream region of cfiA. These elements had target site duplications of 4 or 5 bp in length, terminal inverted repeats (14, 15, or 17 bp in size), and a large open reading frame encoding a putative transposase which is required for the transcription of IS elements. Each element was inserted such that the transcriptional direction of the transposase was opposite to that of cfiA. A computer-aided homology search revealed that, based on the homology of their putative transposases, the sizes of their terminal inverted repeat sequences, and their target site duplications, IS612, IS613, IS614, and IS615 belong to the IS4 family, which includes IS942, previously found in some drug-resistant B. fragilis strains, but that IS616 belongs to the IS1380 family. All the IS elements appear to have putative promoter motif sequences (the -7 region's TAnnTTTG motif and the -33 region's TTG or TG) in their end regions, suggesting that the IS elements provide a promoter for the transcription of cfiA upon insertion. These data provide additional proof that various IS elements may exist to provide a promoter to express the cfiA gene.
Collapse
Affiliation(s)
- Naoki Kato
- Institute of Anaerobic Bacteriology, Gifu University School of Medicine, Japan.
| | | | | | | |
Collapse
|
10
|
Ohta S, Tsuchida K, Choi S, Sekine Y, Shiga Y, Ohtsubo E. Presence of a characteristic D-D-E motif in IS1 transposase. J Bacteriol 2002; 184:6146-54. [PMID: 12399484 PMCID: PMC151954 DOI: 10.1128/jb.184.22.6146-6154.2002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transposases encoded by various transposable DNA elements and retroviral integrases belong to a family of proteins with three conserved acidic amino acids, D, D, and E, constituting the D-D-E motif that represents the active center of the proteins. IS1, one of the smallest transposable elements in bacteria, encodes a transposase which has been thought not to belong to the family of proteins with the D-D-E motif. In this study, we found several IS1 family elements that were widely distributed not only in eubacteria but also in archaebacteria. The alignment of the transposase amino acid sequences from these IS1 family elements showed that out of 14 acidic amino acids present in IS1 transposase, three (D, D, and E) were conserved in corresponding positions in the transposases encoded by all the elements. Comparison of the IS1 transposase with other proteins with the D-D-E motif revealed that the polypeptide segments surrounding each of the three acidic amino acids were similar. Furthermore, the deduced secondary structures of the transposases encoded by IS1 family elements were similar to one another and to those of proteins with the D-D-E motif. These results strongly suggest that IS1 transposase has the D-D-E motif and thus belongs to the family of proteins with the D-D-E motif. In fact, mutant IS1 transposases with an amino acid substitution for each of the three acidic amino acids possibly constituting the D-D-E motif were not able to promote transposition of IS1, supporting this hypothesis. The D-D-E motif identified in IS1 transposase differs from those in the other proteins in that the polypeptide segment between the second D and third E in IS1 transposase is the shortest, 24 amino acids in length. Because of this difference, the presence of the D-D-E motif in IS1 transposase has not been discovered for some time.
Collapse
Affiliation(s)
- Shinya Ohta
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Bunkyo-ku, Japan
| | | | | | | | | | | |
Collapse
|
11
|
Urasaki A, Sekine Y, Ohtsubo E. Transposition of cyanobacterium insertion element ISY100 in Escherichia coli. J Bacteriol 2002; 184:5104-12. [PMID: 12193627 PMCID: PMC135329 DOI: 10.1128/jb.184.18.5104-5112.2002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome of the cyanobacterium Synechocystis sp. strain PCC6803 has nine kinds of insertion sequence (IS) elements, of which ISY100 in 22 copies is the most abundant. A typical ISY100 member is 947 bp long and has imperfect terminal inverted repeat sequences. It has an open reading frame encoding a 282-amino-acid protein that appears to have partial homology with the transposase encoded by a bacterial IS, IS630, indicating that ISY100 belongs to the IS630 family. To determine whether ISY100 has transposition ability, we constructed a plasmid carrying the IPTG (isopropyl-beta-D-thiogalactopyranoside)-inducible transposase gene at one site and mini-ISY100 with the chloramphenicol resistance gene, substituted for the transposase gene of ISY100, at another site and introduced the plasmid into an Escherichia coli strain already harboring a target plasmid. Mini-ISY100 transposed to the target plasmid in the presence of IPTG at a very high frequency. Mini-ISY100 was inserted into the TA sequence and duplicated it upon transposition, as do IS630 family elements. Moreover, the mini-ISY100-carrying plasmid produced linear molecules of mini-ISY100 with the exact 3' ends of ISY100 and 5' ends lacking two nucleotides of the ISY100 sequence. No bacterial insertion elements have been shown to generate such molecules, whereas the eukaryotic Tc1/mariner family elements, Tc1 and Tc3, which transpose to the TA sequence, have. These findings suggest that ISY100 transposes to a new site through the formation of linear molecules, such as Tc1 and Tc3, by excision. Some Tc1/mariner family elements leave a footprint with an extra sequence at the site of excision. No footprints, however, were detected in the case of ISY100, suggesting that eukaryotes have a system that repairs a double strand break at the site of excision by an end-joining reaction, in which the gap is filled with a sequence of several base pairs, whereas prokaryotes do not have such a system. ISY100 transposes in E. coli, indicating that it transposes without any host factor other than the transposase encoded by itself. Therefore, it may be able to transpose in other biological systems.
Collapse
Affiliation(s)
- Akihiro Urasaki
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | |
Collapse
|
12
|
Okitsu T, Kusumoto M, Suzuki R, Sata S, Nishiya Y, Kawamura Y, Yamai S. Identification of shiga toxin-producing Escherichia coli possessing insertionally inactivated Shiga toxin gene. Microbiol Immunol 2002; 45:319-22. [PMID: 11386423 DOI: 10.1111/j.1348-0421.2001.tb02625.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have investigated the Shiga toxin genes of Shiga toxin-producing Escherichia coli (STEC) strains, using polymerase chain reaction (PCR) amplifying the full lengths of these genes. As a result, we found the Shiga toxin 2 gene which was insertionally inactivated by an insertion sequence (IS). This IS element was identical to IS1203v which has been also found in inactivated Shiga toxin 2 genes, and was inserted at the same site as in the previous paper. On the other hand, both Shiga toxin 2 genes were different (98.3% identity). These suggested that IS1203v independently inserted into each Shiga toxin 2 genes, and STEC strains possessing the insertionally inactivated Shiga toxin genes are most likely to have a wide distribution. Amplification of the full length of the Shiga toxin gene is one of the effective methods to detect the gene no matter where the IS element is included, i.e., the insertion can be reflected in the size of amplicon.
Collapse
Affiliation(s)
- T Okitsu
- Department of Bacteriology and Pathology, Kanagawa Prefectural Public Health Laboratory, Yokohama, Japan.
| | | | | | | | | | | | | |
Collapse
|
13
|
Han CG, Shiga Y, Tobe T, Sasakawa C, Ohtsubo E. Structural and functional characterization of IS679 and IS66-family elements. J Bacteriol 2001; 183:4296-304. [PMID: 11418571 PMCID: PMC95320 DOI: 10.1128/jb.183.14.4296-4304.2001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A new insertion sequence (IS) element, IS679 (2,704 bp in length), has been identified in plasmid pB171 of enteropathogenic Escherichia coli B171. IS679 has imperfect 25-bp terminal inverted repeats (IRs) and three open reading frames (ORFs) (here called tnpA, tnpB, and tnpC). A plasmid carrying a composite transposon (Tn679) with the kanamycin resistance gene flanked by an intact IS679 sequence and an IS679 fragment with only IRR (IR on the right) was constructed to clarify the transposition activity of IS679. A transposition assay done with a mating system showed that Tn679 could transpose at a high frequency to the F plasmid derivative used as the target. On transposition, Tn679 duplicated an 8-bp sequence at the target site. Tn679 derivatives with a deletion in each ORF of IS679 did not transpose, finding indicative that all three IS679 ORFs are essential for transposition. The tnpA and tnpC products appear to have the amino acid sequence motif characteristic of most transposases. A homology search of the databases found that a total of 25 elements homologous to IS679 are present in Agrobacterium, Escherichia, Rhizobium, Pseudomonas, and Vibrio spp., providing evidence that the elements are widespread in gram-negative bacteria. We found that these elements belong to the IS66 family, as do other elements, including nine not previously reported. Almost all of the elements have IRs similar to those in IS679 and, like IS679, most appear to have duplicated an 8-bp sequence at the target site on transposition. These elements have three ORFs corresponding to those in IS679, but many have a mutation(s) in an ORF(s). In almost all of the elements, tnpB is located in the -1 frame relative to tnpA, such that the initiation codon of tnpB overlaps the TGA termination codon of tnpA. In contrast, tnpC, separated from tnpB by a space of ca. 20 bp, is located in any one of three frames relative to tnpB. No common structural features were found around the intergenic regions, indicating that the three ORFs are expressed by translational coupling but not by translational frameshifting.
Collapse
Affiliation(s)
- C G Han
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | | | |
Collapse
|
14
|
Shiga Y, Sekine Y, Kano Y, Ohtsubo E. Involvement of H-NS in transpositional recombination mediated by IS1. J Bacteriol 2001; 183:2476-84. [PMID: 11274106 PMCID: PMC95163 DOI: 10.1128/jb.183.8.2476-2484.2001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
IS1, the smallest active transposable element in bacteria, encodes a transposase that promotes inter- and intramolecular transposition. Host-encoded factors, e.g., histone-like proteins HU and integration host factor (IHF), are involved in the transposition reactions of some bacterial transposable elements. Host factors involved in the IS1 transposition reaction, however, are not known. We show that a plasmid with an IS1 derivative that efficiently produces transposase did not generate miniplasmids, the products of intramolecular transposition, in mutants deficient in a nucleoid-associated DNA-binding protein, H-NS, but did generate them in mutants deficient in histone-like proteins HU, IHF, Fis, and StpA. Nor did IS1 transpose intermolecularly to the target plasmid in the H-NS-deficient mutant. The hns mutation did not affect transcription from the indigenous promoter of IS1 for the expression of the transposase gene. These findings show that transpositional recombination mediated by IS1 requires H-NS but does not require the HU, IHF, Fis, or StpA protein in vivo. Gel retardation assays of restriction fragments of IS1-carrying plasmid DNA showed that no sites were bound preferentially by H-NS within the IS1 sequence. The central domain of H-NS, which is involved in dimerization and/or oligomerization of the H-NS protein, was important for the intramolecular transposition of IS1, but the N- and C-terminal domains, which are involved in the repression of certain genes and DNA binding, respectively, were not. The SOS response induced by the IS1 transposase was absent in the H-NS-deficient mutant strain but was present in the wild-type strain. We discuss the possibility that H-NS promotes the formation of an active IS1 DNA-transposase complex in which the IS1 ends are cleaved to initiate transpositional recombination through interaction with IS1 transposase.
Collapse
Affiliation(s)
- Y Shiga
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | |
Collapse
|
15
|
Yu Z, Wright SI, Bureau TE. Mutator-like elements in Arabidopsis thaliana. Structure, diversity and evolution. Genetics 2000; 156:2019-31. [PMID: 11102392 PMCID: PMC1461377 DOI: 10.1093/genetics/156.4.2019] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
While genome-wide surveys of abundance and diversity of mobile elements have been conducted for some class I transposable element families, little is known about the nature of class II transposable elements on this scale. In this report, we present the results from analysis of the sequence and structural diversity of Mutator-like elements (MULEs) in the genome of Arabidopsis thaliana (Columbia). Sequence similarity searches and subsequent characterization suggest that MULEs exhibit extreme structure, sequence, and size heterogeneity. Multiple alignments at the nucleotide and amino acid levels reveal conserved, potentially transposition-related sequence motifs. While many MULEs share common structural features to Mu elements in maize, some groups lack characteristic long terminal inverted repeats. High sequence similarity and phylogenetic analyses based on nucleotide sequence alignments indicate that many of these elements with diverse structural features may remain transpositionally competent and that multiple MULE lineages may have been evolving independently over long time scales. Finally, there is evidence that MULEs are capable of the acquisition of host DNA segments, which may have implications for adaptive evolution, both at the element and host levels.
Collapse
Affiliation(s)
- Z Yu
- Department of Biology, McGill University, Montreal, Quebec, H3A 1B1 Canada
| | | | | |
Collapse
|
16
|
Kusumoto M, Nishiya Y, Kawamura Y. Reactivation of insertionally inactivated Shiga toxin 2 genes of Escherichia coli O157:H7 caused by nonreplicative transposition of the insertion sequence. Appl Environ Microbiol 2000; 66:1133-8. [PMID: 10698782 PMCID: PMC91953 DOI: 10.1128/aem.66.3.1133-1138.2000] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
IS1203v is an insertion sequence which has been found in inactivated Shiga toxin 2 genes of Escherichia coli O157:H7. We analyzed the transpositional mechanism of IS1203v in order to investigate whether the Shiga toxin 2 genes inactivated by IS1203v could revert to the wild type. When the transposase activity of IS1203v was enhanced by artificial frameshifting, IS1203v was obviously excised from the Shiga toxin 2 gene in a circular form. The IS1203v circle consisted of the entire IS1203v, but an extra 3-bp sequence (ATC) intervened between the 5' and 3' ends of IS1203v. The extra 3-bp sequence was identical to a direct repeat which was probably generated upon insertion. Moreover, we detected the Shiga toxin 2 gene with a precise excision of IS1203v. In the wild-type situation, the transposition products of IS1203v could be observed by PCR amplification. These results show that IS1203v can transpose in a nonreplicative manner and that the Shiga toxin gene inactivated by this insertion sequence can revert to the wild type.
Collapse
Affiliation(s)
- M Kusumoto
- Tsuruga Institute of Biotechnology, Toyobo Co., Ltd., Tsuruga, Fukui 914-0047, Japan.
| | | | | |
Collapse
|
17
|
Christensen S, Pont-Kingdon G, Carroll D. Target specificity of the endonuclease from the Xenopus laevis non-long terminal repeat retrotransposon, Tx1L. Mol Cell Biol 2000; 20:1219-26. [PMID: 10648607 PMCID: PMC85248 DOI: 10.1128/mcb.20.4.1219-1226.2000] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Elements of the Tx1L family are non-long terminal repeat retrotransposons (NLRs) that are dispersed in the genome of Xenopus laevis. Essentially all genomic copies of Tx1L are found inserted at a specific site within another family of transposable elements (Tx1D). This suggests that Tx1L is a site-specific retrotransposon. Like many (but not all) other NLRs, the Xenopus element encodes an apparent endonuclease that is related in sequence to the apurinic-apyrimidinic endonucleases that participate in DNA repair. This enzyme is thought to introduce the single-strand break in target DNA that initiates transposition by the target-primed reverse transcription (TPRT) mechanism. To explore the issue of target specificity more fully, we expressed the polypeptide encoded by the endonuclease domain of open reading frame 2 from Tx1L (Tx1L EN) and characterized its cleavage capabilities. This endonuclease makes a specific nick in the bottom strand precisely at one end of the presumed Tx1L target duplication. Because this activity leaves a 5'-phosphate and 3'-hydroxyl at the nick, it has the location and chemistry required to initiate new insertion events by TPRT. Tx1L EN does not make a specific cut at a preferred target site for Tx1D elements, ruling out the alternative possibility that the composite Tx1L-Tx1D element moves as a unit under the control of functions encoded by Tx1L. Further characterization revealed that the endonuclease remains active for many hours at room temperature and that it is capable of enzymatic turnover. Scanning substitution mutagenesis located the recognition site for Tx1L EN within 10 bp surrounding the primary nick site. Implications of these features for natural transposition events are discussed.
Collapse
Affiliation(s)
- S Christensen
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84132, USA
| | | | | |
Collapse
|
18
|
Calcutt MJ, Lavrrar JL, Wise KS. IS1630 of Mycoplasma fermentans, a novel IS30-type insertion element that targets and duplicates inverted repeats of variable length and sequence during insertion. J Bacteriol 1999; 181:7597-607. [PMID: 10601219 PMCID: PMC94219 DOI: 10.1128/jb.181.24.7597-7607.1999] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A new insertion sequence (IS) of Mycoplasma fermentans is described. This element, designated IS1630, is 1,377 bp long and has 27-bp inverted repeats at the termini. A single open reading frame (ORF), predicted to encode a basic protein of either 366 or 387 amino acids (depending on the start codon utilized), occupies most of this compact element. The predicted translation product of this ORF has homology to transposases of the IS30 family of IS elements and is most closely related (27% identical amino acid residues) to the product of the prototype of the group, IS30. Multiple copies of IS1630 are present in the genomes of at least two M. fermentans strains. Characterization and comparison of nine copies of the element revealed that IS1630 exhibits unusual target site specificity and, upon insertion, duplicates target sequences in a manner unlike that of any other IS element. IS1630 was shown to have the striking ability to target and duplicate inverted repeats of variable length and sequence during transposition. IS30-type elements typically generate 2- or 3-bp target site duplications, whereas those created by IS1630 vary between 19 and 26 bp. With the exception of two recently reported IS4-type elements which have the ability to generate variable large duplications (B. B. Plikaytis, J. T. Crawford, and T. M. Shinnick, J. Bacteriol. 180:1037-1043, 1998; E. M. Vilei, J. Nicolet, and J. Frey, J. Bacteriol. 181:1319-1323, 1999), such large direct repeats had not been observed for other IS elements. Interestingly, the IS1630-generated duplications are all symmetrical inverted repeat sequences that are apparently derived from rho-independent transcription terminators of neighboring genes. Although the consensus target site for IS30 is almost palindromic, individual target sites possess considerably less inverted symmetry. In contrast, IS1630 appears to exhibit an increased stringency for inverted repeat recognition, since the majority of target sites had no mismatches in the inverted repeat sequences. In the course of this study, an additional copy of the previously identified insertion sequence ISMi1 was cloned. Analysis of the sequence of this element revealed that the transposase encoded by this element is more than 200 amino acid residues longer and is more closely related to the products of other IS3 family members than had previously been recognized. A potential site for programmed translational frameshifting in ISMi1 was also identified.
Collapse
Affiliation(s)
- M J Calcutt
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri-Columbia, Columbia, Missouri 65212, USA.
| | | | | |
Collapse
|
19
|
Kiss J, Olasz F. Formation and transposition of the covalently closed IS30 circle: the relation between tandem dimers and monomeric circles. Mol Microbiol 1999; 34:37-52. [PMID: 10540284 DOI: 10.1046/j.1365-2958.1999.01567.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the present study, we demonstrate that a circular IS30 element acts as an intermediate for simple insertion. Covalently closed IS and Tn circles constructed in vitro are suitable for integration into the host genome. Minicircle integration displays all the characteristics of transpositional fusion mediated by the (IS30 )2 dimer regarding target selection and target duplication. Evidence is provided for in vivo circularization of the element located either on plasmids or on the genome. It is shown that circle formation can occur through alternative pathways. One of them is excision of IS30 from a hot spot via joining the IRs. This reaction resembles the site-specific dimerization that leads to (IS30 )2 establishment. The other process is the dissolution of (IS30 )2 dimer, when the element is excised from an IR-IR joint. These pathways differ basically in the fate of the donor replicon: only dimer dissolution gives rise to resealed donor backbone. Analysis of minicircles and the rearranged donor replicons led us to propose a molecular model that can account for differences between the circle-generating processes. Our focus was to the dissolution of IR-IR joints located on the host genome, because these events promoted extensive genomic rearrangements and accompanied minicircle formation. The results present the possibility of host genome reorganization by IS30-like transposition.
Collapse
Affiliation(s)
- J Kiss
- Agricultural Biotechnology Center,Szent-Györgyi Albert u. 4, H-2101 Gödöllo", Hungary
| | | |
Collapse
|
20
|
Boyd AC, Popp F, Michaelis U, Davidson H, Davidson-Smith H, Doherty A, McLachlan G, Porteous DJ, Seeber S. Insertion of natural intron 6a-6b into a human cDNA-derived gene therapy vector for cystic fibrosis improves plasmid stability and permits facile RNA/DNA discrimination. J Gene Med 1999; 1:312-21. [PMID: 10738548 DOI: 10.1002/(sici)1521-2254(199909/10)1:5<312::aid-jgm55>3.0.co;2-#] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND The gene therapy vector pCMV-CFTR containing human CFTR cDNA shows high segregational instability during growth in Escherichia coli. METHODS By host strain screening and optimization of fermentation, satisfactory levels of pCMV-CFTR production were achieved. However, the vector was also vulnerable to structural instability manifested by the appearance during fermentation of a more stable mutant form in which the bacterial insertion sequence IS1 had transposed into exon 7 of plasmidborne CFTR. The instability of pCMV-CFTR is attributable to transcription from an upstream cryptic promoter leading to the production of CFTR peptide fragments known to be toxic when expressed in E. coli. To address this, we inserted the 1.1 kb natural human 6a-6b intron into pCMV-CFTR. RESULTS The new vector pCMV-CFTR-int6ab is more stable in E. coli than either pCMV-CFTR or the IS1 mutant, grows to high cell density giving higher DNA yields and expresses CFTR appropriately in transfected cells. Thus, the intron has a stabilizing effect comparable to the IS1 insertion yet retains full functionality for gene therapy. We describe a PCR assay using primers directed to sequences flanking the intron that allows differentiation between DNA and mature mRNA. The T936C mutation present only in vector DNA has also been exploited to allow transgene CFTR to be distinguished and its dose-dependent expression to be detected in human cellular backgrounds. CONCLUSIONS Instability of a plasmid vector for gene therapy has been minimized by rational modification. The introduction of an intron for this purpose offers the additional advantage of providing a discriminatory RT-PCR assay.
Collapse
Affiliation(s)
- A C Boyd
- MRC Human Genetics Unit, Western General Hospital, Edinburgh, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Isawa T, Sameshima R, Mitsui H, Minamisawa K. IS1631 occurrence in Bradyrhizobium japonicum highly reiterated sequence-possessing strains with high copy numbers of repeated sequences RSalpha and RSbeta. Appl Environ Microbiol 1999; 65:3493-501. [PMID: 10427040 PMCID: PMC91525 DOI: 10.1128/aem.65.8.3493-3501.1999] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
From Bradyrhizobium japonicum highly reiterated sequence-possessing (HRS) strains indigenous to Niigata and Tokachi in Japan with high copy numbers of the repeated sequences RSalpha and RSbeta (K. Minamisawa, T. Isawa, Y. Nakatsuka, and N. Ichikawa, Appl. Environ. Microbiol. 64:1845-1851, 1998), several insertion sequence (IS)-like elements were isolated by using the formation of DNA duplexes by denaturation and renaturation of total DNA, followed by treatment with S1 nuclease. Most of these sequences showed structural features of bacterial IS elements, terminal inverted repeats, and homology with known IS elements and transposase genes. HRS and non-HRS strains of B. japonicum differed markedly in the profiles obtained after hybridization with all the elements tested. In particular, HRS strains of B. japonicum contained many copies of IS1631, whereas non-HRS strains completely lacked this element. This association remained true even when many field isolates of B. japonicum were examined. Consequently, IS1631 occurrence was well correlated with B. japonicum HRS strains possessing high copy numbers of the repeated sequence RSalpha or RSbeta. DNA sequence analysis indicated that IS1631 is 2,712 bp long. In addition, IS1631 belongs to the IS21 family, as evidenced by its two open reading frames, which encode putative proteins homologous to IstA and IstB of IS21, and its terminal inverted repeat sequences with multiple short repeats.
Collapse
Affiliation(s)
- T Isawa
- Institute of Genetic Ecology, Tohoku University, Katahira, Aoba-ku, Sendai 980-8577, Japan
| | | | | | | |
Collapse
|
22
|
Whiteway J, Koziarz P, Veall J, Sandhu N, Kumar P, Hoecher B, Lambert IB. Oxygen-insensitive nitroreductases: analysis of the roles of nfsA and nfsB in development of resistance to 5-nitrofuran derivatives in Escherichia coli. J Bacteriol 1998; 180:5529-39. [PMID: 9791100 PMCID: PMC107609 DOI: 10.1128/jb.180.21.5529-5539.1998] [Citation(s) in RCA: 154] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/1998] [Accepted: 08/17/1998] [Indexed: 12/30/2022] Open
Abstract
Nitroheterocyclic and nitroaromatic compounds constitute an enormous range of chemicals whose potent biological activity has significant human health and environmental implications. The biological activity of nitro-substituted compounds is derived from reductive metabolism of the nitro moiety, a process catalyzed by a variety of nitroreductase activities. Resistance of bacteria to nitro-substituted compounds is believed to result primarily from mutations in genes encoding oxygen-insensitive nitroreductases. We have characterized the nfsA and nfsB genes of a large number of nitrofuran-resistant mutants of Escherichia coli and have correlated mutation with cell extract nitroreductase activity. Our studies demonstrate that first-step resistance to furazolidone or nitrofurazone results from an nfsA mutation, while the increased resistance associated with second-step mutants is a consequence of an nfsB mutation. Inferences made from mutation about the structure-function relationships of NfsA and NfsB are discussed, especially with regard to the identification of flavin mononucleotide binding sites. We show that expression of plasmid-carried nfsA and nfsB genes in resistant mutants restores sensitivity to nitrofurans. Among the 20 first-step and 53 second-step mutants isolated in this study, 65 and 49%, respectively, contained insertion sequence elements in nfsA and nfsB. IS1 integrated in both genes, while IS30 and IS186 were found only in nfsA and IS2 and IS5 were observed only in nfsB. Insertion hot spots for IS30 and IS186 are indicated in nfsA, and a hot spot for IS5 insertion is evident in nfsB. We discuss potential regional and sequence-specific determinants for insertion sequence element integration in nfsA and nfsB.
Collapse
Affiliation(s)
- J Whiteway
- Biology Department, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | | | | | | | | | | | | |
Collapse
|
23
|
Fomukong N, Beggs M, el Hajj H, Templeton G, Eisenach K, Cave MD. Differences in the prevalence of IS6110 insertion sites in Mycobacterium tuberculosis strains: low and high copy number of IS6110. TUBERCLE AND LUNG DISEASE : THE OFFICIAL JOURNAL OF THE INTERNATIONAL UNION AGAINST TUBERCULOSIS AND LUNG DISEASE 1998; 78:109-16. [PMID: 9692179 DOI: 10.1016/s0962-8479(98)80003-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
SETTING Mycobacterium tuberculosis (M. tuberculosis) isolates from various parts of the USA which have few copies of the insertion sequence IS6110. OBJECTIVES To characterize the sites of insertion of IS6110 among M. tuberculosis isolates that have one to six copies of the insertion sequence. DESIGN The mixed-linker polymerase chain reaction (ML-PCR) procedure was used to amplify the terminal repeats on the ends of IS6110 and adjacent flanking sequences. From the ML-PCR products, sequences flanking 14 copies of IS6110 in strains containing less than seven copies of the insertion were determined. Sequence information from the flanking deoxyribonucleic acid was used to construct flanking primers that can be used to indicate the presence of IS6110 at a particular site when paired with outbound IS6110 primers in a PCR. Over 200 strains of diverse origin were screened for the insertion of IS6110 at several distinct sites using this procedure. RESULTS The direct repeat (DR) locus has been described as a highly preferred site for insertion of IS6110 in strains of M. tuberculosis. Another highly preferred site of insertion of IS6100, DK1, is herein described. Insertions at DK1 are highly prevalent in M. tuberculosis strains harboring two to six copies of IS6110. The prevalence of insertions at this site decreases in strains with more than six copies of IS6110, even though the sequence itself is present in strains lacking a copy of IS6110 at this site. CONCLUSION In addition to the DR locus there are other conserved sites of insertion among M. tuberculosis strains. The data further suggest a separate lineage for the high copy and the low copy strains, and a possible sequential insertion of IS6110 in strains of M. tuberculosis with less than seven copies.
Collapse
Affiliation(s)
- N Fomukong
- Department of Anatomy, University of Arkansas for Medical Sciences, Little Rock, USA
| | | | | | | | | | | |
Collapse
|
24
|
Plikaytis BB, Crawford JT, Shinnick TM. IS1549 from Mycobacterium smegmatis forms long direct repeats upon insertion. J Bacteriol 1998; 180:1037-43. [PMID: 9495740 PMCID: PMC106989 DOI: 10.1128/jb.180.5.1037-1043.1998] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A new insertion element, IS1549, was identified serendipitously from Mycobacterium smegmatis LR222 during experiments using a vector designed to detect the excision of IS6110 from between the promoter region and open reading frame (ORF) of an aminoglycoside phosphotransferase gene. Six of the kanamycin-resistant isolates had a previously unidentified insertion element upstream of the ORF of the aph gene. The 1,634-bp sequence contained a single ORF of 504 amino acids with 85% G+C content in the third codon position. The putative protein sequence showed a distant relationship to the transposase of IS231, which is a member of the IS4 family of insertion elements. IS1549 contains 11-bp terminal inverted repeats and is characterized by the formation of unusually long and variable-length (71- to 246-bp) direct repeats of the target DNA during transposition. Southern blot analysis revealed that five copies of IS1549 are present in LR222, but not all M. smegmatis strains carry this element. Only strains with a 65-kDa antigen gene with a PCR-restriction fragment length polymorphism type identical to that of M. smegmatis 607 contain IS1549. None of 13 other species of Mycobacterium tested by PCR with two sets of primers specific for IS1549 were positive for the expected amplified product.
Collapse
Affiliation(s)
- B B Plikaytis
- Division of AIDS, STD, and TB Laboratory Research, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA.
| | | | | |
Collapse
|