1
|
Abstract
Nonhuman primates are critically important animal models in which to study complex human diseases, understand biological functions, and address the safety of new diagnostics and therapies proposed for human use. They have genetic, physiologic, immunologic, and developmental similarities when compared to humans and therefore provide important preclinical models of human health and disease. This review highlights select research areas that demonstrate the importance of nonhuman primates in translational research. These include pregnancy and developmental disorders, infectious diseases, gene therapy, somatic cell genome editing, and applications of in vivo imaging. The power of the immune system and our increasing understanding of the role it plays in acute and chronic illnesses are being leveraged to produce new treatments for a range of medical conditions. Given the importance of the human immune system in health and disease, detailed study of the immune system of nonhuman primates is essential to advance preclinical translational research. The need for nonhuman primates continues to remain a high priority, which has been acutely evident during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) global pandemic. Nonhuman primates will continue to address key questions and provide predictive models to identify the safety and efficiency of new diagnostics and therapies for human use across the lifespan.
Collapse
Affiliation(s)
- Alice F Tarantal
- Departments of Pediatrics and Cell Biology and Human Anatomy, University of California, Davis, California, USA;
- California National Primate Research Center, University of California, Davis, California, USA
| | - Stephen C Noctor
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, California, USA;
| | - Dennis J Hartigan-O'Connor
- California National Primate Research Center, University of California, Davis, California, USA
- Medical Microbiology and Immunology, School of Medicine, University of California, Davis, California, USA;
| |
Collapse
|
2
|
Batchelder CA, Duru N, Lee CCI, Baker CA, Swainson L, McCune JM, Tarantal AF. Myeloid-lymphoid ontogeny in the rhesus monkey (Macaca mulatta). Anat Rec (Hoboken) 2014; 297:1392-406. [PMID: 24867874 PMCID: PMC4120262 DOI: 10.1002/ar.22943] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 04/02/2014] [Indexed: 12/17/2022]
Abstract
Establishment of a functional immune system has important implications for health and disease, yet questions remain regarding the mechanism, location, and timing of development of myeloid and lymphoid cell compartments. The goal of this study was to characterize the ontogeny of the myeloid-lymphoid system in rhesus monkeys to enhance current knowledge of the developmental sequence of B-cell (CD20, CD79), T-cell (CD3, CD4, CD8, FoxP3), dendritic cell (CD205), and macrophage (CD68) lineages in the fetus and infant. Immunohistochemical assessments addressed the temporal and spatial expression of select phenotypic markers in the developing liver, thymus, spleen, lymph nodes, gut-associated lymphoid tissue (GALT), and bone marrow with antibodies known to cross-react with rhesus cells. CD3 was the earliest lymphoid marker identified in the first trimester thymus and, to a lesser extent, in the spleen. T-cell markers were also expressed midgestation on cells of the liver, spleen, thymus, and in Peyer's patches of the small and large intestine, and where CCR5 expression was noted. A myeloid marker, CD68, was found on hepatic cells near blood islands in the late first trimester. B-cell markers were observed mid-second trimester in the liver, spleen, thymus, lymph nodes, bone marrow spaces, and occasionally in GALT. By the late third trimester and postnatally, secondary follicles with germinal centers were present in the thymus, spleen, and lymph nodes. These results suggest that immune ontogeny in monkeys is similar in temporal and anatomical sequence when compared to humans, providing important insights for translational studies.
Collapse
Affiliation(s)
| | - Nadire Duru
- California National Primate Research Center, University of California, Davis, CA
| | - C. Chang I. Lee
- California National Primate Research Center, University of California, Davis, CA
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA
| | - Chris A.R. Baker
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, CA
| | - Louise Swainson
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, CA
| | - Joseph M. McCune
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, CA
| | - Alice F. Tarantal
- California National Primate Research Center, University of California, Davis, CA
- Department of Pediatrics, University of California, Davis, CA
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA
| |
Collapse
|
3
|
Noia G, Ligato MS, Cesari E, Visconti D, Fortunato G, Tintoni M, Mappa I, Greco C, Caristo ME, Bonanno G, Corallo M, Minafra L, Perillo A, Terzano M, Rutella S, Leone G, Scambia G, Michejda M, Mancuso S. Source of cell injected is a critical factors for short and long engraftment in xeno-transplantation. Cell Prolif 2008; 41 Suppl 1:41-50. [PMID: 18181944 DOI: 10.1111/j.1365-2184.2008.00481.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
This study aims to investigate engraftment of human cord blood and foetal bone marrow stem cells after in utero transplantation via the intracoelomic route in the sheep. Here, we performed transplantation in 14 single and 1 twin sheep foetuses at 40-47 days of development, using a novel schedule for injection. (i) Single injection of CD34(+) human cord blood stem cells via the coelomic route (from 10 to 50 x 10(4)) in seven single foetuses. (ii) Single injection of CD34(+) foetal bone marrow stem cells via the intracoelomic route with further numbers of cells (20 x 10(5) and 8 x 10(5), respectively) in three single and in one twin foetuses. (iii) Double fractioned injection (20-30 x 10(6)) via the coelomic route and 20 x 10(6) postnatally, intravenously, shortly after birth of CD3-depleted cord blood stem cells in four single foetuses. In the first group, three single foetuses showed human/sheep chimaerism at 1, 8 and 14 months after birth. In the second group, the twin foetuses showed human/sheep chimaerism at 1 month after birth. In the third group, only two out of four single foetuses that underwent transplantation showed chimaerism at 1 month. While foetal bone marrow stem cells showed good short-term engraftment (1 month after birth), cord blood stem cells were able to persist longer in the ovine recipients (at 1, 8 and 14 months after birth).
Collapse
Affiliation(s)
- G Noia
- Department of Obstetrics and Gynecology, Catholic University of the Sacred Heart, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
McCormack E, Bruserud O, Gjertsen BT. Animal models of acute myelogenous leukaemia - development, application and future perspectives. Leukemia 2005; 19:687-706. [PMID: 15759039 DOI: 10.1038/sj.leu.2403670] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
From the early inception of the transplant models through to contemporary genetic and xenograft models, evolution of murine leukaemic model systems have been critical to our general comprehension and treatment of cancer, and, more specifically, disease states such as acute myelogenous leukaemia (AML). However, even with modern advances in therapeutics and molecular diagnostics, the majority of AML patients die from their disease. Thus, in the absence of definitive in vitro models which precisely recapitulate the in vivo setting of human AMLs and failure of significant numbers of new drugs late in clinical trials, it is essential that murine AML models are developed to exploit more specific, targeted therapeutics. While various model systems are described and discussed in the literature from initial transplant models such as BNML and spontaneous murine leukaemia virus models, to the more definitive genetic and clinically significant NOD/SCID xenograft models, there exists no single compendium which directly assesses, reviews or compares the relevance of these models. Thus, the function of this article is to provide clinicians and experimentalists a chronological, comprehensive appraisal of all AML model systems, critical discussion on the elucidation of their roles in our understanding of AML and consideration to their efficacy in the development of AML chemotherapeutics.
Collapse
Affiliation(s)
- E McCormack
- Hematology Section, Institute of Medicine, University of Bergen, Bergen, Norway
| | | | | |
Collapse
|
5
|
Yang YL, Dou KF, Li KZ. Influence of intrauterine injection of rat fetal hepatocytes on rejection of rat liver transplantation. World J Gastroenterol 2003; 9:137-40. [PMID: 12508369 PMCID: PMC4728228 DOI: 10.3748/wjg.v9.i1.137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the influence of immune tolerance induced by intrauterine exposure to fetal hepatocytes on liver transplantation in the adult rat.
METHODS: LOU/CN rat fetal hepatocytes were injected into the fetuses of pregnant CHN rats (14-16 days of gestation). At 7-9 weeks of age, the surviving male rats received orthotopic liver transplantation (OLT) from male LOU/CN donors and the survival period was observed and monitered by mixed lymphocyte reaction assay and cytotoxicity test.
RESULTS: (1) A total of 31 pregnant CHN rats with 172 fetuses received fetal hepatocytes from LOU/CN rats via intrauterine injection. Among them, thirteen pregnant rats showed normal parturition, with 74 neonatal rats growing up normally. (2) The mean survival period after OLT in rats with fetal exposure to fetal hepatocytes was 32.1 ± 3.7 days, which was significantly different from the control (11.8 ± 2.3 days, P < 0.01) in rats without fetal induction of immune tolerance. (3) Mixed lymphocyte proliferation assays yielded remarkable discrepancies between the groups of rats with- or without fetal exposure to fetal hepatocytes, with values of 8411 ± 1361 and 22473 ± 1856 (CPM ± SD, P < 0.01) respectively. (4) Cytotoxicity assays showed values of 21.2 ± 6.5% and 64.5 ± 7.2% (P < 0.01) in adult rats with or without fetal induction of immune tolerance.
CONCLUSION: Intrauterine injection of fetal hepatocytes into rat fetuses can prolong the survival period of liver transplant adult male rats recipients, inducting immune tolerance in OLT.
Collapse
Affiliation(s)
- Yan-Ling Yang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, 710032 Xi'an, Shaanxi Province, China
| | | | | |
Collapse
|
6
|
Makori N, Tarantal AF, Lü FX, Rourke T, Marthas ML, McChesney MB, Hendrickx AG, Miller CJ. Functional and morphological development of lymphoid tissues and immune regulatory and effector function in rhesus monkeys: cytokine-secreting cells, immunoglobulin-secreting cells, and CD5(+) B-1 cells appear early in fetal development. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2003; 10:140-53. [PMID: 12522052 PMCID: PMC145291 DOI: 10.1128/cdli.10.1.140-153.2003] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Little is known regarding the timing of immune ontogeny and effector function in fetal humans and nonhuman primates. We studied the organization of lymphocyte and antigen-presenting cell populations in developing lymphoid tissues of rhesus monkey fetuses during the second and third trimesters (65 to 145 days of gestation; term = 165 days). Immunoglobulin-secreting and cytokine-secreting cells were detected at day 80. The thymus, spleen, lymph nodes, and intestinal mucosa were examined for cells expressing CD3, CD5, CD20, CD68, p55, and HLA-DR. In the spleens of 65-day-old fetuses (early second trimester), the overwhelming majority of total lymphocytes were CD5(+) CD20(+) B-1 cells. The remaining lymphocytes were CD3(+) T cells. By day 80, splenic B and T cells were equal in number. Intraepithelial CD3(+) CD5(-) T cells and lamina propria CD20(+) CD5(+) B cells were present in the intestines of 65-day-old fetuses. By day 80, numerous CD20(+) CD5(+) B cells were present in the jejunums and colons and early lymphocyte aggregate formation was evident. The spleens of 80- to 145-day-old fetuses contained immunoglobulin M (IgM)-secreting cells, while IgA-, IgG-, interleukin-6-, and gamma interferon-secreting cells were numerous in the spleens and colons. Thus, by the second trimester, the lymphoid tissues of the rhesus monkey fetus have a complete repertoire of properly organized antigen-presenting cells, T cells, and B cells.
Collapse
Affiliation(s)
- Norbert Makori
- California National Primate Research Center, Center for Comparative Medicine, University of California, Davis, California 95616-8542, USA
| | | | | | | | | | | | | | | |
Collapse
|