1
|
Cheah LC, Sainsbury F, Vickers CE. Translational fusion of terpene synthases for metabolic engineering: Lessons learned and practical considerations. Methods Enzymol 2024; 699:121-161. [PMID: 38942501 DOI: 10.1016/bs.mie.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
The step catalyzed by terpene synthases is a well-recognized and significant bottleneck in engineered terpenoid bioproduction. Consequently, substantial efforts have been devoted towards increasing metabolic flux catalyzed by terpene synthases, employing strategies such as gene overexpression and protein engineering. Notably, numerous studies have demonstrated remarkable titer improvements by applying translational fusion, typically by fusing the terpene synthase with a prenyl diphosphate synthase that catalyzes the preceding step in the pathway. The main appeal of the translational fusion approach lies in its simplicity and orthogonality to other metabolic engineering tools. However, there is currently limited understanding of the underlying mechanism of flux enhancement, owing to the unpredictable and often protein-specific effects of translational fusion. In this chapter, we discuss practical considerations when engineering translationally fused terpene synthases, drawing insights from our experience and existing literature. We also provide detailed experimental workflows and protocols based on our previous work in budding yeast (Saccharomyces cerevisiae). Our intention is to encourage further research into the translational fusion of terpene synthases, anticipating that this will contribute mechanistic insights not only into the activity, behavior, and regulation of terpene synthases, but also of other enzymes.
Collapse
Affiliation(s)
- Li Chen Cheah
- Australian Centre for Disease Preparedness, East Geelong, VIC, Australia.
| | - Frank Sainsbury
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia; ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, QLD, Australia
| | - Claudia E Vickers
- ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, QLD, Australia; School of Biological and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia; BioBuilt Solutions, Brisbane, QLD, Australia
| |
Collapse
|
2
|
Cheah LC, Liu L, Plan MR, Peng B, Lu Z, Schenk G, Vickers CE, Sainsbury F. Product Profiles of Promiscuous Enzymes Can be Altered by Controlling In Vivo Spatial Organization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303415. [PMID: 37750486 PMCID: PMC10646250 DOI: 10.1002/advs.202303415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/31/2023] [Indexed: 09/27/2023]
Abstract
Enzyme spatial organization is an evolved mechanism for facilitating multi-step biocatalysis and can play an important role in the regulation of promiscuous enzymes. The latter function suggests that artificial spatial organization can be an untapped avenue for controlling the specificity of bioengineered metabolic pathways. A promiscuous terpene synthase (nerolidol synthase) is co-localized and spatially organized with the preceding enzyme (farnesyl diphosphate synthase) in a heterologous production pathway, via translational protein fusion and/or co-encapsulation in a self-assembling protein cage. Spatial organization enhances nerolidol production by ≈11- to ≈62-fold relative to unorganized enzymes. More interestingly, striking differences in the ratio of end products (nerolidol and linalool) are observed with each spatial organization approach. This demonstrates that artificial spatial organization approaches can be harnessed to modulate the product profiles of promiscuous enzymes in engineered pathways in vivo. This extends the application of spatial organization beyond situations where multiple enzymes compete for a single substrate to cases where there is competition among multiple substrates for a single enzyme.
Collapse
Affiliation(s)
- Li Chen Cheah
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt LuciaQLD4072Australia
- CSIRO Future Science Platform in Synthetic BiologyCommonwealth Scientific and Industrial Research Organisation (CSIRO)Dutton ParkSt LuciaQLD4102Australia
- Present address:
Australian Centre for Disease Preparedness5 Portarlington RdEast GeelongVIC3219Australia
| | - Lian Liu
- Metabolomics Australia (Queensland Node)The University of QueenslandSt LuciaQLD4072Australia
| | - Manuel R. Plan
- Metabolomics Australia (Queensland Node)The University of QueenslandSt LuciaQLD4072Australia
| | - Bingyin Peng
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt LuciaQLD4072Australia
- CSIRO Future Science Platform in Synthetic BiologyCommonwealth Scientific and Industrial Research Organisation (CSIRO)Dutton ParkSt LuciaQLD4102Australia
- ARC Centre of Excellence in Synthetic BiologyQueensland University of TechnologyBrisbaneQLD4000Australia
- School of Biological and Environmental ScienceQueensland University of TechnologyBrisbaneQLD4000Australia
| | - Zeyu Lu
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt LuciaQLD4072Australia
- ARC Centre of Excellence in Synthetic BiologyQueensland University of TechnologyBrisbaneQLD4000Australia
| | - Gerhard Schenk
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt LuciaQLD4072Australia
- School of Chemistry and Molecular BiosciencesThe University of QueenslandSt LuciaQLD4072Australia
| | - Claudia E. Vickers
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt LuciaQLD4072Australia
- CSIRO Future Science Platform in Synthetic BiologyCommonwealth Scientific and Industrial Research Organisation (CSIRO)Dutton ParkSt LuciaQLD4102Australia
- ARC Centre of Excellence in Synthetic BiologyQueensland University of TechnologyBrisbaneQLD4000Australia
- School of Biological and Environmental ScienceQueensland University of TechnologyBrisbaneQLD4000Australia
- Centre for Cell Factories and BiopolymersGriffith Institute for Drug DiscoveryGriffith UniversityNathanQLD4111Australia
| | - Frank Sainsbury
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt LuciaQLD4072Australia
- CSIRO Future Science Platform in Synthetic BiologyCommonwealth Scientific and Industrial Research Organisation (CSIRO)Dutton ParkSt LuciaQLD4102Australia
- Centre for Cell Factories and BiopolymersGriffith Institute for Drug DiscoveryGriffith UniversityNathanQLD4111Australia
| |
Collapse
|
3
|
Karimkhani MM, Nasrollahzadeh M, Maham M, Jamshidi A, Kharazmi MS, Dehnad D, Jafari SM. Extraction and purification of α-pinene; a comprehensive review. Crit Rev Food Sci Nutr 2022; 64:4286-4311. [PMID: 36384372 DOI: 10.1080/10408398.2022.2140331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Extensive use of α-pinene in cosmetics, and medicine, especially for its antioxidant/antibacterial, and anti-cancer properties, and also as a flavoring agent, has made it a versatile product. α-Pinene (one of the two pinene isomers) is the most abundant terpene in nature. When extracting α-pinene from plants and, to a lesser extent, fruits, given that its purity is essential, purification methods should also be used as described in this study. Also, an attempt has been made to describe the extraction techniques of α-pinene, carried out by conventional and novel methods. Some disadvantages of conventional methods (such as hydrodistillation or solvent extraction) are being time consuming, low capacity per batch and being labor intensive and the requirement of trained operators. Most novel methods, such as supercritical fluid extraction and microwave-assisted extraction, can reduce the extraction time, cost, and energy compared to conventional methods, and, in fact, the extraction and preservation efficiency of α-pinene in these methods is higher than conventional methods. Although the above-mentioned extraction methods are effective, they still require rather long extraction times. In fact, advanced methods such as green and solvent-free ultrasonic-microwave-assisted extraction are much more efficient than microwave-assisted extraction and ultrasound-assisted extraction because the extraction efficiency and separation of α-pinene in these methods are higher; furthermore, no solvent consumption and maximum extraction efficiency are some crucial advantages of these techniques. However, the application of some novel methods, such as ultrasound-assisted extraction, in industry scale is still problematic because of their intricate design data.
Collapse
Affiliation(s)
- Mohammad Mahdi Karimkhani
- Department of Food Hygiene and Aquaculture, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mahmoud Nasrollahzadeh
- Max Bergmann Center of Biomaterials, Institute of Materials Science, Technische Universität Dresden, Dresden, Germany
- Department of Chemistry, Faculty of Science, University of Qom, Qom, Iran
| | - Mehdi Maham
- Department of Chemistry, Aliabad Katoul Branch, Islamic Azad University, Aliabad Katoul, Iran
| | - Abdollah Jamshidi
- Department of Food Hygiene and Aquaculture, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Danial Dehnad
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
4
|
Satta A, Esquirol L, Ebert BE, Newman J, Peat TS, Plan M, Schenk G, Vickers CE. Molecular characterization of cyanobacterial short-chain prenyltransferases and discovery of a novel GGPP phosphatase. FEBS J 2022; 289:6672-6693. [PMID: 35704353 PMCID: PMC9796789 DOI: 10.1111/febs.16556] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/03/2022] [Accepted: 06/14/2022] [Indexed: 01/07/2023]
Abstract
Cyanobacteria are photosynthetic prokaryotes with strong potential to be used for industrial terpenoid production. However, the key enzymes forming the principal terpenoid building blocks, called short-chain prenyltransferases (SPTs), are insufficiently characterized. Here, we examined SPTs in the model cyanobacteria Synechococcus elongatus sp. PCC 7942 and Synechocystis sp. PCC 6803. Each species has a single putative SPT (SeCrtE and SyCrtE, respectively). Sequence analysis identified these as type-II geranylgeranyl pyrophosphate synthases (GGPPSs) with high homology to GGPPSs found in the plastids of green plants and other photosynthetic organisms. In vitro analysis demonstrated that SyCrtE is multifunctional, producing geranylgeranyl pyrophosphate (GGPP; C20 ) primarily but also significant amounts of farnesyl pyrophosphate (FPP, C15 ) and geranyl pyrophosphate (GPP, C10 ); whereas SeCrtE appears to produce only GGPP. The crystal structures were solved to 2.02 and 1.37 Å, respectively, and the superposition of the structures against the GGPPS of Synechococcus elongatus sp. PCC 7002 yield a root mean square deviation of 0.8 Å (SeCrtE) and 1.1 Å (SyCrtE). We also discovered that SeCrtE is co-encoded in an operon with a functional GGPP phosphatase, suggesting metabolic pairing of these two activities and a putative function in tocopherol biosynthesis. This work sheds light on the activity of SPTs and terpenoid synthesis in cyanobacteria. Understanding native prenyl phosphate metabolism is an important step in developing approaches to engineering the production of different chain-length terpenoids in cyanobacteria.
Collapse
Affiliation(s)
- Alessandro Satta
- Australian Institute for Bioengineering and BiotechnologyThe University of QueenslandSt. LuciaAustralia,CSIRO Synthetic Biology Future Science PlatformBrisbaneAustralia
| | - Lygie Esquirol
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug DiscoveryGriffith UniversityNathanAustralia
| | - Birgitta E. Ebert
- Australian Institute for Bioengineering and BiotechnologyThe University of QueenslandSt. LuciaAustralia
| | - Janet Newman
- CSIRO Biomedical ProgramParkvilleAustralia,School of Biotechnology and Biomolecular SciencesUniversity of New South WalesKensingtonAustralia
| | - Thomas S. Peat
- CSIRO Biomedical ProgramParkvilleAustralia,School of Biotechnology and Biomolecular SciencesUniversity of New South WalesKensingtonAustralia
| | - Manuel Plan
- Metabolomics Australia (Queensland Node), Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt. LuciaAustralia
| | - Gerhard Schenk
- Australian Institute for Bioengineering and BiotechnologyThe University of QueenslandSt. LuciaAustralia,School of Chemistry and Molecular BiosciencesThe University of QueenslandSt. LuciaAustralia,Sustainable Minerals InstituteThe University of QueenslandSt. LuciaAustralia
| | - Claudia E. Vickers
- CSIRO Synthetic Biology Future Science PlatformBrisbaneAustralia,Centre for Cell Factories and Biopolymers, Griffith Institute for Drug DiscoveryGriffith UniversityNathanAustralia,ARC Centre of Excellence in Synthetic BiologyQueensland University of TechnologyBrisbaneAustralia
| |
Collapse
|
5
|
Esquirol L, McNeale D, Douglas T, Vickers CE, Sainsbury F. Rapid Assembly and Prototyping of Biocatalytic Virus-like Particle Nanoreactors. ACS Synth Biol 2022; 11:2709-2718. [PMID: 35880829 DOI: 10.1021/acssynbio.2c00117] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Protein cages are attractive as molecular scaffolds for the fundamental study of enzymes and metabolons and for the creation of biocatalytic nanoreactors for in vitro and in vivo use. Virus-like particles (VLPs) such as those derived from the P22 bacteriophage capsid protein make versatile self-assembling protein cages and can be used to encapsulate a broad range of protein cargos. In vivo encapsulation of enzymes within VLPs requires fusion to the coat protein or a scaffold protein. However, the expression level, stability, and activity of cargo proteins can vary upon fusion. Moreover, it has been shown that molecular crowding of enzymes inside VLPs can affect their catalytic properties. Consequently, testing of numerous parameters is required for production of the most efficient nanoreactor for a given cargo enzyme. Here, we present a set of acceptor vectors that provide a quick and efficient way to build, test, and optimize cargo loading inside P22 VLPs. We prototyped the system using a yellow fluorescent protein and then applied it to mevalonate kinases (MKs), a key enzyme class in the industrially important terpene (isoprenoid) synthesis pathway. Different MKs required considerably different approaches to deliver maximal encapsulation as well as optimal kinetic parameters, demonstrating the value of being able to rapidly access a variety of encapsulation strategies. The vector system described here provides an approach to optimize cargo enzyme behavior in bespoke P22 nanoreactors. This will facilitate industrial applications as well as basic research on nanoreactor-cargo behavior.
Collapse
Affiliation(s)
- Lygie Esquirol
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia.,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Donna McNeale
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia.,Synthetic Biology Future Science Platform, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Brisbane, Queensland 4102, Australia
| | - Trevor Douglas
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Claudia E Vickers
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia.,Synthetic Biology Future Science Platform, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Brisbane, Queensland 4102, Australia.,ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane 4000 Australia
| | - Frank Sainsbury
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia.,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.,Synthetic Biology Future Science Platform, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Brisbane, Queensland 4102, Australia
| |
Collapse
|
6
|
Bongers M, Perez-Gil J, Hodson MP, Schrübbers L, Wulff T, Sommer MO, Nielsen LK, Vickers CE. Adaptation of hydroxymethylbutenyl diphosphate reductase enables volatile isoprenoid production. eLife 2020; 9:48685. [PMID: 32163032 PMCID: PMC7067565 DOI: 10.7554/elife.48685] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 02/16/2020] [Indexed: 12/12/2022] Open
Abstract
Volatile isoprenoids produced by plants are emitted in vast quantities into the atmosphere, with substantial effects on global carbon cycling. Yet, the molecular mechanisms regulating the balance between volatile and non-volatile isoprenoid production remain unknown. Isoprenoids are synthesised via sequential condensation of isopentenyl pyrophosphate (IPP) to dimethylallyl pyrophosphate (DMAPP), with volatile isoprenoids containing fewer isopentenyl subunits. The DMAPP:IPP ratio could affect the balance between volatile and non-volatile isoprenoids, but the plastidic DMAPP:IPP ratio is generally believed to be similar across different species. Here we demonstrate that the ratio of DMAPP:IPP produced by hydroxymethylbutenyl diphosphate reductase (HDR/IspH), the final step of the plastidic isoprenoid production pathway, is not fixed. Instead, this ratio varies greatly across HDRs from phylogenetically distinct plants, correlating with isoprenoid production patterns. Our findings suggest that adaptation of HDR plays a previously unrecognised role in determining in vivo carbon availability for isoprenoid emissions, directly shaping global biosphere-atmosphere interactions.
Collapse
Affiliation(s)
- Mareike Bongers
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
| | - Jordi Perez-Gil
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia.,Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain
| | - Mark P Hodson
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia.,Metabolomics Australia, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia.,School of Pharmacy, The University of Queensland, Brisbane, Australia
| | - Lars Schrübbers
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Tune Wulff
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Morten Oa Sommer
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Lars K Nielsen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
| | - Claudia E Vickers
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia.,CSIRO Synthetic Biology Future Science Platform, Brisbane, Australia
| |
Collapse
|
7
|
Peng B, Nielsen LK, Kampranis SC, Vickers CE. Engineered protein degradation of farnesyl pyrophosphate synthase is an effective regulatory mechanism to increase monoterpene production in Saccharomyces cerevisiae. Metab Eng 2018; 47:83-93. [DOI: 10.1016/j.ymben.2018.02.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 02/02/2018] [Accepted: 02/14/2018] [Indexed: 10/18/2022]
|
8
|
Röther W, Birke J, Grond S, Beltran JM, Jendrossek D. Production of functionalized oligo-isoprenoids by enzymatic cleavage of rubber. Microb Biotechnol 2017; 10:1426-1433. [PMID: 28695652 PMCID: PMC5658616 DOI: 10.1111/1751-7915.12748] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/22/2017] [Accepted: 05/22/2017] [Indexed: 01/19/2023] Open
Abstract
In this study, we show the proof of concept for the production of defined oligo-isoprenoids with terminal functional groups that can be used as starting materials for various purposes including the synthesis of isoprenoid-based plastics. To this end, we used three types of rubber oxygenases for the enzymatic cleavage of rubber [poly(cis-1,4-isoprene)]. Two enzymes, rubber oxygenase RoxAXsp and rubber oxygenase RoxBXsp , originate from Xanthomonas sp. 35Y; the third rubber oxygenase, latex-clearing protein (LcpK30 ), is derived from Gram-positive rubber degraders such as Streptomyces sp. K30. Emulsions of polyisoprene (latex) were treated with RoxAXsp , RoxBXsp , LcpK30 or with combinations of the three proteins. The cleavage products were purified by solvent extraction and FPLC separation. All products had the same general structure with terminal functions (CHO-CH2 - and -CH2 -COCH3 ) but differed in the number of intact isoprene units in between. The composition and m/z values of oligo-isoprenoid products were determined by HPLC-MS analysis. Our results provide a method for the preparation of reactive oligo-isoprenoids that can likely be used to convert polyisoprene latex or rubber waste materials into value-added molecules, biofuels, polyurethanes or other polymers.
Collapse
Affiliation(s)
- Wolf Röther
- Institute of MicrobiologyUniversity of StuttgartStuttgartGermany
| | - Jakob Birke
- Institute of MicrobiologyUniversity of StuttgartStuttgartGermany
| | - Stephanie Grond
- Institute of Organic ChemistryEberhard Karls Universität TübingenTübingenGermany
| | - Jose Manuel Beltran
- Institute of Organic ChemistryEberhard Karls Universität TübingenTübingenGermany
| | | |
Collapse
|
9
|
Chen X, Zhang C, Zou R, Stephanopoulos G, Too HP. In Vitro Metabolic Engineering of Amorpha-4,11-diene Biosynthesis at Enhanced Rate and Specific Yield of Production. ACS Synth Biol 2017; 6:1691-1700. [PMID: 28520394 DOI: 10.1021/acssynbio.6b00377] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In vitro metabolic engineering is an alternative approach to cell-based biosynthesis. It offers unprecedented flexibility for the study of biochemical pathways, thus providing useful information for the rational design and assembly of reaction modules. Herein, we took the advantage of in vitro metabolic engineering to initially gain insight into the regulatory network of a reconstituted amorpha-4,11-diene (AD) synthetic pathway. Guided by lin-log approximation, we rapidly identified the hitherto unrecognized inhibition of adenosine triphosphate (ATP) on both farnesyl pyrophosphate synthase (FPPS) and amorpha-4,11-diene synthase (ADS). Furthermore, the byproduct, pyrophosphate (PPi), potently inhibits ADS, but not FPPS. To lower the inhibition, an ATP recycling system and pyrophosphatase were used and resulted in a significant (∼3-fold) enhancement in the rate of AD production (∼5.7 μmol L-1 min-1). A coimmobilized multienzyme reaction system was then developed to recycle the enzymes. When inhibitory metabolites concentrations were reduced, the specific enzymatic yield of AD was further enhanced (>6-fold). This study demonstrated that mitigating the accumulation of inhibitory metabolites can result in higher yields of AD production by in vitro multienzymatic reactions.
Collapse
Affiliation(s)
- Xixian Chen
- Chemical
and Pharmaceutical Engineering, Singapore-MIT Alliance, Singapore 138602
- Biotransformation
Innovation Platform, Agency for Science Technology and Research, Singapore 138632
| | - Congqiang Zhang
- Chemical
and Pharmaceutical Engineering, Singapore-MIT Alliance, Singapore 138602
- Biotransformation
Innovation Platform, Agency for Science Technology and Research, Singapore 138632
| | - Ruiyang Zou
- Chemical
and Pharmaceutical Engineering, Singapore-MIT Alliance, Singapore 138602
| | - Gregory Stephanopoulos
- Chemical
and Pharmaceutical Engineering, Singapore-MIT Alliance, Singapore 138602
- Department
of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States of America
| | - Heng-Phon Too
- Chemical
and Pharmaceutical Engineering, Singapore-MIT Alliance, Singapore 138602
- Department
of Biochemistry, National University of Singapore, Singapore 119077
| |
Collapse
|
10
|
Peng B, Plan MR, Carpenter A, Nielsen LK, Vickers CE. Coupling gene regulatory patterns to bioprocess conditions to optimize synthetic metabolic modules for improved sesquiterpene production in yeast. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:43. [PMID: 28239415 PMCID: PMC5320780 DOI: 10.1186/s13068-017-0728-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/09/2017] [Indexed: 05/23/2023]
Abstract
BACKGROUND Assembly of heterologous metabolic pathways is commonly required to generate microbial cell factories for industrial production of both commodity chemicals (including biofuels) and high-value chemicals. Promoter-mediated transcriptional regulation coordinates the expression of the individual components of these heterologous pathways. Expression patterns vary during culture as conditions change, and this can influence yeast physiology and productivity in both positive and negative ways. Well-characterized strategies are required for matching transcriptional regulation with desired output across changing culture conditions. RESULTS Here, constitutive and inducible regulatory mechanisms were examined to optimize synthetic isoprenoid metabolic pathway modules for production of trans-nerolidol, an acyclic sesquiterpene alcohol, in yeast. The choice of regulatory system significantly affected physiological features (growth and productivity) over batch cultivation. Use of constitutive promoters resulted in poor growth during the exponential phase. Delaying expression of the assembled metabolic modules using the copper-inducible CUP1 promoter resulted in a 1.6-fold increase in the exponential-phase growth rate and a twofold increase in productivity in the post-exponential phase. However, repeated use of the CUP1 promoter in multiple expression cassettes resulted in genetic instability. A diauxie-inducible expression system, based on an engineered GAL regulatory circuit and a set of four different GAL promoters, was characterized and employed to assemble nerolidol synthetic metabolic modules. Nerolidol production was further improved by 60% to 392 mg L-1 using this approach. Various carbon source systems were investigated in batch/fed-batch cultivation to regulate induction through the GAL system; final nerolidol titres of 4-5.5 g L-1 were achieved, depending on the conditions. CONCLUSION Direct comparison of different transcriptional regulatory mechanisms clearly demonstrated that coupling the output strength to the fermentation stage is important to optimize the growth fitness and overall productivities of engineered cells in industrially relevant processes. Applying different well-characterized promoters with the same induction behaviour mitigates against the risks of homologous sequence-mediated genetic instability. Using these approaches, we significantly improved sesquiterpene production in yeast.
Collapse
Affiliation(s)
- Bingyin Peng
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD 4072 Australia
| | - Manuel R. Plan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD 4072 Australia
- Metabolomics Australia (Queensland Node), The University of Queensland, St. Lucia, QLD 4072 Australia
| | - Alexander Carpenter
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD 4072 Australia
| | - Lars K. Nielsen
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD 4072 Australia
| | - Claudia E. Vickers
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD 4072 Australia
| |
Collapse
|
11
|
Bongers M, Chrysanthopoulos PK, Behrendorff JBYH, Hodson MP, Vickers CE, Nielsen LK. Systems analysis of methylerythritol-phosphate pathway flux in E. coli: insights into the role of oxidative stress and the validity of lycopene as an isoprenoid reporter metabolite. Microb Cell Fact 2015; 14:193. [PMID: 26610700 PMCID: PMC4662018 DOI: 10.1186/s12934-015-0381-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/11/2015] [Indexed: 12/13/2022] Open
Abstract
Background High-throughput screening methods assume that the output measured is representative of changes in metabolic flux toward the desired product and is not affected by secondary phenotypes. However, metabolic engineering can result in unintended phenotypes that may go unnoticed in initial screening. The red pigment lycopene, a carotenoid with antioxidant properties, has been used as a reporter of isoprenoid pathway flux in metabolic engineering for over a decade. Lycopene production is known to vary between wild-type Escherichia coli hosts, but the reasons behind this variation have never been fully elucidated. Results In an examination of six E. coli strains we observed that strains also differ in their capacity for increased lycopene production in response to metabolic engineering. A combination of genetic complementation, quantitative SWATH proteomics, and biochemical analysis in closely-related strains was used to examine the mechanistic reasons for variation in lycopene accumulation. This study revealed that rpoS, a gene previously identified in lycopene production association studies, exerts its effect on lycopene accumulation not through modulation of pathway flux, but through alteration of cellular oxidative status. Specifically, absence of rpoS results in increased accumulation of reactive oxygen species during late log and stationary phases. This change in cellular redox has no effect on isoprenoid pathway flux, despite the presence of oxygen-sensitive iron-sulphur cluster enzymes and the heavy redox requirements of the methylerythritol phosphate pathway. Instead, decreased cellular lycopene in the ΔrpoS strain is caused by degradation of lycopene in the presence of excess reactive oxygen species. Conclusions Our results demonstrate that lycopene is not a reliable indicator of isoprenoid pathway flux in the presence of oxidative stress, and suggest that caution should be exercised when using lycopene as a screening tool in genome-wide metabolic engineering studies. More extensive use of systems biology for strain analysis will help elucidate such unpredictable side-effects in metabolic engineering projects. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0381-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mareike Bongers
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD, 4072, Australia.
| | - Panagiotis K Chrysanthopoulos
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD, 4072, Australia. .,Metabolomics Australia (Queensland Node), The University of Queensland, St. Lucia, QLD, 4072, Australia.
| | - James B Y H Behrendorff
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD, 4072, Australia.
| | - Mark P Hodson
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD, 4072, Australia. .,Metabolomics Australia (Queensland Node), The University of Queensland, St. Lucia, QLD, 4072, Australia.
| | - Claudia E Vickers
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD, 4072, Australia.
| | - Lars K Nielsen
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD, 4072, Australia.
| |
Collapse
|
12
|
|
13
|
Protocols for the Production and Analysis of Isoprenoids in Bacteria and Yeast. SPRINGER PROTOCOLS HANDBOOKS 2015. [DOI: 10.1007/8623_2015_107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|