1
|
Liu Q, Zhou H, Fu C, Han M, Xie S, Li M, Li C. MAZ-induced lncRNA H19 regulates proliferation and differentiation of porcine skeletal muscle satellite cells via sponge miR-935/miR-296-5p and the p38 MAPK pathway. Int J Biol Macromol 2025; 308:142675. [PMID: 40164245 DOI: 10.1016/j.ijbiomac.2025.142675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/25/2025] [Accepted: 03/28/2025] [Indexed: 04/02/2025]
Abstract
Skeletal muscle satellite cell proliferation and differentiation are important stages in skeletal muscle development, and long non-coding RNAs (lncRNAs) play important roles in both stages. We previously determined the basal functions of lncRNA H19 (H19) and the drebrin 1 (DBN1) gene in porcine skeletal muscle satellite cells (PSCs). However, the mechanisms for H19 and DBN1 regulation of the proliferation and differentiation of PSCs are still unclear. In this study, double luciferase report and pull down results confirmed H19 upregulates DBN1 expression by acting as a miR-935/miR-296-5p decoy. The western blotting results showed upregulated DBN expression activates the p38 mitogen-activated protein kinase (MAPK) pathway to inhibit PSC proliferation and promote differentiation. Moreover, ChIP results showed H19 transcription is regulated by the upstream transcription factor myc-associated zinc finger protein (MAZ). In conclusion, we resolved the mechanism for H19 regulation of proliferation and differentiation of PSCs, contributing to a deeper understanding of the epigenetic regulation of skeletal muscle development and will accelerate advancements in animal genetic improvement.
Collapse
Affiliation(s)
- Quan Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Honghong Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Chong Fu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Min Han
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Su Xie
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Mengxun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China.
| | - Changchun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China; The Cooperative Innovation Center for Sustainable Pig Production of Hubei Province, Wuhan 430070, Hubei, PR China.
| |
Collapse
|
2
|
Yuan Y, Duan W, Yang N, Sun C, Nie Q, Li J, Lian L. Transcriptome analysis of long non-coding RNA associated with embryonic muscle development in chickens. Br Poult Sci 2024; 65:394-402. [PMID: 38738875 DOI: 10.1080/00071668.2024.2335935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/08/2024] [Indexed: 05/14/2024]
Abstract
1. Skeletal muscle is an important component of chicken carcass. In chickens, the number of muscle fibres is fixed during the embryonic period, and muscle development during the embryonic period determines the muscle development potential after hatching.2. Beijing-You (BY) and Cornish (CN) chickens show completely different growth rates and body types, and two breeds were used in this study to explore the role of lncRNAs in muscle development during different chicken embryonic periods. A systematic analysis of lncRNAs and mRNAs were conducted in the pectoral muscle tissues of BY and CN chickens at embryonic days 11 (ED11), 13 (ED13), 15 (ED15), 17 (ED17), and 1-day-old (D1) using RNA-seq. A total of 4,104 differentially expressed transcripts (DETs) were identified among the five stages, including 2,359 lncRNAs and 1,745 mRNAs.3. The number of DETs between the two breeds at ED17 (1,658 lncRNAs and 1,016 mRNAs) was much higher than the total number of DET at all the other stages (692 lncRNAs and 729 mRNAs), indicating that the two breeds show the largest difference in gene regulation at ED17.4. Correlation analysis was performed for all differentially expressed lncRNAs and mRNAs during the five periods. Forty-three, cis interaction pairs of lncRNA-mRNA related to chicken muscle development were predicted. The expression of four pairs was verified, and the results showed MSTRG.12395.2-FGFBP2 and MSTRG.18590.6-FMOD were significantly up-regulated in CN at ED11 compared to BY and might be important candidate genes for embryonic muscle development.
Collapse
Affiliation(s)
- Y Yuan
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - W Duan
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - N Yang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - C Sun
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Q Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - J Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - L Lian
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
Chen B, Cai H, Niu Y, Zhang Y, Wang Y, Liu Y, Han R, Liu X, Kang X, Li Z. Whole transcriptome profiling reveals a lncMDP1 that regulates myogenesis by adsorbing miR-301a-5p targeting CHAC1. Commun Biol 2024; 7:518. [PMID: 38698103 PMCID: PMC11066001 DOI: 10.1038/s42003-024-06226-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 04/22/2024] [Indexed: 05/05/2024] Open
Abstract
Myoblast proliferation and differentiation are essential for skeletal muscle development. In this study, we generated the expression profiles of mRNAs, long noncoding RNAs (lncRNAs), and microRNAs (miRNAs) in different developmental stages of chicken primary myoblasts (CPMs) using RNA sequencing (RNA-seq) technology. The dual luciferase reporter system was performed using chicken embryonic fibroblast cells (DF-1), and functional studies quantitative real-time polymerase chain reaction (qPCR), cell counting kit-8 (CCK-8), 5-Ethynyl-2'-deoxyuridine (EdU), flow cytometry cycle, RNA fluorescence in situ hybridization (RNA-FISH), immunofluorescence, and western blotting assay. Our research demonstrated that miR-301a-5p had a targeted binding ability to lncMDP1 and ChaC glutathione-specific gamma-glutamylcyclotransferase 1 (CHAC1). The results revealed that lncMDP1 regulated the proliferation and differentiation of myoblasts via regulating the miR-301a-5p/CHAC1 axis, and CHAC1 promotes muscle regeneration. This study fulfilled the molecular regulatory network of skeletal muscle development and providing an important theoretical reference for the future improvement of chicken meat performance and meat quality.
Collapse
Affiliation(s)
- Bingjie Chen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Hanfang Cai
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yufang Niu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yushi Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yanxing Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yang Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Ruili Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China.
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China.
| | - Zhuanjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China.
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China.
| |
Collapse
|
4
|
Lv Z, Ding Y, Cao W, Wang S, Gao K. Role of RHO family interacting cell polarization regulators (RIPORs) in health and disease: Recent advances and prospects. Int J Biol Sci 2022; 18:800-808. [PMID: 35002526 PMCID: PMC8741841 DOI: 10.7150/ijbs.65457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/27/2021] [Indexed: 12/11/2022] Open
Abstract
The RHO GTPase family has been suggested to play critical roles in cell growth, migration, and polarization. Regulators and effectors of RHO GTPases have been extensively explored in recent years. However, little attention has been given to RHO family interacting cell polarization regulators (RIPORs), a recently discovered protein family of RHO regulators. RIPOR proteins, namely, RIPOR1-3, bind directly to RHO proteins (A, B and C) via a RHO-binding motif and exert suppressive effects on RHO activity, thereby negatively influencing RHO-regulated cellular functions. In addition, RIPORs are phosphorylated by upstream protein kinases under chemokine stimulation, and this phosphorylation affects not only their subcellular localization but also their interaction with RHO proteins, altering the activation of RHO downstream targets and ultimately impacting cell polarity and migration. In this review, we provide an overview of recent studies on the function of RIPOR proteins in regulating RHO-dependent directional movement in immune responses and other pathophysiological functions.
Collapse
Affiliation(s)
- Zeheng Lv
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yan Ding
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Wenxin Cao
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Shuyun Wang
- Department of Breast Surgery, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Kun Gao
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
5
|
Karnam S, Maddala R, Stiber JA, Rao PV. Drebrin, an actin-binding protein, is required for lens morphogenesis and growth. Dev Dyn 2021; 250:1600-1617. [PMID: 33896079 PMCID: PMC8542647 DOI: 10.1002/dvdy.353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Lens morphogenesis, architecture, and clarity are known to be critically dependent on actin cytoskeleton organization and cell adhesive interactions. There is limited knowledge, however regarding the identity and role of key proteins regulating actin cytoskeletal organization in the lens. This study investigated the role of drebrin, a developmentally regulated actin-binding protein, in mouse lens development by generating and characterizing a conditional knockout (cKO) mouse model using the Cre-LoxP recombination approach. RESULTS Drebrin E, a splice variant of DBN1 is a predominant isoform expressed in the mouse lens and exhibits a maturation-dependent downregulation. Drebrin co-distributes with actin in both epithelium and fibers. Conditional deficiency (both haploinsufficiency and complete absence) of drebrin results in disrupted lens morphogenesis leading to cataract and microphthalmia. The drebrin cKO lens reveals a dramatic decrease in epithelial height and width, E-cadherin, and proliferation, and increased apoptotic cell death and expression of α-smooth muscle actin, together with severely impaired fiber cell organization, polarity, and cell-cell adhesion. CONCLUSIONS This study demonstrates the requirement of drebrin in lens development and growth, with drebrin deficiency leading to impaired lens morphogenesis and microphthalmia.
Collapse
Affiliation(s)
- Shruthi Karnam
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC. USA
| | - Rupalatha Maddala
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC. USA
| | - Jonathan A Stiber
- Department of Medicine, Duke University School of Medicine, Durham, NC. USA
| | - Ponugoti V Rao
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC. USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC. USA
| |
Collapse
|
6
|
Formation of Aberrant Myotubes by Myoblasts Lacking Myosin VI Is Associated with Alterations in the Cytoskeleton Organization, Myoblast Adhesion and Fusion. Cells 2020; 9:cells9071673. [PMID: 32664530 PMCID: PMC7408620 DOI: 10.3390/cells9071673] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/03/2020] [Accepted: 07/09/2020] [Indexed: 02/06/2023] Open
Abstract
We have previously postulated that unconventional myosin VI (MVI) could be involved in myoblast differentiation. Here, we addressed the mechanism(s) of its involvement using primary myoblast culture derived from the hindlimb muscles of Snell’s waltzer mice, the natural MVI knockouts (MVI-KO). We observed that MVI-KO myotubes were formed faster than control heterozygous myoblasts (MVI-WT), with a three-fold increase in the number of myosac-like myotubes with centrally positioned nuclei. There were also changes in the levels of the myogenic transcription factors Pax7, MyoD and myogenin. This was accompanied by changes in the actin cytoskeleton and adhesive structure organization. We observed significant decreases in the levels of proteins involved in focal contact formation, such as talin and focal adhesion kinase (FAK). Interestingly, the levels of proteins involved in intercellular communication, M-cadherin and drebrin, were also affected. Furthermore, time-dependent alterations in the levels of the key proteins for myoblast membrane fusion, myomaker and myomerger, without effect on their cellular localization, were observed. Our data indicate that in the absence of MVI, the mechanisms controlling cytoskeleton organization, as well as myoblast adhesion and fusion, are dysregulated, leading to the formation of aberrant myotubes.
Collapse
|
7
|
Mechanisms regulating myoblast fusion: A multilevel interplay. Semin Cell Dev Biol 2020; 104:81-92. [PMID: 32063453 DOI: 10.1016/j.semcdb.2020.02.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/07/2020] [Accepted: 02/08/2020] [Indexed: 02/07/2023]
Abstract
Myoblast fusion into myotubes is one of the crucial steps of skeletal muscle development (myogenesis). The fusion is preceded by specification of a myogenic lineage (mesodermal progenitors) differentiating into myoblasts and is followed by myofiber-type specification and neuromuscular junction formation. Similarly to other processes of myogenesis, the fusion requires a very precise spatial and temporal regulation occuring both during embryonic development as well as regeneration and repair of the muscle. A plethora of genes and their products is involved in regulation of myoblast fusion and a precise multilevel interplay between them is crucial for myogenic cells to fuse. In this review, we describe both cellular events taking place during myoblast fusion (migration, adhesion, elongation, cell-cell recognition, alignment, and fusion of myoblast membranes enabling formation of myotubes) as well as recent findings on mechanisms regulating this process. Also, we present muscle disorders in humans that have been associated with defects in genes involved in regulation of myoblast fusion.
Collapse
|
8
|
Pablos A, Ceca D, Jorda A, Rivera P, Colmena C, Elvira L, Martínez-Arnau FM, Valles SL. Protective Effects of Foam Rolling against Inflammation and Notexin Induced Muscle Damage in Rats. Int J Med Sci 2020; 17:71-81. [PMID: 31929740 PMCID: PMC6945557 DOI: 10.7150/ijms.37981] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 11/14/2019] [Indexed: 01/05/2023] Open
Abstract
It is known that high-intensity exercise can cause inflammation and damage in muscle tissue, and in recent years, physical therapists and fitness professionals have begun to use foam rolling as a recovery method to improve performance. Despite the lack of basic science studies to support or refute the efficacy of foam rolling, the technique is very widely used in the sports world. In this respect, we investigated whether foam rolling could attenuate muscle damage and inflammation. Female Wistar rats were assigned to control (C), foam rolling (FR), notexin without foam rolling (N) and notexin with foam rolling (NFR) groups. A 4.5 x 2 cm foam roller was used to massage their hind legs (two 60-second repetitions twice a day for 3 days). Motor function tests (Balance Beam Test and Grip strength) were used. We detected an increase in time and foot faults when crossing a beam in the N group compared to C and FR rats. In contrast, a significant decrease was detected in both tests in NFR compared to N rats. Muscle power was measured with a grip strength test and better performance was detected in NFR rats compared to N rats. Furthermore, an increase of pro-inflammatory proteins was noted in the N group, while there was a decrease in the NFR group. On the contrary, an increase in PPAR-γ (anti-inflammatory protein) in the NFR group compared to the N group demonstrates the anti-inflammatory properties of the foam rolling technique. In summary, applying foam rolling after damage has benefits such as an increase in anti-inflammatory proteins and a reduction of pro-inflammatory proteins, resulting in muscle recovery and better performance.
Collapse
Affiliation(s)
- Ana Pablos
- Faculty of Physical Activity and Sport Sciences, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | - Diego Ceca
- Department of Education, Universidad Internacional de Valencia, Valencia, Spain.,Faculty of Physical Activity and Sport Sciences, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | - Adrián Jorda
- Department of Physiology, School of Medicine, University of Valencia, Valencia, Spain
| | - Pilar Rivera
- Department of Physiology, School of Medicine, University of Valencia, Valencia, Spain
| | - Carlos Colmena
- Department of Physiology, School of Medicine, University of Valencia, Valencia, Spain
| | - Laura Elvira
- Faculty of Physical Activity and Sport Sciences, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | - Francisco M Martínez-Arnau
- Faculty of Nursing, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain.,Departament of Physiotherapy, University of Valencia, Valencia, Spain
| | - Soraya L Valles
- Department of Physiology, School of Medicine, University of Valencia, Valencia, Spain
| |
Collapse
|