1
|
Li C, Li G, Qi X, Yu Z, Abdallah Y, Ogunyemi SO, Zhang S, Ren H, Mohany M, S. Al-Rejaie S, Li B, Liu E. The Effects of Accompanying Ryegrass on Bayberry Trees by Change of Soil Property, Rhizosphere Microbial Community Structure, and Metabolites. PLANTS (BASEL, SWITZERLAND) 2023; 12:3669. [PMID: 37960028 PMCID: PMC10650151 DOI: 10.3390/plants12213669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 11/15/2023]
Abstract
As a subtropical and tropical tree, bayberry (Myrica rubra) is an important fruit tree grown commercially in southern China. Interestingly, our studies found that the fruit quality of bayberry with accompanying ryegrass was significantly improved, but its mechanism remains unclear. The aim of this study was to explore the mechanism of accompanying ryegrass on the beneficial effect of the fruit quality of bayberry by measuring the vegetative growth parameters, fruit parameters with economic impact, physical and chemical properties of rhizosphere soil, microbial community structure, and metabolites of the bayberry with/without ryegrass. Notably, the results revealed a significant difference between bayberry trees with and without accompanying ryegrass in fruit quality parameters, soil physical and chemical properties, microbial community structure, and metabolites. Compared with the control without accompanying ryegrass, the planting of ryegrass increased the titratable sugar, vitamin C, and titratable flavonoid contents of bayberry fruits by 2.26%, 28.45%, and 25.00%, respectively, and decreased the titratable acid contents by 9.04%. Furthermore, based on 16S and ITS amplicon sequencing of soil microflora, the accompanying ryegrass caused a 12.47% increment in Acidobacteriota while a 30.04% reduction in Actinobacteria was recorded, respectively, when compared with the bayberry trees without ryegrass. Redundancy discriminant analysis of microbial communities and soil properties indicated that the main variables of the bacterial community included available nitrogen, available phosphorus, exchangeable aluminum, and available kalium, while the main variables of the fungal community included exchangeable aluminum, available phosphorus, available kalium, and pH. In addition, the change in microbial community structure was justified by the high correlation analysis between microorganisms and secondary metabolites. Indeed, GC-MS metabolomics analysis showed that planting ryegrass caused a 3.83%-144.36% increase in 19 metabolites such as 1,3-Dipentyl-heptabarbital and carbonic acid 1, respectively, and a 23.78%-51.79% reduction of 5 metabolites compared to the bayberry trees without the accompanying ryegrass. Overall, the results revealed the significant change caused by the planting of ryegrass in the physical and chemical properties, microbiota, and secondary metabolites of the bayberry rhizosphere soils, which provides a new insight for the ecological improvement of bayberry.
Collapse
Affiliation(s)
- Changxin Li
- College of Plant Protection, Hunan Agriculture University, Changsha 410128, China;
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (G.L.); (X.Q.); (Z.Y.); (S.Z.)
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.A.); (S.O.O.)
| | - Gang Li
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (G.L.); (X.Q.); (Z.Y.); (S.Z.)
| | - Xingjiang Qi
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (G.L.); (X.Q.); (Z.Y.); (S.Z.)
| | - Zheping Yu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (G.L.); (X.Q.); (Z.Y.); (S.Z.)
| | - Yasmine Abdallah
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.A.); (S.O.O.)
- Plant Pathology Department, Faculty of Agriculture, Minia University, Elminya 61519, Egypt
| | | | - Shuwen Zhang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (G.L.); (X.Q.); (Z.Y.); (S.Z.)
| | - Haiying Ren
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (G.L.); (X.Q.); (Z.Y.); (S.Z.)
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh 11451, Saudi Arabia; (M.M.); (S.S.A.-R.)
| | - Salim S. Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh 11451, Saudi Arabia; (M.M.); (S.S.A.-R.)
| | - Bin Li
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.A.); (S.O.O.)
| | - Erming Liu
- College of Plant Protection, Hunan Agriculture University, Changsha 410128, China;
| |
Collapse
|
2
|
de Sandozequi A, Martínez‐Anaya C. Bacterial surface-exposed lipoproteins and sortase-mediated anchored cell surface proteins in plant infection. Microbiologyopen 2023; 12:e1382. [PMID: 37877658 PMCID: PMC10501053 DOI: 10.1002/mbo3.1382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 10/26/2023] Open
Abstract
The bacterial cell envelope is involved in all stages of infection and the study of its components and structures is important to understand how bacteria interact with the extracellular milieu. Thanks to new techniques that focus on identifying bacterial surface proteins, we now better understand the specific components involved in host-pathogen interactions. In the fight against the deleterious effects of pathogenic bacteria, bacterial surface proteins (at the cell envelope) are important targets as they play crucial roles in the colonization and infection of host tissues. These surface proteins serve functions such as protection, secretion, biofilm formation, nutrient intake, metabolism, and virulence. Bacteria use different mechanisms to associate proteins to the cell surface via posttranslational modification, such as the addition of a lipid moiety to create lipoproteins and attachment to the peptidoglycan layer by sortases. In this review, we focus on these types of proteins (and provide examples of others) that are associated with the bacterial cell envelope by posttranslational modifications and their roles in plant infection.
Collapse
Affiliation(s)
- Andrés de Sandozequi
- Departamento de Ingeniería Celular y BiocatálisisInstituto de BiotecnologíaCuernavacaMéxico
| | - Claudia Martínez‐Anaya
- Departamento de Ingeniería Celular y BiocatálisisInstituto de BiotecnologíaCuernavacaMéxico
| |
Collapse
|
3
|
Zhao Z, Wu H, Jin T, Liu H, Men J, Cai G, Cernava T, Duan G, Jin D. Biodegradable mulch films significantly affected rhizosphere microbial communities and increased peanut yield. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162034. [PMID: 36754316 DOI: 10.1016/j.scitotenv.2023.162034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Biodegradable mulch films are widely used to replace conventional plastic films in agricultural fields. However, their ecological effects on different microbial communities that naturally inhabit agricultural fields are scarcely explored. Herein, differences in bacterial communities recovered from biofilms, bulk soil, and rhizosphere soil were comparatively assessed for polyethylene film (PE) and biodegradable mulch film (BDM) application in peanut planted fields. The results showed that the plastic film type significantly influenced the bacterial community in different ecological niches of agricultural fields (P < 0.001). Specifically, BDMs significantly increased the diversity and abundance of bacteria in the rhizosphere soil. The bacterial communities in each ecological niche were distinguishable from each other; bacterial communities in the rhizosphere soil showed the most pronounced response among different treatments. Acidobacteria and Pseudomonas were significantly enriched in the rhizosphere soil when BDMs were used. BDMs also increased the rhizosphere soil bacterial network complexity and stability. The enrichment of beneficial bacteria in the rhizosphere soil under BDMs may also have implications for the observed increase in peanut yield. Deepening analyses indicated that Pseudoxanthomonas and Glutamicibacter are biomarkers in biofilms of PE and BDMs respectively. Our study provides new insights into the consequences of the application of different types of plastic films on microbial communities in different ecological niches of agricultural fields.
Collapse
Affiliation(s)
- Zhirui Zhao
- Hebei Province Key Laboratory of Sustained Utilization and Development of Water Recourse, School of Water Resources and Environment, Hebei GEO University, Shijiazhuang 050031, China
| | - Haimiao Wu
- Hebei Province Key Laboratory of Sustained Utilization and Development of Water Recourse, School of Water Resources and Environment, Hebei GEO University, Shijiazhuang 050031, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Tuo Jin
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Huiying Liu
- Liaoning Academy of Agricultural Sciences, Shenyang 110161, China
| | - Jianan Men
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guangxing Cai
- Liaoning Academy of Agricultural Sciences, Shenyang 110161, China
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010 Graz, Austria
| | - Guilan Duan
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Decai Jin
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Li R, Peng J, Liu Q, Chang Z, Huang Y, Tang J, Lu G. Xanthomonas campestris VemR enhances the transcription of the T3SS key regulator HrpX via physical interaction with HrpG. MOLECULAR PLANT PATHOLOGY 2023; 24:232-247. [PMID: 36626275 PMCID: PMC9923393 DOI: 10.1111/mpp.13293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/28/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
VemR is a response regulator of the two-component signalling systems (TCSs). It consists solely of a receiver domain. Previous studies have shown that VemR plays an important role in influencing the production of exopolysaccharides and exoenzymes, cell motility, and virulence of Xanthomonas campestris pv. campestris (Xcc). However, whether VemR is involved in the essential pathogenicity determinant type III secretion system (T3SS) is unclear. In this work, we found by transcriptome analysis that VemR modulates about 10% of Xcc genes, which are involved in various cellular processes including the T3SS. Further experiments revealed that VemR physically interacts with numerous proteins, including the TCS sensor kinases HpaS and RavA, and the TCS response regulator HrpG, which directly activates the transcription of HrpX, a key regulator controlling T3SS expression. It has been demonstrated previously that HpaS composes a TCS with HrpG or VemR to control the expression of T3SS or swimming motility, while RavA and VemR form a TCS to control the expression of flagellar genes. Mutation analysis and in vitro transcription assay revealed that phosphorylation might be essential for the function of VemR and phosphorylated VemR could significantly enhance the activation of hrpX transcription by HrpG. We infer that the binding of VemR to HrpG can modulate the activity of HrpG to the hrpX promoter, thereby enhancing hrpX transcription. Although further studies are required to validate this inference and explore the detailed functional mechanism of VemR, our findings provide some insights into the complex regulatory cascade of the HpaS/RavA-VemR/HrpG-HrpX signal transduction system in the control of T3SS.
Collapse
Affiliation(s)
- Rui‐Fang Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesCollege of Life Science and Technology, Guangxi UniversityNanningChina
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect PestsPlant Protection Research Institute, Guangxi Academy of Agricultural SciencesNanningChina
| | - Jian‐Ling Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesCollege of Life Science and Technology, Guangxi UniversityNanningChina
| | - Qian‐Qian Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesCollege of Life Science and Technology, Guangxi UniversityNanningChina
| | - Zheng Chang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesCollege of Life Science and Technology, Guangxi UniversityNanningChina
| | - Yi‐Xin Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesCollege of Life Science and Technology, Guangxi UniversityNanningChina
| | - Ji‐Liang Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesCollege of Life Science and Technology, Guangxi UniversityNanningChina
| | - Guang‐Tao Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesCollege of Life Science and Technology, Guangxi UniversityNanningChina
| |
Collapse
|
5
|
Conte C, Apostolaki ET, Vizzini S, Migliore L. A Tight Interaction between the Native Seagrass Cymodocea nodosa and the Exotic Halophila stipulacea in the Aegean Sea Highlights Seagrass Holobiont Variations. PLANTS (BASEL, SWITZERLAND) 2023; 12:350. [PMID: 36679063 PMCID: PMC9863530 DOI: 10.3390/plants12020350] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Seagrasses harbour bacterial communities with which they constitute a functional unit called holobiont that responds as a whole to environmental changes. Epiphytic bacterial communities rapidly respond to both biotic and abiotic factors, potentially contributing to the host fitness. The Lessepsian migrant Halophila stipulacea has a high phenotypical plasticity and harbours a highly diverse epiphytic bacterial community, which could support its invasiveness in the Mediterranean Sea. The current study aimed to evaluate the Halophila/Cymodocea competition in the Aegean Sea by analysing each of the two seagrasses in a meadow zone where these intermingled, as well as in their monospecific zones, at two depths. Differences in holobionts were evaluated using seagrass descriptors (morphometric, biochemical, elemental, and isotopic composition) to assess host changes, and 16S rRNA gene to identify bacterial community structure and composition. An Indicator Species Index was used to identify bacteria significantly associated with each host. In mixed meadows, native C. nodosa was shown to be affected by the presence of exotic H. stipulacea, in terms of both plant descriptors and bacterial communities, while H. stipulacea responded only to environmental factors rather than C. nodosa proximity. This study provided evidence of the competitive advantage of H. stipulacea on C. nodosa in the Aegean Sea and suggests the possible use of associated bacterial communities as an ecological seagrass descriptor.
Collapse
Affiliation(s)
- Chiara Conte
- PhD Program in Evolutionary Biology and Ecology, University of Rome Tor Vergata, 00133 Rome, Italy
- Laboratory of Ecology and Ecotoxicology, Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Eugenia T. Apostolaki
- Institute of Oceanography, Hellenic Centre for Marine Research, P.O. Box 2214, 71003 Heraklion, Crete, Greece
| | - Salvatrice Vizzini
- Department of Earth and Marine Sciences, University of Palermo, Via Archirafi 18, 90123 Palermo, Italy
- CoNISMa, National Interuniversity Consortium for Marine Sciences, Piazzale Flaminio 9, 00196 Roma, Italy
| | - Luciana Migliore
- Laboratory of Ecology and Ecotoxicology, Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
- eCampus University, Via Isimbardi 10, 22060 Novedrate (CO), Italy
| |
Collapse
|
6
|
Li R, Ren P, Zhang D, Cui P, Zhu G, Xian X, Tang J, Lu G. HpaP divergently regulates the expression of hrp genes in Xanthomonas oryzae pathovars oryzae and oryzicola. MOLECULAR PLANT PATHOLOGY 2023; 24:44-58. [PMID: 36260328 PMCID: PMC9742497 DOI: 10.1111/mpp.13276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
The bacterial pathogens Xanthomonas oryzae pathovars oryzae (Xoo) and oryzicola (Xoc) cause leaf blight and leaf streak diseases on rice, respectively. Pathogenesis is largely defined by the virulence genes harboured in the pathogen genome. Recently, we demonstrated that the protein HpaP of the crucifer pathogen Xanthomonas campestris pv. campestris is an enzyme with both ATPase and phosphatase activities, and is involved in regulating the synthesis of virulence factors and the induction of the hypersensitive response (HR). In this study, we investigated the role of HpaP homologues in Xoo and Xoc. We showed that HpaP is required for full virulence of Xoo and Xoc. Deletion of hpaP in Xoo and Xoc led to a reduction in virulence and alteration in the production of virulence factors, including extracellular polysaccharide and cell motility. Comparative transcriptomics and reverse transcription-quantitative PCR assays revealed that in XVM2 medium, a mimic medium of the plant environment, the expression levels of hrp genes (for HR and pathogenicity) were enhanced in the Xoo hpaP deletion mutant compared to the wild type. By contrast, in the same growth conditions, hrp gene expression was decreased in the Xoc hpaP deletion mutant compared to the wild type. However, an opposite expression pattern was observed when the pathogens grew in planta, where the expression of hrp genes was reduced in the Xoo hpaP mutant but increased in the Xoc hpaP mutant. These findings indicate that HpaP plays a divergent role in Xoo and Xoc, which may lead to the different infection strategies employed by these two pathogens.
Collapse
Affiliation(s)
- Rui‐Fang Li
- Plant Protection Research InstituteGuangxi Academy of Agricultural Science, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Biology for Crop Diseases and Insect PestsNanningGuangxiChina
| | - Pei‐Dong Ren
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesCollege of Life Science and Technology, Guangxi UniversityNanningChina
| | - Da‐Pei Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesCollege of Life Science and Technology, Guangxi UniversityNanningChina
| | - Ping Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesCollege of Life Science and Technology, Guangxi UniversityNanningChina
| | - Gui‐Ning Zhu
- Plant Protection Research InstituteGuangxi Academy of Agricultural Science, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Biology for Crop Diseases and Insect PestsNanningGuangxiChina
| | - Xiao‐Yong Xian
- Plant Protection Research InstituteGuangxi Academy of Agricultural Science, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Biology for Crop Diseases and Insect PestsNanningGuangxiChina
| | - Ji‐Liang Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesCollege of Life Science and Technology, Guangxi UniversityNanningChina
| | - Guang‐Tao Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesCollege of Life Science and Technology, Guangxi UniversityNanningChina
| |
Collapse
|
7
|
Feitosa-Junior OR, Souza APS, Zaini PA, Baccari C, Ionescu M, Pierry PM, Uceda-Campos G, Labroussaa F, Almeida RPP, Lindow SE, da Silva AM. The XadA Trimeric Autotransporter Adhesins in Xylella fastidiosa Differentially Contribute to Cell Aggregation, Biofilm Formation, Insect Transmission and Virulence to Plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:857-866. [PMID: 35704683 DOI: 10.1094/mpmi-05-22-0108-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Surface adhesion strategies are widely employed by bacterial pathogens during establishment and systemic spread in their host. A variety of cell-surface appendages such as pili, fimbriae, and afimbrial adhesins are involved in these processes. The phytopathogen Xylella fastidiosa employs several of these structures for efficient colonization of its insect and plant hosts. Among the adhesins encoded in the X. fastidiosa genome, three afimbrial adhesins, XadA1, Hsf/XadA2, and XadA3, are predicted to be trimeric autotransporters with a C-terminal YadA-anchor membrane domain. We analyzed the individual contributions of XadA1, XadA2, and XadA3 to various cellular behaviors both in vitro and in vivo. Using isogenic X. fastidiosa mutants, we found that cell-cell aggregation and biofilm formation were severely impaired in the absence of XadA3. No significant reduction of cell-surface attachment was found with any mutant under flow conditions. Acquisition by insect vectors and transmission to grapevines were reduced in the XadA3 deletion mutant. While the XadA3 mutant was hypervirulent in grapevines, XadA1 or XadA2 deletion mutants conferred lower disease severity than the wild-type strain. This insight of the importance of these adhesive proteins and their individual contributions to different aspects of X. fastidiosa biology should guide new approaches to reduce pathogen transmission and disease development. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Oseias R Feitosa-Junior
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Ana Paula S Souza
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Paulo A Zaini
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
- Department of Plant Sciences, University of California, Davis, CA, U.S.A
| | - Clelia Baccari
- Department of Plant and Microbial Biology, University of California, Berkeley, U.S.A
| | - Michael Ionescu
- Department of Plant and Microbial Biology, University of California, Berkeley, U.S.A
| | - Paulo M Pierry
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Guillermo Uceda-Campos
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Fabien Labroussaa
- Department of Environmental Science, Policy and Management, University of California, Berkeley, U.S.A
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Rodrigo P P Almeida
- Department of Environmental Science, Policy and Management, University of California, Berkeley, U.S.A
| | - Steven E Lindow
- Department of Plant and Microbial Biology, University of California, Berkeley, U.S.A
| | - Aline M da Silva
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Wang Y, Wang ZJ, Huang JC, Chachar A, Zhou C, He S. Bioremediation of selenium-contaminated soil using earthworm Eisenia fetida: Effects of gut bacteria in feces on the soil microbiome. CHEMOSPHERE 2022; 300:134544. [PMID: 35405199 DOI: 10.1016/j.chemosphere.2022.134544] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Selenium (Se) contamination in the soil poses a food safety risk to humans. The present study was to investigate the role of earthworm Eisenia fetida in soil Se remediation. When exposed to selenite at 4 mg Se/kg, E. fetida efficiently concentrated Se in tissues (24.53 mg Se/kg dry weight), however, only accounting for a minor portion of the added Se. Microbial analysis shows 12 out of 15 functional genera became more abundant in the worm-inhabited soil when exposed to Se, suggesting E. fetida contributed to Se remediation mainly by introducing Se-reducing bacteria to the soil via feces, which were dominated by the genera Pseudomonas (∼62.65%) and Aeromonas (∼29.99%), whose abundance was also significantly boosted in the worm-inhabited soil. However, when isolated from worm feces at 200 mg Se/L, Pseudomonas strains only displayed a high tolerance to Se rather than removal capacity. In contrast, among 4 isolated Aeromonas strains, A. caviae rapidly removing 85.74% of the added selenite, mainly through accumulation (67.38%), while A. hydrophila and A. veronii were more effective at volatilizing Se (27.77% and 24.54%, respectively), and A. media performed best by reducing Se by ∼49.00% under anaerobic conditions. Overall, our findings have highlighted the importance of E. fetida as a key contributor of functional bacteria to the soil microbiome, building a strong foundation for the development of an earthworm-soil system for Se bioremediation.
Collapse
Affiliation(s)
- Yikun Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Zi-Jing Wang
- Department of Environmental Engineering, National Cheng Kung University, Tainan City, 701, Taiwan
| | - Jung-Chen Huang
- Department of Environmental Engineering, National Cheng Kung University, Tainan City, 701, Taiwan.
| | - Azharuddin Chachar
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Chuanqi Zhou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| |
Collapse
|
9
|
Krishna PS, Woodcock SD, Pfeilmeier S, Bornemann S, Zipfel C, Malone JG. Pseudomonas syringae addresses distinct environmental challenges during plant infection through the coordinated deployment of polysaccharides. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2206-2221. [PMID: 34905021 PMCID: PMC8982409 DOI: 10.1093/jxb/erab550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Prior to infection, phytopathogenic bacteria face a challenging environment on the plant surface, where they are exposed to nutrient starvation and abiotic stresses. Pathways enabling surface adhesion, stress tolerance, and epiphytic survival are important for successful plant pathogenesis. Understanding the roles and regulation of these pathways is therefore crucial to fully understand bacterial plant infections. The phytopathogen Pseudomonas syringae pv. tomato (Pst) encodes multiple polysaccharides that are implicated in biofilm formation, stress survival, and virulence in other microbes. To examine how these polysaccharides impact Pst epiphytic survival and pathogenesis, we analysed mutants in multiple polysaccharide loci to determine their intersecting contributions to epiphytic survival and infection. In parallel, we used qRT-PCR to analyse the regulation of each pathway. Pst polysaccharides are tightly coordinated by multiple environmental signals. Nutrient availability, temperature, and surface association strongly affect the expression of different polysaccharides under the control of the signalling protein genes ladS and cbrB and the second messenger cyclic-di-GMP. Furthermore, functionally redundant, combinatorial phenotypes were observed for several polysaccharides. Exopolysaccharides play a role in mediating leaf adhesion, while α-glucan and alginate together confer desiccation tolerance. Our results suggest that polysaccharides play important roles in overcoming environmental challenges to Pst during plant infection.
Collapse
Affiliation(s)
- Pilla Sankara Krishna
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Stuart Daniel Woodcock
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Sebastian Pfeilmeier
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Stephen Bornemann
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Cyril Zipfel
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Jacob George Malone
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
- University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| |
Collapse
|
10
|
Yang C, Ancona V. An Overview of the Mechanisms Against " Candidatus Liberibacter asiaticus": Virulence Targets, Citrus Defenses, and Microbiome. Front Microbiol 2022; 13:850588. [PMID: 35391740 PMCID: PMC8982080 DOI: 10.3389/fmicb.2022.850588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/18/2022] [Indexed: 12/01/2022] Open
Abstract
Citrus Huanglongbing (HLB) or citrus greening, is the most destructive disease for citrus worldwide. It is caused by the psyllid-transmitted, phloem-limited bacteria "Candidatus Liberibacter asiaticus" (CLas). To date, there are still no effective practical strategies for curing citrus HLB. Understanding the mechanisms against CLas can contribute to the development of effective approaches for combatting HLB. However, the unculturable nature of CLas has hindered elucidating mechanisms against CLas. In this review, we summarize the main aspects that contribute to the understanding about the mechanisms against CLas, including (1) CLas virulence targets, focusing on inhibition of virulence genes; (2) activation of citrus host defense genes and metabolites of HLB-tolerant citrus triggered by CLas, and by agents; and (3) we also review the role of citrus microbiome in combatting CLas. Finally, we discuss novel strategies to continue studying mechanisms against CLas and the relationship of above aspects.
Collapse
Affiliation(s)
- Chuanyu Yang
- Department of Agriculture, Agribusiness, and Environmental Sciences, Citrus Center, Texas A&M University-Kingsville, Weslaco, TX, United States
| | - Veronica Ancona
- Department of Agriculture, Agribusiness, and Environmental Sciences, Citrus Center, Texas A&M University-Kingsville, Weslaco, TX, United States
| |
Collapse
|
11
|
Wen P, Tang J, Wang Y, Liu X, Yu Z, Zhou S. Hyperthermophilic composting significantly decreases methane emissions: Insights into the microbial mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147179. [PMID: 33894609 DOI: 10.1016/j.scitotenv.2021.147179] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/28/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Methane (CH4) emissions from thermophilic composting (TC) are a substantial contributor to climate change. Hyperthermophilic composting (HTC) can influence CH4-related microbial communities at temperatures up to 80 °C, and thus impact the CH4 emissions during composting. This work investigated CH4 emissions in sludge-derived HTC, and explored microbial community succession with quantitative PCR and high-throughput sequencing. Results demonstrated that HTC decreased CH4 emissions by 52.5% compared with TC. In HTC, the CH4 production potential and CH4 oxidation potential were nearly 40% and 64.1% lower than that of TC, respectively. There was a reduction in the quantity of mcrA (3.7 × 108 to 0 g-1 TS) in HTC, which was more significant than the reduction in pmoA (2.0 × 105 to 2.1 × 104 g-1 TS), and thus lead to reduce CH4 emissions. It was found that the abundance of most methanogens and methanotrophs was inhibited in the hyperthermal environment, with a decline in Methanosarcina, Methanosaeta and Methanobrevibacter potentially being responsible for reducing the CH4 emissions in HTC. This work provides important insight into mitigating CH4 emissions in composting.
Collapse
Affiliation(s)
- Ping Wen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Jia Tang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yueqiang Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Xiaoming Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Zhen Yu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
12
|
Liu Q, Wang J, Ren H. Bacterial assembly and succession in the start-up phase of an IFAS metacommunity: The role of AHL-driven quorum sensing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 777:145870. [PMID: 33689899 DOI: 10.1016/j.scitotenv.2021.145870] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 05/06/2023]
Abstract
Quorum sensing (QS) plays an important role in biofilm formation and the start-up of biofilm-based reactors, while its involvement in bacterial assembly throughout biofilm development remains underexplored. We investigated the assembly and succession of the bacterial community in a full-scale integrated fixed-film activated sludge (IFAS) process, with emphasis on N-acylhomoserine lactone (AHL)-driven QS. Biofilm development could be divided into two major periods, (i) young biofilm formation phase and (ii) biofilm maturity and update phase. Mature biofilms exhibited lower levels of AHLs compared with young biofilms (p > 0.05). A structural equation model, constructed to assess the linkages between AHL level and bacterial community composition as well as environmental factors, indicated that pH significantly influenced both bacterial community composition and AHL content. Along with biofilm development, there was a negative correlation between AHL concentration and community composition variation (coefficients of -0.367 and -0.329). Regarding the lower AHL level in mature biofilms, these results were consistent with the phylogenetic molecular ecological networks (pMENs) analysis, indicating that quorum-quenching (QQ) bacteria occur in keystone taxa in mature biofilms. In addition, based on the pMENs results, the proportion of positive interactions increased from 77.64 to 82.39% in mature biofilms compared to young biofilms, indicating that bacterial cooperation was strengthened in mature biofilms. The QS bacteria were predominant in the keystone taxa of pMENs, with proportions being increased to 62% in mature biofilms, which is conducive for biofilm development. Overall, this study improves our understanding of the involvement of AHL-mediated QS in biofilm development.
Collapse
Affiliation(s)
- Qiuju Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Jinfeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China.
| |
Collapse
|
13
|
Zhou J, Kong Y, Zhao W, Wei G, Wang Q, Ma L, Wang T, Shu F, Sha W. Comparison of bacterial and archaeal communities in two fertilizer doses and soil compartments under continuous cultivation system of garlic. PLoS One 2021; 16:e0250571. [PMID: 33989289 PMCID: PMC8121308 DOI: 10.1371/journal.pone.0250571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 04/12/2021] [Indexed: 01/10/2023] Open
Abstract
Soil microbial communities are affected by interactions between agricultural management (e.g., fertilizer) and soil compartment, but few studies have considered combinations of these factors. We compared the microbial abundance, diversity and community structure in two fertilizer dose (high vs. low NPK) and soil compartment (rhizosphere vs. bulk soils) under 6-year fertilization regimes in a continuous garlic cropping system in China. The soil contents of NO3- and available K were significantly higher in bulk soil in the high-NPK. The 16S rRNA gene-based bacterial and archaeal abundances were positively affected by both the fertilizer dose and soil compartment, and were higher in the high-NPK fertilization and rhizosphere samples. High-NPK fertilization increased the Shannon index and decreased bacterial and archaeal richness, whereas the evenness was marginally positively affected by both the fertilizer dose and soil compartment. Soil compartment exerted a greater effect on the bacterial and archaeal community structure than did the fertilization dose, as demonstrated by both the nonmetric multidimensional scaling and redundancy analysis results. We found that rhizosphere effects significantly distinguished 12 dominant classes of bacterial and archaeal communities, whereas the fertilizer dose significantly identified four dominant classes. In particular, a Linear Effect Size analysis showed that some taxa, including Alphaproteobacteria, Rhizobiales, Xanthomonadaceae and Flavobacterium, were enriched in the garlic rhizosphere of the high-NPK fertilizer samples. Overall, the fertilizer dose interacted with soil compartment to shape the bacterial and archaeal community composition, abundance, and biodiversity in the garlic rhizosphere. These results provide an important basis for further understanding adaptive garlic-microbe feedback, reframing roots as a significant moderating influence in agricultural management and shaping the microbial community.
Collapse
Affiliation(s)
- Jing Zhou
- School of Life Sciences, Qufu Normal University, Jining, PR China
| | - Yong Kong
- School of Life Sciences, Qufu Normal University, Jining, PR China
| | - Wangfeng Zhao
- College of Biological and Environmental Engineering, Binzhou University, Binzhou, PR China
| | - Guangshan Wei
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC) / School of Marine Sciences, Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Marine Genetic Resources, Ministry of Natural Resources of the PR China, Third Institute of Oceanography, Xiamen, China
| | - Qingfeng Wang
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, PR China
| | - Longchuan Ma
- Shandong Engineering and Technology Research Center for Garlic, Jining, PR China
| | - Taotao Wang
- Shandong Engineering and Technology Research Center for Garlic, Jining, PR China
| | - Fengyue Shu
- School of Life Sciences, Qufu Normal University, Jining, PR China
| | - Weilai Sha
- School of Life Sciences, Qufu Normal University, Jining, PR China
| |
Collapse
|
14
|
Puławska J, Kałużna M, Warabieda W, Pothier JF, Gétaz M, van der Wolf JM. Transcriptome analysis of Xanthomonas fragariae in strawberry leaves. Sci Rep 2020; 10:20582. [PMID: 33239704 PMCID: PMC7688646 DOI: 10.1038/s41598-020-77612-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 11/09/2020] [Indexed: 11/21/2022] Open
Abstract
Xanthomonas fragariae is a quarantine bacterial pathogen that causes angular leaf spot on strawberry. The aim of our study was to analyse the mechanism of interaction of this bacterium with its host plant at the transcriptome level. For this purpose, mRNAs of X. fragariae growing in Wilbrink’s medium and from infected strawberry cv. Elsanta plants were isolated and sequenced using the Illumina MiSeq platform. The expression profiles of the bacteria in Wilbrink’s medium and in planta were very diverse. Of the 3939 CDSs recorded, 1995 had significantly different expression in planta (966 and 1029 genes were down- and upregulated, respectively). Among the genes showing increased expression in planta, those with eggNOG/COG (evolutionary genealogy of genes: Non-supervised Orthologous Groups/Cluster of Orthologous Groups) categories associated with bacterial cell motility, signal transduction, transport and metabolism of inorganic ions and carbohydrates and transcription were overrepresented. Among the genes with the most increased expression in planta, genes primarily associated with flagella synthesis and chemotaxis were found. It is also interesting to note that out of the 31 genes localized on a plasmid, 16 were expressed differently in planta, which may indicate their potential role in plant–pathogen interactions. Many genes with differentiated expression that were localized on chromosome and plasmid encode proteins of unknown function.
Collapse
Affiliation(s)
- Joanna Puławska
- Department of Phytopathology, Research Institute of Horticulture, 96-100, Skierniewice, Poland.
| | - Monika Kałużna
- Department of Phytopathology, Research Institute of Horticulture, 96-100, Skierniewice, Poland
| | - Wojciech Warabieda
- Department of Phytopathology, Research Institute of Horticulture, 96-100, Skierniewice, Poland
| | - Joël F Pothier
- Environmental Genomics and Systems Biology Research Group, Institute for Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
| | - Michael Gétaz
- Environmental Genomics and Systems Biology Research Group, Institute for Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
| | | |
Collapse
|
15
|
Exploring Rice Root Microbiome; The Variation, Specialization and Interaction of Bacteria and Fungi In Six Tropic Savanna Regions in Ghana. SUSTAINABILITY 2020. [DOI: 10.3390/su12145835] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We investigated the root microbiomes of rice sampled from six major rice-producing regions in Ghana using Illumina MiSeq high-throughput amplicon sequencing analysis. The result showed that both bacterial and fungal community compositions were significantly varied across the regions. Bacterial communities were shaped predominantly by biotic factors, including root fungal diversity and abundance. In contrast, fungal communities were influenced by abiotic factors such as soil nitrate, total carbon and soil pH. A negative correlation between the diversity and abundance of root fungi with soil nitrate (NO3-) level was observed. It suggested that there were direct and indirect effects of NO3- on the root-associated bacterial and fungal community composition. The gradient of soil nitrate from North to South parts of Ghana may influence the composition of rice root microbiome. Bacterial community composition was shaped by fungal diversity and abundance; whereas fungal community composition was shaped by bacterial abundance. It suggested the mutualistic interaction of bacteria and fungi at the community level in the rice root microbiome. Specific bacterial and fungal taxa were detected abundantly in the ‘Northern’ regions of Ghana, which were very low or absent from the samples of other regions. The analysis of indicator species suggested that an ‘ecological specialization’ may have occurred which enabled specific microbial taxa to adapt to the local environment, such as the low-nitrate condition in the Northern regions.
Collapse
|
16
|
Xiong Y, Mason OU, Lowe A, Zhang Z, Zhou C, Chen G, Villalonga MJ, Tang Y. Investigating promising substrates for promoting 1,4-dioxane biodegradation: effects of ethane and tetrahydrofuran on microbial consortia. Biodegradation 2020; 31:171-182. [PMID: 32361902 DOI: 10.1007/s10532-020-09901-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/16/2020] [Indexed: 12/12/2022]
Abstract
Cometabolic biodegradation of 1,4-dioxane (dioxane) in the presence of primary substrates is a promising strategy for treating dioxane at environmentally relevant concentrations. Seven aqueous amendments (i.e., tetrahydrofuran (THF), butanone, acetone, 1-butanol, 2-butanol, phenol and acetate) and five gaseous amendments (i.e., C1-C4 alkanes and ethylene) were evaluated as the primary substrates for dioxane degradation by mixed microbial consortia. The aqueous amendments were tested in microcosm bottles and the gaseous amendments were tested in a continuous-flow membrane biofilm reactor with hollow fibers pressurized by the gaseous amendments. Ethane was found to be the most effective gaseous substrate and THF was the only aqueous substrate that promoted dioxane degradation. A diverse microbial community consisting of several putative dioxane degraders-Mycobacterium, Flavobacterium and Bradyrhizobiaceae-were enriched in the presence of ethane. This is the first study showing that ethane was the most effective substrate among the short-chain alkanes and it promoted dioxane degradation by enriching dioxane-degraders that did not harbor the well-known dioxane/tetrahydrofuran monooxygenase.
Collapse
Affiliation(s)
- Yi Xiong
- Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, 32310, USA
| | - Olivia U Mason
- Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Ashlee Lowe
- Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Zhiming Zhang
- Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, 32310, USA
| | - Chao Zhou
- Geosyntec Consultants Inc., Huntington Beach, CA, 92648, USA
| | - Gang Chen
- Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, 32310, USA
| | - Michael J Villalonga
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Youneng Tang
- Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, 32310, USA.
| |
Collapse
|
17
|
Li BZ, Zhou HY, Guo B, Chen WJ, Tao JH, Cao NW, Chu XJ, Meng X. Dysbiosis of oral microbiota is associated with systemic lupus erythematosus. Arch Oral Biol 2020; 113:104708. [PMID: 32203722 DOI: 10.1016/j.archoralbio.2020.104708] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 02/10/2020] [Accepted: 03/11/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The important role of intestinal microbiota in systemic lupus erythematosus (SLE) has been recognized. Oral-gut microbiome axis is a crucial link in human health and disease, but few researches indicated the relationship between oral microorganisms and SLE. This study mainly explored the composition and changes of oral microorganisms in SLE patients with different stages, clinical manifestations and biomarkers. DESIGN Oral microbiota was detected by 16S ribosomal RNA gene sequencing from 20 SLE patients and 19 healthy controls (HCs). The evenness, diversity and composition of oral microbiota were analyzed. Moreover, receiver-operating characteristic analysis was conducted. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) based on Kyoto Encyclopedia of Genes and Genomes (KEGG) database was used to investigate microbiota functions. RESULTS The oral microbiota of SLE patients was imbalanced and the diversity was decreased, but no difference was found between new-onset and treated SLE patients. Families Lactobacillaceae, Veillonellaceae and Moraxellaceae were enriched in SLE patients. Families like Corynebacteriaceae, Micrococcaceae, Defluviitaleaceae, Caulobacteraceae, Phyllobacteriaceae, Methylobacteriaceae, Hyphomicrobiaceae, Sphingomonadaceae, Halomonadaceae, Pseudomonadaceae, Xanthomonadaceae, etc. were decreased in SLE patients. After multiple testing adjustment, families Sphingomonadaceae, Halomonadaceae, and Xanthomonadaceae were significantly decreased in SLE patients. And area under the curve was 0.953 (95% confidence intervals 0.890-1.000) to distinguish SLE patients from HCs. There were differences in metabolic pathways between SLE and HCs (P = 0.025). CONCLUSIONS These findings collectively support that oral microbiota dysbiosis and aberrant metabolic pathways were observed in patients with SLE. Our findings may provide suggestive evidences for the diagnosis and treatment of SLE.
Collapse
Affiliation(s)
- Bao-Zhu Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Hefei, Anhui, China.
| | - Hao-Yue Zhou
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Hefei, Anhui, China
| | - Biao Guo
- Department of Human Resource, The Second Affiliated Hospital of Anhui Medical University, Anhui, Hefei, China
| | - Wen-Jun Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Jin-Hui Tao
- Department of Rheumatology & Immunology, Anhui Provincial Hospital, Anhui, Hefei, China
| | - Nv-Wei Cao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Hefei, Anhui, China
| | - Xiu-Jie Chu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Hefei, Anhui, China
| | - Xiang Meng
- School of Stomatology, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
18
|
Abstract
Twitching and swimming are two bacterial movements governed by pili and flagella. The present work identifies for the first time in the Gram-negative plant pathogen Ralstonia solanacearum a pilus-mediated chemotaxis pathway analogous to that governing flagellum-mediated chemotaxis. We show that regulatory genes in this pathway control all of the phenotypes related to pili, including twitching motility, natural transformation, and biofilm formation, and are also directly implicated in virulence, mainly during the first steps of the plant infection. Our results show that pili have a higher impact than flagella on the interaction of R. solanacearum with tomato plants and reveal new types of cross-talk between the swimming and twitching motility phenotypes: enhanced swimming in bacteria lacking pili and a role for the flagellum in root attachment. Ralstonia solanacearum is a bacterial plant pathogen causing important economic losses worldwide. In addition to the polar flagella responsible for swimming motility, this pathogen produces type IV pili (TFP) that govern twitching motility, a flagellum-independent movement on solid surfaces. The implication of chemotaxis in plant colonization, through the control flagellar rotation by the proteins CheW and CheA, has been previously reported in R. solanacearum. In this work, we have identified in this bacterium homologues of the Pseudomonas aeruginosapilI and chpA genes, suggested to play roles in TFP-associated motility analogous to those played by the cheW and cheA genes, respectively. We demonstrate that R. solanacearum strains with a deletion of the pilI or the chpA coding region show normal swimming and chemotaxis but altered biofilm formation and reduced twitching motility, transformation efficiency, and root attachment. Furthermore, these mutants displayed wild-type growth in planta and impaired virulence on tomato plants after soil-drench inoculations but not when directly applied to the xylem. Comparison with deletion mutants for pilA and fliC—encoding the major pilin and flagellin subunits, respectively—showed that both twitching and swimming are required for plant colonization and full virulence. This work proves for the first time the functionality of a pilus-mediated pathway encoded by pil-chp genes in R. solanacearum, demonstrating that pilI and chpA genes are bona fide motility regulators controlling twitching motility and its three related phenotypes: virulence, natural transformation, and biofilm formation. IMPORTANCE Twitching and swimming are two bacterial movements governed by pili and flagella. The present work identifies for the first time in the Gram-negative plant pathogen Ralstonia solanacearum a pilus-mediated chemotaxis pathway analogous to that governing flagellum-mediated chemotaxis. We show that regulatory genes in this pathway control all of the phenotypes related to pili, including twitching motility, natural transformation, and biofilm formation, and are also directly implicated in virulence, mainly during the first steps of the plant infection. Our results show that pili have a higher impact than flagella on the interaction of R. solanacearum with tomato plants and reveal new types of cross-talk between the swimming and twitching motility phenotypes: enhanced swimming in bacteria lacking pili and a role for the flagellum in root attachment.
Collapse
|
19
|
Zhang Q, Zhu D, Ding J, Zheng F, Zhou S, Lu T, Zhu YG, Qian H. The fungicide azoxystrobin perturbs the gut microbiota community and enriches antibiotic resistance genes in Enchytraeus crypticus. ENVIRONMENT INTERNATIONAL 2019; 131:104965. [PMID: 31284112 DOI: 10.1016/j.envint.2019.104965] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/25/2019] [Accepted: 06/25/2019] [Indexed: 05/21/2023]
Abstract
The use of pesticides to ensure global food security is the most important pest control strategy in modern agriculture but causes extensive soil pollution. This pollution involves potential risks to human health and ecosystems. In addition to soil animal growth, the adverse impact of pesticides on the gut microbiomes of nontarget soil fauna remains largely unknown. Here, the effect of the fungicide azoxystrobin (AZ) on soil and the gut microbiota of soil animals (Enchytraeus crypticus) was studied. The tested concentrations of AZ altered the bacterial community in the soil and E. crypticus gut and were slightly toxic with respect to E. crypticus adult mortality and reproduction. The most abundant bacterial phylum, Proteobacteria, significantly increased in response to the 2 and 5 mg/kg AZ treatments, which implied a disordered unhealthy gut bacterial community. Furthermore, bacterial community analysis between the soil and gut showed that the main effect of AZ on the gut microbiota was directly through AZ, not soil microbiota. In addition, AZ exposure significantly enhanced the number and total abundance of antibiotic resistance genes (ARGs) in the E. crypticus gut; these genes may enter the soil food web to affect higher trophic levels and cause a more serious ecological risk. Our study reported the effect of pesticides on the gut of soil animals and on the enrichment of ARGs as global emerging contaminants, revealing unknown potential impacts of fungicides on ecosystem services and sustainable food production.
Collapse
Affiliation(s)
- Qi Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jing Ding
- University of the Chinese Academy of Sciences, Beijing 100049, PR China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Fei Zheng
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shuyidan Zhou
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China; Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China.
| |
Collapse
|
20
|
Liu J, Zhang P, Li H, Tian Y, Wang S, Song Y, Zeng G, Sun C, Tian Z. Denitrification of landfill leachate under different hydraulic retention time in a two-stage anoxic/oxic combined membrane bioreactor process: Performances and bacterial community. BIORESOURCE TECHNOLOGY 2018; 250:110-116. [PMID: 29161569 DOI: 10.1016/j.biortech.2017.11.026] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/07/2017] [Accepted: 11/09/2017] [Indexed: 06/07/2023]
Abstract
Two-stage anoxic/oxic combined membrane bioreactor (A/O-A/O-MBR) process was used to treat leachate generated from Shenyang Laohuchong landfill, and the effect of hydraulic retention time (HRT) was studied. A long HRT of 9 d and a short HRT of 5 d showed negative effect on the stability of process, resulting in a higher organic concentration of effluent than that with a HRT of 7 d, while the highest removal of chemical oxygen demand (COD), ammonia (NH4+-N) and total nitrogen (TN) were achieved with a HRT of 7 d, which was 82.4%, 99.1% and 75.3% respectively. The analysis of microbial communities by high-throughput sequencing showed that phyla Proteobacteria and Bacteroidetes were the dominant bacteria, which accounted for 36.63-42.39%, 29.21-38.66%, respectively. For genus classification, the most representative of Ferruginibacter, unclassified-Saprospiraceae and Nitrosomonas accounted for 20.76-35.11% totally. The other communities, including Nitrobacter, Planctomyces, Rhodobacteraceae and Nitrospirae, were also developed for organic degradation and denitrification.
Collapse
Affiliation(s)
- Jianbo Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Panyue Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Haibo Li
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Yuan Tian
- Department of Urban Water Environmental Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Siyu Wang
- Department of Urban Water Environmental Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yonghui Song
- Department of Urban Water Environmental Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Chen Sun
- Department of Urban Water Environmental Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhiyong Tian
- Department of Urban Water Environmental Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
21
|
McLay RB, Nguyen HN, Jaimes-Lizcano YA, Dewangan NK, Alexandrova S, Rodrigues DF, Cirino PC, Conrad JC. Level of Fimbriation Alters the Adhesion of Escherichia coli Bacteria to Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:1133-1142. [PMID: 28976770 DOI: 10.1021/acs.langmuir.7b02447] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Adhesion of bacteria to interfaces is the first step in pathogenic infection, in biofilm formation, and in bioremediation of oil spills and other pollutants. Bacteria use a variety of surface structures to promote interfacial adhesion, with the level of expression of these structures varying in response to local conditions and environmental signals. Here, we investigated how overexpression of type 1 fimbriae, one such appendage, modifies the ability of Escherichia coli to adhere to solid substrates, via biofilm formation and yeast agglomeration, and to oil/water interfaces, via a microbial adhesion to hydrocarbon assay. A plasmid that enables inducible expression of E. coli MG1655 type 1 fimbriae was transformed into fimbriae-deficient mutant strain MG1655ΔfimA. The level of fimH gene expression in the engineered strain, measured using quantitative real-time PCR, could be tuned by changing the concentration of inducer isopropyl β-d-1-thiogalactopyranoside (IPTG), and was higher than that in strain MG1655. Increasing the degree of fimbriation only slightly modified the surface energy and zeta potential of the bacteria, but enhanced their ability to agglomerate yeast cells and to adhere to solid substrates (as measured by biofilm formation) and to oil/water interfaces. We anticipate that the tunable extent of fimbriation accessible with this engineered strain can be used to investigate how adhesin expression modifies the ability of bacteria to adhere to interfaces and to actively self-assemble there.
Collapse
Affiliation(s)
- Ryan B McLay
- Department of Chemical and Biomolecular Engineering, University of Houston , Houston, Texas 77204-4004, United States
| | - Hang N Nguyen
- Department of Civil and Environmental Engineering, University of Houston , Houston, Texas 77204-4003, United States
| | - Yuly Andrea Jaimes-Lizcano
- Department of Chemical and Biomolecular Engineering, University of Houston , Houston, Texas 77204-4004, United States
| | - Narendra K Dewangan
- Department of Chemical and Biomolecular Engineering, University of Houston , Houston, Texas 77204-4004, United States
| | - Simone Alexandrova
- Department of Chemical and Biomolecular Engineering, University of Houston , Houston, Texas 77204-4004, United States
| | - Debora F Rodrigues
- Department of Civil and Environmental Engineering, University of Houston , Houston, Texas 77204-4003, United States
| | - Patrick C Cirino
- Department of Chemical and Biomolecular Engineering, University of Houston , Houston, Texas 77204-4004, United States
- Department of Biology and Biochemistry, University of Houston , Houston, Texas 77204-5008, United States
| | - Jacinta C Conrad
- Department of Chemical and Biomolecular Engineering, University of Houston , Houston, Texas 77204-4004, United States
| |
Collapse
|
22
|
Artier J, da Silva Zandonadi F, de Souza Carvalho FM, Pauletti BA, Leme AFP, Carnielli CM, Selistre‐de‐Araujo HS, Bertolini MC, Ferro JA, Belasque Júnior J, de Oliveira JCF, Novo‐Mansur MTM. Comparative proteomic analysis of Xanthomonas citri ssp. citri periplasmic proteins reveals changes in cellular envelope metabolism during in vitro pathogenicity induction. MOLECULAR PLANT PATHOLOGY 2018; 19:143-157. [PMID: 27798950 PMCID: PMC6638008 DOI: 10.1111/mpp.12507] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Citrus canker is a plant disease caused by Gram-negative bacteria from the genus Xanthomonas. The most virulent species is Xanthomonas citri ssp. citri (XAC), which attacks a wide range of citrus hosts. Differential proteomic analysis of the periplasm-enriched fraction was performed for XAC cells grown in pathogenicity-inducing (XAM-M) and pathogenicity-non-inducing (nutrient broth) media using two-dimensional electrophoresis combined with liquid chromatography-tandem mass spectrometry. Amongst the 40 proteins identified, transglycosylase was detected in a highly abundant spot in XAC cells grown under inducing condition. Additional up-regulated proteins related to cellular envelope metabolism included glucose-1-phosphate thymidylyltransferase, dTDP-4-dehydrorhamnose-3,5-epimerase and peptidyl-prolyl cis-trans-isomerase. Phosphoglucomutase and superoxide dismutase proteins, known to be involved in pathogenicity in other Xanthomonas species or organisms, were also detected. Western blot and quantitative real-time polymerase chain reaction analyses for transglycosylase and superoxide dismutase confirmed that these proteins were up-regulated under inducing condition, consistent with the proteomic results. Multiple spots for the 60-kDa chaperonin and glyceraldehyde-3-phosphate dehydrogenase were identified, suggesting the presence of post-translational modifications. We propose that substantial alterations in cellular envelope metabolism occur during the XAC infectious process, which are related to several aspects, from defence against reactive oxygen species to exopolysaccharide synthesis. Our results provide new candidates for virulence-related proteins, whose abundance correlates with the induction of pathogenicity and virulence genes, such as hrpD6, hrpG, hrpB7, hpa1 and hrpX. The results present new potential targets against XAC to be investigated in further functional studies.
Collapse
Affiliation(s)
- Juliana Artier
- Laboratório de Bioquímica e Biologia Molecular Aplicada, Departamento de Genética e EvoluçãoUniversidade Federal de São Carlos, UFSCarSão CarlosSP13565‐905Brazil
| | - Flávia da Silva Zandonadi
- Laboratório de Bioquímica e Biologia Molecular Aplicada, Departamento de Genética e EvoluçãoUniversidade Federal de São Carlos, UFSCarSão CarlosSP13565‐905Brazil
| | - Flávia Maria de Souza Carvalho
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal, UNESPUniversidade Estadual PaulistaJaboticabalSP14884‐900Brazil
| | - Bianca Alves Pauletti
- LNBio, CNPEMLaboratório de Espectrometria de Massas, Laboratório Nacional de BiociênciasCampinasSP13083‐970Brazil
| | - Adriana Franco Paes Leme
- LNBio, CNPEMLaboratório de Espectrometria de Massas, Laboratório Nacional de BiociênciasCampinasSP13083‐970Brazil
| | - Carolina Moretto Carnielli
- Laboratório de Bioquímica e Biologia Molecular Aplicada, Departamento de Genética e EvoluçãoUniversidade Federal de São Carlos, UFSCarSão CarlosSP13565‐905Brazil
| | | | - Maria Célia Bertolini
- Departamento de Bioquímica e Tecnologia Química, Instituto de Química, UNESPUniversidade Estadual PaulistaAraraquaraSP14800‐060Brazil
| | - Jesus Aparecido Ferro
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal, UNESPUniversidade Estadual PaulistaJaboticabalSP14884‐900Brazil
| | - José Belasque Júnior
- Departamento de Fitopatologia e Nematologia, Escola Superior de Agricultura ‘Luiz de Queiroz’Universidade de São PauloPiracicabaSP13418‐900Brazil
| | - Julio Cezar Franco de Oliveira
- Laboratório de Interações Microbianas, Departamento de Ciências BiológicasUniversidade Federal de São Paulo, UNIFESPDiademaSP09913‐030Brazil
| | - Maria Teresa Marques Novo‐Mansur
- Laboratório de Bioquímica e Biologia Molecular Aplicada, Departamento de Genética e EvoluçãoUniversidade Federal de São Carlos, UFSCarSão CarlosSP13565‐905Brazil
| |
Collapse
|
23
|
Galitskaya P, Biktasheva L, Saveliev A, Grigoryeva T, Boulygina E, Selivanovskaya S. Fungal and bacterial successions in the process of co-composting of organic wastes as revealed by 454 pyrosequencing. PLoS One 2017; 12:e0186051. [PMID: 29059245 PMCID: PMC5653195 DOI: 10.1371/journal.pone.0186051] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 09/25/2017] [Indexed: 02/07/2023] Open
Abstract
Composting is viewed as one of the primary methods to treat organic wastes. Co-composting may improve the efficiency of this treatment by establishing the most suitable conditions for decomposers than those present in the individual wastes. Given that bacteria and fungi are the driving agents of composting, information about the composition of their communities and dynamics during composting may improve reproducibility, performance and quality of the final compost as well as help to evaluate the potential human health risk and the choice of the most appropriate application procedure. In this study, the co-composting of mixtures containing two similar components (organic fraction of municipal solid waste and sawdust polluted by oil) and one discriminate component (sewage sludges of different origin) were investigated. Bacterial and fungal community successions in the two mixtures were analyzed during the composting process by determining the change in their structural dynamics using qPCR and 454 pyrosequencing methods in a lab experiment for a period of 270 days. During the initial composting stage, the number of 16S bacterial copies was (3.0±0.2) x 106 and (0.4±0.0) x 107 g-1, and the Rhodospiralles and Lactobacialles orders dominated. Fungal communities had (2.9±0.0) x105 and (6.1±0.2) x105 ITS copies g-1, and the Saccharomycetales order dominated. At the end of the thermophilic stage on the 30th day of composting, bacterial and fungal communities underwent significant changes: dominants changed and their relative abundance decreased. Typical compost residents included Flavobacteriales, Chitinophagaceae and Bacterioidetes for bacteria and Microascaceae, Dothideomycetes, Eurotiomycetes, Sordariomycetes, and Agaricomycetes for fungi. During the later composting stages, the dominating taxa of both bacterial and fungal communities remained, while their relative abundance decreased. In accordance with the change in the dominating OTUs, it was concluded that the dynamics of the bacterial and fungal communities were not similar. Analysis by non-metric multidimensional scaling (NMDS) revealed that the bacterial communities of the two composts became progressively more similar; a similar trend was followed by the fungal community.
Collapse
Affiliation(s)
- Polina Galitskaya
- Department of Applied Ecology, Institute of Environmental Sciences, Kazan Federal University, Kazan, Russian Federation
| | - Liliya Biktasheva
- Department of Applied Ecology, Institute of Environmental Sciences, Kazan Federal University, Kazan, Russian Federation
- * E-mail:
| | - Anatoly Saveliev
- Department of Ecological Systems Modeling, Institute of Environmental Sciences, Kazan Federal University, Kazan, Russian Federation
| | - Tatiana Grigoryeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
| | - Eugenia Boulygina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
| | - Svetlana Selivanovskaya
- Department of Applied Ecology, Institute of Environmental Sciences, Kazan Federal University, Kazan, Russian Federation
| |
Collapse
|
24
|
Class III Histidine Kinases: a Recently Accessorized Kinase Domain in Putative Modulators of Type IV Pilus-Based Motility. J Bacteriol 2017; 199:JB.00218-17. [PMID: 28484044 DOI: 10.1128/jb.00218-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 04/28/2017] [Indexed: 01/02/2023] Open
Abstract
Histidine kinases are key components of regulatory systems that enable bacteria to respond to environmental changes. Two major classes of histidine kinases are recognized on the basis of their modular design: classical (HKI) and chemotaxis specific (HKII). Recently, a new type of histidine kinase that appeared to have features of both HKIs and HKIIs was identified and termed HKIII; however, the details of HKIII's relationship to other two classes of histidine kinases, their function, and evolutionary history remain unknown. Here, we carried out genomic, phylogenetic, and protein sequence analyses that allowed us to reveal the unusual evolutionary history of this protein family, formalize its distinctive features, and propose its putative function. HKIIIs are characterized by the presence of sensory domains and the lack of a dimerization domain, which is typically present in all histidine kinases. In addition to a single-domain response regulator, HKIII signal transduction systems utilize CheX phosphatase and, in many instances, an unorthodox soluble chemoreceptor that are usual components of chemotaxis signal transduction systems. However, many HKIII genes are found in genomes completely lacking chemotaxis genes, thus decoupling their function from chemotaxis. By contrast, all HKIII-containing genomes also contain pilT, a marker gene for bacterial type IV pilus-based motility, whose regulation is proposed as a putative function for HKIII. These signal transduction systems have a narrow phyletic distribution but are present in many emerging and opportunistic pathogens, thus offering an attractive potential target for future antimicrobial drug design.IMPORTANCE Bacteria adapt to their environment and their hosts by detecting signals and regulating their cellular functions accordingly. Here, we describe a largely unexplored family of signal transduction histidine kinases, called HKIII, that have a unique modular design. While they are currently identified in a relatively short list of bacterial species, this list contains many emerging pathogens. We show that HKIIIs likely control bacterial motility across solid surfaces, which is a key virulence factor in many bacteria, including those causing severe infections. Full understanding of this putative function may help in designing effective drugs against pathogens that will not affect the majority of the beneficial human microbiome.
Collapse
|
25
|
Nagaraj V, Skillman L, Ho G, Li D, Gofton A. Characterisation and comparison of bacterial communities on reverse osmosis membranes of a full-scale desalination plant by bacterial 16S rRNA gene metabarcoding. NPJ Biofilms Microbiomes 2017. [PMID: 28649414 PMCID: PMC5476683 DOI: 10.1038/s41522-017-0021-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Microbiomes of full-scale seawater reverse osmosis membranes are complex and subject to variation within and between membrane units. The pre-existing bacterial communities of unused membranes before operation have been largely ignored in biofouling studies. This study is novel as unused membranes were used as a critical benchmark for comparison. Fouled seawater reverse osmosis membrane biofilm communities from an array of autopsied membrane samples, following a 7-year operational life-span in a full-scale desalination plant in Western Australia, were characterised by 16S rRNA gene metabarcoding using the bacterial primers 515F and 806R. Communities were then compared based on fouling severity and sampling location. Microbiomes of proteobacterial predominance were detected on control unused membranes. However, fouled membrane communities differed significantly from those on unused membranes, reflecting that operational conditions select specific bacteria on the membrane surface. On fouled membranes, Proteobacteria were also predominant but families differed from those on unused membranes, followed by Bacteriodetes and Firmicutes. Betaproteobacteria correlated with stable, mature and thick biofilms such as those in severely fouled membranes or samples from the feed end of the membrane unit, while Alpha and Gammaproteobacteria were predominantly found in biofilms on fouled but visually clean, and moderately fouled samples or those from reject ends of membrane units. Gammaproteobacteria predominated the thin, compact biofilms at the mid-feed end of membrane units. The study also supported the importance of Caulobacterales and glycosphingolipid-producing bacteria, namely Sphingomonadales, Rhizobiales and Sphingobacteriia, in primary attachment and biofilm recalcitrance. Nitrate-and-nitrite-reducing bacteria such as Rhizobiales, Burkholderiales and some Pseudomonadales were also prevalent across all fouled membranes and appeared to be critical for ecological balance and biofilm maturation. The diverse microbial populations on seawater desalination plant membranes have been characterised after full operational lifecycles. The membranes were used for seven years to purify water by reverse osmosis. Biofouling can seriously impair the efficiency of the membranes but the problem has not previously been well characterised, especially after a full life-span of membrane operation. Veena Nagaraj and colleagues at Murdoch University in Australia investigated biofilms and used genetic analysis to identify the bacteria growing on 14 used membranes, and compared the results with pre-existing contamination on unused membranes. The research revealed that operational conditions favour the growth of specific bacterial populations, predominantly Proteobacteria, but also Bacteriodetes and Firmicutes. The results should assist research to devise new methods to prevent and alleviate the biofouling of desalination plant membranes and maximise the efficiency of their operation.
Collapse
Affiliation(s)
- Veena Nagaraj
- School of Engineering and Information Technology, Murdoch University, Murdoch, Western Australia 6150 Australia
| | - Lucy Skillman
- School of Engineering and Information Technology, Murdoch University, Murdoch, Western Australia 6150 Australia
| | - Goen Ho
- School of Engineering and Information Technology, Murdoch University, Murdoch, Western Australia 6150 Australia
| | - Dan Li
- School of Engineering and Information Technology, Murdoch University, Murdoch, Western Australia 6150 Australia
| | - Alexander Gofton
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia 6150 Australia
| |
Collapse
|
26
|
Huang Z, Zhao F, Li Y, Zhang J, Feng Y. Variations in the bacterial community compositions at different sites in the tomb of Emperor Yang of the Sui Dynasty. Microbiol Res 2016; 196:26-33. [PMID: 28164788 DOI: 10.1016/j.micres.2016.12.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 11/29/2016] [Accepted: 12/07/2016] [Indexed: 11/28/2022]
Abstract
To fully understand the bacterial processes in tomb environments, it is necessary to investigate the details of the bacterial communities present under such oligotrophic conditions. Here, high-throughput sequencing based on partial 16S rRNA gene sequences was used to fully evaluate the bacterial communities at different sites in the tomb of Emperor Yang of the Sui Dynasty. We also aimed to identify the soil factors that were significant related to bacterial diversity and community composition. The results showed the presence of a broad taxonomic diversity that included nine major phyla. Actinobacteria, Firmicutes and Proteobacteria dominated the bacterial profiles in all tomb soil samples. However, significant differences between deposited soils (DS) and covering soils (CSA, CSB and CSC) were revealed by chemistry-based principal component analysis (PCA), the number of OTUs, and the Chao 1 and Shannon indexes. At the family level, hierarchically clustered heatmap and LefSe analyses showed differences in the bacterial community compositions at different sampling sites. Notably, CSA contained significant populations of Nocardioidaceae, Pseudonocardiaceae and Streptomycetaceae, which are often reported to be associated with biodeterioration in cave environments. Further, the most abundant group (>10%) in all soil samples was Streptococcaceae, whose abundance decreased from 34.66% to 13.43% with increasing soil depth. The results of redundancy analysis (RDA) and the Monte Carlo permutation test indicated that soil pH and Cu and Mn levels were significantly related to the bacterial communities in this tomb. This research offers new insight into bacterial communities in cave environments and also provides important information for the protection of this historically important tomb.
Collapse
Affiliation(s)
- Zhi Huang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Fei Zhao
- Nanjing Institute for Comprehensive utilization of Wild Plants, China CO-OP, Nanjing 210042, China
| | - Yonghui Li
- Key Laboratory of Urban and Architectural Heritage Conservation of Ministry of Education, School of Architecture, Southeast University, Nanjing 210096, China
| | - Jianwei Zhang
- State Key Laboratory Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Youzhi Feng
- State Key Laboratory Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
27
|
Garavaglia BS, Zimaro T, Abriata LA, Ottado J, Gottig N. XacFhaB adhesin, an important Xanthomonas citri ssp. citri virulence factor, is recognized as a pathogen-associated molecular pattern. MOLECULAR PLANT PATHOLOGY 2016; 17:1344-1353. [PMID: 26724481 PMCID: PMC6638363 DOI: 10.1111/mpp.12364] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 12/23/2015] [Accepted: 12/29/2015] [Indexed: 05/24/2023]
Abstract
Adhesion to host tissue is one of the key steps of the bacterial pathogenic process. Xanthomonas citri ssp. citri possesses a non-fimbrial adhesin protein, XacFhaB, required for bacterial attachment, which we have previously demonstrated to be an important virulence factor for the development of citrus canker. XacFhaB is a 4753-residue-long protein with a predicted β-helical fold structure, involved in bacterial aggregation, biofilm formation and adhesion to the host. In this work, to further characterize this protein and considering its large size, XacFhaB was dissected into three regions based on bioinformatic and structural analyses for functional studies. First, the capacity of these protein regions to aggregate bacterial cells was analysed. Two of these regions were able to form bacterial aggregates, with the most amino-terminal region being dispensable for this activity. Moreover, XacFhaB shows features resembling pathogen-associated molecular patterns (PAMPs), which are recognized by plants. As PAMPs activate plant basal immune responses, the role of the three XacFhaB regions as elicitors of these responses was investigated. All adhesin regions were able to induce basal immune responses in host and non-host plants, with a stronger activation by the carboxyl-terminal region. Furthermore, pre-infiltration of citrus leaves with XacFhaB regions impaired X. citri ssp. citri growth, confirming the induction of defence responses and restraint of citrus canker. This work reveals that adhesins from plant pathogens trigger plant defence responses, opening up new pathways for the development of protective strategies for disease control.
Collapse
Affiliation(s)
- Betiana S. Garavaglia
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IBR‐CONICET) and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y EsmeraldaRosario 2000Argentina
| | - Tamara Zimaro
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IBR‐CONICET) and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y EsmeraldaRosario 2000Argentina
| | - Luciano A. Abriata
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IBR‐CONICET) and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y EsmeraldaRosario 2000Argentina
- Present address:
Laboratory for Biomolecular Modeling, School of Life SciencesÉcole Polytechnique Fédérale de Lausanne (EPFL), and Swiss Institute of Bioinformatics (SIB)AAB011 Station 191015LausanneSwitzerland
| | - Jorgelina Ottado
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IBR‐CONICET) and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y EsmeraldaRosario 2000Argentina
| | - Natalia Gottig
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IBR‐CONICET) and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y EsmeraldaRosario 2000Argentina
| |
Collapse
|
28
|
Merda D, Bonneau S, Guimbaud JF, Durand K, Brin C, Boureau T, Lemaire C, Jacques MA, Fischer-Le Saux M. Recombination-prone bacterial strains form a reservoir from which epidemic clones emerge in agroecosystems. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:572-581. [PMID: 27059897 DOI: 10.1111/1758-2229.12397] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The acquisition of virulence-related genes through horizontal gene transfer can modify the pathogenic profiles of strains and lead to the emergence of new diseases. Xanthomonas arboricola is a bacterial species largely known for the damage it causes to stone and nut fruit trees worldwide. In addition to these host-specific populations called pathovars, many nonpathogenic strains have been identified in this species. Their evolutionary significance in the context of pathogen emergence is unknown. We looked at seven housekeeping genes amplified from 187 pathogenic and nonpathogenic strains isolated from various plants worldwide to analyze population genetics and recombination dynamics. We also examined the dynamics of the gains and losses of genes associated with life history traits (LHTs) during X. arboricola evolution. We discovered that X. arboricola presents an epidemic population structure. Successful pathovars of trees (i.e. pruni, corylina and juglandis) are epidemic clones whose emergence appears to be linked to the acquisition of eight genes coding for Type III effectors. The other strains of this species are part of a recombinant network, within which LHT-associated genes might have been lost. We suggest that nonpathogenic strains, because of their high genetic diversity and propensity for recombination, may promote the emergence of pathogenic strains.
Collapse
Affiliation(s)
- Déborah Merda
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Sophie Bonneau
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Jean-François Guimbaud
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Karine Durand
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Chrystelle Brin
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Tristan Boureau
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Christophe Lemaire
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Marie-Agnès Jacques
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Marion Fischer-Le Saux
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| |
Collapse
|
29
|
Yang C, Powell CA, Duan Y, Shatters R, Fang J, Zhang M. Deciphering the Bacterial Microbiome in Huanglongbing-Affected Citrus Treated with Thermotherapy and Sulfonamide Antibiotics. PLoS One 2016; 11:e0155472. [PMID: 27171468 PMCID: PMC4865244 DOI: 10.1371/journal.pone.0155472] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 04/26/2016] [Indexed: 11/23/2022] Open
Abstract
Huanglongbing (HLB) is a serious citrus disease that threatens the citrus industry. In previous studies, sulfonamide antibiotics and heat treatment suppressed ‘Candidatus Liberibacter asiaticus’ (Las), but did not completely eliminate the Las. Furthermore, there are few reports studying the bacterial microbiome of HLB-affected citrus treated by heat and sulfonamide antibiotics. In this study, combinations of heat (45°C or 40°C) and sulfonamide treatment (sulfathiazole sodium–STZ, or sulfadimethoxine sodium—SDX) were applied to HLB-affected citrus. The bacterial microbiome of HLB-affected citrus following thermotherapy and/or chemotherapy was characterized by PhyloChipTMG3-based metagenomics. Our results showed that the combination of thermotherapy at 45°C and chemotherapy with STZ and SDX was more effective against HLB than thermotherapy alone, chemotherapy alone, or a combination of thermotherapy at 40°C and chemotherapy. The PhyloChipTMG3-based results indicated that 311 empirical Operational Taxonomic Units (eOTUs) were detected in 26 phyla. Cyanobacteria (18.01%) were dominant after thermo-chemotherapy. Thermotherapy at 45°C decreased eOTUs (64.43%) in leaf samples, compared with thermotherapy at 40°C (73.96%) or without thermotherapy (90.68%) and it also reduced bacterial family biodiversity. The eOTU in phylum Proteobacteria was reduced significantly and eOTU_28, representing “Candidatus Liberibacter,” was not detected following thermotherapy at 45°C. Following antibiotic treatment with SDX and STZ, there was enhanced abundance of specific eOTUs belonging to the families Streptomycetaceae, Desulfobacteraceae, Chitinophagaceae, and Xanthomonadaceae, which may be implicated in increased resistance to plant pathogens. Our study further develops an integrated strategy for combating HLB, and also provides new insight into the bacterial microbiome of HLB-affected citrus treated by heat and sulfonamide antibiotics.
Collapse
Affiliation(s)
- Chuanyu Yang
- State Key Lab for Conservation and Utilization of Subtropical Agro-biological Resources, Guangxi University, Nanning, 530005, China
- Indian River Research and Education Center, IFAS, University of Florida, Fort Pierce, FL, 34945, United States of America
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Charles A. Powell
- Indian River Research and Education Center, IFAS, University of Florida, Fort Pierce, FL, 34945, United States of America
| | - Yongping Duan
- Horticultural Research Lab, USDA-ARS, Fort Pierce, FL, 34945, United States of America
| | - Robert Shatters
- Horticultural Research Lab, USDA-ARS, Fort Pierce, FL, 34945, United States of America
| | - Jingping Fang
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Muqing Zhang
- State Key Lab for Conservation and Utilization of Subtropical Agro-biological Resources, Guangxi University, Nanning, 530005, China
- Indian River Research and Education Center, IFAS, University of Florida, Fort Pierce, FL, 34945, United States of America
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- * E-mail:
| |
Collapse
|
30
|
Abstract
During the first step of biofilm formation, initial attachment is dictated by physicochemical and electrostatic interactions between the surface and the bacterial envelope. Depending on the nature of these interactions, attachment can be transient or permanent. To achieve irreversible attachment, bacterial cells have developed a series of surface adhesins promoting specific or nonspecific adhesion under various environmental conditions. This article reviews the recent advances in our understanding of the secretion, assembly, and regulation of the bacterial adhesins during biofilm formation, with a particular emphasis on the fimbrial, nonfimbrial, and discrete polysaccharide adhesins in Gram-negative bacteria.
Collapse
|
31
|
Li L, Yan B, Li S, Xu J, An X. A comparison of bacterial community structure in seawater pond with shrimp, crab, and shellfish cultures and in non-cultured pond in Ganyu, Eastern China. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-015-1111-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
32
|
Jacobs JM, Pesce C, Lefeuvre P, Koebnik R. Comparative genomics of a cannabis pathogen reveals insight into the evolution of pathogenicity in Xanthomonas. FRONTIERS IN PLANT SCIENCE 2015; 6:431. [PMID: 26136759 DOI: 10.3389/fpls.2015.00431.ecollection2015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 05/27/2015] [Indexed: 05/24/2023]
Abstract
Pathogenic bacteria in the genus Xanthomonas cause diseases on over 350 plant species, including cannabis (Cannabis sativa L.). Because of regulatory limitations, the biology of the Xanthomonas-cannabis pathosystem remains largely unexplored. To gain insight into the evolution of Xanthomonas strains pathogenic to cannabis, we sequenced the genomes of two geographically distinct Xanthomonas strains, NCPPB 3753 and NCPPB 2877, which were previously isolated from symptomatic plant tissue in Japan and Romania. Comparative multilocus sequence analysis of housekeeping genes revealed that they belong to Group 2, which comprises most of the described species of Xanthomonas. Interestingly, both strains lack the Hrp Type III secretion system and do not contain any of the known Type III effectors. Yet their genomes notably encode two key Hrp pathogenicity regulators HrpG and HrpX, and hrpG and hrpX are in the same genetic organization as in the other Group 2 xanthomonads. Promoter prediction of HrpX-regulated genes suggests the induction of an aminopeptidase, a lipase and two polygalacturonases upon plant colonization, similar to other plant-pathogenic xanthomonads. Genome analysis of the distantly related Xanthomonas maliensis strain 97M, which was isolated from a rice leaf in Mali, similarly demonstrated the presence of HrpG, HrpX, and a HrpX-regulated polygalacturonase, and the absence of the Hrp Type III secretion system and known Type III effectors. Given the observation that some Xanthomonas strains across distinct taxa do not contain hrpG and hrpX, we speculate a stepwise evolution of pathogenicity, which involves (i) acquisition of key regulatory genes and cell wall-degrading enzymes, followed by (ii) acquisition of the Hrp Type III secretion system, which is ultimately accompanied by (iii) successive acquisition of Type III effectors.
Collapse
Affiliation(s)
- Jonathan M Jacobs
- Institut de Recherche pour le Développement - Cirad - Université Montpellier, Interactions Plantes Microorganismes Environnement Montpellier, France
| | - Céline Pesce
- Institut de Recherche pour le Développement - Cirad - Université Montpellier, Interactions Plantes Microorganismes Environnement Montpellier, France ; Department of Applied Microbiology, Earth and Life Institute, Université Catholique de Louvain Louvain-la-Neuve, Belgium
| | - Pierre Lefeuvre
- Pôle de Protection des Plantes, Cirad, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical Saint-Pierre, Ile de la Réunion, France
| | - Ralf Koebnik
- Institut de Recherche pour le Développement - Cirad - Université Montpellier, Interactions Plantes Microorganismes Environnement Montpellier, France
| |
Collapse
|
33
|
Jacobs JM, Pesce C, Lefeuvre P, Koebnik R. Comparative genomics of a cannabis pathogen reveals insight into the evolution of pathogenicity in Xanthomonas. FRONTIERS IN PLANT SCIENCE 2015; 6:431. [PMID: 26136759 PMCID: PMC4468381 DOI: 10.3389/fpls.2015.00431] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 05/27/2015] [Indexed: 05/05/2023]
Abstract
Pathogenic bacteria in the genus Xanthomonas cause diseases on over 350 plant species, including cannabis (Cannabis sativa L.). Because of regulatory limitations, the biology of the Xanthomonas-cannabis pathosystem remains largely unexplored. To gain insight into the evolution of Xanthomonas strains pathogenic to cannabis, we sequenced the genomes of two geographically distinct Xanthomonas strains, NCPPB 3753 and NCPPB 2877, which were previously isolated from symptomatic plant tissue in Japan and Romania. Comparative multilocus sequence analysis of housekeeping genes revealed that they belong to Group 2, which comprises most of the described species of Xanthomonas. Interestingly, both strains lack the Hrp Type III secretion system and do not contain any of the known Type III effectors. Yet their genomes notably encode two key Hrp pathogenicity regulators HrpG and HrpX, and hrpG and hrpX are in the same genetic organization as in the other Group 2 xanthomonads. Promoter prediction of HrpX-regulated genes suggests the induction of an aminopeptidase, a lipase and two polygalacturonases upon plant colonization, similar to other plant-pathogenic xanthomonads. Genome analysis of the distantly related Xanthomonas maliensis strain 97M, which was isolated from a rice leaf in Mali, similarly demonstrated the presence of HrpG, HrpX, and a HrpX-regulated polygalacturonase, and the absence of the Hrp Type III secretion system and known Type III effectors. Given the observation that some Xanthomonas strains across distinct taxa do not contain hrpG and hrpX, we speculate a stepwise evolution of pathogenicity, which involves (i) acquisition of key regulatory genes and cell wall-degrading enzymes, followed by (ii) acquisition of the Hrp Type III secretion system, which is ultimately accompanied by (iii) successive acquisition of Type III effectors.
Collapse
Affiliation(s)
- Jonathan M. Jacobs
- Institut de Recherche pour le Développement – Cirad – Université Montpellier, Interactions Plantes Microorganismes EnvironnementMontpellier, France
| | - Céline Pesce
- Institut de Recherche pour le Développement – Cirad – Université Montpellier, Interactions Plantes Microorganismes EnvironnementMontpellier, France
- Department of Applied Microbiology, Earth and Life Institute, Université Catholique de LouvainLouvain-la-Neuve, Belgium
| | - Pierre Lefeuvre
- Pôle de Protection des Plantes, Cirad, UMR Peuplements Végétaux et Bioagresseurs en Milieu TropicalSaint-Pierre, Ile de la Réunion, France
| | - Ralf Koebnik
- Institut de Recherche pour le Développement – Cirad – Université Montpellier, Interactions Plantes Microorganismes EnvironnementMontpellier, France
- *Correspondence: Ralf Koebnik, Institut de Recherche pour le Développement, UMR Interactions – Plantes – Microorganismes – Environnement, Génomique et Transcriptomique des Interactions Plantes-Procaryotes, 921 avenue Agropolis, 34394 Montpellier, France
| |
Collapse
|
34
|
Tridico SR, Murray DC, Addison J, Kirkbride KP, Bunce M. Metagenomic analyses of bacteria on human hairs: a qualitative assessment for applications in forensic science. INVESTIGATIVE GENETICS 2014; 5:16. [PMID: 25516795 PMCID: PMC4266914 DOI: 10.1186/s13323-014-0016-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 11/13/2014] [Indexed: 01/10/2023]
Abstract
BACKGROUND Mammalian hairs are one of the most ubiquitous types of trace evidence collected in the course of forensic investigations. However, hairs that are naturally shed or that lack roots are problematic substrates for DNA profiling; these hair types often contain insufficient nuclear DNA to yield short tandem repeat (STR) profiles. Whilst there have been a number of initial investigations evaluating the value of metagenomics analyses for forensic applications (e.g. examination of computer keyboards), there have been no metagenomic evaluations of human hairs-a substrate commonly encountered during forensic practice. This present study attempts to address this forensic capability gap, by conducting a qualitative assessment into the applicability of metagenomic analyses of human scalp and pubic hair. RESULTS Forty-two DNA extracts obtained from human scalp and pubic hairs generated a total of 79,766 reads, yielding 39,814 reads post control and abundance filtering. The results revealed the presence of unique combinations of microbial taxa that can enable discrimination between individuals and signature taxa indigenous to female pubic hairs. Microbial data from a single co-habiting couple added an extra dimension to the study by suggesting that metagenomic analyses might be of evidentiary value in sexual assault cases when other associative evidence is not present. CONCLUSIONS Of all the data generated in this study, the next-generation sequencing (NGS) data generated from pubic hair held the most potential for forensic applications. Metagenomic analyses of human hairs may provide independent data to augment other forensic results and possibly provide association between victims of sexual assault and offender when other associative evidence is absent. Based on results garnered in the present study, we believe that with further development, bacterial profiling of hair will become a valuable addition to the forensic toolkit.
Collapse
Affiliation(s)
- Silvana R Tridico
- />Veterinary and Life Sciences, Murdoch University, Perth, WA 6150 Australia
- />Trace and Environmental DNA laboratory, Department of Environment and Agriculture, Curtin University, Perth, WA 6845 Australia
| | - Dáithí C Murray
- />Veterinary and Life Sciences, Murdoch University, Perth, WA 6150 Australia
- />Trace and Environmental DNA laboratory, Department of Environment and Agriculture, Curtin University, Perth, WA 6845 Australia
| | - Jayne Addison
- />Veterinary and Life Sciences, Murdoch University, Perth, WA 6150 Australia
| | - Kenneth P Kirkbride
- />School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001 Australia
| | - Michael Bunce
- />Veterinary and Life Sciences, Murdoch University, Perth, WA 6150 Australia
- />Trace and Environmental DNA laboratory, Department of Environment and Agriculture, Curtin University, Perth, WA 6845 Australia
| |
Collapse
|
35
|
Al Ashhab A, Gillor O, Herzberg M. Biofouling of reverse-osmosis membranes under different shear rates during tertiary wastewater desalination: microbial community composition. WATER RESEARCH 2014; 67:86-95. [PMID: 25262553 DOI: 10.1016/j.watres.2014.09.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 09/04/2014] [Accepted: 09/06/2014] [Indexed: 06/03/2023]
Abstract
We investigated the influence of feed-water shear rate during reverse-osmosis (RO) desalination on biofouling with respect to microbial community composition developed on the membrane surface. The RO membrane biofilm's microbial community profile was elucidated during desalination of tertiary wastewater effluent in a flat-sheet lab-scale system operated under high (555.6 s(-1)), medium (370.4 s(-1)), or low (185.2 s(-1)) shear rates, corresponding to average velocities of 27.8, 18.5, and 9.3 cm s(-1), respectively. Bacterial diversity was highest when medium shear was applied (Shannon-Weaver diversity index H' = 4.30 ± 0.04) compared to RO-membrane biofilm developed under lower and higher shear rates (H' = 3.80 ± 0.26 and H' = 3.42 ± 0.38, respectively). At the medium shear rate, RO-membrane biofilms were dominated by Betaproteobacteria, whereas under lower and higher shear rates, the biofilms were dominated by Alpha- and Gamma- Proteobacteria, and the latter biofilms also contained Deltaproteobacteria. Bacterial abundance on the RO membrane was higher at low and medium shear rates compared to the high shear rate: 8.97 × 10(8) ± 1.03 × 10(3), 4.70 × 10(8) ± 1.70 × 10(3) and 5.72 × 10(6) ± 2.09 × 10(3) copy number per cm(2), respectively. Interestingly, at the high shear rate, the RO-membrane biofilm's bacterial community consisted mainly of populations known to excrete high amounts of extracellular polymeric substances. Our results suggest that the RO-membrane biofilm's community composition, structure and abundance differ in accordance with applied shear rate. These results shed new light on the biofouling phenomenon and are important for further development of antibiofouling strategies for RO membranes.
Collapse
Affiliation(s)
- Ashraf Al Ashhab
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion 84990, Israel.
| | - Osnat Gillor
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion 84990, Israel.
| | - Moshe Herzberg
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion 84990, Israel.
| |
Collapse
|
36
|
Functional and proteomic analyses reveal that wxcB is involved in virulence, motility, detergent tolerance, and biofilm formation in Xanthomonas campestris pv. vesicatoria. Biochem Biophys Res Commun 2014; 452:389-94. [DOI: 10.1016/j.bbrc.2014.08.076] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 08/16/2014] [Indexed: 11/23/2022]
|
37
|
Dybdahl MF, Jenkins CE, Nuismer SL. Identifying the Molecular Basis of Host-Parasite Coevolution: Merging Models and Mechanisms. Am Nat 2014; 184:1-13. [DOI: 10.1086/676591] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
38
|
Hoellein T, Rojas M, Pink A, Gasior J, Kelly J. Anthropogenic litter in urban freshwater ecosystems: distribution and microbial interactions. PLoS One 2014; 9:e98485. [PMID: 24955768 PMCID: PMC4067278 DOI: 10.1371/journal.pone.0098485] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 05/03/2014] [Indexed: 11/19/2022] Open
Abstract
Accumulation of anthropogenic litter (i.e. garbage; AL) and its ecosystem effects in marine environments are well documented. Rivers receive AL from terrestrial habitats and represent a major source of AL to marine environments, but AL is rarely studied within freshwater ecosystems. Our objectives were to 1) quantify AL density in urban freshwaters, 2) compare AL abundance among freshwater, terrestrial, and marine ecosystems, and 3) characterize the activity and composition of AL biofilms in freshwater habitats. We quantified AL from the Chicago River and Chicago's Lake Michigan shoreline, and found that AL abundance in Chicago freshwater ecosystems was comparable to previously reported data for marine and terrestrial ecosystems, although AL density and composition differed among habitats. To assess microbial interactions with AL, we incubated AL and natural substrates in 3 freshwater ecosystems, quantified biofilm metabolism as gross primary production (GPP) and community respiration (CR), and characterized biofilm bacterial community composition via high-throughput sequencing of 16S rRNA genes. The main driver of biofilm community composition was incubation location (e.g., river vs pond), but there were some significant differences in biofilm composition and metabolism among substrates. For example, biofilms on organic substrates (cardboard and leaves) had lower GPP than hard substrates (glass, plastic, aluminum and tiles). In addition, bacterial communities on organic substrates were distinct in composition from those on hard substrates, with higher relative abundances of bacteria associated with cellulose decomposition. Finally, we used our results to develop a conceptual diagram designed to unite the study of AL in terrestrial and freshwater environments with the well-established field of marine debris research. We suggest this broad perspective will be useful for future studies which synthesize AL sources, ecosystem effects, and fate across multiple ecosystem types, and will benefit management and reduction of global AL accumulations.
Collapse
Affiliation(s)
- Timothy Hoellein
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Miguel Rojas
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Adam Pink
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Joseph Gasior
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
| | - John Kelly
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
39
|
Arrieta-Ortiz ML, Rodríguez-R LM, Pérez-Quintero ÁL, Poulin L, Díaz AC, Arias Rojas N, Trujillo C, Restrepo Benavides M, Bart R, Boch J, Boureau T, Darrasse A, David P, Dugé de Bernonville T, Fontanilla P, Gagnevin L, Guérin F, Jacques MA, Lauber E, Lefeuvre P, Medina C, Medina E, Montenegro N, Muñoz Bodnar A, Noël LD, Ortiz Quiñones JF, Osorio D, Pardo C, Patil PB, Poussier S, Pruvost O, Robène-Soustrade I, Ryan RP, Tabima J, Urrego Morales OG, Vernière C, Carrere S, Verdier V, Szurek B, Restrepo S, López C, Koebnik R, Bernal A. Genomic survey of pathogenicity determinants and VNTR markers in the cassava bacterial pathogen Xanthomonas axonopodis pv. Manihotis strain CIO151. PLoS One 2013; 8:e79704. [PMID: 24278159 PMCID: PMC3838355 DOI: 10.1371/journal.pone.0079704] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 09/24/2013] [Indexed: 11/24/2022] Open
Abstract
Xanthomonas axonopodis pv. manihotis (Xam) is the causal agent of bacterial blight of cassava, which is among the main components of human diet in Africa and South America. Current information about the molecular pathogenicity factors involved in the infection process of this organism is limited. Previous studies in other bacteria in this genus suggest that advanced draft genome sequences are valuable resources for molecular studies on their interaction with plants and could provide valuable tools for diagnostics and detection. Here we have generated the first manually annotated high-quality draft genome sequence of Xam strain CIO151. Its genomic structure is similar to that of other xanthomonads, especially Xanthomonas euvesicatoria and Xanthomonas citri pv. citri species. Several putative pathogenicity factors were identified, including type III effectors, cell wall-degrading enzymes and clusters encoding protein secretion systems. Specific characteristics in this genome include changes in the xanthomonadin cluster that could explain the lack of typical yellow color in all strains of this pathovar and the presence of 50 regions in the genome with atypical nucleotide composition. The genome sequence was used to predict and evaluate 22 variable number of tandem repeat (VNTR) loci that were subsequently demonstrated as polymorphic in representative Xam strains. Our results demonstrate that Xanthomonas axonopodis pv. manihotis strain CIO151 possesses ten clusters of pathogenicity factors conserved within the genus Xanthomonas. We report 126 genes that are potentially unique to Xam, as well as potential horizontal transfer events in the history of the genome. The relation of these regions with virulence and pathogenicity could explain several aspects of the biology of this pathogen, including its ability to colonize both vascular and non-vascular tissues of cassava plants. A set of 16 robust, polymorphic VNTR loci will be useful to develop a multi-locus VNTR analysis scheme for epidemiological surveillance of this disease.
Collapse
Affiliation(s)
- Mario L. Arrieta-Ortiz
- Laboratorio de Micología y Fitopatología Uniandes (LAMFU), Universidad de Los Andes, Bogotá, Colombia
| | - Luis M. Rodríguez-R
- Laboratorio de Micología y Fitopatología Uniandes (LAMFU), Universidad de Los Andes, Bogotá, Colombia
- Unité Mixte de Recherche Résistance des Plantes aux Bioaggresseurs, Institut de Recherche pour le Développement, Montpellier, France
| | | | - Lucie Poulin
- Unité Mixte de Recherche Résistance des Plantes aux Bioaggresseurs, Institut de Recherche pour le Développement, Montpellier, France
| | - Ana C. Díaz
- Laboratorio de Micología y Fitopatología Uniandes (LAMFU), Universidad de Los Andes, Bogotá, Colombia
| | - Nathalia Arias Rojas
- Laboratorio de Micología y Fitopatología Uniandes (LAMFU), Universidad de Los Andes, Bogotá, Colombia
- Unité Mixte de Recherche Résistance des Plantes aux Bioaggresseurs, Institut de Recherche pour le Développement, Montpellier, France
| | - Cesar Trujillo
- Laboratorio de Micología y Fitopatología Uniandes (LAMFU), Universidad de Los Andes, Bogotá, Colombia
| | | | - Rebecca Bart
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
| | - Jens Boch
- Department of Genetics, Martin Luther University, Halle-Wittenberg, Germany
| | - Tristan Boureau
- Institut National de la Recherche Agronomique, UMR45 Institut de Recherche en Horticulture et Semences, Beaucouzé, France
- Université d'Angers, UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 Quasav, PRES L'UNAM, Beaucouzé, France
- Agrocampus Ouest, UMR1345 Institut de Recherche en Horticulture et Semences, Beaucouzé, France
| | - Armelle Darrasse
- Institut National de la Recherche Agronomique, UMR45 Institut de Recherche en Horticulture et Semences, Beaucouzé, France
- Université d'Angers, UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 Quasav, PRES L'UNAM, Beaucouzé, France
- Agrocampus Ouest, UMR1345 Institut de Recherche en Horticulture et Semences, Beaucouzé, France
| | - Perrine David
- Institut National de la Recherche Agronomique, UMR45 Institut de Recherche en Horticulture et Semences, Beaucouzé, France
- Université d'Angers, UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 Quasav, PRES L'UNAM, Beaucouzé, France
- Agrocampus Ouest, UMR1345 Institut de Recherche en Horticulture et Semences, Beaucouzé, France
| | - Thomas Dugé de Bernonville
- Laboratoire des Interactions Plantes Micro-organismes (LIPM), UMR 441, Castanet-Tolosan-Microorganismes, Institut National de la Recherche Agronomique. Toulouse, France
- Laboratoire des Interactions Plantes Micro-organismes (LIPM), UMR 2594, Centre National de la Recherche Scientifique, Castanet-Tolosan, France
| | - Paula Fontanilla
- Manihot-Biotec, Departamento de Biología, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Lionel Gagnevin
- Unite Mixte de Recherche Peuplement Végétaux et Bioagresseurs en Milieu Tropical, Centre de coopération internationale en recherche agronomique pour le développement, La Réunion, France
| | - Fabien Guérin
- Unite Mixte de Recherche Peuplement Végétaux et Bioagresseurs en Milieu Tropical, Centre de coopération internationale en recherche agronomique pour le développement, La Réunion, France
| | - Marie-Agnès Jacques
- Institut National de la Recherche Agronomique, UMR45 Institut de Recherche en Horticulture et Semences, Beaucouzé, France
- Université d'Angers, UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 Quasav, PRES L'UNAM, Beaucouzé, France
- Agrocampus Ouest, UMR1345 Institut de Recherche en Horticulture et Semences, Beaucouzé, France
| | - Emmanuelle Lauber
- Laboratoire des Interactions Plantes Micro-organismes (LIPM), UMR 441, Castanet-Tolosan-Microorganismes, Institut National de la Recherche Agronomique. Toulouse, France
- Laboratoire des Interactions Plantes Micro-organismes (LIPM), UMR 2594, Centre National de la Recherche Scientifique, Castanet-Tolosan, France
| | - Pierre Lefeuvre
- Unite Mixte de Recherche Peuplement Végétaux et Bioagresseurs en Milieu Tropical, Centre de coopération internationale en recherche agronomique pour le développement, La Réunion, France
| | - Cesar Medina
- Laboratorio de Micología y Fitopatología Uniandes (LAMFU), Universidad de Los Andes, Bogotá, Colombia
| | - Edgar Medina
- Laboratorio de Micología y Fitopatología Uniandes (LAMFU), Universidad de Los Andes, Bogotá, Colombia
| | - Nathaly Montenegro
- Laboratorio de Micología y Fitopatología Uniandes (LAMFU), Universidad de Los Andes, Bogotá, Colombia
| | - Alejandra Muñoz Bodnar
- Manihot-Biotec, Departamento de Biología, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Laurent D. Noël
- Laboratoire des Interactions Plantes Micro-organismes (LIPM), UMR 441, Castanet-Tolosan-Microorganismes, Institut National de la Recherche Agronomique. Toulouse, France
- Laboratoire des Interactions Plantes Micro-organismes (LIPM), UMR 2594, Centre National de la Recherche Scientifique, Castanet-Tolosan, France
| | - Juan F. Ortiz Quiñones
- Manihot-Biotec, Departamento de Biología, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Daniela Osorio
- Laboratorio de Micología y Fitopatología Uniandes (LAMFU), Universidad de Los Andes, Bogotá, Colombia
| | - Carolina Pardo
- Laboratorio de Micología y Fitopatología Uniandes (LAMFU), Universidad de Los Andes, Bogotá, Colombia
| | - Prabhu B. Patil
- Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh, India
| | - Stéphane Poussier
- Institut National de la Recherche Agronomique, UMR45 Institut de Recherche en Horticulture et Semences, Beaucouzé, France
- Université d'Angers, UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 Quasav, PRES L'UNAM, Beaucouzé, France
- Agrocampus Ouest, UMR1345 Institut de Recherche en Horticulture et Semences, Beaucouzé, France
- Laboratoire des Interactions Plantes Micro-organismes (LIPM), UMR 441, Castanet-Tolosan-Microorganismes, Institut National de la Recherche Agronomique. Toulouse, France
| | - Olivier Pruvost
- Unite Mixte de Recherche Peuplement Végétaux et Bioagresseurs en Milieu Tropical, Centre de coopération internationale en recherche agronomique pour le développement, La Réunion, France
| | - Isabelle Robène-Soustrade
- Unite Mixte de Recherche Peuplement Végétaux et Bioagresseurs en Milieu Tropical, Centre de coopération internationale en recherche agronomique pour le développement, La Réunion, France
| | - Robert P. Ryan
- College of Life Sciences, University of Dundee, Dundee, Scotland
| | - Javier Tabima
- Laboratorio de Micología y Fitopatología Uniandes (LAMFU), Universidad de Los Andes, Bogotá, Colombia
| | - Oscar G. Urrego Morales
- Manihot-Biotec, Departamento de Biología, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Christian Vernière
- Unite Mixte de Recherche Peuplement Végétaux et Bioagresseurs en Milieu Tropical, Centre de coopération internationale en recherche agronomique pour le développement, La Réunion, France
| | - Sébastien Carrere
- Laboratoire des Interactions Plantes Micro-organismes (LIPM), UMR 441, Castanet-Tolosan-Microorganismes, Institut National de la Recherche Agronomique. Toulouse, France
- Laboratoire des Interactions Plantes Micro-organismes (LIPM), UMR 2594, Centre National de la Recherche Scientifique, Castanet-Tolosan, France
| | - Valérie Verdier
- Unité Mixte de Recherche Résistance des Plantes aux Bioaggresseurs, Institut de Recherche pour le Développement, Montpellier, France
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, Colorado, United States of America
| | - Boris Szurek
- Unité Mixte de Recherche Résistance des Plantes aux Bioaggresseurs, Institut de Recherche pour le Développement, Montpellier, France
| | - Silvia Restrepo
- Laboratorio de Micología y Fitopatología Uniandes (LAMFU), Universidad de Los Andes, Bogotá, Colombia
| | - Camilo López
- Manihot-Biotec, Departamento de Biología, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Ralf Koebnik
- Unité Mixte de Recherche Résistance des Plantes aux Bioaggresseurs, Institut de Recherche pour le Développement, Montpellier, France
| | - Adriana Bernal
- Laboratorio de Micología y Fitopatología Uniandes (LAMFU), Universidad de Los Andes, Bogotá, Colombia
- * E-mail:
| |
Collapse
|
40
|
Characterization of novel virulent broad-host-range phages of Xylella fastidiosa and Xanthomonas. J Bacteriol 2013; 196:459-71. [PMID: 24214944 DOI: 10.1128/jb.01080-13] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The xylem-limited bacterium Xylella fastidiosa is the causal agent of several plant diseases, most notably Pierce's disease of grape and citrus variegated chlorosis. We report the isolation and characterization of the first virulent phages for X. fastidiosa, siphophages Sano and Salvo and podophages Prado and Paz, with a host range that includes Xanthomonas spp. Phages propagated on homologous hosts had observed adsorption rate constants of ~4 × 10(-12) ml cell(-1) min(-1) for X. fastidiosa strain Temecula 1 and ~5 × 10(-10) to 7 × 10(-10) ml cell(-1) min(-1) for Xanthomonas strain EC-12. Sano and Salvo exhibit >80% nucleotide identity to each other in aligned regions and are syntenic to phage BcepNazgul. We propose that phage BcepNazgul is the founding member of a novel phage type, to which Sano and Salvo belong. The lysis genes of the Nazgul-like phage type include a gene that encodes an outer membrane lipoprotein endolysin and also spanin gene families that provide insight into the evolution of the lysis pathway for phages of Gram-negative hosts. Prado and Paz, although exhibiting no significant DNA homology to each other, are new members of the phiKMV-like phage type, based on the position of the single-subunit RNA polymerase gene. The four phages are type IV pilus dependent for infection of both X. fastidiosa and Xanthomonas. The phages may be useful as agents for an effective and environmentally responsible strategy for the control of diseases caused by X. fastidiosa.
Collapse
|
41
|
Hiery E, Adam S, Reid S, Hofmann J, Sonnewald S, Burkovski A. Genome-wide transcriptome analysis of Clavibacter michiganensis subsp. michiganensis grown in xylem mimicking medium. J Biotechnol 2013; 168:348-54. [PMID: 24060828 DOI: 10.1016/j.jbiotec.2013.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 09/10/2013] [Accepted: 09/12/2013] [Indexed: 10/26/2022]
Abstract
The interaction between Clavibacter michiganensis subsp. michiganensis with its host, the tomato plant (Solanum lycopersicum), is poorly understood and only few virulence factors are known. While studying of the bacteria in planta is time-consuming and difficult, the analysis in vitro would facilitate research. Therefore, a xylem mimicking medium (XMM) for C. michiganensis subsp. michiganensis was established in this study based on an apoplast medium for Xanthomonas campestris pv. vesicatoria. In contrast to the apoplast medium, XMM contains no sugars, but amino acids which serve as nitrogen and carbon source. As a result, growth in XMM induced transcriptional changes of genes encoding putative sugar, amino acid and iron uptake systems. In summary, mRNA levels of about 8% of all C. michiganensis subsp. michiganensis genes were changed when XMM-grown bacteria were compared to M9 minimal medium-grown cells. Almost no transcriptional changes of genes encoding hydrolytic enzymes were detected, leading to the idea that XMM reflects the situation in the beginning of infection and therefore allows the characterization of virulence factors in this early stage of infection. The addition of the plant wound substance acetosyringone to the XMM medium led to a change in transcript amount, including genes coding for proteins involved in protein transport, iron uptake and regulation processes.
Collapse
Affiliation(s)
- Eva Hiery
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Lehrstuhl für Mikrobiologie, Staudtstr. 5, 91058 Erlangen, Germany
| | | | | | | | | | | |
Collapse
|
42
|
Schmidtke C, Abendroth U, Brock J, Serrania J, Becker A, Bonas U. Small RNA sX13: a multifaceted regulator of virulence in the plant pathogen Xanthomonas. PLoS Pathog 2013; 9:e1003626. [PMID: 24068933 PMCID: PMC3771888 DOI: 10.1371/journal.ppat.1003626] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 08/01/2013] [Indexed: 01/12/2023] Open
Abstract
Small noncoding RNAs (sRNAs) are ubiquitous posttranscriptional regulators of gene expression. Using the model plant-pathogenic bacterium Xanthomonas campestris pv. vesicatoria (Xcv), we investigated the highly expressed and conserved sRNA sX13 in detail. Deletion of sX13 impinged on Xcv virulence and the expression of genes encoding components and substrates of the Hrp type III secretion (T3S) system. qRT-PCR analyses revealed that sX13 promotes mRNA accumulation of HrpX, a key regulator of the T3S system, whereas the mRNA level of the master regulator HrpG was unaffected. Complementation studies suggest that sX13 acts upstream of HrpG. Microarray analyses identified 63 sX13-regulated genes, which are involved in signal transduction, motility, transcriptional and posttranscriptional regulation and virulence. Structure analyses of in vitro transcribed sX13 revealed a structure with three stable stems and three apical C-rich loops. A computational search for putative regulatory motifs revealed that sX13-repressed mRNAs predominantly harbor G-rich motifs in proximity of translation start sites. Mutation of sX13 loops differentially affected Xcv virulence and the mRNA abundance of putative targets. Using a GFP-based reporter system, we demonstrated that sX13-mediated repression of protein synthesis requires both the C-rich motifs in sX13 and G-rich motifs in potential target mRNAs. Although the RNA-binding protein Hfq was dispensable for sX13 activity, the hfq mRNA and Hfq::GFP abundance were negatively regulated by sX13. In addition, we found that G-rich motifs in sX13-repressed mRNAs can serve as translational enhancers and are located at the ribosome-binding site in 5% of all protein-coding Xcv genes. Our study revealed that sX13 represents a novel class of virulence regulators and provides insights into sRNA-mediated modulation of adaptive processes in the plant pathogen Xanthomonas. Since the discovery of the first regulatory RNA in 1981, hundreds of small RNAs (sRNAs) have been identified in bacteria. Although sRNA-mediated control of virulence was demonstrated for numerous animal- and human-pathogenic bacteria, sRNAs and their functions in plant-pathogenic bacteria have been enigmatic. We discovered that the sRNA sX13 is a novel virulence regulator of Xanthomonas campestris pv. vesicatoria (Xcv), which causes bacterial spot disease on pepper and tomato. sX13 contributes to the Xcv-plant interaction by promoting the synthesis of an essential pathogenicity factor of Xcv, i. e., the type III secretion system. Thus, in addition to transcriptional regulation, sRNA-mediated posttranscriptional regulation contributes to virulence of plant-pathogenic xanthomonads. To repress target mRNAs carrying G-rich motifs, sX13 employs C-rich loops. Hence, sX13 exhibits striking structural similarity to sRNAs in distantly related human pathogens, e. g., Staphylococcus aureus and Helicobacter pylori, suggesting that structure-driven target regulation via C-rich motifs represents a conserved feature of sRNA-mediated posttranscriptional regulation. Furthermore, sX13 is the first sRNA shown to control the mRNA level of hfq, which encodes a conserved RNA-binding protein required for sRNA activity and virulence in many enteric bacteria.
Collapse
Affiliation(s)
- Cornelius Schmidtke
- Institute for Biology, Department of Genetics, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
- * E-mail: (CS); (UB)
| | - Ulrike Abendroth
- Institute for Biology, Department of Genetics, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Juliane Brock
- Institute for Biology, Department of Genetics, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Javier Serrania
- Loewe Center for Synthetic Microbiology and Department of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Anke Becker
- Loewe Center for Synthetic Microbiology and Department of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Ulla Bonas
- Institute for Biology, Department of Genetics, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
- * E-mail: (CS); (UB)
| |
Collapse
|
43
|
Pieretti I, Royer M, Barbe V, Carrere S, Koebnik R, Couloux A, Darrasse A, Gouzy J, Jacques MA, Lauber E, Manceau C, Mangenot S, Poussier S, Segurens B, Szurek B, Verdier V, Arlat M, Gabriel DW, Rott P, Cociancich S. Genomic insights into strategies used by Xanthomonas albilineans with its reduced artillery to spread within sugarcane xylem vessels. BMC Genomics 2012; 13:658. [PMID: 23171051 PMCID: PMC3542200 DOI: 10.1186/1471-2164-13-658] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 11/18/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Xanthomonas albilineans causes leaf scald, a lethal disease of sugarcane. X. albilineans exhibits distinctive pathogenic mechanisms, ecology and taxonomy compared to other species of Xanthomonas. For example, this species produces a potent DNA gyrase inhibitor called albicidin that is largely responsible for inducing disease symptoms; its habitat is limited to xylem; and the species exhibits large variability. A first manuscript on the complete genome sequence of the highly pathogenic X. albilineans strain GPE PC73 focused exclusively on distinctive genomic features shared with Xylella fastidiosa-another xylem-limited Xanthomonadaceae. The present manuscript on the same genome sequence aims to describe all other pathogenicity-related genomic features of X. albilineans, and to compare, using suppression subtractive hybridization (SSH), genomic features of two strains differing in pathogenicity. RESULTS Comparative genomic analyses showed that most of the known pathogenicity factors from other Xanthomonas species are conserved in X. albilineans, with the notable absence of two major determinants of the "artillery" of other plant pathogenic species of Xanthomonas: the xanthan gum biosynthesis gene cluster, and the type III secretion system Hrp (hypersensitive response and pathogenicity). Genomic features specific to X. albilineans that may contribute to specific adaptation of this pathogen to sugarcane xylem vessels were also revealed. SSH experiments led to the identification of 20 genes common to three highly pathogenic strains but missing in a less pathogenic strain. These 20 genes, which include four ABC transporter genes, a methyl-accepting chemotaxis protein gene and an oxidoreductase gene, could play a key role in pathogenicity. With the exception of hypothetical proteins revealed by our comparative genomic analyses and SSH experiments, no genes potentially involved in any offensive or counter-defensive mechanism specific to X. albilineans were identified, supposing that X. albilineans has a reduced artillery compared to other pathogenic Xanthomonas species. Particular attention has therefore been given to genomic features specific to X. albilineans making it more capable of evading sugarcane surveillance systems or resisting sugarcane defense systems. CONCLUSIONS This study confirms that X. albilineans is a highly distinctive species within the genus Xanthomonas, and opens new perpectives towards a greater understanding of the pathogenicity of this destructive sugarcane pathogen.
Collapse
Affiliation(s)
| | - Monique Royer
- CIRAD, UMR BGPI, F-34398 Montpellier Cedex 5, France
| | - Valérie Barbe
- CEA/DSV/IG/Génoscope, Centre National de Séquençage, F-91057 Evry Cedex France
| | | | - Ralf Koebnik
- IRD, UMR RPB, F-34394 Montpellier Cedex 5, France
| | - Arnaud Couloux
- CEA/DSV/IG/Génoscope, Centre National de Séquençage, F-91057 Evry Cedex France
| | | | - Jérôme Gouzy
- INRA, UMR LIPM, F-31326 Castanet-Tolosan Cedex France
| | | | | | | | - Sophie Mangenot
- CEA/DSV/IG/Génoscope, Centre National de Séquençage, F-91057 Evry Cedex France
| | - Stéphane Poussier
- Université de la Réunion, UMR PVBMT, F-97715 Saint-Denis La Réunion, France
| | - Béatrice Segurens
- CEA/DSV/IG/Génoscope, Centre National de Séquençage, F-91057 Evry Cedex France
| | - Boris Szurek
- IRD, UMR RPB, F-34394 Montpellier Cedex 5, France
| | | | - Matthieu Arlat
- Université Paul Sabatier, UMR LIPM, F-31326 Castanet-Tolosan Cedex France
| | - Dean W Gabriel
- University of Florida, Plant Pathology Department, Gainesville FL 32605 USA
| | - Philippe Rott
- CIRAD, UMR BGPI, F-34398 Montpellier Cedex 5, France
| | - Stéphane Cociancich
- CIRAD, UMR BGPI, F-34398 Montpellier Cedex 5, France
- UMR BGPI, Campus International de Baillarguet, TA A-54/K, F-34398 Montpellier Cedex 5, France
| |
Collapse
|