1
|
Hoboth P, Sztacho M, Hozák P. Nuclear patterns of phosphatidylinositol 4,5- and 3,4-bisphosphate revealed by super-resolution microscopy differ between the consecutive stages of RNA polymerase II transcription. FEBS J 2024; 291:4240-4264. [PMID: 38734927 DOI: 10.1111/febs.17136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/12/2023] [Accepted: 04/05/2024] [Indexed: 05/13/2024]
Abstract
Phosphatidylinositol phosphates are powerful signaling molecules that orchestrate signaling and direct membrane trafficking in the cytosol. Interestingly, phosphatidylinositol phosphates also localize within the membrane-less compartments of the cell nucleus, where they participate in the regulation of gene expression. Nevertheless, current models of gene expression, which include condensates of proteins and nucleic acids, do not include nuclear phosphatidylinositol phosphates. This gap is partly a result of the missing detailed analysis of the subnuclear distribution of phosphatidylinositol phosphates and their relationships with gene expression. Here, we used quantitative dual-color direct stochastic optical reconstruction microscopy to analyze the nanoscale co-patterning between RNA polymerase II transcription initiation and elongation markers with respect to phosphatidylinositol 4,5- or 3,4-bisphosphate in the nucleoplasm and nuclear speckles and compared it with randomized data and cells with inhibited transcription. We found specific co-patterning of the transcription initiation marker P-S5 with phosphatidylinositol 4,5-bisphosphate in the nucleoplasm and with phosphatidylinositol 3,4-bisphosphate at the periphery of nuclear speckles. We showed the specific accumulation of the transcription elongation marker PS-2 and of nascent RNA in the proximity of phosphatidylinositol 3,4-bisphosphate associated with nuclear speckles. Taken together, this shows that the distinct spatial associations between the consecutive stages of RNA polymerase II transcription and nuclear phosphatidylinositol phosphates exhibit specificity within the gene expression compartments. Thus, in analogy to the cellular membranes, where phospholipid composition orchestrates signaling pathways and directs membrane trafficking, we propose a model in which the phospholipid identity of gene expression compartments orchestrates RNA polymerase II transcription.
Collapse
Affiliation(s)
- Peter Hoboth
- Laboratory of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Viničná Microscopy Core Facility, Faculty of Science, Charles University, Prague, Czech Republic
| | - Martin Sztacho
- Laboratory of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Laboratory of Cancer Cell Architecture, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Pavel Hozák
- Laboratory of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Microscopy Centre, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
2
|
Wei L, Xu M, Liu Z, Jiang C, Lin X, Hu Y, Wen X, Zou R, Peng C, Lin H, Wang G, Yang L, Fang L, Yang M, Zhang P. Hit Identification Driven by Combining Artificial Intelligence and Computational Chemistry Methods: A PI5P4K-β Case Study. J Chem Inf Model 2023; 63:5341-5355. [PMID: 37549337 DOI: 10.1021/acs.jcim.3c00543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Computer-aided drug design (CADD), especially artificial intelligence-driven drug design (AIDD), is increasingly used in drug discovery. In this paper, a novel and efficient workflow for hit identification was developed within the ID4Inno drug discovery platform, featuring innovative artificial intelligence, high-accuracy computational chemistry, and high-performance cloud computing. The workflow was validated by discovering a few potent hit compounds (best IC50 is ∼0.80 μM) against PI5P4K-β, a novel anti-cancer target. Furthermore, by applying the tools implemented in ID4Inno, we managed to optimize these hit compounds and finally obtained five hit series with different scaffolds, all of which showed high activity against PI5P4K-β. These results demonstrate the effectiveness of ID4inno in driving hit identification based on artificial intelligence, computational chemistry, and cloud computing.
Collapse
Affiliation(s)
- Lin Wei
- Shenzhen Jingtai Technology Co., Ltd. (XtalPi), Shenzhen 518000, China
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Min Xu
- Shenzhen Jingtai Technology Co., Ltd. (XtalPi), Shenzhen 518000, China
| | - Zhiqiang Liu
- Shenzhen Jingtai Technology Co., Ltd. (XtalPi), Shenzhen 518000, China
| | - Chongguo Jiang
- Shenzhen Jingtai Technology Co., Ltd. (XtalPi), Shenzhen 518000, China
| | - Xiaohua Lin
- Shenzhen Jingtai Technology Co., Ltd. (XtalPi), Shenzhen 518000, China
| | - Yaogang Hu
- Shenzhen Jingtai Technology Co., Ltd. (XtalPi), Shenzhen 518000, China
| | - Xiaoming Wen
- Shenzhen Jingtai Technology Co., Ltd. (XtalPi), Shenzhen 518000, China
| | - Rongfeng Zou
- Shenzhen Jingtai Technology Co., Ltd. (XtalPi), Shenzhen 518000, China
| | - Chunwang Peng
- Shenzhen Jingtai Technology Co., Ltd. (XtalPi), Shenzhen 518000, China
| | - Hongrui Lin
- Shenzhen Jingtai Technology Co., Ltd. (XtalPi), Shenzhen 518000, China
| | - Guo Wang
- Shenzhen Jingtai Technology Co., Ltd. (XtalPi), Shenzhen 518000, China
| | - Lijun Yang
- Shenzhen Jingtai Technology Co., Ltd. (XtalPi), Shenzhen 518000, China
| | - Lei Fang
- Shenzhen Jingtai Technology Co., Ltd. (XtalPi), Shenzhen 518000, China
| | - Mingjun Yang
- Shenzhen Jingtai Technology Co., Ltd. (XtalPi), Shenzhen 518000, China
| | - Peiyu Zhang
- Shenzhen Jingtai Technology Co., Ltd. (XtalPi), Shenzhen 518000, China
| |
Collapse
|
3
|
Hoboth P, Sztacho M, Quaas A, Akgül B, Hozák P. Quantitative super-resolution microscopy reveals the differences in the nanoscale distribution of nuclear phosphatidylinositol 4,5-bisphosphate in human healthy skin and skin warts. Front Cell Dev Biol 2023; 11:1217637. [PMID: 37484912 PMCID: PMC10361526 DOI: 10.3389/fcell.2023.1217637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction: Imaging of human clinical formalin-fixed paraffin-embedded (FFPE) tissue sections provides insights into healthy and diseased states and therefore represents a valuable resource for basic research, as well as for diagnostic and clinical purposes. However, conventional light microscopy does not allow to observe the molecular details of tissue and cell architecture due to the diffraction limit of light. Super-resolution microscopy overcomes this limitation and provides access to the nanoscale details of tissue and cell organization. Methods: Here, we used quantitative multicolor stimulated emission depletion (STED) nanoscopy to study the nanoscale distribution of the nuclear phosphatidylinositol 4,5-bisphosphate (nPI(4,5)P2) with respect to the nuclear speckles (NS) marker SON. Results: Increased nPI(4,5)P2 signals were previously linked to human papillomavirus (HPV)-mediated carcinogenesis, while NS-associated PI(4,5)P2 represents the largest pool of nPI(4,5)P2 visualized by staining and microscopy. The implementation of multicolor STED nanoscopy in human clinical FFPE skin and wart sections allowed us to provide here the quantitative evidence for higher levels of NS-associated PI(4,5)P2 in HPV-induced warts compared to control skin. Discussion: These data expand the previous reports of HPV-induced increase of nPI(4,5)P2 levels and reveal for the first time the functional, tissue-specific localization of nPI(4,5)P2 within NS in clinically relevant samples. Moreover, our approach is widely applicable to other human clinical FFPE tissues as an informative addition to the classical histochemistry.
Collapse
Affiliation(s)
- Peter Hoboth
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Martin Sztacho
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Alexander Quaas
- Institute of Pathology, Medical Faculty and University Hospital Cologne, Cologne, Germany
| | - Baki Akgül
- Institute of Virology, University of Cologne, Medical Faculty and University Hospital Cologne, Cologne, Germany
| | - Pavel Hozák
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
- Microscopy Centre, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
4
|
Vidalle MC, Sheth B, Fazio A, Marvi MV, Leto S, Koufi FD, Neri I, Casalin I, Ramazzotti G, Follo MY, Ratti S, Manzoli L, Gehlot S, Divecha N, Fiume R. Nuclear Phosphoinositides as Key Determinants of Nuclear Functions. Biomolecules 2023; 13:1049. [PMID: 37509085 PMCID: PMC10377365 DOI: 10.3390/biom13071049] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Polyphosphoinositides (PPIns) are signalling messengers representing less than five per cent of the total phospholipid concentration within the cell. Despite their low concentration, these lipids are critical regulators of various cellular processes, including cell cycle, differentiation, gene transcription, apoptosis and motility. PPIns are generated by the phosphorylation of the inositol head group of phosphatidylinositol (PtdIns). Different pools of PPIns are found at distinct subcellular compartments, which are regulated by an array of kinases, phosphatases and phospholipases. Six of the seven PPIns species have been found in the nucleus, including the nuclear envelope, the nucleoplasm and the nucleolus. The identification and characterisation of PPIns interactor and effector proteins in the nucleus have led to increasing interest in the role of PPIns in nuclear signalling. However, the regulation and functions of PPIns in the nucleus are complex and are still being elucidated. This review summarises our current understanding of the localisation, biogenesis and physiological functions of the different PPIns species in the nucleus.
Collapse
Affiliation(s)
- Magdalena C Vidalle
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Life Sciences Building 85, Highfield, Southampton SO17 1BJ, UK
| | - Bhavwanti Sheth
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Life Sciences Building 85, Highfield, Southampton SO17 1BJ, UK
| | - Antonietta Fazio
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Maria Vittoria Marvi
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Stefano Leto
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Foteini-Dionysia Koufi
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Irene Neri
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Irene Casalin
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Giulia Ramazzotti
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Matilde Y Follo
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Stefano Ratti
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Lucia Manzoli
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Sonakshi Gehlot
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Life Sciences Building 85, Highfield, Southampton SO17 1BJ, UK
| | - Nullin Divecha
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Life Sciences Building 85, Highfield, Southampton SO17 1BJ, UK
| | - Roberta Fiume
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| |
Collapse
|
5
|
Unconventional metabolites in chromatin regulation. Biosci Rep 2022; 42:230604. [PMID: 34988581 PMCID: PMC8777195 DOI: 10.1042/bsr20211558] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/04/2022] [Accepted: 01/04/2022] [Indexed: 11/17/2022] Open
Abstract
Chromatin, the complex of DNA and histone proteins, serves as a main integrator of cellular signals. Increasing evidence links cellular functional to chromatin state. Indeed, different metabolites are emerging as modulators of chromatin function and structure. Alterations in chromatin state are decisive for regulating all aspects of genome function and ultimately have the potential to produce phenotypic changes. Several metabolites such as acetyl-CoA, S-adenosylmethionine (SAM) or adenosine triphosphate (ATP) have now been well characterized as main substrates or cofactors of chromatin-modifying enzymes. However, there are other metabolites that can directly interact with chromatin influencing its state or that modulate the properties of chromatin regulatory factors. Also, there is a growing list of atypical enzymatic and nonenzymatic chromatin modifications that originate from different cellular pathways that have not been in the limelight of chromatin research. Here, we summarize different properties and functions of uncommon regulatory molecules originating from intermediate metabolism of lipids, carbohydrates and amino acids. Based on the various modes of action on chromatin and the plethora of putative, so far not described chromatin-regulating metabolites, we propose that there are more links between cellular functional state and chromatin regulation to be discovered. We hypothesize that these connections could provide interesting starting points for interfering with cellular epigenetic states at a molecular level.
Collapse
|
6
|
Nuclear Phosphatidylinositol 3,4,5-Trisphosphate Interactome Uncovers an Enrichment in Nucleolar Proteins. Mol Cell Proteomics 2021; 20:100102. [PMID: 34048982 PMCID: PMC8255942 DOI: 10.1016/j.mcpro.2021.100102] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023] Open
Abstract
Polyphosphoinositides (PPIns) play essential roles as lipid signaling molecules, and many of their functions have been elucidated in the cytoplasm. However, PPIns are also intranuclear where they contribute to chromatin remodeling, transcription, and mRNA splicing. The PPIn, phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3), has been mapped to the nucleus and nucleoli, but its role remains unclear in this subcellular compartment. To gain further insights into the nuclear functions of PtdIns(3,4,5)P3, we applied a previously developed quantitative MS-based approach to identify the targets of PtdIns(3,4,5)P3 from isolated nuclei. We identified 179 potential PtdIns(3,4,5)P3-interacting partners, and gene ontology analysis for the biological functions of this dataset revealed an enrichment in RNA processing/splicing, cytokinesis, protein folding, and DNA repair. Interestingly, about half of these interactors were common to nucleolar protein datasets, some of which had dual functions in rRNA processes and DNA repair, including poly(ADP-ribose) polymerase 1 (PARP1, now referred as ADP-ribosyltransferase 1). PARP1 was found to interact directly with PPIn via three polybasic regions in the DNA-binding domain and the linker located N-terminal of the catalytic region. PARP1 was shown to bind to PtdIns(3,4,5)P3 as well as phosphatidylinositol 3,4-bisphosphate in vitro and to colocalize with PtdIns(3,4,5)P3 in the nucleolus and with phosphatidylinositol 3,4-bisphosphate in nucleoplasmic foci. In conclusion, the PtdIns(3,4,5)P3 interactome reported here will serve as a resource to further investigate the molecular mechanisms underlying PtdIns(3,4,5)P3-mediated interactions in the nucleus and nucleolus. Phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) localizes to nucleoli. PtdIns(3,4,5)P3 interactomics from isolated nuclei identifies nucleolar proteins. PARP1 interacts directly with polyphosphoinositides via several polybasic regions. PARP1 colocalizes with PtdIns(3,4,5)P3 in the nucleolus.
Collapse
|
7
|
Abstract
Neutrophils are critical to innate immunity, including host defense against bacterial and fungal infections. They achieve their host defense role by phagocytosing pathogens, secreting their granules full of cytotoxic enzymes, or expelling neutrophil extracellular traps (NETs) during the process of NETosis. NETs are weblike DNA structures decorated with histones and antimicrobial proteins released by activated neutrophils. Initially described as a means for neutrophils to neutralize pathogens, NET release also occurs in sterile inflammation, promotes thrombosis, and can mediate tissue damage. To effectively manipulate this double-edged sword to fight a particular disease, researchers must work toward understanding the mechanisms driving NETosis. Such understanding would allow the generation of new drugs to promote or prevent NETosis as needed. While knowledge regarding the (patho)physiological roles of NETosis is accumulating, little is known about the cellular and biophysical bases of this process. In this review, we describe and discuss our current knowledge of the molecular, cellular, and biophysical mechanisms mediating NET release as well as open questions in the field.
Collapse
Affiliation(s)
- Hawa Racine Thiam
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health, Bethesda, Maryland 20892, USA; ,
| | - Siu Ling Wong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232
| | - Denisa D Wagner
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA.,Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Clare M Waterman
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health, Bethesda, Maryland 20892, USA; ,
| |
Collapse
|
8
|
Sivakumaren SC, Shim H, Zhang T, Ferguson FM, Lundquist MR, Browne CM, Seo HS, Paddock MN, Manz TD, Jiang B, Hao MF, Krishnan P, Wang DG, Yang TJ, Kwiatkowski NP, Ficarro SB, Cunningham JM, Marto JA, Dhe-Paganon S, Cantley LC, Gray NS. Targeting the PI5P4K Lipid Kinase Family in Cancer Using Covalent Inhibitors. Cell Chem Biol 2020; 27:525-537.e6. [PMID: 32130941 PMCID: PMC7286548 DOI: 10.1016/j.chembiol.2020.02.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 11/14/2019] [Accepted: 02/13/2020] [Indexed: 12/12/2022]
Abstract
The PI5P4Ks have been demonstrated to be important for cancer cell proliferation and other diseases. However, the therapeutic potential of targeting these kinases is understudied due to a lack of potent, specific small molecules available. Here, we present the discovery and characterization of a pan-PI5P4K inhibitor, THZ-P1-2, that covalently targets cysteines on a disordered loop in PI5P4Kα/β/γ. THZ-P1-2 demonstrates cellular on-target engagement with limited off-targets across the kinome. AML/ALL cell lines were sensitive to THZ-P1-2, consistent with PI5P4K's reported role in leukemogenesis. THZ-P1-2 causes autophagosome clearance defects and upregulation in TFEB nuclear localization and target genes, disrupting autophagy in a covalent-dependent manner and phenocopying the effects of PI5P4K genetic deletion. Our studies demonstrate that PI5P4Ks are tractable targets, with THZ-P1-2 as a useful tool to further interrogate the therapeutic potential of PI5P4K inhibition and inform drug discovery campaigns for these lipid kinases in cancer metabolism and other autophagy-dependent disorders.
Collapse
Affiliation(s)
- Sindhu Carmen Sivakumaren
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Hyeseok Shim
- Meyer Cancer Center, Weill Cornell Medicine and New York Presbyterian Hospital, New York, NY 10065, USA
| | - Tinghu Zhang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Fleur M Ferguson
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Mark R Lundquist
- Meyer Cancer Center, Weill Cornell Medicine and New York Presbyterian Hospital, New York, NY 10065, USA
| | - Christopher M Browne
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Hyuk-Soo Seo
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Marcia N Paddock
- Meyer Cancer Center, Weill Cornell Medicine and New York Presbyterian Hospital, New York, NY 10065, USA
| | - Theresa D Manz
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbruecken, Germany
| | - Baishan Jiang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Ming-Feng Hao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Pranav Krishnan
- Department of Medicine, Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Diana G Wang
- Meyer Cancer Center, Weill Cornell Medicine and New York Presbyterian Hospital, New York, NY 10065, USA
| | - T Jonathan Yang
- Meyer Cancer Center, Weill Cornell Medicine and New York Presbyterian Hospital, New York, NY 10065, USA
| | - Nicholas P Kwiatkowski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Scott B Ficarro
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - James M Cunningham
- Department of Medicine, Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jarrod A Marto
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Sirano Dhe-Paganon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medicine and New York Presbyterian Hospital, New York, NY 10065, USA.
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
9
|
Guillen-Chable F, Rodríguez Corona U, Pereira-Santana A, Bayona A, Rodríguez-Zapata LC, Aquino C, Šebestová L, Vitale N, Hozak P, Castano E. Fibrillarin Ribonuclease Activity is Dependent on the GAR Domain and Modulated by Phospholipids. Cells 2020; 9:cells9051143. [PMID: 32384686 PMCID: PMC7290794 DOI: 10.3390/cells9051143] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/24/2020] [Accepted: 04/29/2020] [Indexed: 12/16/2022] Open
Abstract
Fibrillarin is a highly conserved nucleolar methyltransferase responsible for ribosomal RNA methylation across evolution from Archaea to humans. It has been reported that fibrillarin is involved in the methylation of histone H2A in nucleoli and other processes, including viral progression, cellular stress, nuclear shape, and cell cycle progression. We show that fibrillarin has an additional activity as a ribonuclease. The activity is affected by phosphoinositides and phosphatidic acid and insensitive to ribonuclease inhibitors. Furthermore, the presence of phosphatidic acid releases the fibrillarin-U3 snoRNA complex. We show that the ribonuclease activity localizes to the GAR (glycine/arginine-rich) domain conserved in a small group of RNA interacting proteins. The introduction of the GAR domain occurred in evolution in the transition from archaea to eukaryotic cells. The interaction of this domain with phospholipids may allow a phase separation of this protein in nucleoli.
Collapse
Affiliation(s)
- Francisco Guillen-Chable
- Biochemistry and Molecular Plant Biology Department, Centro de Investigación Científica de Yucatán, A.C. Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida C.P. 97200, Yucatán, Mexico; (F.G.-C.); (U.R.C.); (A.B.); (C.A.)
| | - Ulises Rodríguez Corona
- Biochemistry and Molecular Plant Biology Department, Centro de Investigación Científica de Yucatán, A.C. Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida C.P. 97200, Yucatán, Mexico; (F.G.-C.); (U.R.C.); (A.B.); (C.A.)
| | - Alejandro Pereira-Santana
- Industrial Biotechnology Department, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Camino Arenero 1227, el Bajio, Zapopan C.P. 45019, Jalisco, Mexico;
- Dirección de Cátedras, Consejo Nacional de Ciencia y Tecnología, Av. Insurgentes Sur 1582, Alcaldia Benito Juarez C.P. 03940, Ciudad de Mexico, Mexico
| | - Andrea Bayona
- Biochemistry and Molecular Plant Biology Department, Centro de Investigación Científica de Yucatán, A.C. Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida C.P. 97200, Yucatán, Mexico; (F.G.-C.); (U.R.C.); (A.B.); (C.A.)
| | - Luis Carlos Rodríguez-Zapata
- Biotechnology Department, Centro de Investigación Científica de Yucatán, A.C. Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida C.P. 97200, Yucatan, Mexico;
| | - Cecilia Aquino
- Biochemistry and Molecular Plant Biology Department, Centro de Investigación Científica de Yucatán, A.C. Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida C.P. 97200, Yucatán, Mexico; (F.G.-C.); (U.R.C.); (A.B.); (C.A.)
| | - Lenka Šebestová
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the CAS, v.v.i., Videnska 1083, 142 20 Prague, Czech Republic; (L.Š.); (P.H.)
- Faculty of Science, Charles University, Albertov 6, 128 00 Prague, Czech Republic
| | - Nicolas Vitale
- Institute of Celullar and Integrative Neuroscience (INCI), UPR-3212 The French National Centre for Scientific Research & University of Strasbourg, 67000 Strasbourg, France;
| | - Pavel Hozak
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the CAS, v.v.i., Videnska 1083, 142 20 Prague, Czech Republic; (L.Š.); (P.H.)
| | - Enrique Castano
- Biochemistry and Molecular Plant Biology Department, Centro de Investigación Científica de Yucatán, A.C. Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida C.P. 97200, Yucatán, Mexico; (F.G.-C.); (U.R.C.); (A.B.); (C.A.)
- Correspondence:
| |
Collapse
|
10
|
Nuclear Inositides and Inositide-Dependent Signaling Pathways in Myelodysplastic Syndromes. Cells 2020; 9:cells9030697. [PMID: 32178280 PMCID: PMC7140618 DOI: 10.3390/cells9030697] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/04/2020] [Accepted: 03/11/2020] [Indexed: 12/21/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are a heterogeneous group of hematological malignancies characterized by peripheral blood cytopenia and abnormal myeloproliferation, as well as a variable risk of evolution into acute myeloid leukemia (AML). The nucleus is a highly organized organelle with several distinct domains where nuclear inositides localize to mediate essential cellular events. Nuclear inositides play a critical role in the modulation of erythropoiesis or myelopoiesis. Here, we briefly review the nuclear structure, the localization of inositides and their metabolic enzymes in subnuclear compartments, and the molecular aspects of nuclear inositides in MDS.
Collapse
|
11
|
Kang DS, Kim IS, Baik JH, Kim D, Cocco L, Suh PG. The function of PLCγ1 in developing mouse mDA system. Adv Biol Regul 2019; 75:100654. [PMID: 31558431 DOI: 10.1016/j.jbior.2019.100654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 09/14/2019] [Accepted: 09/16/2019] [Indexed: 01/07/2023]
Abstract
During neural development, growing neuronal cells consistently sense and communicate with their surroundings through the use of signaling molecules. In this process, spatiotemporally well-coordinated intracellular signaling is a prerequisite for proper neuronal network formation. Thus, intense interest has focused on investigating the signaling mechanisms in neuronal structure formation that link the activation of receptors to the control of cell shape and motility. Recent studies suggest that Phospholipase C gamma1 (PLCγ1), a signal transducer, plays key roles in nervous system development by mediating specific ligand-receptor systems. In this overview of the most recent advances in the field, we discuss the mechanisms by which extracellular stimuli trigger PLCγ1 signaling and, the role PLCγ1 in nervous system development.
Collapse
Affiliation(s)
- Du-Seock Kang
- College of Life Science & Bioengineering, Korea Advanced Institute of Science & Technology (KAIST), Daejeon, South Korea.
| | - Il Shin Kim
- UNIST Central Research Facility, Ulsan National Institute of Science and Technology, South Korea.
| | - Ja-Hyun Baik
- Molecular Neurobiology Laboratory, Department of Life Sciences, Korea University, Seoul, 02841, South Korea.
| | - Daesoo Kim
- College of Life Science & Bioengineering, Korea Advanced Institute of Science & Technology (KAIST), Daejeon, South Korea.
| | - Lucio Cocco
- Cellular Signaling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
| | - Pann-Ghill Suh
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, 689-798, South Korea; Korea Brain Research Institute, Daegu, 41062, South Korea.
| |
Collapse
|
12
|
Nuclear Phosphoinositides-Versatile Regulators of Genome Functions. Cells 2019; 8:cells8070649. [PMID: 31261688 PMCID: PMC6678639 DOI: 10.3390/cells8070649] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 12/17/2022] Open
Abstract
The many functions of phosphoinositides in cytosolic signaling were extensively studied; however, their activities in the cell nucleus are much less clear. In this review, we summarize data about their nuclear localization and metabolism, and review the available literature on their involvements in chromatin remodeling, gene transcription, and RNA processing. We discuss the molecular mechanisms via which nuclear phosphoinositides, in particular phosphatidylinositol (4,5)-bisphosphate (PI(4,5)P2), modulate nuclear processes. We focus on PI(4,5)P2’s role in the modulation of RNA polymerase I activity, and functions of the nuclear lipid islets—recently described nucleoplasmic PI(4,5)P2-rich compartment involved in RNA polymerase II transcription. In conclusion, the high impact of the phosphoinositide–protein complexes on nuclear organization and genome functions is only now emerging and deserves further thorough studies.
Collapse
|
13
|
Intramolecular electrostatic interactions contribute to phospholipase Cβ3 autoinhibition. Cell Signal 2019; 62:109349. [PMID: 31254604 DOI: 10.1016/j.cellsig.2019.109349] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/22/2019] [Accepted: 06/23/2019] [Indexed: 01/21/2023]
Abstract
Phospholipase Cβ (PLCβ) enzymes regulate second messenger production following the activation of G protein-coupled receptors (GPCRs). Under basal conditions, these enzymes are maintained in an autoinhibited state by multiple elements, including an insertion within the catalytic domain known as the X-Y linker. Although the PLCβ X-Y linker is variable in sequence and length, its C-terminus is conserved and features an acidic stretch, followed by a short helix. This helix interacts with residues near the active site, acting as a lid to sterically prevent substrate binding. However, deletions that remove the acidic stretch of the X-Y linker increase basal activity to the same extent as deletion of the entire X-Y linker. Thus, the acidic stretch may be the linchpin in autoinhibition mediated by the X-Y linker. We used site-directed mutagenesis and biochemical assays to investigate the importance of this acidic charge in mediating PLCβ3 autoinhibition. Loss of the acidic charge in the X-Y linker increases basal activity and decreases stability, consistent with loss of autoinhibition. However, introduction of compensatory electrostatic mutations on the surface of the PLCβ3 catalytic domain restore activity to basal levels. Thus, intramolecular electrostatics modulate autoinhibition by the X-Y linker.
Collapse
|
14
|
Nuclear Phosphoinositides: Their Regulation and Roles in Nuclear Functions. Int J Mol Sci 2019; 20:ijms20122991. [PMID: 31248120 PMCID: PMC6627530 DOI: 10.3390/ijms20122991] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/22/2019] [Accepted: 06/17/2019] [Indexed: 12/29/2022] Open
Abstract
Polyphosphoinositides (PPIns) are a family of seven lipid messengers that regulate a vast array of signalling pathways to control cell proliferation, migration, survival and differentiation. PPIns are differentially present in various sub-cellular compartments and, through the recruitment and regulation of specific proteins, are key regulators of compartment identity and function. Phosphoinositides and the enzymes that synthesise and degrade them are also present in the nuclear membrane and in nuclear membraneless compartments such as nuclear speckles. Here we discuss how PPIns in the nucleus are modulated in response to external cues and how they function to control downstream signalling. Finally we suggest a role for nuclear PPIns in liquid phase separations that are involved in the formation of membraneless compartments within the nucleus.
Collapse
|
15
|
Polyphosphoinositides in the nucleus: Roadmap of their effectors and mechanisms of interaction. Adv Biol Regul 2019; 72:7-21. [PMID: 31003946 DOI: 10.1016/j.jbior.2019.04.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 01/01/2023]
Abstract
Biomolecular interactions between proteins and polyphosphoinositides (PPIn) are essential in the regulation of the vast majority of cellular processes. Consequently, alteration of these interactions is implicated in the development of many diseases. PPIn are phosphorylated derivatives of phosphatidylinositol and consist of seven species with different phosphate combinations. PPIn signal by recruiting proteins via canonical domains or short polybasic motifs. Although their actions are predominantly documented on cytoplasmic membranes, six of the seven PPIn are present within the nucleus together with the PPIn kinases, phosphatases and phospholipases that regulate their turnover. Importantly, the contribution of nuclear PPIn in the regulation of nuclear processes has led to an increased recognition of their importance compared to their more accepted cytoplasmic roles. This review summarises our knowledge on the identification and functional characterisation of nuclear PPIn-effector proteins as well as their mode of interactions, which tend to favour polybasic motifs.
Collapse
|
16
|
Moruno-Manchon JF, Uzor NE, Blasco-Conesa MP, Mannuru S, Putluri N, Furr-Stimming EE, Tsvetkov AS. Inhibiting sphingosine kinase 2 mitigates mutant Huntingtin-induced neurodegeneration in neuron models of Huntington disease. Hum Mol Genet 2017; 26:1305-1317. [PMID: 28175299 PMCID: PMC6251541 DOI: 10.1093/hmg/ddx046] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/20/2017] [Accepted: 02/02/2017] [Indexed: 12/22/2022] Open
Abstract
Huntington disease (HD) is the most common inherited neurodegenerative disorder. It has no cure. The protein huntingtin causes HD, and mutations to it confer toxic functions to the protein that lead to neurodegeneration. Thus, identifying modifiers of mutant huntingtin-mediated neurotoxicity might be a therapeutic strategy for HD. Sphingosine kinases 1 (SK1) and 2 (SK2) synthesize sphingosine-1-phosphate (S1P), a bioactive lipid messenger critically involved in many vital cellular processes, such as cell survival. In the nucleus, SK2 binds to and inhibits histone deacetylases 1 and 2 (HDAC1/2). Inhibiting both HDACs has been suggested as a potential therapy in HD. Here, we found that SK2 is nuclear in primary neurons and, unexpectedly, overexpressed SK2 is neurotoxic in a dose-dependent manner. SK2 promotes DNA double-strand breaks in cultured primary neurons. We also found that SK2 is hyperphosphorylated in the brain samples from a model of HD, the BACHD mice. These data suggest that the SK2 pathway may be a part of a pathogenic pathway in HD. ABC294640, an inhibitor of SK2, reduces DNA damage in neurons and increases survival in two neuron models of HD. Our results identify a novel regulator of mutant huntingtin-mediated neurotoxicity and provide a new target for developing therapies for HD.
Collapse
Affiliation(s)
- Jose F. Moruno-Manchon
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX 77030, USA
| | - Ndidi-Ese Uzor
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Maria P. Blasco-Conesa
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX 77030, USA
| | - Sishira Mannuru
- The University of Texas Medical Training Program, Houston, TX 77030, USA
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Erin E. Furr-Stimming
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX 77030, USA
| | - Andrey S. Tsvetkov
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
17
|
A polybasic motif in ErbB3-binding protein 1 (EBP1) has key functions in nucleolar localization and polyphosphoinositide interaction. Biochem J 2016; 473:2033-47. [PMID: 27118868 PMCID: PMC4941749 DOI: 10.1042/bcj20160274] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 04/26/2016] [Indexed: 12/29/2022]
Abstract
We reveal the identification of a polybasic motif necessary for polyphosphoinositide interaction and nucleolar targeting of ErbB3 binding protein 1 (EBP1). EBP1 interacts directly with phosphatidylinositol(3,4,5)-triphosphate and their association is detected in the nucleolus, implying regulatory roles of nucleolar processes. Polyphosphoinositides (PPIns) are present in the nucleus where they participate in crucial nuclear processes, such as chromatin remodelling, transcription and mRNA processing. In a previous interactomics study, aimed to gain further insight into nuclear PPIns functions, we identified ErbB3 binding protein 1 (EBP1) as a potential nuclear PPIn-binding protein in a lipid pull-down screen. EBP1 is a ubiquitous and conserved protein, located in both the cytoplasm and nucleolus, and associated with cell proliferation and survival. In the present study, we show that EBP1 binds directly to several PPIns via two distinct PPIn-binding sites consisting of clusters of lysine residues and positioned at the N- and C-termini of the protein. Using interaction mutants, we show that the C-terminal PPIn-binding motif contributes the most to the localization of EBP1 in the nucleolus. Importantly, a K372N point mutation, located within the C-terminal motif and found in endometrial tumours, is sufficient to alter the nucleolar targeting of EBP1. Our study reveals also the presence of the class I phosphoinositide 3-kinase (PI3K) catalytic subunit p110β and its product PtdIns(3,4,5)P3 together with EBP1 in the nucleolus. Using NMR, we further demonstrate an association between EBP1 and PtdIns(3,4,5)P3 via both electrostatic and hydrophobic interactions. Taken together, these results show that EBP1 interacts directly with PPIns and associate with PtdIns(3,4,5)P3 in the nucleolus. The presence of p110β and PtdIns(3,4,5)P3 in the nucleolus indicates their potential role in regulating nucleolar processes, at least via EBP1.
Collapse
|
18
|
The Effector Domain of MARCKS Is a Nuclear Localization Signal that Regulates Cellular PIP2 Levels and Nuclear PIP2 Localization. PLoS One 2015; 10:e0140870. [PMID: 26470026 PMCID: PMC4607481 DOI: 10.1371/journal.pone.0140870] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 10/01/2015] [Indexed: 01/01/2023] Open
Abstract
Translocation to the nucleus of diacylglycerol kinase (DGK)– ζ is dependent on a sequence homologous to the effector domain of Myristoylated Alanine Rich C-Kinase Substrate (MARCKS). These data would suggest that MARCKS could also localize to the nucleus. A single report demonstrated immunofluorescence staining of MARCKS in the nucleus; however, further experimental evidence confirming the specific domain responsible for this localization has not been reported. Here, we report that MARCKS is present in the nucleus in GBM cell lines. We then over-expressed wild-type MARCKS (WT) and MARCKS with the effector domain deleted (ΔED), both tagged with V5-epitope in a GBM cell line with low endogenous MARCKS expression (U87). We found that MARCKS-WT localized to the nucleus, while the MARCKS construct without the effector domain remained in the cytoplasm. We also found that over-expression of MARCKS-WT resulted in a significant increase in total cellular phosphatidyl-inositol (4,5) bisphosphate (PIP2) levels, consistent with prior evidence that MARCKS can regulate PIP2 levels. We also found increased staining for PIP2 in the nucleus with MARCKS-WT over-expression compared to MARCKS ΔED by immunofluorescence. Interestingly, we observed MARCKS and PIP2 co-localization in the nucleus. Lastly, we found changes in gene expression when MARCKS was not present in the nucleus (MARCKS ΔED). These data indicate that the MARCKS effector domain can function as a nuclear localization signal and that this sequence is critical for the ability of MARCKS to regulate PIP2 levels, nuclear localization, and gene expression. These data suggests a novel role for MARCKS in regulating nuclear functions such as gene expression.
Collapse
|
19
|
Yoo SH, Huh YH, Huh SK, Chu SY, Kim KD, Hur YS. Localization and projected role of phosphatidylinositol 4-kinases IIα and IIβ in inositol 1,4,5-trisphosphate-sensitive nucleoplasmic Ca²⁺ store vesicles. Nucleus 2015; 5:341-51. [PMID: 25482123 PMCID: PMC4152348 DOI: 10.4161/nucl.29776] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Phosphatidylinositol (PI) kinases are key molecules that participate in the phosphoinositide signaling in the cytoplasm. Despite the accumulating evidence that supports the existence and operation of independent PI signaling system in the nucleus, the exact location of the PI kinases inside the nucleus is not well defined. Here we show that PI4-kinases IIα and IIβ, which play central roles in PI(4,5)P2 synthesis and PI signaling, are localized in numerous small nucleoplasmic vesicles that function as inositol 1,4,5-trisphosphate (Ins(1,4,5)P3)-sensitive Ca(2+) stores. This is in accord with the past results that showed the localization of PI4(P)5-kinases that are essential in PI(4,5)P2 production and PI(4,5)P2 in nuclear matrix. Along with PI(4,5)P2 that also exists on the nucleoplasmic vesicle membranes, the localization of PI4-kinases IIα and IIβ in the nucleoplasmic vesicles strongly implicates the vesicles to the PI signaling as well as the Ins(1,4,5)P3-depenent Ca(2+) signaling in the nucleus. Accordingly, the nucleoplasmic vesicles indeed release Ca(2+) rapidly in response to Ins(1,4,5)P3. Further, the Ins(1,4,5)P3-induced Ca(2+) release studies suggest that PI4KIIα and IIβ are localized near the Ins(1,4,5)P3 receptor (Ins(1,4,5)P3R)/Ca(2+) channels on the Ca(2+) store vesicle membranes. In view of the widespread presence of the Ins(1,4,5)P3-dependent Ca(2+) store vesicles and the need to fine-control the nuclear Ca(2+) concentrations at multiple sites along the chromatin fibers in the nucleus, the existence of the key PI enzymes in the Ins(1,4,5)P3-dependent nucleoplasmic Ca(2+) store vesicles appears to be in perfect harmony with the physiological roles of the PI kinases in the nucleus.
Collapse
Affiliation(s)
- Seung Hyun Yoo
- a Department of Biochemistry; Inha University School of Medicine; Incheon, Korea
| | | | | | | | | | | |
Collapse
|
20
|
Fiume R, Stijf-Bultsma Y, Shah ZH, Keune WJ, Jones DR, Jude JG, Divecha N. PIP4K and the role of nuclear phosphoinositides in tumour suppression. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:898-910. [PMID: 25728392 DOI: 10.1016/j.bbalip.2015.02.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 02/03/2015] [Accepted: 02/17/2015] [Indexed: 12/27/2022]
Abstract
Phosphatidylinositol-5-phosphate (PtdIns5P)-4-kinases (PIP4Ks) are stress-regulated lipid kinases that phosphorylate PtdIns5P to generate PtdIns(4,5)P₂. There are three isoforms of PIP4Ks: PIP4K2A, 2B and 2C, which localise to different subcellular compartments with the PIP4K2B isoform being localised predominantly in the nucleus. Suppression of PIP4K expression selectively prevents tumour cell growth in vitro and prevents tumour development in mice that have lost the tumour suppressor p53. p53 is lost or mutated in over 70% of all human tumours. These studies suggest that inhibition of PIP4K signalling constitutes a novel anti-cancer therapeutic target. In this review we will discuss the role of PIP4K in tumour suppression and speculate on how PIP4K modulates nuclear phosphoinositides (PPIns) and how this might impact on nuclear functions to regulate cell growth. This article is part of a Special Issue entitled Phosphoinositides.
Collapse
Affiliation(s)
- Roberta Fiume
- Cellular Signalling Laboratory, DIBINEM, University of Bologna, Bologna, Italy.
| | - Yvette Stijf-Bultsma
- Inositide Laboratory, Centre for Biological Sciences, Faculty of Natural & Environmental Sciences, Life Sciences Building 85, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK
| | - Zahid H Shah
- Inositide Laboratory, Centre for Biological Sciences, Faculty of Natural & Environmental Sciences, Life Sciences Building 85, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK
| | - Willem Jan Keune
- The Netherlands Cancer Institute, Amsterdam 1066CX, The Netherlands
| | - David R Jones
- Oncology iMED, AstraZeneca, Alderley Park, Macclesfield SK10 4TF, UK
| | - Julian Georg Jude
- IMP - Institute of Molecular Pathology, Vienna Biocenter, Dr. Bohr-Gasse 7, 1030 Vienna, Austria
| | - Nullin Divecha
- Inositide Laboratory, Centre for Biological Sciences, Faculty of Natural & Environmental Sciences, Life Sciences Building 85, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK.
| |
Collapse
|
21
|
Bidlingmaier S, Liu B. Utilizing Yeast Surface Human Proteome Display Libraries to Identify Small Molecule-Protein Interactions. Methods Mol Biol 2015; 1319:203-14. [PMID: 26060077 PMCID: PMC4838597 DOI: 10.1007/978-1-4939-2748-7_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The identification of proteins that interact with small bioactive molecules is a critical but often difficult and time-consuming step in understanding cellular signaling pathways or molecular mechanisms of drug action. Numerous methods for identifying small molecule-interacting proteins have been developed and utilized, including affinity-based purification followed by mass spectrometry analysis, protein microarrays, phage display, and three-hybrid approaches. Although all these methods have been used successfully, there remains a need for additional techniques for analyzing small molecule-protein interactions. A promising method for identifying small molecule-protein interactions is affinity-based selection of yeast surface-displayed human proteome libraries. Large and diverse libraries displaying human protein fragments on the surface of yeast cells have been constructed and subjected to FACS-based enrichment followed by comprehensive exon microarray-based output analysis to identify protein fragments with affinity for small molecule ligands. In a recent example, a proteome-wide search has been successfully carried out to identify cellular proteins binding to the signaling lipids PtdIns(4,5)P2 and PtdIns(3,4,5)P3. Known phosphatidylinositide-binding proteins such as pleckstrin homology domains were identified, as well as many novel interactions. Intriguingly, many novel nuclear phosphatidylinositide-binding proteins were discovered. Although the existence of an independent pool of nuclear phosphatidylinositides has been known about for some time, their functions and mechanism of action remain obscure. Thus, the identification and subsequent study of nuclear phosphatidylinositide-binding proteins is expected to bring new insights to this important biological question. Based on the success with phosphatidylinositides, it is expected that the screening of yeast surface-displayed human proteome libraries will be of general use for the discovery of novel small molecule-protein interactions, thus facilitating the study of cellular signaling pathways and mechanisms of drug action or toxicity.
Collapse
Affiliation(s)
- Scott Bidlingmaier
- Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 1001 Potrero Avenue, Box 1305, San Francisco, CA, 94110, USA
| | | |
Collapse
|
22
|
Gelato KA, Tauber M, Ong MS, Winter S, Hiragami-Hamada K, Sindlinger J, Lemak A, Bultsma Y, Houliston S, Schwarzer D, Divecha N, Arrowsmith CH, Fischle W. Accessibility of different histone H3-binding domains of UHRF1 is allosterically regulated by phosphatidylinositol 5-phosphate. Mol Cell 2014; 54:905-919. [PMID: 24813945 DOI: 10.1016/j.molcel.2014.04.004] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/11/2014] [Accepted: 04/02/2014] [Indexed: 11/30/2022]
Abstract
UHRF1 is a multidomain protein crucially linking histone H3 modification states and DNA methylation. While the interaction properties of its specific domains are well characterized, little is known about the regulation of these functionalities. We show that UHRF1 exists in distinct active states, binding either unmodified H3 or the H3 lysine 9 trimethylation (H3K9me3) modification. A polybasic region (PBR) in the C terminus blocks interaction of a tandem tudor domain (TTD) with H3K9me3 by occupying an essential peptide-binding groove. In this state the plant homeodomain (PHD) mediates interaction with the extreme N terminus of the unmodified H3 tail. Binding of the phosphatidylinositol phosphate PI5P to the PBR of UHRF1 results in a conformational rearrangement of the domains, allowing the TTD to bind H3K9me3. Our results define an allosteric mechanism controlling heterochromatin association of an essential regulatory protein of epigenetic states and identify a functional role for enigmatic nuclear phosphatidylinositol phosphates.
Collapse
Affiliation(s)
- Kathy A Gelato
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Maria Tauber
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Michelle S Ong
- Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Stefan Winter
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Kyoko Hiragami-Hamada
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Julia Sindlinger
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Strasse 4, 72076 Tübingen, Germany
| | - Alexander Lemak
- Princess Margaret Cancer Center, TMDT, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Yvette Bultsma
- Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Scott Houliston
- Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Center, TMDT, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Dirk Schwarzer
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Strasse 4, 72076 Tübingen, Germany
| | - Nullin Divecha
- Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Center, TMDT, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Wolfgang Fischle
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.
| |
Collapse
|
23
|
PI-PLC: Phosphoinositide-Phospholipase C in Plant Signaling. SIGNALING AND COMMUNICATION IN PLANTS 2014. [DOI: 10.1007/978-3-642-42011-5_2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Tan J, Brill JA. Cinderella story: PI4P goes from precursor to key signaling molecule. Crit Rev Biochem Mol Biol 2013; 49:33-58. [PMID: 24219382 DOI: 10.3109/10409238.2013.853024] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Phosphatidylinositol lipids are signaling molecules involved in nearly all aspects of cellular regulation. Production of phosphatidylinositol 4-phosphate (PI4P) has long been recognized as one of the first steps in generating poly-phosphatidylinositol phosphates involved in actin organization, cell migration, and signal transduction. In addition, progress over the last decade has brought to light independent roles for PI4P in membrane trafficking and lipid homeostasis. Here, we describe recent advances that reveal the breadth of processes regulated by PI4P, the spectrum of PI4P effectors, and the mechanisms of spatiotemporal control that coordinate crosstalk between PI4P and cellular signaling pathways.
Collapse
Affiliation(s)
- Julie Tan
- Department of Molecular Genetics, University of Toronto , Toronto, Ontario , Canada and
| | | |
Collapse
|
25
|
Shah ZH, Jones DR, Sommer L, Foulger R, Bultsma Y, D'Santos C, Divecha N. Nuclear phosphoinositides and their impact on nuclear functions. FEBS J 2013; 280:6295-310. [PMID: 24112514 DOI: 10.1111/febs.12543] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/11/2013] [Accepted: 09/16/2013] [Indexed: 12/23/2022]
Abstract
Polyphosphoinositides (PPIn) are important lipid molecules whose levels are de-regulated in human diseases such as cancer, neurodegenerative disorders and metabolic syndromes. PPIn are synthesized and degraded by an array of kinases, phosphatases and lipases which are localized to various subcellular compartments and are subject to regulation in response to both extra- and intracellular cues. Changes in the activities of enzymes that metabolize PPIn lead to changes in the profiles of PPIn in various subcellular compartments. Understanding how subcellular PPIn are regulated and how they affect downstream signaling is critical to understanding their roles in human diseases. PPIn are present in the nucleus, and their levels are changed in response to various stimuli, suggesting that they may serve to regulate specific nuclear functions. However, the lack of nuclear downstream targets has hindered the definition of which pathways nuclear PPIn affect. Over recent years, targeted and global proteomic studies have identified a plethora of potential PPIn-interacting proteins involved in many aspects of transcription, chromatin remodelling and mRNA maturation, suggesting that PPIn signalling within the nucleus represents a largely unexplored novel layer of complexity in the regulation of nuclear functions.
Collapse
Affiliation(s)
- Zahid H Shah
- Cancer Research UK Inositide Laboratory, Paterson Institute for Cancer Research, Manchester, UK
| | | | | | | | | | | | | |
Collapse
|
26
|
Lyon AM, Tesmer JJG. Structural insights into phospholipase C-β function. Mol Pharmacol 2013; 84:488-500. [PMID: 23880553 PMCID: PMC3781385 DOI: 10.1124/mol.113.087403] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 07/23/2013] [Indexed: 01/31/2023] Open
Abstract
Phospholipase C (PLC) enzymes convert phosphatidylinositol-4,5-bisphosphate into the second messengers diacylglycerol and inositol-1,4,5-triphosphate. The production of these molecules promotes the release of intracellular calcium and activation of protein kinase C, which results in profound cellular changes. The PLCβ subfamily is of particular interest given its prominent role in cardiovascular and neuronal signaling and its regulation by G protein-coupled receptors, as PLCβ is the canonical downstream target of the heterotrimeric G protein Gαq. However, this is not the only mechanism regulating PLCβ activity. Extensive structural and biochemical evidence has revealed regulatory roles for autoinhibitory elements within PLCβ, Gβγ, small molecular weight G proteins, and the lipid membrane itself. Such complex regulation highlights the central role that this enzyme plays in cell signaling. A better understanding of the molecular mechanisms underlying the control of its activity will greatly facilitate the search for selective small molecule modulators of PLCβ.
Collapse
Affiliation(s)
- Angeline M Lyon
- Life Sciences Institute and the Departments of Pharmacology and Biological Chemistry, University of Michigan, Ann Arbor, Michigan
| | | |
Collapse
|
27
|
Abstract
Phospholipases are enzymes that use phospholipids as substrate and are classified in three major classes A, C and D based on the reaction they catalyse. Phosphatidylinositol-specific Phospholipase C enzymes utilize phosphatidylinositol 4,5-bisphosphate as substrate and cleave the bond between the glycerol and the phosphate to produce important second messenger such as inositol trisphosphate and diacylglycerol. The Phospholipase C members are the most well-known phospholipases for their role in lipid signalling and cell proliferation and comprise 13 isoforms classified in 6 distinct sub-families. In particular, signalling activated by Phospholipase C γ, mostly activated by receptor and non-receptor tyrosine kinases, is well characterized in different cell systems. Increasing evidence suggest that Phospholipase C γ plays a key role in cell migration and invasion. Because of its role in cell growth and invasion, aberrant Phospholipase C γ signalling can contribute to carcinogenesis. A major challenge facing investigators who seek to target Phospholipase C γ directly is the fact that it is considered an "undruggable" protein. Indeed, isoform specificity and toxicity represents a big hurdle in the development of Phospholipase C γ small molecule inhibitors. Therefore, a future development in the field could be the identification of interacting partners as therapeutic targets that could be more druggable than Phospholipase C γ.
Collapse
Affiliation(s)
- Rossano Lattanzio
- Aging Research Centre, G. d'Annunzio University Foundation, 66013 Chieti, Italy.
| | | | | |
Collapse
|
28
|
Jones DR, Ramirez IBR, Lowe M, Divecha N. Measurement of phosphoinositides in the zebrafish Danio rerio. Nat Protoc 2013; 8:1058-72. [DOI: 10.1038/nprot.2013.040] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
29
|
Siniossoglou S. Phospholipid metabolism and nuclear function: Roles of the lipin family of phosphatidic acid phosphatases. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:575-81. [DOI: 10.1016/j.bbalip.2012.09.014] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 09/19/2012] [Accepted: 09/24/2012] [Indexed: 01/22/2023]
|