1
|
Vasquez R, Song JH, Park YS, Paik HD, Kang DK. Application of probiotic bacteria in ginsenoside bioconversion and enhancing its health-promoting benefits: a review. Food Sci Biotechnol 2025; 34:1631-1659. [PMID: 40160953 PMCID: PMC11936870 DOI: 10.1007/s10068-024-01734-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/26/2024] [Accepted: 10/10/2024] [Indexed: 04/02/2025] Open
Abstract
Ginseng (Panax) is a perennial herb with medicinal properties found in Asia and North America. Ginseng extracts contain several compounds, such as ginsenosides, which have therapeutic properties and have been extensively studied. Because of their deglycosylated nature, minor ginsenosides exhibit more potent bioactive properties than their parent ginsenosides. However, untreated ginseng extracts contain low levels of bioactive minor ginsenosides. Thus, converting major ginsenosides to minor ginsenosides using various methods, including microbial bioconversion, is required. Probiotic bacteria such as lactic acid bacteria and bifidobacteria are safe and excellent agents for bioconverting ginsenosides. Numerous studies have demonstrated the application of probiotic bacteria to produce minor ginsenosides; however, a comprehensive discussion focusing on using probiotics in ginsenoside bioconversion has been lacking. Therefore, this review investigates the application of probiotic bacteria to produce minor ginsenosides. Moreover, improving the health-promoting properties of ginseng with the help of probiotics is also reviewed.
Collapse
Affiliation(s)
- Robie Vasquez
- Department of Animal Biotechnology, Dankook University, 119 Dandae-Ro, Cheonan, 31116 Republic of Korea
| | - Ji Hoon Song
- Department of Animal Biotechnology, Dankook University, 119 Dandae-Ro, Cheonan, 31116 Republic of Korea
| | - Young-Seo Park
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120 Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resource, Konkuk University, Seoul, 05029 Republic of Korea
| | - Dae-Kyung Kang
- Department of Animal Biotechnology, Dankook University, 119 Dandae-Ro, Cheonan, 31116 Republic of Korea
| |
Collapse
|
2
|
Singh YR, Ahmed J, Goyal A. Small angle X-ray scattering and in silico based structure and function analysis of a novel xylobiohydrolase ( AcGH30A) from Acetivibrio clariflavus. J Biomol Struct Dyn 2024:1-19. [PMID: 39587495 DOI: 10.1080/07391102.2024.2431192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/23/2024] [Indexed: 11/27/2024]
Abstract
Xylobiohydrolase plays a crucial role in the hydrolysis of xylan, a complex polysaccharide present in the cell walls of plants. This study focuses on the solution structure and substrate binding analysis of a novel xylobiohydrolase, AcGH30A, from Acetivibrio clariflavus. Secondary structure analysis of AcGH30A in an aqueous environment using Circular Dichroism and in silico modeling revealed an α/β/α sandwich structure with a central β-barrel comprising eight β-strands. Superposition of the homology-modelled structure of AcGH30A with its closest homolog showed that the active-site contains Glu175 and Glu268 as the catalytic residues. Molecular docking confirmed xylobiose as the preferred ligand, showcasing polar interactions with the catalytic amino acids, indicating its xylobiohydrolase activity. AcGH30A displayed a high binding affinity with xylobiose with an association constant (Ka) of 7.83 × 105 M-1, as determined by isothermal titration calorimetry. Molecular dynamics (MD) simulations of AcGH30A and AcGH30A-xylobiose complex in solution showed reduced RMSD, Rg and SASA values, confirming the stability and compactness of the complex. MD simulations further highlighted the crucial role of Glu175 in hydrogen bonding with the ligand, which acts as an acid or base. Small-angle X-ray scattering (SAXS) analysis of AcGH30A showed its molecular shape as an earbud with a globular structure existing in a monodispersed state, which was corroborated by dynamic light scattering (DLS). The hydrodynamic radius (Rh) of AcGH30A, determined by DLS, was 3.7 nm. This study significantly contributed valuable insights into the structure and functional aspects of AcGH30A.
Collapse
Affiliation(s)
- Yumnam Robinson Singh
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Jebin Ahmed
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Arun Goyal
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| |
Collapse
|
3
|
Ernst P, Wirtz A, Wynands B, Wierckx N. Establishing an itaconic acid production process with Ustilago species on the low-cost substrate starch. FEMS Yeast Res 2024; 24:foae023. [PMID: 39038994 PMCID: PMC11312366 DOI: 10.1093/femsyr/foae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/15/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024] Open
Abstract
Ustilago maydis and Ustilago cynodontis are natural producers of a broad range of valuable molecules including itaconate, malate, glycolipids, and triacylglycerols. Both Ustilago species are insensitive toward medium impurities, and have previously been engineered for efficient itaconate production and stabilized yeast-like growth. Due to these features, these strains were already successfully used for the production of itaconate from different alternative feedstocks such as molasses, thick juice, and crude glycerol. Here, we analyzed the amylolytic capabilities of Ustilago species for metabolization of starch, a highly abundant and low-cost polymeric carbohydrate widely utilized as a substrate in several biotechnological processes. Ustilago cynodontis was found to utilize gelatinized potato starch for both growth and itaconate production, confirming the presence of extracellular amylolytic enzymes in Ustilago species. Starch was rapidly degraded by U. cynodontis, even though no α-amylase was detected. Further experiments indicate that starch hydrolysis is caused by the synergistic action of glucoamylase and α-glucosidase enzymes. The enzymes showed a maximum activity of around 0.5 U ml-1 at the fifth day after inoculation, and also released glucose from additional substrates, highlighting potential broader applications. In contrast to U. cynodontis, U. maydis showed no growth on starch accompanied with no detectable amylolytic activity.
Collapse
Affiliation(s)
- Philipp Ernst
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Astrid Wirtz
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Benedikt Wynands
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Nick Wierckx
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| |
Collapse
|
4
|
Dionisi HM, Lozada M, Campos E. Diversity of GH51 α-L-arabinofuranosidase homolog sequences from subantarctic intertidal sediments. Biologia (Bratisl) 2023. [DOI: 10.1007/s11756-023-01382-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
5
|
Le NG, van Ulsen P, van Spanning R, Brouwer A, van Straalen NM, Roelofs D. A Functional Carbohydrate Degrading Enzyme Potentially Acquired by Horizontal Gene Transfer in the Genome of the Soil Invertebrate Folsomia candida. Genes (Basel) 2022; 13:genes13081402. [PMID: 36011312 PMCID: PMC9460274 DOI: 10.3390/genes13081402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
Horizontal gene transfer (HGT) is defined as the acquisition by an organism of hereditary material from a phylogenetically unrelated organism. This process is mostly observed among bacteria and archaea, and considered less likely between microbes and multicellular eukaryotes. However, recent studies provide compelling evidence of the evolutionary importance of HGT in eukaryotes, driving functional innovation. Here, we study an HGT event in Folsomia candida (Collembola, Hexapoda) of a carbohydrate-active enzyme homologous to glycosyl hydrase group 43 (GH43). The gene encodes an N-terminal signal peptide, targeting the product for excretion, which suggests that it contributes to the diversity of digestive capacities of the detritivore host. The predicted α-L-arabinofuranosidase shows high similarity to genes in two other Collembola, an insect and a tardigrade. The gene was cloned and expressed in Escherichia coli using a cell-free protein expression system. The expressed protein showed activity against p-nitrophenyl-α-L-arabinofuranoside. Our work provides evidence for functional activity of an HGT gene in a soil-living detritivore, most likely from a bacterial donor, with genuine eukaryotic properties, such as a signal peptide. Co-evolution of metazoan GH43 genes with the Panarthropoda phylogeny suggests the HGT event took place early in the evolution of this ecdysozoan lineage.
Collapse
Affiliation(s)
- Ngoc Giang Le
- Department of Ecological Science, Faculty of Science, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
- Correspondence:
| | - Peter van Ulsen
- Department of Molecular Cell Biology, Faculty of Science, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
| | - Rob van Spanning
- Department of Molecular Cell Biology, Faculty of Science, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
| | | | - Nico M. van Straalen
- Department of Ecological Science, Faculty of Science, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
| | - Dick Roelofs
- Department of Ecological Science, Faculty of Science, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
- Keygene N.V., 6708 PW Wageningen, The Netherlands
| |
Collapse
|
6
|
Perović MN, Pajin BS, Antov MG. The effect of enzymatic pretreatment of chickpea on functional properties and antioxidant activity of alkaline protein isolate. Food Chem 2021; 374:131809. [PMID: 34920403 DOI: 10.1016/j.foodchem.2021.131809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 11/04/2022]
Abstract
Functional properties and antioxidant activity of protein isolates extracted by alkali from chickpea seed after treatment with cellulase and xylanase cocktail and individual arabinofuranosidase were evaluated. Both enzymatic treatments improved recovery of protein by more than 30%, moreover, arabinofuranosidase enabled higher extraction efficiency - above 93%. Protein extracted after treatment with enzyme cocktail showed improved solubility and oil holding capacity by 14% and 80%, respectively, while water holding capacity was increased by 130% after both applied enzymatic pretreatments. The action of enzyme cocktail was more beneficial for improving emulsifying activity and stability of alkaline isolate by 22% and 31%, respectively. Whipping properties of alkaline protein isolate were significantly improved when both enzymatic pretreatments were applied with foam stability increased by 150%. Protein from extractions with arabinofuranosidase and enzyme cocktail expressed enhanced antioxidant activity by 70% and 110%, respectively. Analysis of protein pattern and structural characteristics indicated differences between investigated isolates.
Collapse
Affiliation(s)
- Milica N Perović
- University of Novi Sad, Faculty of Technology, Blvd. Cara Lazara 1, Novi Sad, Serbia
| | - Biljana S Pajin
- University of Novi Sad, Faculty of Technology, Blvd. Cara Lazara 1, Novi Sad, Serbia
| | - Mirjana G Antov
- University of Novi Sad, Faculty of Technology, Blvd. Cara Lazara 1, Novi Sad, Serbia.
| |
Collapse
|
7
|
Long L, Sun L, Liu Z, Lin Q, Wang J, Ding S. Functional characterization of a GH62 family α-L-arabinofuranosidase from Eupenicillium parvum suitable for monosaccharification of corncob arabinoxylan in combination with key enzymes. Enzyme Microb Technol 2021; 154:109965. [PMID: 34933174 DOI: 10.1016/j.enzmictec.2021.109965] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/20/2021] [Accepted: 12/06/2021] [Indexed: 11/30/2022]
Abstract
Corncob rich in arabinoxylan is an important raw material widely used in bio-refinery. Complete saccharification of arabinoxylan depends on the synergism of different enzymes including α-L-arabinofuranosidase (ABF). This study aimed to investigate the functional characteristics of a new ABF EpABF62A belonging to glycoside hydrolase (GH) 62 family from the fungus Eupenicillium parvum, and to explore its potential in the saccharification of corncob arabinoxylan. The recombinant EpABF62A showed high activity against wheat arabinoxylan and rye arabinoxylan, with the optimal temperature of 55 °C and pH of 4.5. The protein contains an N-terminal cellulose-binding domain family 1 (CBM_1) domain, and displayed a 59.5% absorption rate to phosphoric acid swollen cellulose. Regioselectivity analysis indicated that the enzyme selectively removed α-1,2 or α-1,3 linked arabinofuranosyl residues on mono-substituted xylose residues on arabinoxylan. Corncob arabinoxylans (CAX1 or CAX2) with different (low or high) branching degrees were extracted from the raw material by alkaline hydrogen peroxide pretreatment and graded ethanol precipitation. Single EpABF62A removed 69.5% or 67.1% arabinose from CAX1 or CAX2, respectively. EpABF62A combined with a GH10 xylanase, a GH43 β-D-xylosidase and a GH67 α-glucuronidase released 75.0% or 64.5% xylose from CAX1 or CAX2, respectively. The addition of the four hemicellulases enhanced the saccharification the solid fraction of the pretreated corncob by the commercial cellulase Cellic® CTec2, and the conversion ratios of glucose, xylose and arabinose were up to 94.0%, 91.8% and 82.6%, respectively.
Collapse
Affiliation(s)
- Liangkun Long
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing 210037, China
| | - Lu Sun
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhen Liu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qunying Lin
- Nanjing Institute for the Comprehensive Utilization of Wild Plants, Nanjing 211111, China
| | - Jing Wang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shaojun Ding
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing 210037, China.
| |
Collapse
|
8
|
Thakur A, Sharma A, Khaire KC, Moholkar VS, Pathak P, Bhardwaj NK, Goyal A. Two-Step Saccharification of the Xylan Portion of Sugarcane Waste by Recombinant Xylanolytic Enzymes for Enhanced Xylose Production. ACS OMEGA 2021; 6:11772-11782. [PMID: 34056331 PMCID: PMC8153997 DOI: 10.1021/acsomega.1c01262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/08/2021] [Indexed: 05/10/2023]
Abstract
Sugarcane bagasse (SB) and sugarcane trash (SCT) containing 30% hemicellulose content are the waste from the sugarcane industry. Hemicellulose being heterogeneous, more complex, and less abundant than cellulose remains less explored. The optimized conditions for the pretreatment of SB and SCT for maximizing the delignification are soaking in aqueous ammonia (SAA), 18.5 wt %, followed by heating at 70 °C for 14 h. The optimization of hydrolysis of SAA pretreated (ptd) SB and SCT by the Box-Behnken design in the first step of saccharification by xylanase (CtXyn11A) and α-l-arabinofuranosidase (PsGH43_12) resulted in the total reducing sugar (TRS) yield of xylooligosaccharides (TRS(XOS)) of 93.2 mg/g ptd SB and 85.1 mg/g ptd SCT, respectively. The second step of saccharification by xylosidase (BoGH43) gave the TRS yield of 164.7 mg/g ptd SB and 147.2 mg/g ptd SCT. The high-performance liquid chromatography analysis of hydrolysate obtained after the second step of saccharification showed 69.6% xylan-to-xylose conversion for SB and 64.1% for SCT. This study demonstrated the optimization of the pretreatment method and of the enzymatic saccharification by recombinant xylanolytic enzymes, resulting in the efficient saccharification of ptd hemicellulose to TRS by giving 73.5% conversion for SB and 71.1% for SCT. These optimized conditions for the pretreatment and saccharification of sugarcane waste can also be used at a large scale.
Collapse
Affiliation(s)
- Abhijeet Thakur
- Carbohydrate
Enzyme Biotechnology Laboratory, Department of Biosciences
and Bioengineering, Center for Energy, Department of Chemical Engineering, Indian
Institute of Technology Guwahati, Guwahati 781039, India
| | - Aakash Sharma
- Carbohydrate
Enzyme Biotechnology Laboratory, Department of Biosciences
and Bioengineering, Center for Energy, Department of Chemical Engineering, Indian
Institute of Technology Guwahati, Guwahati 781039, India
| | - Kaustubh Chandrakant Khaire
- Carbohydrate
Enzyme Biotechnology Laboratory, Department of Biosciences
and Bioengineering, Center for Energy, Department of Chemical Engineering, Indian
Institute of Technology Guwahati, Guwahati 781039, India
| | - Vijayanand Suryakant Moholkar
- Carbohydrate
Enzyme Biotechnology Laboratory, Department of Biosciences
and Bioengineering, Center for Energy, Department of Chemical Engineering, Indian
Institute of Technology Guwahati, Guwahati 781039, India
| | - Puneet Pathak
- Avantha
Centre for Industrial Research & Development, Paper Mill Campus, Yamuna Nagar, Haryana 135001, India
| | - Nishi Kant Bhardwaj
- Avantha
Centre for Industrial Research & Development, Paper Mill Campus, Yamuna Nagar, Haryana 135001, India
| | - Arun Goyal
- Carbohydrate
Enzyme Biotechnology Laboratory, Department of Biosciences
and Bioengineering, Center for Energy, Department of Chemical Engineering, Indian
Institute of Technology Guwahati, Guwahati 781039, India
- E-mail: . Phone: +91-361-258-2208
| |
Collapse
|
9
|
Thakur A, Sharma K, Jamaldheen SB, Goyal A. Molecular Characterization, Regioselective and Synergistic Action of First Recombinant Type III α-L-arabinofuranosidase of Family 43 Glycoside Hydrolase (PsGH43_12) from Pseudopedobacter saltans. Mol Biotechnol 2020; 62:443-455. [DOI: 10.1007/s12033-020-00263-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2020] [Indexed: 01/26/2023]
|
10
|
Sharma K, Khaire KC, Thakur A, Moholkar VS, Goyal A. Acacia Xylan as a Substitute for Commercially Available Xylan and Its Application in the Production of Xylooligosaccharides. ACS OMEGA 2020; 5:13729-13738. [PMID: 32566838 PMCID: PMC7301597 DOI: 10.1021/acsomega.0c00896] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/19/2020] [Indexed: 05/08/2023]
Abstract
Over the past two decades, birchwood and beechwood xylans have been used as a popular substrate for the characterization of xylanases. Recently, major companies have discontinued their commercial production. Therefore, there is a need to find an alternative to these substrates. Xylan extraction from Acacia sawdust resulted in 23.5% (w/w) yield. The extracted xylan is composed of xylose and glucuronic acid residues in a molar ratio of 6:1 with a molecular mass of ∼70 kDa. The specific optical rotation analysis of extracted xylan displayed that it is composed of the d-form of xylose and glucuronic acid monomeric sugars. The nuclear magnetic resonance analysis of extracted xylan revealed that the xylan backbone is substituted with 4-O-methyl glucuronic acid at the O2 position. Fourier transform infrared analysis confirmed the absence of lignin contamination in the extracted xylan. Xylanase from Clostridium thermocellum displayed the enzyme activity of 1761 U/mg against extracted xylan, and the corresponding activity against beechwood xylan was 1556 U/mg, which confirmed that the extracted xylan could be used as an alternative substrate for the characterization of xylanases.
Collapse
Affiliation(s)
- Kedar Sharma
- Carbohydrate
Enzyme Biotechnology Laboratory, Center for Energy, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Kaustubh Chandrakant Khaire
- Carbohydrate
Enzyme Biotechnology Laboratory, Center for Energy, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Abhijeet Thakur
- Carbohydrate
Enzyme Biotechnology Laboratory, Center for Energy, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Vijayanand Suryakant Moholkar
- Carbohydrate
Enzyme Biotechnology Laboratory, Center for Energy, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Arun Goyal
- Carbohydrate
Enzyme Biotechnology Laboratory, Center for Energy, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
11
|
Sharma K, Fontes CMGA, Najmudin S, Goyal A. Small angle X-ray scattering based structure, modeling and molecular dynamics analyses of family 43 glycoside hydrolase α-L-arabinofuranosidase from Clostridium thermocellum. J Biomol Struct Dyn 2019; 39:209-218. [PMID: 31856699 DOI: 10.1080/07391102.2019.1707119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Enzymes that participate in the hydrolysis of complex carbohydrates display a modular architecture, although the significance of enzyme modularity to flexibility and catalytic efficacy is not fully understood. α-L-arabinofuranosidase from Clostridium thermocellum (CtAraf43) catalyzes the release of α-1,2-, α-1,3-, or α-1,5- linked L-arabinose from arabinose decorated polysaccharides. CtAraf43 comprises an N-terminal catalytic domain (CtAbf43A) connected with two family 6 carbohydrate-binding modules (CBMs), termed as CtCBM6A and CtCBM6B, through flexible linker peptides. Here, we modeled the structure of CtAraf43 revealing that the module, CtAbf43A displays a 5-fold β-propeller fold and the CBMs the typical jellyroll type β-sandwich folds. Ramachandran plot showed 98.5% residues in the favored region and 1.5% residues in the disallowed region. Molecular dynamics simulation analysis of CtAraf43 revealed significant flexibility that is more expressive in the C-terminal CtCBM6B module in terms of structure and orientation. Small angle X-ray scattering analysis of CtAraf43 revealed its elongated structure. CtAraf43 at 1.2 mg/mL demonstrated the monomeric nature and a multi-modular shaped molecular envelope in solution with a Dmax of 12 nm. However, at 4.7 mg/mL, CtAraf43 displayed a dimeric structure and elongated molecular envelope. Kratky plot analysis revealed the folded state of CtAraf43 with limited flexibility at both concentrations. The data revealed higher flexibility at the C-terminal of CtAraf43 suggesting a coordinated action of the N-terminal catalytic module CtAbf43A and the internal CtCBM6A.AbbreviationCBMsCarbohydrate Binding ModulesCtAraf43α-L-arabinofuranosidaseGHsGlycoside HydrolasesMDMolecular DynamicsRMSDRoot Mean Square DeviationRMSFRoot Mean Square FluctuationSAXSSmall angle X-ray scatteringCommunicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kedar Sharma
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Carlos M G A Fontes
- CIISA-Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal
| | - Shabir Najmudin
- CIISA-Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal
| | - Arun Goyal
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| |
Collapse
|