1
|
Malik D, Kumar S, Sindhu SS. Unlocking the potential of ecofriendly guardians for biological control of plant diseases, crop protection and production in sustainable agriculture. 3 Biotech 2025; 15:82. [PMID: 40071128 PMCID: PMC11891127 DOI: 10.1007/s13205-025-04243-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 02/14/2025] [Indexed: 03/14/2025] Open
Abstract
Several beneficial microbial strains inhibit the growth of different phytopathogens and commercialized worldwide as biocontrol agents (BCAs) for plant disease management. These BCAs employ different strategies for growth inhibition of pathogens, which includes production of antibiotics, siderophores, lytic enzymes, bacteriocins, hydrogen cyanide, volatile organic compounds, biosurfactants and induction of systemic resistance. The efficacy of antagonistic strains could be further improved through genetic engineering for better disease suppression in sustainable farming practices. Some antagonistic microbial strains also possess plant-growth-promoting activities and their inoculation improved plant growth in addition to disease suppression. This review discusses the characterization of antagonistic microbes and their antimicrobial metabolites, and the application of these BCAs for disease control. The present review also provides a comprehensive summary of the genetic organization and regulation of the biosynthesis of different antimicrobial metabolites in antagonistic strains. Use of molecular engineering to improve production of metabolites in BCAs and their efficacy in disease control is also discussed. The application of these biopesticides will reduce use of conventional pesticides in disease control and help in achieving sustainable and eco-friendly agricultural systems.
Collapse
Affiliation(s)
- Diksha Malik
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, 125004 India
| | - Satish Kumar
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, 125004 India
| | - Satyavir S. Sindhu
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, 125004 India
| |
Collapse
|
2
|
Hassen AI, Muema EK, Diale MO, Mpai T, Bopape FL. Non-Rhizobial Endophytes (NREs) of the Nodule Microbiome Have Synergistic Roles in Beneficial Tripartite Plant-Microbe Interactions. Microorganisms 2025; 13:518. [PMID: 40142410 PMCID: PMC11945167 DOI: 10.3390/microorganisms13030518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/10/2025] [Accepted: 02/22/2025] [Indexed: 03/28/2025] Open
Abstract
Microbial symbioses deal with the symbiotic interactions between a given microorganism and another host. The most widely known and investigated microbial symbiosis is the association between leguminous plants and nitrogen-fixing rhizobia. It is one of the best-studied plant-microbe interactions that occur in the soil rhizosphere and one of the oldest plant-microbe interactions extensively studied for the past several decades globally. Until recently, it used to be a common understanding among scientists in the field of rhizobia and microbial ecology that the root nodules of thousands of leguminous species only contain nitrogen-fixing symbiotic rhizobia. With the advancement of molecular microbiology and the coming into being of state-of-the-art biotechnology innovations, including next-generation sequencing, it has now been revealed that rhizobia living in the root nodules of legumes are not alone. Microbiome studies such as metagenomics of the root nodule microbial community showed that, in addition to symbiotic rhizobia, other bacteria referred to as non-rhizobial endophytes (NREs) exist in the nodules. This review provides an insight into the occurrence of non-rhizobial endophytes in the root nodules of several legume species and the beneficial roles of the tripartite interactions between the legumes, the rhizobia and the non-rhizobial endophytes (NREs).
Collapse
Affiliation(s)
- Ahmed Idris Hassen
- ARC-Plant Health and Protection, P. Bag X134, Queenswood, Pretoria 0121, South Africa; (M.O.D.); (T.M.); (F.L.B.)
- Department of Plant and Soil Sciences, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou 0950, Limpopo, South Africa
| | - Esther K. Muema
- Department of Soil Science, Faculty of Agri-Sciences, Stellenbosch University, Stellenbosch 6201, Western Cape, South Africa;
| | - Mamonokane O. Diale
- ARC-Plant Health and Protection, P. Bag X134, Queenswood, Pretoria 0121, South Africa; (M.O.D.); (T.M.); (F.L.B.)
| | - Tiisetso Mpai
- ARC-Plant Health and Protection, P. Bag X134, Queenswood, Pretoria 0121, South Africa; (M.O.D.); (T.M.); (F.L.B.)
| | - Francina L. Bopape
- ARC-Plant Health and Protection, P. Bag X134, Queenswood, Pretoria 0121, South Africa; (M.O.D.); (T.M.); (F.L.B.)
| |
Collapse
|
3
|
Rafique M, Naveed M, Mumtaz MZ, Niaz A, Alamri S, Siddiqui MH, Waheed MQ, Ali Z, Naman A, Rehman SU, Brtnicky M, Mustafa A. Unlocking the potential of biofilm-forming plant growth-promoting rhizobacteria for growth and yield enhancement in wheat (Triticum aestivum L.). Sci Rep 2024; 14:15546. [PMID: 38969785 PMCID: PMC11226629 DOI: 10.1038/s41598-024-66562-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 07/02/2024] [Indexed: 07/07/2024] Open
Abstract
Plant growth-promoting rhizobacteria (PGPR) boost crop yields and reduce environmental pressures through biofilm formation in natural climates. Recently, biofilm-based root colonization by these microorganisms has emerged as a promising strategy for agricultural enhancement. The current work aims to characterize biofilm-forming rhizobacteria for wheat growth and yield enhancement. For this, native rhizobacteria were isolated from the wheat rhizosphere and ten isolates were characterized for plant growth promoting traits and biofilm production under axenic conditions. Among these ten isolates, five were identified as potential biofilm-producing PGPR based on in vitro assays for plant growth-promoting traits. These were further evaluated under controlled and field conditions for their impact on wheat growth and yield attributes. Surface-enhanced Raman spectroscopy analysis further indicated that the biochemical composition of the biofilm produced by the selected bacterial strains includes proteins, carbohydrates, lipids, amino acids, and nucleic acids (DNA/RNA). Inoculated plants in growth chamber resulted in larger roots, shoots, and increase in fresh biomass than controls. Similarly, significant increases in plant height (13.3, 16.7%), grain yield (29.6, 17.5%), number of tillers (18.7, 34.8%), nitrogen content (58.8, 48.1%), and phosphorus content (63.0, 51.0%) in grains were observed in both pot and field trials, respectively. The two most promising biofilm-producing isolates were identified through 16 s rRNA partial gene sequencing as Brucella sp. (BF10), Lysinibacillus macroides (BF15). Moreover, leaf pigmentation and relative water contents were significantly increased in all treated plants. Taken together, our results revealed that biofilm forming PGPR can boost crop productivity by enhancing growth and physiological responses and thus aid in sustainable agriculture.
Collapse
Affiliation(s)
- Munazza Rafique
- Soil Bacteriology Section, Agricultural Biotechnology Research Institute, AARI, Faisalabad, 38000, Pakistan
| | - Muhammad Naveed
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan.
| | - Muhammad Zahid Mumtaz
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China, Lahore, Pakistan
| | - Abid Niaz
- Soil Bacteriology Section, Agricultural Biotechnology Research Institute, AARI, Faisalabad, 38000, Pakistan
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Muhammad Qandeel Waheed
- Wheat Breeding Group, Plant Breeding and Genetics Division, Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, 38000, Pakistan
| | - Zulfiqar Ali
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, 38040, Pakistan
- Director, Programs and Projects Department, Islamic Organization for Food Security, 019900, Astana, Kazakhstan
| | - Abdul Naman
- Department of Chemistry, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Sajid Ur Rehman
- Agricultural Biotechnology Research Institute, AARI, Faisalabad, 38000, Pakistan
| | - Martin Brtnicky
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 61300, Brno, Czech Republic
| | - Adnan Mustafa
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
4
|
Ahmed A, He P, He Y, Singh BK, Wu Y, Munir S, He P. Biocontrol of plant pathogens in omics era-with special focus on endophytic bacilli. Crit Rev Biotechnol 2024; 44:562-580. [PMID: 37055183 DOI: 10.1080/07388551.2023.2183379] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 02/06/2023] [Indexed: 04/15/2023]
Abstract
Nearly all plants and their organs are inhabited by endophytic microbes which play a crucial role in plant fitness and stress resilience. Harnessing endophytic services can provide effective solutions for a sustainable increase in agriculture productivity and can be used as a complement or alternative to agrochemicals. Shifting agriculture practices toward the use of nature-based solutions can contribute directly to the global challenges of food security and environmental sustainability. However, microbial inoculants have been used in agriculture for several decades with inconsistent efficacy. Key reasons of this inconsistent efficacy are linked to competition with indigenous soil microflora and inability to colonize plants. Endophytic microbes provide solutions to both of these issues which potentially make them better candidates for microbial inoculants. This article outlines the current advancements in endophytic research with special focus on endophytic bacilli. A better understanding of diverse mechanisms of disease control by bacilli is essential to achieve maximum biocontrol efficacy against multiple phytopathogens. Furthermore, we argue that integration of emerging technologies with strong theoretical frameworks have the potential to revolutionize biocontrol approaches based on endophytic microbes.
Collapse
Affiliation(s)
- Ayesha Ahmed
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Pengfei He
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yueqiu He
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith South, New South Wales, Australia
- Global Centre for Land Based Innovation, Western Sydney University, Penrith South, New South Wales, Australia
| | - Yixin Wu
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Shahzad Munir
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Pengbo He
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
5
|
Najafi Zilaie M, Mosleh Arani A, Etesami H. The importance of plant growth-promoting rhizobacteria to increase air pollution tolerance index (APTI) in the plants of green belt to control dust hazards. FRONTIERS IN PLANT SCIENCE 2023; 14:1098368. [PMID: 36968413 PMCID: PMC10036785 DOI: 10.3389/fpls.2023.1098368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Dust causes adverse effects on the physiological and biochemical characteristics of plants and limits their use in the development of the green belt. Air Pollution Tolerance Index (APTI) is an important tool to screen out plants, based on their tolerance or sensitivity level to different air pollutants. The aim of this study was to investigate the effect of two plant growth-promoting bacterial strains (Zhihengliuella halotolerans SB and Bacillus pumilus HR) and their combination as a biological solution on APTI of three desert plant species of Seidlitzia rosmarinus, Haloxylon aphyllum and Nitraria schoberi under dust stress (0 and 1.5 g m-2 30 days-1). Dust caused a significant decrease of 21% and 19%, respectively, in the total chlorophyll of N. schoberi and S. rosmarinus, an 8% decrease in leaf relative water content, a 7% decrease in the APTI of N. schoberi, and a decrease of 26 and 17% in protein content of H. aphyllum and N. schoberi, respectively. However, Z. halotolerans SB increased the amount of total chlorophyll in H. aphyllum and S. rosmarinus by 236% and 21%, respectively, and the amount of ascorbic acid by 75% and 67% in H. aphyllum and N. schoberi, respectively. B. pumilus HR also increased the leaf relative water content in H. aphyllum and N. schoberi by 10% and 15%, respectively. The inoculation with B. pumilus HR, Z. halotolerans SB and the combination of these two isolates decreased the activity of peroxidase by 70%, 51%, and 36%, respectively, in N. schoberi, and 62%, 89%, and 25% in S. rosmarinus, respectively. These bacterial strains also increased the concentration of protein in all three desert plants. Under dust stress, H. aphyllum had a higher APTI than the other two species. Z. halotolerans SB, which had been isolated from S. rosmarinus, was more effective than B. pumilus HR in alleviating the effects of dust stress on this plant. Therefore, it was concluded that plant growth-promoting rhizobacteria can be effective at improving the mechanisms of plant tolerance to air pollution in the green belt.
Collapse
Affiliation(s)
- Mahmood Najafi Zilaie
- Department of Environmental Sciences, Faculty of Natural Resources, Yazd University, Yazd, Iran
| | - Asghar Mosleh Arani
- Department of Environmental Sciences, Faculty of Natural Resources, Yazd University, Yazd, Iran
| | - Hassan Etesami
- Department of Soil Science, University of Tehran, Tehran, Iran
| |
Collapse
|
6
|
Rojas-Solis D, Vences-Guzmán MÁ, Sohlenkamp C, Santoyo G. Cardiolipin synthesis in Pseudomonas fluorescens UM270 plays a relevant role in stimulating plant growth under salt stress. Microbiol Res 2023; 268:127295. [PMID: 36587534 DOI: 10.1016/j.micres.2022.127295] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022]
Abstract
Membrane cardiolipin (CL) phospholipids play a fundamental role in the adaptation of bacteria to various environmental conditions, including saline stress. Here, we constructed deletion mutants of two CL synthetase genes, clsA (UM270 ∆clsA) and clsB (UM270 ∆clsB), in the rhizobacterium Pseudomonas fluorescens UM270, and evaluated their role in plant growth promotion under salt stress. UM270 ∆clsA and UM270 ∆clsB mutants showed a significant reduction in CL synthesis compared to the P. fluorescens UM270 wild-type (UM270 wt) strain (58% ∆clsA and 53% ∆clsB), and their growth rate was not affected, except when grown at 100 and 200 mM NaCl. Additionally, the root colonization capacity of both mutant strains was impaired compared with that of the wild type. Concomitant with the deletion of clsA and clsB genes, some physiological changes were observed in the UM270 ∆clsA and UM270 ∆clsB mutants, such as a reduction in indole acetic acid and biofilm production. By contrast, an increase in siderophore biosynthesis was observed. Further, inoculation of the UM270 wt strain in tomato plants (Solanum lycopersicum) grown under salt stress conditions (100 and 200 mM NaCl) resulted in an increase in root and shoot length, chlorophyll content, and dry weight. On the contrary, when each of the mutants were inoculated in tomato plants, a reduction in root length was observed when grown at 200 mM NaCl, but the shoot length, chlorophyll content, and total plant dry weight parameters were significantly reduced under normal or saline conditions (100 and 200 mM NaCl), compared to UM270 wt-inoculated plants. In conclusion, these results suggest that CL synthesis in P. fluorescens UM270 plays an important role in the promotion of tomato plant growth under normal conditions, but to a greater extent, under salt-stress conditions.
Collapse
Affiliation(s)
- Daniel Rojas-Solis
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico
| | | | - Christian Sohlenkamp
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Gustavo Santoyo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico.
| |
Collapse
|
7
|
Rojas-Solis D, Larsen J, Lindig-Cisneros R. Arsenic and mercury tolerant rhizobacteria that can improve phytoremediation of heavy metal contaminated soils. PeerJ 2023; 11:e14697. [PMID: 36650835 PMCID: PMC9840862 DOI: 10.7717/peerj.14697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/14/2022] [Indexed: 01/13/2023] Open
Abstract
Background Mining deposits often contain high levels of toxic elements such as mercury (Hg) and arsenic (As) representing strong environmental hazards. The purpose of this study was the isolation for plant growth promoting bacteria (PGPBs) that can improve phytoremediation of such mine waste deposits. Methods We isolated native soil bacteria from the rhizosphere of plants of mine waste deposits and agricultural land that was previously mine tailings from Tlalpujahua Michoacán, Mexico, and were identified by their fatty acid profile according to the MIDI Sherlock system. Plant growth promoting traits of all bacterial isolates were examined including production of 3-indoleacetic acid (IAA), siderophores, biofilm formation, and phosphate solubilization. Finally, the response of selected bacteria to mercury and arsenic was examined an in-vitro assay. Results A total 99 bacterial strains were isolated and 48 identified, representing 34 species belonging to 23 genera. Sixty six percent of the isolates produced IAA of which Pseudomonas fluorescens TL97 produced the most. Herbaspirillum huttiense TL36 performed best in terms of phosphate solubilization and production of siderophores. In terms of biofilm formation, Bacillus atrophaeus TL76 was the best. Discussion Most of the bacteria isolates showed high level of tolerance to the arsenic (as HAsNa2O4 and AsNaO2), whereas most isolates were susceptible to HgCl2. Three of the selected bacteria with PGP traits Herbispirillum huttiense TL36, Klebsiella oxytoca TL49 and Rhizobium radiobacter TL52 were also tolerant to high concentrations of mercury chloride, this might could be used for restoring or phytoremediating the adverse environmental conditions present in mine waste deposits.
Collapse
|
8
|
Sindhu SS, Sehrawat A, Glick BR. The involvement of organic acids in soil fertility, plant health and environment sustainability. Arch Microbiol 2022; 204:720. [DOI: 10.1007/s00203-022-03321-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/22/2022] [Accepted: 11/03/2022] [Indexed: 11/21/2022]
|
9
|
Rojas-Padilla J, de-Bashan LE, Parra-Cota FI, Rocha-Estrada J, de los Santos-Villalobos S. Microencapsulation of Bacillus Strains for Improving Wheat ( Triticum turgidum Subsp. durum) Growth and Development. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11212920. [PMID: 36365373 PMCID: PMC9657316 DOI: 10.3390/plants11212920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/23/2022] [Accepted: 10/26/2022] [Indexed: 05/14/2023]
Abstract
Bio-formulation technologies have a limited impact on agricultural productivity in developing countries, especially those based on plant growth-promoting rhizobacteria. Thus, calcium alginate microbeads were synthesized and used for the protection and delivery of three beneficial Bacillus strains for agricultural applications. The process of encapsulation had a high yield per gram for all bacteria and the microbeads protected the Bacillus strains, allowing their survival, after 12 months of storage at room temperature. Microbead analysis was carried out by observing the rate of swelling and biodegradation of the beads and the released-establishment of bacteria in the soil. These results showed that there is an increase of around 75% in bead swelling on average, which allows for larger pores, and the effective release and subsequent establishment of the bacteria in the soil. Biodegradation of microbeads in the soil was gradual: in the first week, they increased their weight (75%), which consistently results in the swelling ratio. The co-inoculation of the encapsulated strain TRQ8 with the other two encapsulated strains showed plant growth promotion. TRQ8 + TRQ65 and TRQ8 + TE3T bacteria showed increases in different biometric parameters of wheat plants, such as stem height, root length, dry weight, and chlorophyll content. Thus, here we demonstrated that the application of alginate microbeads containing the studied strains showed a positive effect on wheat plants.
Collapse
Affiliation(s)
- Jonathan Rojas-Padilla
- Instituto Tecnológico de Sonora, 5 de Febrero 818 sur, Ciudad Obregon 85000, Sonora, Mexico
| | - Luz Estela de-Bashan
- The Bashan Institute of Science, 1730 Post Oak Court, Auburn, AL 36830, USA
- Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), Av. IPN 195, La Paz 23096, Baja California Sur, Mexico
- Department of Entomology and Plant Pathology, Auburn University, 301 Funches Hall, Auburn, AL 36849, USA
| | - Fannie Isela Parra-Cota
- Campo Experimental Norman E. Borlaug, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Ciudad Obregon 85000, Sonora, Mexico
| | - Jorge Rocha-Estrada
- CONACyT Unidad Regional Hidalgo, Centro de Investigación en Alimentación y Desarrollo, Pachuca Ciudad del Conocimiento y la Cultura, San Agustín Tlaxiaca 42163, Hidalgo, Mexico
| | | |
Collapse
|
10
|
Najafi Zilaie M, Mosleh Arani A, Etesami H, Dinarvand M. Improved salinity and dust stress tolerance in the desert halophyte Haloxylon aphyllum by halotolerant plant growth-promoting rhizobacteria. FRONTIERS IN PLANT SCIENCE 2022; 13:948260. [PMID: 35991408 PMCID: PMC9382590 DOI: 10.3389/fpls.2022.948260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Because of global warming, desertification is increasing. One of the best strategies for combating desertification is reforestation of forests and biological operations of vegetation. However, events like soil salinity and dust storms, as the most important manifestations of desertification, prevent vegetation from settling in these areas. In this study, the effects of two halotolerant plant growth-promoting rhizobacterial strains, Bacillus pumilus HR and Zhihengliuella halotolerans SB, on physiological and nutritional status of the desert halophyte Haloxylon aphyllum under the stress of salinity (0, 300, and 600 mM NaCl) and dust (0 and 1.5 g m-2 month-1) were examined. Under dust application, the Z. halotolerans SB strain compared to the B. pumilus HR strain and the combination of these two bacterial strains improved the content of total chlorophyll (247 and 316%), carotenoid (94 and 107%), phosphorus (113 and 209%), magnesium (196 and 212%), and total dry biomass (13 and 28%) in H. aphyllum at salinity levels of 300 and 600 mM NaCl, respectively. Under conditions of combined application of dust and salinity, B. pumilus HR compared to Z. halotolerans SB and the combination of two strains at salinity levels of 300 and 600 mM NaCl, respectively, had better performance in increasing the content of iron (53 and 69%), calcium (38 and 161%), and seedling quality index (95 and 56%) in H. aphyllum. The results also showed that both bacterial strains and their combination were able to reduce the content of ascorbic acid, flavonoid, total phenol, proline, and malondialdehyde, and catalase activity, and ultimately improve the antioxidant capacity of H. aphyllum. This showed that the use of halotolerant rhizobacteria can stop the production of free radicals and thus prevent cell membrane damage and the formation of malondialdehyde under salinity and dust stress. The results of this study for the first time showed that halotolerant rhizobacteria can increase the seedling quality index of H. aphyllum under combined conditions of salinity and dust. The use of these bacteria can be useful in the optimal afforestation of H. aphyllum species in arid and semi-arid ecosystems.
Collapse
Affiliation(s)
- Mahmood Najafi Zilaie
- Department of Environmental Sciences, Faculty of Natural Resources, Yazd University, Yazd, Iran
| | - Asghar Mosleh Arani
- Department of Environmental Sciences, Faculty of Natural Resources, Yazd University, Yazd, Iran
| | - Hassan Etesami
- Department of Soil Science, University of Tehran, Karaj, Iran
| | - Mehri Dinarvand
- Forests and Rangelands Research Department, Khuzestan Agricultural and Natural Resources Research and Education Center, Agricultural Research Education and Extension Organization (AREEO), Ahvaz, Iran
| |
Collapse
|
11
|
Nysanth NS, Sivapriya SL, Natarajan C, Anith KN. Novel in vitro methods for simultaneous screening of two antagonistic bacteria against multiple fungal phytopathogens in a single agar plate. 3 Biotech 2022; 12:140. [PMID: 35656385 DOI: 10.1007/s13205-022-03205-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 05/12/2022] [Indexed: 12/01/2022] Open
Abstract
Two novel and rapid in vitro agar plate methods for simultaneous screening of two bacterial isolates for antagonism against multiple fungal phytopathogens in a single agar plate are described. In the modified plus streak method (MPS), in a 10 cm diameter PDA agar plate, two different bacterial isolates were screened against four fungal pathogens. The second method used 20 cm diameter PDA agar plate surface and was termed as the parallel multiple streak (PMS) method. Here, two bacterial isolates were screened for antagonism against ten fungal phytopathogens on a single agar plate surface. Our new methods are rapid and more economical, and could reduce the number of agar plates and the medium required for in vitro screening by several fold, compared to that used in the conventional dual culture plate assay.
Collapse
Affiliation(s)
- N S Nysanth
- Department of Agricultural Microbiology, College of Agriculture, Kerala Agricultural University, Thiruvananthapuram, Kerala 695 522 India
| | - S L Sivapriya
- Department of Agricultural Microbiology, College of Agriculture, Kerala Agricultural University, Thiruvananthapuram, Kerala 695 522 India
| | - Chitra Natarajan
- Department of Agricultural Microbiology, College of Agriculture, Kerala Agricultural University, Thiruvananthapuram, Kerala 695 522 India
| | - K N Anith
- Department of Agricultural Microbiology, College of Agriculture, Kerala Agricultural University, Thiruvananthapuram, Kerala 695 522 India
| |
Collapse
|
12
|
Hernández-Pacheco CE, Orozco-Mosqueda MDC, Flores A, Valencia-Cantero E, Santoyo G. Tissue-specific diversity of bacterial endophytes in Mexican husk tomato plants ( Physalis ixocarpa Brot. ex Horm.), and screening for their multiple plant growth-promoting activities. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100028. [PMID: 34841319 PMCID: PMC8610326 DOI: 10.1016/j.crmicr.2021.100028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/02/2021] [Accepted: 03/09/2021] [Indexed: 11/26/2022] Open
Abstract
Endophytic bacterial diversity of root, stem, and leaf tissues of Physalis ixocarpa was deciphered. Unique and shared species were found for each plant compartment analyzed. Extensive screening of various isolates exhibited antagonism against fungal pathogens. Diverse endophytes stimulated the growth of Physalis ixocarpa seedlings. Neobacillus drentensis CH23 stood out as an excellent plant growth-promoting bacterium.
The endophytic bacterial diversity of root, stem, and leaf tissues of Mexican husk tomato plants (Physalis ixocarpa) was compared and deciphered, and screened for their plant growth-promoting activity and antagonism against fungal phytopathogens. Total 315 isolates (108 roots, 102 stems, and 105 leaves) were obtained and characterized by 16S ribosomal gene sequencing. The most abundant genera were Bacillus, Microbacterium, Pseudomonas, and Stenotrophomonas. Unique species were found for each tissue analyzed, along with B. thuringiensis, B. toyonensis, Neobacillus drentensis, Paenibacillus castaneae, P. fluorescens, P. poae, and S. maltophilia present throughout the plant. Biodiversity indices did not show significant differences, but root tissues showed the highest abundance of bacterial endophytes. Several isolates showed excellent promotion activities in Physalis ixocarpa seedlings, increasing the length and weight of the root, total biomass, and chlorophyll content. Various isolates also exhibited antagonism against fungal pathogens. Among screened isolates, Neobacillus drentensis CH23 was found in all plant compartments, exhibiting growth-promoting activity and fungal antagonism. Strain CH23 and other endophytes showed the production of indoleacetic acid, siderophores, proteases, and solubilization of phosphates. These results demonstrate that the husk tomato plant endobiome has a high potential as a bioinoculating agent for agriculturally important crops.
Collapse
Affiliation(s)
- Claudia E Hernández-Pacheco
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, 58030 Morelia, Mexico
| | - Ma Del Carmen Orozco-Mosqueda
- Facultad de Agrobiología "Presidente Juárez", Universidad Michoacana de San Nicolás de Hidalgo, Uruapan, Michoacán, Mexico
| | - Aurora Flores
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, 58030 Morelia, Mexico
| | - Eduardo Valencia-Cantero
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, 58030 Morelia, Mexico
| | - Gustavo Santoyo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, 58030 Morelia, Mexico
| |
Collapse
|
13
|
Santoyo G, Urtis-Flores CA, Loeza-Lara PD, Orozco-Mosqueda MDC, Glick BR. Rhizosphere Colonization Determinants by Plant Growth-Promoting Rhizobacteria (PGPR). BIOLOGY 2021; 10:biology10060475. [PMID: 34072072 PMCID: PMC8229920 DOI: 10.3390/biology10060475] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 12/15/2022]
Abstract
Simple Summary Plant growth-promoting rhizobacteria (PGPR) are an eco-friendly alternative to the use of chemicals in agricultural production and crop protection. However, the efficacy of PGPR as bioinoculants can be diminished by a low capacity to colonize spaces in the rhizosphere. In this work, we review pioneering and recent developments on several important functions that rhizobacteria exhibit in order to compete, colonize, and establish themselves in the plant rhizosphere. Therefore, the use of highly competitive strains in open field trials should be a priority, in order to have consistent and better results in agricultural production activities. Abstract The application of plant growth-promoting rhizobacteria (PGPR) in the field has been hampered by a number of gaps in the knowledge of the mechanisms that improve plant growth, health, and production. These gaps include (i) the ability of PGPR to colonize the rhizosphere of plants and (ii) the ability of bacterial strains to thrive under different environmental conditions. In this review, different strategies of PGPR to colonize the rhizosphere of host plants are summarized and the advantages of having highly competitive strains are discussed. Some mechanisms exhibited by PGPR to colonize the rhizosphere include recognition of chemical signals and nutrients from root exudates, antioxidant activities, biofilm production, bacterial motility, as well as efficient evasion and suppression of the plant immune system. Moreover, many PGPR contain secretion systems and produce antimicrobial compounds, such as antibiotics, volatile organic compounds, and lytic enzymes that enable them to restrict the growth of potentially phytopathogenic microorganisms. Finally, the ability of PGPR to compete and successfully colonize the rhizosphere should be considered in the development and application of bioinoculants.
Collapse
Affiliation(s)
- Gustavo Santoyo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico;
- Correspondence:
| | - Carlos Alberto Urtis-Flores
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico;
| | - Pedro Damián Loeza-Lara
- Licenciatura en Genómica Alimentaria, Universidad de La Ciénega del Estado de Michoacán de Ocampo, Sahuayo 59103, Mexico;
| | - Ma. del Carmen Orozco-Mosqueda
- Facultad de Agrobiología “Presidente Juárez”, Universidad Michoacana de San Nicolás de Hidalgo, Melchor Ocampo, Uruapan 60170, Mexico;
| | - Bernard R. Glick
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| |
Collapse
|
14
|
Anith KN, Nysanth NS, Natarajan C. Novel and rapid agar plate methods for in vitro assessment of bacterial biocontrol isolates' antagonism against multiple fungal phytopathogens. Lett Appl Microbiol 2021; 73:229-236. [PMID: 33948964 DOI: 10.1111/lam.13495] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/14/2021] [Accepted: 04/28/2021] [Indexed: 11/28/2022]
Abstract
Biological control of plant diseases with antagonistic bacteria is a promising alternative to conventional chemical control strategies. In vitro screening for inhibition of mycelial growth of phytopathogenic fungi by bacterial isolates is the first step in selecting putative bacterial biocontrol agents. Dual culture plate assay is the most common method involved in this first-line selection process. However, it needs independent agar plates to test antagonism by a specific bacterial isolate against each of the fungal phytopathogen. Two modified in vitro antagonism tests are proposed here. Antagonistic activity of a putative biocontrol bacterial strain against four different fungal phytopathogens could be assessed in a single agar plate simultaneously. A comparison of the new methods with conventional dual culture plate assay was also done. The proposed methods are easy to perform and results of antagonism are obtained rapidly. Results of fungal inhibition were qualitatively comparable with that generated through dual culture plate assay. Quantity of resources such as agar medium and plates required for the modified antagonistic assays is several folds less than that required for dual culture plate assay.
Collapse
Affiliation(s)
- K N Anith
- Department of Agricultural Microbiology, College of Agriculture, Kerala Agricultural University, Thiruvananthapuram, Kerala, India
| | - N S Nysanth
- Department of Agricultural Microbiology, College of Agriculture, Kerala Agricultural University, Thiruvananthapuram, Kerala, India
| | - C Natarajan
- Department of Agricultural Microbiology, College of Agriculture, Kerala Agricultural University, Thiruvananthapuram, Kerala, India
| |
Collapse
|
15
|
Khatoon Z, Huang S, Rafique M, Fakhar A, Kamran MA, Santoyo G. Unlocking the potential of plant growth-promoting rhizobacteria on soil health and the sustainability of agricultural systems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 273:111118. [PMID: 32741760 DOI: 10.1016/j.jenvman.2020.111118] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/13/2020] [Accepted: 07/19/2020] [Indexed: 05/06/2023]
Abstract
The concept of soil health refers to specific soil properties and the ability to support and sustain crop growth and productivity, while maintaining long-term environmental quality. The key components of healthy soil are high populations of organisms that promote plant growth, such as the plant growth promoting rhizobacteria (PGPR). PGPR plays multiple beneficial and ecological roles in the rhizosphere soil. Among the roles of PGPR in agroecosystems are the nutrient cycling and uptake, inhibition of potential phytopathogens growth, stimulation of plant innate immunity, and direct enhancement of plant growth by producing phytohormones or other metabolites. Other important roles of PGPR are their environmental cleanup capacities (soil bioremediation). In this work, we review recent literature concerning the diverse mechanisms of PGPR in maintaining healthy conditions of agricultural soils, thus reducing (or eliminating) the toxic agrochemicals dependence. In conclusion, this review provides comprehensive knowledge on the current PGPR basic mechanisms and applications as biocontrol agents, plant growth stimulators and soil rhizoremediators, with the final goal of having more agroecological practices for sustainable agriculture.
Collapse
Affiliation(s)
- Zobia Khatoon
- Key Laboratory of Pollution Processes and Environmental Criteria of the Ministry of Education, Key Laboratory of Urban Ecological Environment Rehabilitation and Pollution Control of Tianjin, Numerical Stimulation Group for Water Environment, College of Environmental Science and Engineering Nankai University, Tianjin, 300350, China
| | - Suiliang Huang
- Key Laboratory of Pollution Processes and Environmental Criteria of the Ministry of Education, Key Laboratory of Urban Ecological Environment Rehabilitation and Pollution Control of Tianjin, Numerical Stimulation Group for Water Environment, College of Environmental Science and Engineering Nankai University, Tianjin, 300350, China
| | - Mazhar Rafique
- Department of Soil Science, The University of Haripur, 22630, KPK, Pakistan
| | - Ali Fakhar
- Department of Soil Science, Sindh Agricultural University, Tandojam, Pakistan
| | | | - Gustavo Santoyo
- Genomic Diversity Laboratory, Institute of Biological and Chemical Research, Universidad Michoacana de San Nicolas de Hidalgo, 58030, Morelia, Mexico.
| |
Collapse
|
16
|
Morales-Cedeño LR, Orozco-Mosqueda MDC, Loeza-Lara PD, Parra-Cota FI, de Los Santos-Villalobos S, Santoyo G. Plant growth-promoting bacterial endophytes as biocontrol agents of pre- and post-harvest diseases: Fundamentals, methods of application and future perspectives. Microbiol Res 2020; 242:126612. [PMID: 33059112 DOI: 10.1016/j.micres.2020.126612] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/23/2020] [Accepted: 09/24/2020] [Indexed: 02/08/2023]
Abstract
Sustainable agriculture requires the recruitment of bacterial agents to control diverse plant diseases such as bacterial endophytes. Bacterial endophytes colonize and inhabit internal plant tissues without causing any apparent damage. Within the plant, these bacteria exert multiple beneficiary effects, including direct stimulation of plant growth by the action of phytohormones or the production of metabolites. However, bacterial endophytes also protect their plant host through biocontrol pathogens or by inducing plant innate immune system. The present work makes a systematic and in-depth review on the current state of endophytic bacterial diversity, their plant colonization strategies, and their potential roles as protective agents against plant diseases during pre- and post-harvest stages of crop productivity. In addition, an exploration of their beneficial effects on sustainable agriculture by reducing/eliminating the use of toxic agrochemicals was conducted. Finally, we propose diverse effective strategies for the application of endophytic bacteria as biological agents during both pre- and post-harvest stages, with the aim of protecting crop plants and their agricultural products.
Collapse
Affiliation(s)
- Luzmaria R Morales-Cedeño
- Instituto De Investigaciones Químico-Biológicas, Universidad Michoacana De San Nicolás De Hidalgo, Morelia, Michoacán, Mexico
| | - Ma Del Carmen Orozco-Mosqueda
- Facultad De Agrobiología (··)Presidente Juárez(··), Universidad Michoacana De San Nicolás De Hidalgo, Uruapan, Michoacán, Mexico
| | - Pedro D Loeza-Lara
- Licenciatura en Genómica Alimentaria, Universidad de La Ciénega del Estado de Michoacán de Ocampo, Mexico
| | - Fannie I Parra-Cota
- Campo Experimental Norman E. Borlaug, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Ciudad Obregón, Sonora, Mexico
| | | | - Gustavo Santoyo
- Instituto De Investigaciones Químico-Biológicas, Universidad Michoacana De San Nicolás De Hidalgo, Morelia, Michoacán, Mexico.
| |
Collapse
|
17
|
Rojas-Solis D, Vences-Guzmán MA, Sohlenkamp C, Santoyo G. Bacillus toyonensis COPE52 Modifies Lipid and Fatty Acid Composition, Exhibits Antifungal Activity, and Stimulates Growth of Tomato Plants Under Saline Conditions. Curr Microbiol 2020; 77:2735-2744. [PMID: 32504325 DOI: 10.1007/s00284-020-02069-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 05/30/2020] [Indexed: 02/07/2023]
Abstract
Salinity is one of the most important factors that limit the productivity of agricultural soils. Certain plant growth-promoting bacteria (PGPB) have the ability to stimulate the growth of crop plants even under salt stress. In the present study, we analysed the potential of PGPB Bacillus toyonensis COPE52 to improve the growth of tomato plants and its capacity to modify its membrane lipid and fatty acid composition under salt stress. Thus, strain COPE52 increased the relative amount of branched chain fatty acids (15:0i and 16:1∆9) and accumulation of an unknown membrane lipid, while phosphatidylethanolamine (PE) levels decreased during growth with 100 and 200 mM NaCl. Importantly, direct and indirect plant growth-promoting (PGP) mechanisms of B. toyonensis COPE52, such as indole-3-acetic acid (IAA), protease activity, biofilm formation, and antifungal activity against Botrytis cinerea, remained unchanged in the presence of NaCl in vitro, compared to controls without salt. In a greenhouse experiment, tomato plants (Lycopersicon esculentum 'Saladette') showed increased shoot and root length, higher dry biomass, and chlorophyll content when inoculated with B. toyonensis COPE52 at 0 and 100 mM NaCl. In summary, these results indicate that Bacillus toyonensis COPE52 can modify cell membrane lipid components as a potential protecting mechanism to maintain PGP traits under saline-soil conditions.
Collapse
Affiliation(s)
- Daniel Rojas-Solis
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| | - Miguel A Vences-Guzmán
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Christian Sohlenkamp
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Gustavo Santoyo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México. .,Laboratorio de Diversidad Genómica, Instituto de Investigaciones Químico-Biológicas de la Universidad Michoacana de San Nicolás de Hidalgo, Edificio A1´, Ciudad Universitaria, C.P. 58063, Morelia, Michoacán, México.
| |
Collapse
|
18
|
Orozco-Mosqueda MDC, Glick BR, Santoyo G. ACC deaminase in plant growth-promoting bacteria (PGPB): An efficient mechanism to counter salt stress in crops. Microbiol Res 2020; 235:126439. [PMID: 32097862 DOI: 10.1016/j.micres.2020.126439] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/12/2020] [Accepted: 02/15/2020] [Indexed: 11/27/2022]
Abstract
Salinity in agricultural soil is a major problem around the world, with negative consequences for the growth and production of a wide range of crops. To counteract these harmful effects, plants sometimes have bacterial partners that contain the enzyme 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, which acts by degrading ACC (the precursor of ethylene in all higher plants). The enzymatic activity of ACC deaminase results in the production of α-ketobutyrate and ammonia, which, by lowering ACC levels, prevents excessive increases in the synthesis of ethylene under various stress conditions and is one of the most efficient mechanisms to induce plant tolerance to salt stress. In the present review, recent works on the role of ACC deaminase are discussed alongside its importance in promoting plant growth under conditions of salt stress in endophytic and rhizospheric bacteria, with some emphasis on Bacillus species. In addition, the toxic effects of soil salinity on plants and microbial biodiversity are analysed. Recent findings on the synergetic functioning of ACC deaminase and other bacterial mechanisms of salt stress tolerance, such as trehalose accumulation, are also summarized. Finally, we discuss the various advantages of ACC deaminase-producing bacilli as bioinoculants to address the problem of salinity in agricultural soils.
Collapse
Affiliation(s)
- Ma Del Carmen Orozco-Mosqueda
- Facultad de Agrobiología "Presidente Juárez", Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Paseo Lázaro Cárdenas s/n Esq, Berlín, Col. Viveros, 60190, Uruapan, Michoacán, Mexico
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Gustavo Santoyo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, 58030, Morelia, Michoacán, Mexico.
| |
Collapse
|
19
|
Draft genome analysis of the endophyte, Bacillus toyonensis COPE52, a blueberry ( Vaccinium spp. var. Biloxi) growth-promoting bacterium. 3 Biotech 2019; 9:370. [PMID: 31588394 DOI: 10.1007/s13205-019-1911-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 09/19/2019] [Indexed: 10/26/2022] Open
Abstract
In this work, we report an analysis of the draft genome of the blueberry (Vaccinium spp. var. Biloxi) growth-promoting endophyte Bacillus toyonensis, strain COPE52. The genome of COPE52 consists of a single 5,806,513 bp replicon, with a 35.1% G + C content. Strain COPE52 was strongly affiliated to B. toyonensis species, based on species delimitation cut-off values established for average nucleotide identity (> 95-96%), genome-to genome distance calculator (> 70%) and phylogenomic analysis. The RAST genomic annotation of the COPE52 strain revealed a total of 5979 total genes, including 5631 protein-coding genes, 11 rRNA genes, 5 ncRNAs, 81 tRNA genes, and 251 pseudogenes. To further validate the in silico analysis results, experiments were carried out to detect the production of indoleacetic acid, protease activity, and the emission of volatiles like acetoin, 2,3-butanediol and dimethyl disulphide as potential plant growth-promoting mechanisms. COPE52 also showed antifungal action against the grey mould phytopathogen, Botrytis cinerea, during in vitro bioassays. In addition, inoculation with strain COPE52 promoted growth biomass and chlorophyll content in blueberry plants (Vaccinium spp. var. Biloxi) under greenhouse conditions. To our knowledge, this is the first study showing genomic and experimental evidence of B. toyonensis as plant growth-promoting bacteria (PGPB).
Collapse
|