1
|
Yujra VQ, Silveira EJDD, Ribeiro DA, Castilho RM, Squarize CH. Clock gene Per2 modulates epidermal tissue repair in vivo. J Cell Biochem 2024; 125:e30513. [PMID: 38229522 PMCID: PMC10932909 DOI: 10.1002/jcb.30513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/18/2023] [Accepted: 12/05/2023] [Indexed: 01/18/2024]
Abstract
Wound healing can be influenced by genes that control the circadian cycle, including Per2 and BMAL1, which coordinate the functions of several organs, including the skin. The aim of the study was to evaluate the role of PER2 during experimental skin wound healing. Two groups (control and Per2-KO), consisting of 14 male mice each, were anesthetized by inhalation, and two 6 mm wounds were created on their dorsal skin using a punch biopsy. A silicone ring was sutured around the wound perimeter to restrict contraction. The wound healing process was clinically measured daily (closure index) until complete wound repair. On Day 6, histomorphometric analysis was performed using the length and thickness of the epithelial migration tongue, in addition to counting vessels underlying the lesion by immunofluorescence assay and maturation of collagen fibers through picrosirius staining. Bromodeoxyuridine (BrdU) incorporation and quantification were performed using the subcutaneous injection technique 2 h before euthanasia and through immunohistochemical analysis of the proliferative index. In addition, the qualitative analysis of myofibroblasts and periostin distribution in connective tissue was performed by immunofluorescence. Statistically significant differences were observed in the healing time between the experimental groups (means: 15.5 days for control mice and 13.5 days for Per2-KO; p = 0.001). The accelerated healing observed in the Per2-KO group (p < 0.05) was accompanied by statistical differences in wound diameter and length of the migrating epithelial tongue (p = 0.01) compared to the control group. Regarding BrdU immunoreactivity, higher expression was observed in the intact epithelium of Per2-KO animals (p = 0.01), and this difference compared to control was also present, to a lesser extent, at the wound site (p = 0.03). Immunofluorescence in the connective tissue underlying the wound showed a higher angiogenic potential in the Per2-KO group in the intact tissue area and the wound region (p < 0.01), where increased expression of myofibroblasts was also observed. Qualitative analysis revealed the distribution of periostin protein and collagen fibers in the connective tissue underlying the wound, with greater organization and maturation during the analyzed period. Our research showed that the absence of the Per2 gene positively impacts the healing time of the skin in vivo. This acceleration depends on the increase of epithelial proliferative and angiogenic capacity of cells carrying the Per2 deletion.
Collapse
Affiliation(s)
- Veronica Quispe Yujra
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan (UM), Ann Arbor, Michigan, USA
- Department of Biosciences, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Ericka Janine Dantas da Silveira
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan (UM), Ann Arbor, Michigan, USA
- Odontology Sciences Postgraduate Program, Dentistry Department, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| | - Daniel Araki Ribeiro
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan (UM), Ann Arbor, Michigan, USA
- Department of Biosciences, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Rogerio Moraes Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan (UM), Ann Arbor, Michigan, USA
| | - Cristiane Helena Squarize
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan (UM), Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
Bachari A, Nassar N, Schanknecht E, Telukutla S, Piva TJ, Mantri N. Rationalizing a prospective coupling effect of cannabinoids with the current pharmacotherapy for melanoma treatment. WIREs Mech Dis 2024; 16:e1633. [PMID: 37920964 DOI: 10.1002/wsbm.1633] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/21/2023] [Accepted: 10/06/2023] [Indexed: 11/04/2023]
Abstract
Melanoma is one of the leading fatal forms of cancer, yet from a treatment perspective, we have minimal control over its reoccurrence and resistance to current pharmacotherapies. The endocannabinoid system (ECS) has recently been accepted as a multifaceted homeostatic regulator, influencing various physiological processes across different biological compartments, including the skin. This review presents an overview of the pathophysiology of melanoma, current pharmacotherapy used for treatment, and the challenges associated with the different pharmacological approaches. Furthermore, it highlights the utility of cannabinoids as an additive remedy for melanoma by restoring the balance between downregulated immunomodulatory pathways and elevated inflammatory cytokines during chronic skin conditions as one of the suggested critical approaches in treating this immunogenic tumor. This article is categorized under: Cancer > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Ava Bachari
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, Victoria, Australia
| | - Nazim Nassar
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Ellen Schanknecht
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, Victoria, Australia
| | | | - Terrence Jerald Piva
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Nitin Mantri
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, Victoria, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
3
|
Eckersley A, Morais MR, Ozols M, Lennon R. Peptide location fingerprinting identifies structural alterations within basement membrane components in ageing kidney. Matrix Biol 2023; 121:167-178. [PMID: 37437747 DOI: 10.1016/j.matbio.2023.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/04/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
During ageing, the glomerular and tubular basement membranes (BM) of the kidney undergo a progressive decline in function that is underpinned by histological changes, including glomerulosclerosis and tubular interstitial fibrosis and atrophy. This BM-specific ageing is thought to result from damage accumulation to long-lived extracellular matrix (ECM) protein structures. Determining which BM proteins are susceptible to these structure-associated changes, and the possible mechanisms and downstream consequences, is critical to understand age-related kidney degeneration and to identify markers for therapeutic intervention. Peptide location fingerprinting (PLF) is an emerging proteomic mass spectrometry analysis technique capable of identifying ECM proteins with structure-associated differences that may occur by damage modifications in ageing. Here, we apply PLF as a bioinformatic screening tool to identify BM proteins with structure-associated differences between young and aged human glomerular and tubulointerstitial compartments. Several functional regions within key BM components displayed alterations in tryptic peptide yield, reflecting potential age-dependent shifts in molecular (e.g. laminin-binding regions in agrin) and cellular (e.g. integrin-binding regions in laminins 521 and 511) interactions, oxidation (e.g. collagen IV) and the fragmentation and release of matrikines (e.g. canstatin and endostatin from collagens IV and XVIII). Furthermore, we found that periostin and the collagen IV α2 chain exhibited structure-associated differences in ageing that were conserved between human kidney and previously analysed mouse lung, revealing BM components that harbour shared susceptibilities across species and organs.
Collapse
Affiliation(s)
- Alexander Eckersley
- Division of Musculoskeletal & Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
| | - Mychel Rpt Morais
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Wellcome Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Matiss Ozols
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Department of Human Genetics, Wellcome Sanger Institute, Genome Campus, Hinxton, UK; British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
| | - Rachel Lennon
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Wellcome Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Department of Paediatric Nephrology, Royal Manchester Children's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester, UK.
| |
Collapse
|
4
|
Gilham D, Wasiak S, Rakai BD, Fu L, Tsujikawa LM, Sarsons CD, Carestia A, Lebioda K, Johansson JO, Sweeney M, Kalantar-Zadeh K, Kulikowski E. Apabetalone Downregulates Fibrotic, Inflammatory and Calcific Processes in Renal Mesangial Cells and Patients with Renal Impairment. Biomedicines 2023; 11:1663. [PMID: 37371758 DOI: 10.3390/biomedicines11061663] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Epigenetic mechanisms are implicated in transcriptional programs driving chronic kidney disease (CKD). Apabetalone is an orally available inhibitor of bromodomain and extraterminal (BET) proteins, which are epigenetic readers that modulate gene expression. In the phase 3 BETonMACE trial, apabetalone reduced risk of major adverse cardiac events (MACE) by 50% in the CKD subpopulation, indicating favorable effects along the kidney-heart axis. Activation of human renal mesangial cells (HRMCs) to a contractile phenotype that overproduces extracellular matrix (ECM) and inflammatory cytokines, and promotes calcification, frequently accompanies CKD to drive pathology. Here, we show apabetalone downregulated HRMC activation with TGF-β1 stimulation by suppressing TGF-β1-induced α-smooth muscle actin (α-SMA) expression, α-SMA assembly into stress fibers, enhanced contraction, collagen overproduction, and expression of key drivers of fibrosis, inflammation, or calcification including thrombospondin, fibronectin, periostin, SPARC, interleukin 6, and alkaline phosphatase. Lipopolysaccharide-stimulated expression of inflammatory genes IL6, IL1B, and PTGS2 was also suppressed. Transcriptomics confirmed apabetalone affected gene sets of ECM remodeling and integrins. Clinical translation of in vitro results was indicated in CKD patients where a single dose of apabetalone reduced plasma levels of key pro-fibrotic and inflammatory markers, and indicated inhibition of TGF-β1 signaling. While plasma proteins cannot be traced to the kidney alone, anti-fibrotic and anti-inflammatory effects of apabetalone identified in this study are consistent with the observed decrease in cardiovascular risk in CKD patients.
Collapse
Affiliation(s)
- Dean Gilham
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada
| | - Sylwia Wasiak
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada
| | - Brooke D Rakai
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada
| | - Li Fu
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada
| | - Laura M Tsujikawa
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada
| | | | - Agostina Carestia
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada
| | - Kenneth Lebioda
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada
| | - Jan O Johansson
- Resverlogix Inc., 535 Mission St, 14th Floor, San Francisco, CA 94105, USA
| | - Michael Sweeney
- Resverlogix Inc., 535 Mission St, 14th Floor, San Francisco, CA 94105, USA
| | - Kamyar Kalantar-Zadeh
- Harbor-UCLA Medical Center, University of California Los Angeles, 1000 W Carson St, Torrance, CA 90502, USA
| | - Ewelina Kulikowski
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada
| |
Collapse
|
5
|
Pickering ME, Oris C, Chapurlat R. Periostin in Osteoporosis and Cardiovascular Disease. J Endocr Soc 2023; 7:bvad081. [PMID: 37362382 PMCID: PMC10285762 DOI: 10.1210/jendso/bvad081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Indexed: 06/28/2023] Open
Abstract
Context Osteoporosis (OP) and cardiovascular disease (CVD), prevalent disorders worldwide, often coexist and share common risk factors. The identification of common biomarkers could significantly improve patients' preventive care. Objectives The objectives are 1, to review periostin (Postn) involvement in osteoporosis and in CVD, and 2, identify if Postn could be a common biomarker. Design This is a scoping review on Postn in OP and CVD. Methods Databases were searched, in vitro and in vivo, for publications in English on Postn, bone, and the cardiovascular system, with no limit regarding publication date. Results Postn appears as a key factor in OP and CVD. Its role as a potential biomarker in both pathologies is described in recent studies, but a number of limitations have been identified. Conclusions Current evidence provides fragmented views on Postn in OP and CVD and does not encapsulate Postn as a common pivotal thread linking these comorbidities. A number of gaps impede highlighting Postn as a common biomarker. There is room for future basic and clinical research with Postn as a marker and a target to provide new therapeutic options for aging patients with concomitant OP and CVD.
Collapse
Affiliation(s)
- Marie-Eva Pickering
- Correspondence: Marie-Eva Pickering, MD, Rheumatology Department, CHU Gabriel Montpied, 58 rue Montalembert, 63000 Clermont-Ferrand, France.
| | - Charlotte Oris
- Service de Biologie, CHU Gabriel Montpied, 63000 Clermont-Ferrand, France
| | - Roland Chapurlat
- Service de Rhumatologie, Hospices Civils de Lyon, 69437 Lyon, Cedex 03, France
- Inserm UMR 1033, 69437 Lyon, Cedex 03, France
| |
Collapse
|
6
|
Aghamir SMK, Amiri M, Panahi G, Khatami F, Dehghani S, Moosavi MS. Salivary and serum periostin in kidney transplant recipients. PLoS One 2023; 18:e0285256. [PMID: 37130146 PMCID: PMC10153693 DOI: 10.1371/journal.pone.0285256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023] Open
Abstract
INTRODUCTION End-stage renal disease (ESRD) treatment includes dialysis and kidney transplantation. Transplant rejection is a major barrier to transplant success. One of the markers mentioned in previous studies on renal function in patients with renal failure for various reasons is periostin (POSTN). The expression of POSTN correlates with interstitial fibrosis and reduced renal function. One of the limitations in this regard is the effect of oral lesions on the POSTN level. This study was conducted aimed to measure the relationship between salivary and serum POSTN and renal function in patients with a history of a kidney transplant, taking into account all the conditions affecting POSTN. METHODS In this study, serum and saliva samples were taken from 23 transplant patients with normal function (NF) and 29 transplant patients with graft failure (GF). At least one year had passed since the transplant. Before sampling, a complete oral examination was performed. Salivary and serum POSTN was examined by ELISA. The results were analyzed by SPSS software. RESULTS The POSTN level in the serum of the NF group (191.00 ± 33.42) was higher than GF patients (178.71 ± 25.68), but the difference was not significant (P = 0.30). Salivary POSTN in NF patients (2.76 ± 0.35) was significantly higher than GF patients (2.44 ± 0.60) (P = 0.01). CONCLUSIONS The superiority of saliva as a diagnostic fluid includes ease of collection and storage, and non-invasiveness, all of which can lead to the replacement of blood with this bio-fluid. The significant results of salivary POSTN may be due to the lack of serum disturbing factors. Saliva is an ultra-filtered fluid from serum and therefore there are fewer proteins and polysaccharides attached to biomarkers in saliva and the accuracy of measuring these biomarkers in the saliva is more valuable than serum.
Collapse
Affiliation(s)
| | - Mahrokh Amiri
- Department of Oral and Maxillofacial Medicine, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghodratollah Panahi
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Khatami
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sanaz Dehghani
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Organ Procurement Unit, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdieh-Sadat Moosavi
- Department of Oral and Maxillofacial Medicine, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Tao Y, Wang J, Lyu X, Li N, Lai D, Liu Y, Zhang X, Li P, Cao S, Zhou X, Zhao Y, Ma L, Tao T, Feng Z, Li X, Yang F, Zhou H. Comprehensive Proteomics Analysis Identifies CD38-Mediated NAD + Decline Orchestrating Renal Fibrosis in Pediatric Patients With Obstructive Nephropathy. Mol Cell Proteomics 2023; 22:100510. [PMID: 36804530 PMCID: PMC10025283 DOI: 10.1016/j.mcpro.2023.100510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/28/2023] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Obstructive nephropathy is one of the leading causes of kidney injury and renal fibrosis in pediatric patients. Although considerable advances have been made in understanding the pathophysiology of obstructive nephropathy, most of them were based on animal experiments and a comprehensive understanding of obstructive nephropathy in pediatric patients at the molecular level remains limited. Here, we performed a comparative proteomics analysis of obstructed kidneys from pediatric patients with ureteropelvic junction obstruction and healthy kidney tissues. Intriguingly, the proteomics revealed extensive metabolic reprogramming in kidneys from individuals with ureteropelvic junction obstruction. Moreover, we uncovered the dysregulation of NAD+ metabolism and NAD+-related metabolic pathways, including mitochondrial dysfunction, the Krebs cycle, and tryptophan metabolism, which led to decreased NAD+ levels in obstructed kidneys. Importantly, the major NADase CD38 was strongly induced in human and experimental obstructive nephropathy. Genetic deletion or pharmacological inhibition of CD38 as well as NAD+ supplementation significantly recovered NAD+ levels in obstructed kidneys and reduced obstruction-induced renal fibrosis, partially through the mechanisms of blunting the recruitment of immune cells and NF-κB signaling. Thus, our work not only provides an enriched resource for future investigations of obstructive nephropathy but also establishes CD38-mediated NAD+ decline as a potential therapeutic target for obstruction-induced renal fibrosis.
Collapse
Affiliation(s)
- Yuandong Tao
- Department of Pediatric Urology, Senior Department of Pediatrics, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China; National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China
| | - Jifeng Wang
- Laboratory of Proteomics & Key Laboratory of Protein and Peptide Pharmaceuticals Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xuexue Lyu
- Medical School of Chinese PLA, Beijing, China
| | - Na Li
- Laboratory of Proteomics & Key Laboratory of Protein and Peptide Pharmaceuticals Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Dong Lai
- Department of Urology, The Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yuanyuan Liu
- Department of Dermatology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xingyue Zhang
- Department of Dermatology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Pin Li
- Department of Pediatric Urology, Senior Department of Pediatrics, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China; National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China
| | - Shouqing Cao
- Department of Urology, The Third Medical Center of Chinese PLA General Hospital, Beijing, China; College of Graduate, Hebei North University, Zhangjiakou, China
| | - Xiaoguang Zhou
- Department of Pediatric Urology, Senior Department of Pediatrics, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yang Zhao
- Department of Pediatric Urology, Senior Department of Pediatrics, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lifei Ma
- Department of Pediatric Urology, Senior Department of Pediatrics, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Tian Tao
- Department of Pediatric Urology, Senior Department of Pediatrics, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhichun Feng
- National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China
| | - Xiubin Li
- Department of Urology, The Third Medical Center of Chinese PLA General Hospital, Beijing, China.
| | - Fuquan Yang
- Laboratory of Proteomics & Key Laboratory of Protein and Peptide Pharmaceuticals Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Huixia Zhou
- Department of Pediatric Urology, Senior Department of Pediatrics, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China; National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China; Medical School of Chinese PLA, Beijing, China.
| |
Collapse
|
8
|
Promising novel therapeutic targets for kidney disease: Emphasis on kidney-specific proteins. Drug Discov Today 2023; 28:103466. [PMID: 36509391 DOI: 10.1016/j.drudis.2022.103466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Worldwide, around 850 million people are diagnosed with kidney disease but the available treatment options are still limited. Preclinical studies propose a plethora of druggable targets that can attenuate kidney disease and could qualify as novel therapeutic strategies, although most of these targets still await clinical testing. Here, we review some promising candidate targets for chronic kidney disease: intermedin, periostin, sirtuin, the cannabinoid receptor, Klotho, and uromodulin. For acute kidney injury, we discuss Apelin, Elabela, growth differentiation factor-15, Fyn kinase, and Klotho. Target selection for further clinical development should consider redundancies with the standard of care, potential synergistic effects with existing treatments, as well as the potential of additional effects on the cardiovascular system as a common comorbidity in patients with kidney disease.
Collapse
|
9
|
Li L, Fu H, Liu Y. The fibrogenic niche in kidney fibrosis: components and mechanisms. Nat Rev Nephrol 2022; 18:545-557. [PMID: 35788561 DOI: 10.1038/s41581-022-00590-z] [Citation(s) in RCA: 185] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2022] [Indexed: 02/08/2023]
Abstract
Kidney fibrosis, characterized by excessive deposition of extracellular matrix (ECM) that leads to tissue scarring, is the final common outcome of a wide variety of chronic kidney diseases. Rather than being distributed uniformly across the kidney parenchyma, renal fibrotic lesions initiate at certain focal sites in which the fibrogenic niche is formed in a spatially confined fashion. This niche provides a unique tissue microenvironment that is orchestrated by a specialized ECM network consisting of de novo-induced matricellular proteins. Other structural elements of the fibrogenic niche include kidney resident and infiltrated inflammatory cells, extracellular vesicles, soluble factors and metabolites. ECM proteins in the fibrogenic niche recruit soluble factors including WNTs and transforming growth factor-β from the extracellular milieu, creating a distinctive profibrotic microenvironment. Studies using decellularized ECM scaffolds from fibrotic kidneys show that the fibrogenic niche autonomously promotes fibroblast proliferation, tubular injury, macrophage activation and endothelial cell depletion, pathological features that recapitulate key events in the pathogenesis of chronic kidney disease. The concept of the fibrogenic niche represents a paradigm shift in understanding of the mechanism of kidney fibrosis that could lead to the development of non-invasive biomarkers and novel therapies not only for chronic kidney disease, but also for fibrotic diseases of other organs.
Collapse
Affiliation(s)
- Li Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haiyan Fu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
10
|
Takai M, Ono J, Okamoto M, Fujimoto K, Kamei A, Nunomura S, Nanri Y, Ohta S, Hoshino T, Azuma A, Izuhara K. Establishment of a novel ELISA system for measuring periostin independently of formation of the IgA complex. Ann Clin Biochem 2022; 59:347-356. [PMID: 35610952 DOI: 10.1177/00045632221106068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Periostin, a matricellular protein that modulates cell functions having various pathophysiological roles, has the potential to be a useful biomarker for various diseases. We recently found that periostin forms a complex with IgA in human serum, which may affect the periostin measurement. METHODS We investigated (1) whether the formation of the periostin-IgA complex affects the original periostin ELISA system, decreasing the values of serum periostin? (2) bow each domain of periostin affects periostin measurement by the original periostin ELISA system? (3) whether we can establish a novel ELISA system that is not affected by formation of the IgA complex? RESULTS The periostin value at the reducing condition was significantly higher than that of the non-reducing condition, demonstrating that formation of the IgA complex affects periostin measurement. The monoclonal antibodies (mAbs) for periostin recognizing the EMI and R1 domains immunoprecipitated serum periostin in the reducing condition more than in the non-reducing condition, whereas the mAbs recognizing the R2 or R3 domain immunoprecipitated comparable amounts of serum periostin in the reducing and non-reducing conditions, suggesting the EMI and R1 domains contribute to formation of the complex with IgA. Using SS16A recognizing the R3 domain combined with SS17B recognizing the R4 domain, we established an ELISA system that was able to measure periostin independently of the IgA complex. CONCLUSIONS We have established a novel ELISA system that measures periostin independently of the IgA complex. This system is promising in identifying periostin as a biomarker for various diseases.
Collapse
Affiliation(s)
- Masayuki Takai
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan.,Shino-Test Corporation, Sagamihara, Japan
| | - Junya Ono
- Shino-Test Corporation, Sagamihara, Japan
| | - Masaki Okamoto
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine,26333Kurume University School of Medicine, Kurume, Japan
| | - Kiminori Fujimoto
- Department of Radiology and Center for Diagnostic Imaging, 26333Kurume University School of Medicine, Kurume, Japan
| | | | - Satoshi Nunomura
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan
| | - Yasuhiro Nanri
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan
| | - Shoichiro Ohta
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan
| | - Tomoaki Hoshino
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine,26333Kurume University School of Medicine, Kurume, Japan
| | - Arata Azuma
- Department of Respirology, 157710Nippon Medical School Musashikosugi Hospital, Kawasaki, Japan
| | - Kenji Izuhara
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan
| |
Collapse
|
11
|
Mizerska-Wasiak M, Płatos E, Cichoń-Kawa K, Demkow U, Pańczyk-Tomaszewska M. The Usefulness of Vanin-1 and Periostin as Markers of an Active Autoimmune Process or Renal Fibrosis in Children with IgA Nephropathy and IgA Vasculitis with Nephritis-A Pilot Study. J Clin Med 2022; 11:jcm11051265. [PMID: 35268356 PMCID: PMC8911128 DOI: 10.3390/jcm11051265] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 01/25/2023] Open
Abstract
This study aimed to evaluate the usefulness of vanin-1 and periostin in urine as markers of the autoimmune process in kidneys and renal fibrosis in IgA nephropathy (IgAN) and IgA vasculitis with nephritis (IgAVN). From a group of 194 patients from the Department of Pediatrics and Nephrology, who were included in the Polish Pediatric Registry of IgAN and IgAVN, we qualified 51 patients (20 with IgAN and 31 with IgAVN) between the ages of 3 and 17, diagnosed based on kidney biopsy, for inclusion in the study. All of the patients received glucocorticosteroids, immunosuppressive drugs, or renoprotective therapy. The control group consisted of 18 healthy individuals. The concentration of vanin was significantly higher in the IgAN and IgAVN groups than in the control group. The concentration of vanin/creatinine correlates positively with the level of IgA and negatively with the serum level of C3 at the end of the observation. Urinary vanin-1 concentration may be useful as a marker of the active autoimmune process in IgAN and IgAVN in children, but the study needs confirmation on a larger group of children, along with evaluation of the dynamics of this marker. Urinary periostin is not a good marker for children with IgAN and IgAVN, especially in stage 1 and 2 CKD.
Collapse
Affiliation(s)
- Małgorzata Mizerska-Wasiak
- Department of Pediatrics and Nephrology, Medical University of Warsaw, 02-091 Warsaw, Poland; (K.C.-K.); (M.P.-T.)
- Correspondence:
| | - Emilia Płatos
- Science Students’ Association at the Department of Pediatrics and Nephrology, Medical University of Warsaw, 02-091 Warsaw, Poland;
| | - Karolina Cichoń-Kawa
- Department of Pediatrics and Nephrology, Medical University of Warsaw, 02-091 Warsaw, Poland; (K.C.-K.); (M.P.-T.)
| | - Urszula Demkow
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, 02-091 Warsaw, Poland;
| | | |
Collapse
|
12
|
Yan Z, Wang G, Shi X. Advances in the Progression and Prognosis Biomarkers of Chronic Kidney Disease. Front Pharmacol 2022; 12:785375. [PMID: 34992536 PMCID: PMC8724575 DOI: 10.3389/fphar.2021.785375] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/30/2021] [Indexed: 12/29/2022] Open
Abstract
Chronic kidney disease (CKD) is one of the increasingly serious public health concerns worldwide; the global burden of CKD is increasingly due to high morbidity and mortality. At present, there are three key problems in the clinical treatment and management of CKD. First, the current diagnostic indicators, such as proteinuria and serum creatinine, are greatly interfered by the physiological conditions of patients, and the changes in the indicator level are not synchronized with renal damage. Second, the established diagnosis of suspected CKD still depends on biopsy, which is not suitable for contraindication patients, is also traumatic, and is not sensitive to early progression. Finally, the prognosis of CKD is affected by many factors; hence, it is ineviatble to develop effective biomarkers to predict CKD prognosis and improve the prognosis through early intervention. Accurate progression monitoring and prognosis improvement of CKD are extremely significant for improving the clinical treatment and management of CKD and reducing the social burden. Therefore, biomarkers reported in recent years, which could play important roles in accurate progression monitoring and prognosis improvement of CKD, were concluded and highlighted in this review article that aims to provide a reference for both the construction of CKD precision therapy system and the pharmaceutical research and development.
Collapse
Affiliation(s)
- Zhonghong Yan
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Guanran Wang
- Heilongjiang University of Chinese Medicine, Harbin, China.,Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xingyang Shi
- Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
13
|
Matricellular proteins in intrahepatic cholangiocarcinoma. Adv Cancer Res 2022; 156:249-281. [DOI: 10.1016/bs.acr.2022.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
The Usefulness of Urinary Periostin, Cytokeratin-18, and Endoglin for Diagnosing Renal Fibrosis in Children with Congenital Obstructive Nephropathy. J Clin Med 2021; 10:jcm10214899. [PMID: 34768419 PMCID: PMC8585114 DOI: 10.3390/jcm10214899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/11/2021] [Accepted: 10/20/2021] [Indexed: 12/28/2022] Open
Abstract
Congenital obstructive nephropathy (CON) leads to renal fibrosis and chronic kidney disease. The aim of the study was to investigate the predictive value of urinary endoglin, periostin, cytokeratin-18, and transforming growth factor-β1 (TGF-β1) for assessing the severity of renal fibrosis in 81 children with CON and 60 controls. Children were divided into three subgroups: severe, moderate scars, and borderline lesions based on 99mTc-ethylenedicysteine scintigraphy results. Periostin, periostin/Cr, and cytokeratin-18 levels were significantly higher in the study group compared to the controls. Children with severe scars had significantly higher urinary periostin/Cr levels than those with borderline lesions. In multivariate analysis, only periostin and cytokeratin-18 were independently related to the presence of severe and moderate scars, and periostin was independently related to borderline lesions. However, periostin did not differentiate advanced scars from borderline lesions. In ROC analysis, periostin and periostin/Cr demonstrated better diagnostic profiles for detection of advanced scars than TGF-β1 and cytokeratin-18 (AUC 0.849; 0.810 vs. 0.630; 0.611, respectively) and periostin for detecting borderline lesions than endoglin and periostin/Cr (AUC 0.777 vs. 0.661; 0.658, respectively). In conclusion, periostin seems to be a promising, non-invasive marker for assessing renal fibrosis in children with CON. CK-18 and TGF-β1 demonstrated low utility, and endoglin was not useful for diagnosing advanced scars.
Collapse
|
15
|
Ono J, Takai M, Kamei A, Azuma Y, Izuhara K. Pathological Roles and Clinical Usefulness of Periostin in Type 2 Inflammation and Pulmonary Fibrosis. Biomolecules 2021; 11:1084. [PMID: 34439751 PMCID: PMC8391913 DOI: 10.3390/biom11081084] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022] Open
Abstract
Periostin is known to be a useful biomarker for various diseases. In this article, we focus on allergic diseases and pulmonary fibrosis, for which we and others are now developing detection systems for periostin as a biomarker. Biomarker-based precision medicine in the management of type 2 inflammation and fibrotic diseases since heterogeneity is of utmost importance. Periostin expression is induced by type 2 cytokines (interleukin-4/-13) or transforming growth factor-β, and plays a vital role in the pathogenesis of allergic inflammation or interstitial lung disease, respectively, andits serum levels are correlated disease severity, prognosis and responsiveness to the treatment. We first summarise the importance of type 2 biomarker and then describe the pathological role of periostin in the development and progression of type 2 allergic inflammation and pulmonary fibrosis. In addition, then, we summarise the recent development of assay methods for periostin detection, and analyse the diseases in which periostin concentration is elevated in serum and local biological fluids and its usefulness as a biomarker. Furthermore, we describe recent findings of periostin as a biomarker in the use of biologics or anti-fibrotic therapy. Finally, we describe the factors that influence the change in periostin concentration under the healthy conditions.
Collapse
Affiliation(s)
- Junya Ono
- Shino-Test Corporation, 2-29-14 Oonodai Minami-ku, Sagamihara, Kanagawa 252-0331, Japan; (M.T.); (A.K.); (Y.A.)
| | - Masayuki Takai
- Shino-Test Corporation, 2-29-14 Oonodai Minami-ku, Sagamihara, Kanagawa 252-0331, Japan; (M.T.); (A.K.); (Y.A.)
- Division of Medical Biochemistry, Department of Biomolecular Science, Saga Medical School, 5-1-1 Nabeshima, Saga 849-8501, Japan;
| | - Ayami Kamei
- Shino-Test Corporation, 2-29-14 Oonodai Minami-ku, Sagamihara, Kanagawa 252-0331, Japan; (M.T.); (A.K.); (Y.A.)
| | - Yoshinori Azuma
- Shino-Test Corporation, 2-29-14 Oonodai Minami-ku, Sagamihara, Kanagawa 252-0331, Japan; (M.T.); (A.K.); (Y.A.)
| | - Kenji Izuhara
- Division of Medical Biochemistry, Department of Biomolecular Science, Saga Medical School, 5-1-1 Nabeshima, Saga 849-8501, Japan;
| |
Collapse
|
16
|
Yamamura Y, Furuichi K, Murakawa Y, Hirabayashi S, Yoshihara M, Sako K, Kitajima S, Toyama T, Iwata Y, Sakai N, Hosomichi K, Murphy PM, Tajima A, Okita K, Osafune K, Kaneko S, Wada T. Identification of candidate PAX2-regulated genes implicated in human kidney development. Sci Rep 2021; 11:9123. [PMID: 33907292 PMCID: PMC8079710 DOI: 10.1038/s41598-021-88743-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 04/16/2021] [Indexed: 02/02/2023] Open
Abstract
PAX2 is a transcription factor essential for kidney development and the main causative gene for renal coloboma syndrome (RCS). The mechanisms of PAX2 action during kidney development have been evaluated in mice but not in humans. This is a critical gap in knowledge since important differences have been reported in kidney development in the two species. In the present study, we hypothesized that key human PAX2-dependent kidney development genes are differentially expressed in nephron progenitor cells from induced pluripotent stem cells (iPSCs) in patients with RCS relative to healthy individuals. Cap analysis of gene expression revealed 189 candidate promoters and 71 candidate enhancers that were differentially activated by PAX2 in this system in three patients with RCS with PAX2 mutations. By comparing this list with the list of candidate Pax2-regulated mouse kidney development genes obtained from the Functional Annotation of the Mouse/Mammalian (FANTOM) database, we prioritized 17 genes. Furthermore, we ranked three genes-PBX1, POSTN, and ITGA9-as the top candidates based on closely aligned expression kinetics with PAX2 in the iPSC culture system and susceptibility to suppression by a Pax2 inhibitor in cultured mouse embryonic kidney explants. Identification of these genes may provide important information to clarify the pathogenesis of RCS, human kidney development, and kidney regeneration.
Collapse
Affiliation(s)
- Yuta Yamamura
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Kengo Furuichi
- Department of Nephrology, School of Medicine, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa, 920-0293, Japan.
| | - Yasuhiro Murakawa
- RIKEN Preventive Medicine and Diagnosis Innovation Program, Yokohama, Kanagawa, Japan
| | - Shigeki Hirabayashi
- RIKEN Preventive Medicine and Diagnosis Innovation Program, Yokohama, Kanagawa, Japan
| | - Masahito Yoshihara
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa, Japan
| | - Keisuke Sako
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Shinji Kitajima
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Tadashi Toyama
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Yasunori Iwata
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Norihiko Sakai
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Kazuyoshi Hosomichi
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Philip M Murphy
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Atsushi Tajima
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Keisuke Okita
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Kenji Osafune
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Shuichi Kaneko
- Department of System Biology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Takashi Wada
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan.
| |
Collapse
|
17
|
Li N, Chen J, Wang P, Fan H, Hou S, Gong Y. Major signaling pathways and key mediators of macrophages in acute kidney injury (Review). Mol Med Rep 2021; 23:455. [PMID: 33880578 PMCID: PMC8072315 DOI: 10.3892/mmr.2021.12094] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/17/2021] [Indexed: 12/16/2022] Open
Abstract
Acute kidney injury (AKI) has become a global public health problem with high morbidity and mortality rates, as well as high healthcare costs. Immune cells, particularly macrophages, which regulate tissue development, destroy pathogens, control homeostasis and repair wounds, play crucial and complex roles in AKI. In various types of AKI, numerous rapidly recruited monocytes and tissue-resident macrophages act in a coordinated manner. Thus, elucidating the phenotypic and functional characteristics of macrophages in AKI is essential for identifying potential therapeutic targets. Macrophage-sensing mediators and macrophage-derived mediators participate in the major macrophage-related signaling pathways in AKI, which regulate macrophage polarization and determine disease progression. In conclusion, macrophages change their roles and regulatory mechanisms during the occurrence and development of AKI. The aim of the present review was to contribute to an improved understanding of AKI and to the identification of novel therapeutic targets for this condition.
Collapse
Affiliation(s)
- Ning Li
- Institute of Disaster Medicine, Tianjin University, Tianjin 300072, P.R. China
| | - Jiale Chen
- Institute of Disaster Medicine, Tianjin University, Tianjin 300072, P.R. China
| | - Pengtao Wang
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, P.R. China
| | - Haojun Fan
- Institute of Disaster Medicine, Tianjin University, Tianjin 300072, P.R. China
| | - Shike Hou
- Institute of Disaster Medicine, Tianjin University, Tianjin 300072, P.R. China
| | - Yanhua Gong
- Institute of Disaster Medicine, Tianjin University, Tianjin 300072, P.R. China
| |
Collapse
|
18
|
Strubl S, Torres JA, Spindt AK, Pellegrini H, Liebau MC, Weimbs T. STAT signaling in polycystic kidney disease. Cell Signal 2020; 72:109639. [PMID: 32325185 PMCID: PMC7269822 DOI: 10.1016/j.cellsig.2020.109639] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023]
Abstract
The most common form of polycystic kidney disease (PKD) in humans is caused by mutations in the PKD1 gene coding for polycystin1 (PC1). Among the many identified or proposed functions of PC1 is its ability to regulate the activity of transcription factors of the STAT family. Most STAT proteins that have been investigated were found to be aberrantly activated in kidneys in PKD, and some have been shown to be drivers of disease progression. In this review, we focus on the role of signal transducer and activator of transcription (STAT) signaling pathways in various renal cell types in healthy kidneys as compared to polycystic kidneys, on the mechanisms of STAT regulation by PC1 and other factors, and on the possibility to target STAT signaling for PKD therapy.
Collapse
Affiliation(s)
- Sebastian Strubl
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106-9625, USA; Department II of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jacob A Torres
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106-9625, USA
| | - Alison K Spindt
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106-9625, USA
| | - Hannah Pellegrini
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106-9625, USA
| | - Max C Liebau
- Department of Pediatrics and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Department II of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thomas Weimbs
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106-9625, USA.
| |
Collapse
|
19
|
Extracellular matrix, integrins, and focal adhesion signaling in polycystic kidney disease. Cell Signal 2020; 72:109646. [PMID: 32311505 DOI: 10.1016/j.cellsig.2020.109646] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/11/2022]
Abstract
In autosomal dominant polycystic kidney disease (ADPKD), the inexorable growth of numerous fluid-filled cysts leads to massively enlarged kidneys, renal interstitial damage, inflammation, and fibrosis, and progressive decline in kidney function. It has long been recognized that interstitial fibrosis is the most important manifestation associated with end-stage renal disease; however, the role of abnormal extracellular matrix (ECM) production on ADPKD pathogenesis is not fully understood. Early evidence showed that cysts in end-stage human ADPKD kidneys had thickened and extensively laminated cellular basement membranes, and abnormal regulation of gene expression of several basement membrane components, including collagens, laminins, and proteoglycans by cyst epithelial cells. These basement membrane changes were also observed in dilated tubules and small cysts of early ADPKD kidneys, indicating that ECM alterations were early features of cyst development. Renal cystic cells were also found to overexpress several integrins and their ligands, including ECM structural components and soluble matricellular proteins. ECM ligands binding to integrins stimulate focal adhesion formation and can promote cell attachment and migration. Abnormal expression of laminin-332 (laminin-5) and its receptor α6β4 stimulated cyst epithelial cell proliferation; and mice that lacked laminin α5, a component of laminin-511 normally expressed by renal tubules, had an overexpression of laminin-332 that was associated with renal cyst formation. Periostin, a matricellular protein that binds αVβ3- and αVβ5-integrins, was found to be highly overexpressed in the kidneys of ADPKD and autosomal recessive PKD patients, and several rodent models of PKD. αVβ3-integrin is also overexpressed by cystic epithelial cells, and the binding of periostin to αVβ3-integrin activates the integrin-linked kinase and downstream signal transduction pathways involved in tissue repair promoting cyst growth, ECM synthesis, and tissue fibrosis. This chapter reviews the roles of the ECM, integrins, and focal adhesion signaling in cyst growth and fibrosis in PKD.
Collapse
|