1
|
Berillo O, Schiffrin EL. Advances in Understanding of the Role of Immune Cell Phenotypes in Hypertension and Associated Vascular Disease. Can J Cardiol 2024; 40:2321-2339. [PMID: 39154911 DOI: 10.1016/j.cjca.2024.08.270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024] Open
Abstract
Many studies in the past 20 years have identified a contribution of inflammation and immune mechanisms to the pathophysiology of hypertension. Innate and adaptive immunity participate in this process. Among innate immune cells, macrophages and monocytes as well as dendritic cells, myeloid-derived suppressor cells, and neutrophils directly or via formation of neutrophil extracellular traps, play roles in the modulation of the inflammatory response in hypertension. Among adaptive immune cells, T and B cells have been implicated to varying degrees, particularly interleukin (IL)-17- and interferon γ-producing T lymphocytes, antagonized by T regulatory lymphocytes that are anti-inflammatory via production of IL-10. Among T cells that produce abundant IL-17, γδ T cells are unconventional T lymphocytes that are infrequent in the circulation in contrast to the much more abundant circulating αβ T lymphocytes, but are found mostly in tissues, and appear to play a role in triggering and sustaining inflammation in hypertension leading to vascular and renal injury. This review will provide an overview of these different immune cell phenotypes involved in the immune pathophysiology of hypertension and associated vascular disease.
Collapse
Affiliation(s)
- Olga Berillo
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Montreal, Quebec, Canada
| | - Ernesto L Schiffrin
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Montreal, Quebec, Canada; Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
2
|
Nagata D, Hishida E. Elucidating the complex interplay between chronic kidney disease and hypertension. Hypertens Res 2024; 47:3409-3422. [PMID: 39415028 DOI: 10.1038/s41440-024-01937-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/18/2024]
Abstract
Chronic kidney disease (CKD) and hypertension share a complex relationship, each exacerbating the progression of the other. CKD contributes to hypertension by decreasing renal function, leading to fluid retention and increased plasma volume, whereas hypertension exacerbates CKD by increasing glomerular pressure and causing renal damage. This review examines the intertwined nature of CKD and hypertension, exploring the factors driving hypertension in CKD and how hypertension accelerates CKD progression. It discusses the role of the renin-angiotensin system and inflammatory cytokines in this relationship, as well as the potential of blood pressure management to slow renal decline. While studies suggest that meticulous blood pressure control can help attenuate CKD progression, optimal management strategies remain unclear and require further investigation. This review also evaluates the evidence surrounding strict antihypertensive therapy in patients with CKD, considering both diabetic and non-diabetic cases. It recommends blood pressure targets based on CKD stage and presence of diabetes, emphasizing the importance of individualized treatment approaches. Renin-angiotensin system inhibitors are highlighted as a key pharmacological intervention due to their renal protective effects, particularly in patients with CKD with proteinuria. However, evidence regarding their efficacy in patients with CKD but without proteinuria is inconclusive. This review underscores the need for comprehensive approaches to effectively address the intertwined nature of CKD and hypertension and calls for further research to optimize clinical management strategies in this complex interplay.
Collapse
Affiliation(s)
- Daisuke Nagata
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Departments of Internal Medicine, Division of Nephrology, Tochigi, Japan.
| | - Erika Hishida
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Departments of Internal Medicine, Division of Nephrology, Tochigi, Japan.
| |
Collapse
|
3
|
Naseem S, Sun L, Qiu J. Stress granules in atherosclerosis: Insights and therapeutic opportunities. Curr Probl Cardiol 2024; 49:102760. [PMID: 39059785 DOI: 10.1016/j.cpcardiol.2024.102760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Atherosclerosis, a complex inflammatory and metabolic disorder, is the underlying cause of several life-threatening cardiovascular diseases. Stress granules (SG) are biomolecular condensates composed of proteins and mRNA that form in response to stress. Recent studies suggest a potential link between SG and atherosclerosis development. However, there remain gaps in understanding SG role in atherosclerosis development. Here we provide a thorough analysis of the role of SG in atherosclerosis, covering cellular stresses stimulation, core components, and regulatory genes in SG formation. Furthermore, we explore atherosclerosis induced factors such as inflammation, low or oscillatory shear stress (OSS), and oxidative stress (OS) may impact SG formation and then the development of atherosclerotic lesions. We have assessed how changes in SG dynamics impact pro-atherogenic processes like endothelial dysfunction, lipid metabolism, and immune cell recruitment in atherosclerosis. In summary, this review emphasizes the complex interplay between SG and atherosclerosis that could open innovative directions for targeted therapeutic strategies in preventing or treating atherosclerotic cardiovascular diseases.
Collapse
Affiliation(s)
- Sahar Naseem
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Lijuan Sun
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Juhui Qiu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China.
| |
Collapse
|
4
|
Qian L, Xu Z, Chen Y, Gao Z, Luo T, Wu L, Zheng Y, Chen L, Yuan D, Ren S, Zhu Y. Drug pair of Cornus officinalis and Radix achyranthis bidentatae improves renal injury of hypertension by regulating metabolic reprogramming mediated by eNOS. Heliyon 2024; 10:e33369. [PMID: 39022064 PMCID: PMC11253524 DOI: 10.1016/j.heliyon.2024.e33369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/20/2024] Open
Abstract
OBJECTIVE To explore the effects and possible mechanisms of the drug pair Cornus officinalis and Radix achyranthis bidentatae (SYR-NX) on improving hypertensive kidney damage. METHOD SYR-NX, a formulation of Cornus officinalis and Radix Achyranthis Bidentatae with a dose ratio 1:2.5, was used in this experiment. We investigated the effects of SYR-NX on spontaneously hypertensive rats (SHR) fed with a high-salt diet and Human Kidney-2 (HK2) cells exposed to hypoxia. After 8 weeks of treatment with SYR-NX, blood pressure was tested, and β 2-Microglobulin(β2-MG), blood creatinine (S-cr), endothelial nitric oxide synthase (eNOS), nicotinamide adenine dinucleotide phosphate (NADPH), M2 pyruvate kinase (PKM2), adenosine triphosphate (ATP), pyruvate, lactate, connective tissue growth factor (CTGF) and tumor necrosis factor-α (TNF-α)were measured. HK2 cells pre-treated with SYR-NX were cultured in a three-gas hypoxic incubator chamber (5 % CO2, 1 % O2, 94 % N2) for 12 h, and then eNOS, PKM2, NADPH, ATP, pyruvate, lactate, CTGF and TNF-α were assessed. RESULTS SYR-NX significantly reduced SBP, DBP, β2-MG, S-cr, PKM2, pyruvate, lactate, CTGF and TNF-α, and increased eNOS, NADPH, and ATP. CONCLUSION SYR-NX can regulate metabolic reprogramming through eNOS and improves hypertensive kidney injury.
Collapse
Affiliation(s)
- Lichao Qian
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing, University of Chinese Medicine, Nanjing, Jiangsu, 210022, China
| | - Zhongchi Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211816, China
| | - Yanran Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210046, China
| | - Zhao Gao
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing, University of Chinese Medicine, Nanjing, Jiangsu, 210022, China
| | - Tianjiong Luo
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing, University of Chinese Medicine, Nanjing, Jiangsu, 210022, China
| | - Lihua Wu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, China
| | - Yawei Zheng
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, China
| | - Li Chen
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing, University of Chinese Medicine, Nanjing, Jiangsu, 210022, China
| | - Dongping Yuan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210046, China
| | - Shuai Ren
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, China
| | - Yinxing Zhu
- Taizhou Hospital of Traditional Chinese Medicine, Taizhou, Jiangsu, 225300, China
| |
Collapse
|
5
|
Guan X, Fu Y, Liu Y, Cui M, Zhang C, Zhang Q, Li C, Zhao J, Wang C, Song J, Dong J. The role of inflammatory biomarkers in the development and progression of pre-eclampsia: a systematic review and meta-analysis. Front Immunol 2023; 14:1156039. [PMID: 37325643 PMCID: PMC10266420 DOI: 10.3389/fimmu.2023.1156039] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/18/2023] [Indexed: 06/17/2023] Open
Abstract
Background Pre-eclampsia (PE) is a pregnancy complication associated with maternal and fetal morbidity and mortality. Among the potential pathogenesis discussed, inflammation is considered an essential initiator of PE. Previous studies have compared the levels of various inflammatory biomarkers that indicate the existence of PE; however, the relative levels of pro-inflammatory and anti-inflammatory biomarkers and their dynamic changes during PE progression remain unclear. This knowledge is essential to explain the occurrence and progression of the disease. Objective We aimed to identify the relationship between inflammatory status and PE using inflammatory biomarkers as indicators. We also discussed the underlying mechanism by which inflammatory imbalance contributes to PE by comparing the relative levels of pro-inflammatory and anti-inflammatory biomarkers. Furthermore, we identified additional risk factors for PE. Methods We reviewed PubMed, Embase, and the Cochrane Library for articles published until 15th September 2022. Original articles that investigated inflammatory biomarkers in PE and normal pregnancy were included. We selected healthy pregnant women as controls. The inflammatory biomarkers in the case and control groups were expressed as standardized mean differences and 95% confidence intervals using a random-effects model. Study quality was assessed using the Newcastle-Ottawa Scale. Publication bias was assessed using Egger's test. Results Thirteen articles that investigated 2,549 participants were included in this meta-analysis. Patients with PE had significantly higher levels of C-reactive protein (CRP), interleukin (IL)-4, IL-6, IL-8, IL-10, and tumor necrosis factor (TNF) than the controls. CRP and pro-inflammatory cytokine levels were higher than those of anti-inflammatory cytokines. Patients with gestational age > 34 weeks had significantly higher IL-6 and TNF levels. Patients with higher systolic blood pressure had significantly higher IL-8, IL-10, and CRP levels. Conclusion Inflammatory imbalance is an independent risk factor for PE development. Impairment of the anti-inflammatory system is a crucial initiating factor for PE development. Failed autoregulation, manifested as prolonged exposure to pro-inflammatory cytokines, leads to PE progression. Higher levels of inflammatory biomarkers suggest more severe symptoms, and pregnant women after 34 weeks of gestation are more susceptible to PE.
Collapse
Affiliation(s)
- Xiaohan Guan
- School of Basic Medicine, Clinical Medicine Department of Medical College, Qingdao University, Qingdao, Shandong, China
| | - Yanwen Fu
- School of Basic Medicine, Clinical Medicine Department of Medical College, Qingdao University, Qingdao, Shandong, China
| | - Yixin Liu
- School of Basic Medicine, Clinical Medicine Department of Medical College, Qingdao University, Qingdao, Shandong, China
| | - Mingxuan Cui
- School of Basic Medicine, Clinical Medicine Department of Medical College, Qingdao University, Qingdao, Shandong, China
| | - Caishun Zhang
- Special Medicine Department, Medical College, Qingdao University, Qingdao, Shandong, China
| | - Qing Zhang
- Special Medicine Department, Medical College, Qingdao University, Qingdao, Shandong, China
| | - Chunmei Li
- School of Basic Medicine, Clinical Medicine Department of Medical College, Qingdao University, Qingdao, Shandong, China
| | - Jian Zhao
- School of Public Health, Medical College, Qingdao University, Qingdao, Shandong, China
| | - Chaofan Wang
- School of Public Health, Medical College, Qingdao University, Qingdao, Shandong, China
| | - Jiarun Song
- School of Basic Medicine, Clinical Medicine Department of Medical College, Qingdao University, Qingdao, Shandong, China
| | - Jing Dong
- Special Medicine Department, Medical College, Qingdao University, Qingdao, Shandong, China
- Physiology Department, Medical College, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
6
|
Gao Y, Liu B, Guo X, Nie J, Zou H, Wen S, Yu W, Liang H. Interferon regulatory factor 4 deletion protects against kidney inflammation and fibrosis in deoxycorticosterone acetate/salt hypertension. J Hypertens 2023; 41:794-810. [PMID: 36883469 DOI: 10.1097/hjh.0000000000003401] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
BACKGROUND Inflammation and renal interstitial fibrosis are the main pathological features of hypertensive nephropathy. Interferon regulatory factor 4 (IRF-4) has an important role in the pathogenesis of inflammatory and fibrotic diseases. However, its role in hypertension-induced renal inflammation and fibrosis remains unexplored. METHOD AND RESULTS We showed that deoxycorticosterone acetate (DOCA)-salt resulted in an elevation of blood pressure and that there was no difference between wild-type and IRF-4 knockout mice. IRF-4 -/- mice presented less severe renal dysfunction, albuminuria, and fibrotic response after DOCA-salt stress compared with wild-type mice. Loss of IRF-4 inhibited extracellular matrix protein deposition and suppressed fibroblasts activation in the kidneys of mice subjected to DOCA-salt treatment. IRF-4 disruption impaired bone marrow-derived fibroblasts activation and macrophages to myofibroblasts transition in the kidneys in response to DOCA-salt treatment. IRF-4 deletion impeded the infiltration of inflammatory cells and decreased the production of proinflammatory molecules in injured kidneys. IRF-4 deficiency activated phosphatase and tensin homolog and weakened phosphoinositide-3 kinase/AKT signaling pathway in vivo or in vitro . In cultured monocytes, TGFβ1 also induced expression of fibronectin and α-smooth muscle actin and stimulated the transition of macrophages to myofibroblasts, which was blocked in the absence of IRF-4. Finally, macrophages depletion blunted macrophages to myofibroblasts transition, inhibited myofibroblasts accumulation, and ameliorated kidney injury and fibrosis. CONCLUSION Collectively, IRF-4 plays a critical role in the pathogenesis of kidney inflammation and fibrosis in DOCA-salt hypertension.
Collapse
Affiliation(s)
- Ying Gao
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan
| | - Benquan Liu
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan
| | | | - Jiayi Nie
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan
| | - Hao Zou
- Department of Anesthesiology, Foshan Women and Children Hospital
- Department of Anesthesiology, Affiliated Foshan Women and Children Hospital of Southern Medical University, Foshan
| | - Shihong Wen
- Department of Anesthesiology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, China
| | - Wenqiang Yu
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan
| | - Hua Liang
- Guangdong Medical University, Zhanjiang
- Department of Anesthesiology, Foshan Women and Children Hospital
- Department of Anesthesiology, Affiliated Foshan Women and Children Hospital of Southern Medical University, Foshan
| |
Collapse
|
7
|
Huyan Y, Wang C, Kang H, Chen X, Chang Y, Liu S, Song J. Single-Cell Transcriptome Sequencing Reveals Molecular Mechanisms of Renal Injury in Essential Hypertension. Kidney Blood Press Res 2023; 48:297-313. [PMID: 37062270 PMCID: PMC10308540 DOI: 10.1159/000530624] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/30/2023] [Indexed: 04/18/2023] Open
Abstract
INTRODUCTION Hypertensive nephropathy is characterized by glomerular and tubulointerstitial damage, but we know little about changes in cell-specific gene expression in the early stages of hypertensive kidney injury, which usually has no obvious pathological changes. METHODS We performed unbiased single-cell RNA sequencing of rat kidney samples from hypertensive kidney injury to generate 10,602 single-cell transcriptomes from 2 control and 2 early stage hypertensive kidney injury samples. RESULTS All major cell types of the kidney were represented in the final dataset. Side-by-side comparisons showed that cell type-specific changes in gene expression are critical for functional impairment of glomeruli and tubules and activation of immune cells. In particular, we found a significantly reduced gene expression profile of maintaining vascular integrity in glomerular cells of hypertensive kidney injury. Meanwhile, the expression of genes associated with oxidative stress injury and fibrosis in the renal tubules and collecting ducts was elevated, but the degree of tubular cells response to injury differed between parts. We also found a signature of immune cell infiltration in hypertensive kidney injury. CONCLUSION Exploring the changes of gene expression in hypertension-injured kidneys may be helpful to identify the early biomarkers and signal pathways of this disease. Our data provide rich resources for understanding the pathogenesis of hypertensive renal injury and formulating effective treatment strategies.
Collapse
Affiliation(s)
- Yige Huyan
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunyue Wang
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongen Kang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Xiao Chen
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Chang
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Sheng Liu
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiangping Song
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
8
|
Benson LN, Guo Y, Deck K, Mora C, Liu Y, Mu S. The link between immunity and hypertension in the kidney and heart. Front Cardiovasc Med 2023; 10:1129384. [PMID: 36970367 PMCID: PMC10034415 DOI: 10.3389/fcvm.2023.1129384] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/20/2023] [Indexed: 03/11/2023] Open
Abstract
Hypertension is the primary cause of cardiovascular disease, which is a leading killer worldwide. Despite the prevalence of this non-communicable disease, still between 90% and 95% of cases are of unknown or multivariate cause ("essential hypertension"). Current therapeutic options focus primarily on lowering blood pressure through decreasing peripheral resistance or reducing fluid volume, but fewer than half of hypertensive patients can reach blood pressure control. Hence, identifying unknown mechanisms causing essential hypertension and designing new treatment accordingly are critically needed for improving public health. In recent years, the immune system has been increasingly implicated in contributing to a plethora of cardiovascular diseases. Many studies have demonstrated the critical role of the immune system in the pathogenesis of hypertension, particularly through pro-inflammatory mechanisms within the kidney and heart, which, eventually, drive a myriad of renal and cardiovascular diseases. However, the precise mechanisms and potential therapeutic targets remain largely unknown. Therefore, identifying which immune players are contributing to local inflammation and characterizing pro-inflammatory molecules and mechanisms involved will provide promising new therapeutic targets that could lower blood pressure and prevent progression from hypertension into renal or cardiac dysfunction.
Collapse
Affiliation(s)
- Lance N. Benson
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, United States
| | | | | | | | | | - Shengyu Mu
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, United States
| |
Collapse
|
9
|
Streeck H, Maestri A, Habermann D, Crowell TA, Esber AL, Son G, Eller LA, Eller MA, Parikh AP, Horn PA, Maganga L, Bahemana E, Adamu Y, Kiweewa F, Maswai J, Owuoth J, Robb ML, Michael NL, Polyak CS, Hoffmann D, Ake JA. Dissecting drivers of immune activation in chronic HIV-1 infection. EBioMedicine 2022; 83:104182. [PMID: 35905559 PMCID: PMC9334338 DOI: 10.1016/j.ebiom.2022.104182] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/22/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
Background Immune activation is a significant contributor to HIV pathogenesis and disease progression. In virally-suppressed individuals on ART, low-level immune activation has been linked to several non-infectious comorbid diseases. However, studies have not been systematically performed in sub-Saharan Africa and thus the impact of demographics, ART and regional endemic co-infections on immune activation is not known. We therefore comprehensively evaluated in a large multinational African cohort markers for immune activation and its distribution in various settings. Methods 2747 specimens from 2240 people living with HIV (PLWH) and 477 without HIV from the observational African Cohort Study (AFRICOS) were analyzed for 13 immune parameters. Samples were collected along with medical history, sociodemographic and comorbidity data at 12 HIV clinics across 5 programs in Uganda, Kenya, Tanzania and Nigeria. Data were analyzed with univariate and multivariate methods such as random forests and principal component analysis. Findings Immune activation was markedly different between PLWH with detectable viral loads, and individuals without HIV across sites. Among viremic PLWH, we found that all immune parameters were significantly correlated with viral load except for IFN-α. The overall inflammatory profile was distinct between men and women living with HIV, in individuals off ART and with HIV viremia. We observed stronger differences in the immune activation profile with increasing viremia. Using machine learning methods, we found that geographic differences contributed to unique inflammatory profiles. We also found that among PLWH, age and the presence of infectious and/or noninfectious comorbidities showed distinct inflammatory patterns, and biomarkers may be used to predict the presence of some comorbidities. Interpretation Our findings show that chronic immune activation in HIV-1 infection is influenced by HIV viral load, sex, age, region and ART use. These predictors, as well as associations among some biomarkers and coinfections, influence biomarkers associated with noncommunicable diseases. Funding This work was supported by the President's Emergency Plan for AIDS Relief via a cooperative agreement between the Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., and the U.S. Department of Defense [W81XWH-11-2-0174, W81XWH-18-2-0040]. The investigators have adhered to the policies for protection of human subjects as prescribed in AR 70–25. This article was prepared while Michael A. Eller was employed at Henry M. Jackson Foundation for the Advancement of Military Medicine for the U.S. Military HIV Research Program. The views expressed are those of the authors and should not be construed to represent the positions of the US Army or the Department of Defense. The opinions expressed in this article are the author's own, and do not reflect the view of the National Institutes of Health, the U.S. Department of Health and Human Services, or the U.S. government.
Collapse
Affiliation(s)
- Hendrik Streeck
- Institute of Virology, Medical Faculty, University Bonn, Bonn, Germany; German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 53127 Bonn, Germany.
| | - Alvino Maestri
- Institute for HIV Research, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Daniel Habermann
- Bioinformatics and Computational Biophysics, University Duisburg-Essen, Essen, Germany
| | - Trevor A Crowell
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA
| | - Allahna L Esber
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA
| | - Gowoon Son
- Institute for HIV Research, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Leigh Anne Eller
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA
| | - Michael A Eller
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA; Vaccine Research Program, DAIDS, NIAID, NIH, Bethesda, MD, USA
| | - Ajay P Parikh
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA
| | - Peter A Horn
- Institute for Transfusion Medicine, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Lucas Maganga
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; National Institute for Medical Research-Mbeya Medical Research Center, Mbeya, Tanzania
| | - Emmanuel Bahemana
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; HJF Medical Research International, Mbeya, Tanzania
| | - Yakubu Adamu
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; U.S. Army Medical Research Directorate - Africa, Abuja, Nigeria
| | | | - Jonah Maswai
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; HJF Medical Research International, Kericho, Kenya
| | - John Owuoth
- U.S. Army Medical Research Directorate - Africa, Kisumu, Kenya; HJF Medical Research International, Kisumu, Kenya
| | - Merlin L Robb
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA
| | - Nelson L Michael
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Christina S Polyak
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA
| | - Daniel Hoffmann
- Bioinformatics and Computational Biophysics, University Duisburg-Essen, Essen, Germany
| | - Julie A Ake
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| |
Collapse
|
10
|
Effect of Thymoquinone on Renal Damage Induced by Hyperlipidemia in LDL Receptor-Deficient (LDL-R -/ -) Mice. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7709926. [PMID: 35845925 PMCID: PMC9279052 DOI: 10.1155/2022/7709926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/04/2022] [Indexed: 11/17/2022]
Abstract
Hyperlipidemia is a well-established risk factor for kidney injury, which can lead to chronic kidney disease (CKD). Thymoquinone (TQ) is one of the most active ingredients in Nigella sativa seeds. It has various beneficial properties, including antioxidant and anti-inflammatory activities. TQ also exerts positive effects on doxorubicin- (DOX-) induced nephropathy and ischemia-reperfusion-induced kidney injury in rats. Therefore, in this study, we investigated the possible protective effects of TQ against kidney injury in low-density lipoprotein receptor-deficient (LDL-R-/-) mice. Eight-week-old male LDL-R-/- mice were randomly divided into the following three groups: normal diet (ND group), high-fat diet (HFD group), and HFD combined with TQ (HFD+TQ group). The mice were fed the same diet for eight weeks. After eight weeks, we performed serological analysis of the mice in all three groups. We histologically analyzed the kidney tissue and also investigated the expression of proinflammatory cytokines in the kidney tissue. Metabolic characteristics, including total cholesterol (TC), low-density lipoprotein-cholesterol (LDL-C), and creatinine (CRE) levels, were lower in the LDL-R-/- HFD+TQ mice than in the HFD mice. Periodic acid-Schiff (PAS) and Masson's trichrome staining revealed excessive lipid deposition and collagen accumulation in the kidneys of the LDL-R-/- HFD mice, which were significantly reduced in the LDL-R-/- HFD+TQ mice. Furthermore, macrophages and levels of proinflammatory cytokines were lower in the kidney tissues of the LDL-R-/- HFD+TQ mice than in those of the LDL-R-/- HFD mice. Moreover, profibrosis- and oxidative stress-related protein expression was lower in the kidney tissues of the LDL-R-/- HFD+TQ mice than in those of the LDL-R-/- HFD mice. These results indicate that TQ may be a potential therapeutic agent for kidney damage caused by hyperlipidemia.
Collapse
|
11
|
Haliloglu Y, Ozcan A, Erdem S, Azizoglu ZB, Bicer A, Ozarslan OY, Kilic O, Okus FZ, Demir F, Canatan H, Karakukcu M, Uludag SZ, Kutuk MS, Unal E, Eken A. Characterization of cord blood CD3 + TCRVα7.2 + CD161 high T and innate lymphoid cells in the pregnancies with gestational diabetes, morbidly adherent placenta, and pregnancy hypertension diseases. Am J Reprod Immunol 2022; 88:e13555. [PMID: 35452164 DOI: 10.1111/aji.13555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/07/2022] [Accepted: 04/12/2022] [Indexed: 11/28/2022] Open
Abstract
PROBLEM Although pregnant women with gestational diabetes (GD), morbidly adherent placenta (MAP), and pregnancy hypertension (pHT) diseases lead to intrauterine growth restriction (IUGR), little is known about their effect on mucosal-associated invariant T (MAIT) and innate lymphoid cells (ILC) in the umbilical cord. This study aimed to quantify and characterize MAIT cells and ILCs in the cord blood of pregnant women with GD, MAP, and pHT diseases. METHOD OF STUDY Cord blood mononuclear cells (CBMCs) were isolated by Ficoll-Paque gradient. CD3+ TCRVα7.2+ CD161high cells and ILC subsets were quantified by flow cytometry. CBMCs were stimulated with PMA/Ionomycin and Golgi Plug for 4 h and stained for IFN-γ, TNF-α, and granzyme B. The stained cells were analyzed on FACS ARIA III. RESULTS Compared with healthy pregnancies, in the cord blood of the pHT group, elevated number of lymphocytes was observed. Moreover, the absolute number of IFN-γ producing CD4+ or CD4- subsets of CD3+ TCRVα7.2+ CD161high cells as well as those producing granzyme B were significantly elevated in the pHT group compared to healthy controls suggesting increased MAIT cell activity in the pHT cord blood. Similarly, in the MAP group, the absolute number of total CD3+ TCRVα7.2+ CD161high cells, but not individual CD4+ or negative subsets, were significantly increased compared with healthy controls' cord blood. Absolute numbers of total CD3+ TCRVα7.2+ CD161high cells and their subsets were comparable in the cord blood of the GD group compared with healthy controls. Finally, the absolute number of total ILCs and ILC3 subset were significantly elevated in only pHT cord blood compared with healthy controls. Our data also reveal that IFN-γ+ or granzyme B+ cell numbers negatively correlated with fetal birth weight. CONCLUSIONS CD3+ TCRVα7.2+ CD161high cells and ILCs show unique expansion and activity in the cord blood of pregnant women with distinct diseases causing IUGR and may play roles in fetal growth restriction.
Collapse
Affiliation(s)
- Yesim Haliloglu
- Department of Medical Biology, School of Medicine, Erciyes University, Kayseri, Turkey.,Betül-Ziya Eren Genome and Stem Cell Center (GENKOK), Kayseri, Turkey
| | - Alper Ozcan
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, School of Medicine, Erciyes University, Kayseri, Turkey
| | - Serife Erdem
- Department of Medical Biology, School of Medicine, Erciyes University, Kayseri, Turkey.,Betül-Ziya Eren Genome and Stem Cell Center (GENKOK), Kayseri, Turkey
| | - Zehra Busra Azizoglu
- Department of Medical Biology, School of Medicine, Erciyes University, Kayseri, Turkey.,Betül-Ziya Eren Genome and Stem Cell Center (GENKOK), Kayseri, Turkey
| | - Ayten Bicer
- Department of Medical Biology, School of Medicine, Erciyes University, Kayseri, Turkey.,Betül-Ziya Eren Genome and Stem Cell Center (GENKOK), Kayseri, Turkey
| | - Ozcan Yeniay Ozarslan
- Department of Medical Biology, School of Medicine, Erciyes University, Kayseri, Turkey.,Betül-Ziya Eren Genome and Stem Cell Center (GENKOK), Kayseri, Turkey
| | - Omer Kilic
- Department of Medical Biology, School of Medicine, Erciyes University, Kayseri, Turkey.,Betül-Ziya Eren Genome and Stem Cell Center (GENKOK), Kayseri, Turkey
| | - Fatma Zehra Okus
- Department of Medical Biology, School of Medicine, Erciyes University, Kayseri, Turkey.,Betül-Ziya Eren Genome and Stem Cell Center (GENKOK), Kayseri, Turkey
| | - Fatma Demir
- Department of Medical Biology, School of Medicine, Erciyes University, Kayseri, Turkey.,Betül-Ziya Eren Genome and Stem Cell Center (GENKOK), Kayseri, Turkey
| | - Halit Canatan
- Department of Medical Biology, School of Medicine, Erciyes University, Kayseri, Turkey.,Betül-Ziya Eren Genome and Stem Cell Center (GENKOK), Kayseri, Turkey
| | - Musa Karakukcu
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, School of Medicine, Erciyes University, Kayseri, Turkey
| | - Semih Zeki Uludag
- Department of Obstetrics and Gynecology, School of Medicine, Erciyes University, Kayseri, Turkey
| | - M Serdar Kutuk
- Department of Obstetrics and Gynecology, School of Medicine, Bezmi Alem University, Istanbul, Turkey
| | - Ekrem Unal
- Betül-Ziya Eren Genome and Stem Cell Center (GENKOK), Kayseri, Turkey.,Department of Pediatrics, Division of Pediatric Hematology and Oncology, School of Medicine, Erciyes University, Kayseri, Turkey.,Department of Blood Banking and Transfusion Medicine, Health Science Institution, Erciyes University, Kayseri, Turkey
| | - Ahmet Eken
- Department of Medical Biology, School of Medicine, Erciyes University, Kayseri, Turkey.,Betül-Ziya Eren Genome and Stem Cell Center (GENKOK), Kayseri, Turkey
| |
Collapse
|
12
|
Snyder EC, Abdelbary M, El-Marakby A, Sullivan JC. Treatment of male and female spontaneously hypertensive rats with TNF-α inhibitor etanercept increases markers of renal injury independent of an effect on blood pressure. Biol Sex Differ 2022; 13:17. [PMID: 35413930 PMCID: PMC9006436 DOI: 10.1186/s13293-022-00424-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 03/28/2022] [Indexed: 11/10/2022] Open
Abstract
Hypertension remains the leading risk factor for cardiovascular disease. Young females tend to be protected from hypertension compared with age-matched males. Although it has become increasingly clear that the immune system plays a key role in the development of hypertension in both sexes, few studies have examined how cytokines mediate hypertension in males versus females. We previously published that there are sex differences in the levels of the cytokine tumor necrosis factor (TNF)-α in spontaneously hypertensive rats (SHR). The goal of this study was to test the hypothesis that TNF-α inhibition with etanercept will lower BP in male and female SHR. However, as male SHR have a more pro-inflammatory status than female SHR, we further hypothesize that males will have a greater decrease in BP with TNF-α inhibition than females. Young adult male and female SHR were administered increasing doses of the TNF-α inhibitor etanercept or vehicle twice weekly for 31 days and BP was continuously measured via telemetry. Following treatment, kidneys and urine were collected and analyzed for markers of inflammation and injury. Despite significantly decreasing renal TNF-α levels, renal phospho-NFκB and urinary MCP-1 excretion, etanercept did not alter BP in either male or female SHR. Interestingly, treatment with etanercept increased urinary excretion of protein, creatinine and KIM-1 in both sexes. These results indicate that TNF-α does not contribute to sex differences in BP in SHR but may be vital in the maintenance of renal health.
Collapse
Affiliation(s)
- Elizabeth C Snyder
- Department of Physiology, Medical College of Georgia at Augusta University, 1459 Laney Walker Blvd CB-2204, Augusta, GA, 30912, USA
| | - Mahmoud Abdelbary
- Department of Physiology, Medical College of Georgia at Augusta University, 1459 Laney Walker Blvd CB-2204, Augusta, GA, 30912, USA
| | - Ahmed El-Marakby
- Department of Oral Biology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Jennifer C Sullivan
- Department of Physiology, Medical College of Georgia at Augusta University, 1459 Laney Walker Blvd CB-2204, Augusta, GA, 30912, USA.
| |
Collapse
|
13
|
Cantero-Navarro E, Rayego-Mateos S, Orejudo M, Tejedor-Santamaria L, Tejera-Muñoz A, Sanz AB, Marquez-Exposito L, Marchant V, Santos-Sanchez L, Egido J, Ortiz A, Bellon T, Rodrigues-Diez RR, Ruiz-Ortega M. Role of Macrophages and Related Cytokines in Kidney Disease. Front Med (Lausanne) 2021; 8:688060. [PMID: 34307414 PMCID: PMC8295566 DOI: 10.3389/fmed.2021.688060] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/11/2021] [Indexed: 12/14/2022] Open
Abstract
Inflammation is a key characteristic of kidney disease, but this immune response is two-faced. In the acute phase of kidney injury, there is an activation of the immune cells to fight against the insult, contributing to kidney repair and regeneration. However, in chronic kidney diseases (CKD), immune cells that infiltrate the kidney play a deleterious role, actively participating in disease progression, and contributing to nephron loss and fibrosis. Importantly, CKD is a chronic inflammatory disease. In early CKD stages, patients present sub-clinical inflammation, activation of immune circulating cells and therefore, anti-inflammatory strategies have been proposed as a common therapeutic target for renal diseases. Recent studies have highlighted the plasticity of immune cells and the complexity of their functions. Among immune cells, monocytes/macrophages play an important role in all steps of kidney injury. However, the phenotype characterization between human and mice immune cells showed different markers; therefore the extrapolation of experimental studies in mice could not reflect human renal diseases. Here we will review the current information about the characteristics of different macrophage phenotypes, mainly focused on macrophage-related cytokines, with special attention to the chemokine CCL18, and its murine functional homolog CCL8, and the macrophage marker CD163, and their role in kidney pathology.
Collapse
Affiliation(s)
- Elena Cantero-Navarro
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Sandra Rayego-Mateos
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Macarena Orejudo
- Renal, Vascular and Diabetes Research Laboratory, Fundación IIS -Fundación Jiménez Díaz, Universidad Autónoma, Madrid, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Lucía Tejedor-Santamaria
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Tejera-Muñoz
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Belén Sanz
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
- Laboratory of Nephrology and Hypertension, Fundación IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
| | - Laura Marquez-Exposito
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Vanessa Marchant
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Santos-Sanchez
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Egido
- Renal, Vascular and Diabetes Research Laboratory, Fundación IIS -Fundación Jiménez Díaz, Universidad Autónoma, Madrid, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Alberto Ortiz
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
- Laboratory of Nephrology and Hypertension, Fundación IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
| | - Teresa Bellon
- La Paz Hospital Health Research Institute, Madrid, Spain
| | - Raúl R Rodrigues-Diez
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Ruiz-Ortega
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
14
|
Jayaram A, Deer E, Amaral LM, Campbell N, Vaka VR, Cunningham M, Ibrahim T, Cornelius DC, LaMarca BB. The role of tumor necrosis factor in triggering activation of natural killer cell, multi-organ mitochondrial dysfunction and hypertension during pregnancy. Pregnancy Hypertens 2021; 24:65-72. [PMID: 33677421 PMCID: PMC8681863 DOI: 10.1016/j.preghy.2021.02.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 12/13/2020] [Accepted: 02/04/2021] [Indexed: 11/24/2022]
Abstract
Pre-eclampsia (PE) is a hypertensive disorder of pregnancy associated with chronic inflammation, mitochondrial (mt) dysfunction and fetal demise. Natural Killer cells (NK cells) are critical for the innate immune response against tumors or infection by disrupting cellular mt function and causing cell death. Although NK cells can be stimulated by Tumor necrosis factor alpha (TNF-α), we don't know the role of TNF-α on NK cell mediated mt dysfunction during PE. Our objective was to determine if mechanisms of TNF-α induced hypertension included activation of NK cells and multi-organ mt dysfunction during pregnancy. Pregnant rats were divided into 2 groups: normal pregnant (NP) (n = 18) and NP + TNF-α (n = 18). On gestational day 14, TNF-α (50 ng/ml) was infused via mini-osmotic pump and on day 18, carotid artery catheters were inserted. Blood pressure (MAP) and samples were collected on day 19. TNF-α increased MAP (109 ± 2 vs 100 ± 2, p < 0.05), circulating cytolytic NK cells (0.771 ± 0.328 vs.0.008 ± 0.003% gated, <0.05) and fetal reabsorptions compared to NP rats. Moreover, TNF-α caused mtROS in the placenta (12976 ± 7038 vs 176.9 ± 68.04% fold, p < 0.05) and in the kidney (2191 ± 1027 vs 816 ± 454.7% fold, p < 0.05) compared to NP rats. TNF-α induced hypertension is associated fetal demise, activation of NK cells and multi-organ mt dysfunction which could be mechanisms for fetal demise and hypertension. Understanding of the mechanisms by which TNF-α causes pathology is important for the use of anti-TNF-α therapeutic agents in pregnancies complicated by PE.
Collapse
Affiliation(s)
- Aswathi Jayaram
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, N State St, Jackson, MS 39216, United States
| | - Evangeline Deer
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, N State St, Jackson, MS 39216, United States
| | - Lorena M Amaral
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, N State St, Jackson, MS 39216, United States
| | - Nathan Campbell
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, N State St, Jackson, MS 39216, United States
| | - Venkata Ramana Vaka
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, N State St, Jackson, MS 39216, United States
| | - Mark Cunningham
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, N State St, Jackson, MS 39216, United States
| | - Tarek Ibrahim
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, N State St, Jackson, MS 39216, United States
| | - Denise C Cornelius
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, N State St, Jackson, MS 39216, United States
| | - Babbette B LaMarca
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, N State St, Jackson, MS 39216, United States.
| |
Collapse
|
15
|
Tsai PC, Chao YM, Chan JYH. Sympathetic activation of splenic T-lymphocytes in hypertension of adult offspring programmed by maternal high fructose exposure. CHINESE J PHYSIOL 2021; 63:263-275. [PMID: 33380611 DOI: 10.4103/cjp.cjp_85_20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Whereas neuroimmune crosstalk between the sympathetic nervous system (SNS) and immune cells in the pathophysiology of hypertension is recognized, the exact effect of SNS on T-lymphocyte in hypertension remains controversial. This study assessed the hypothesis that excitation of the SNS activates splenic T-lymphocytes through redox signaling, leading to the production of pro-inflammatory cytokines and the development of hypertension. Status of T-lymphocyte activation, reactive oxygen species (ROS) production and pro-inflammatory cytokines expression in the spleen were examined in a rodent model of hypertension programmed by maternal high fructose diet (HFD) exposure. Maternal HFD exposure enhanced SNS activity and activated both CD4+ and CD8+ T-lymphocytes in the spleen of young offspring, compared to age-matched offspring exposed to maternal normal diet (ND). Maternal HFD exposure also induced tissue oxidative stress and expression of pro-inflammatory cytokines in the spleen of HFD offspring. All those cellular and molecular events were ameliorated following splenic nerve denervation (SND) by thermoablation. In contrast, activation of splenic sympathetic nerve by nicotine treatment resulted in the enhancement of tissue ROS level and activation of CD4+ and CD8+ T-cells in the spleen of ND offspring; these molecular events were attenuated by treatment with a ROS scavenger, tempol. Finally, the increase in systolic blood pressure (SBP) programmed in adult offspring by maternal HFD exposure was diminished by SND, whereas activation of splenic sympathetic nerve increased basal SBP in young ND offspring. These findings suggest that excitation of the SNS may activate splenic T-lymphocytes, leading to hypertension programming in adult offspring induced by maternal HFD exposure. Moreover, tissue oxidative stress induced by the splenic sympathetic overactivation may serve as a mediator that couples the neuroimmune crosstalk to prime programmed hypertension in HFD offspring.
Collapse
Affiliation(s)
- Pei-Chia Tsai
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yung-Mei Chao
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Julie Y H Chan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| |
Collapse
|
16
|
Lamb FS, Choi H, Miller MR, Stark RJ. TNFα and Reactive Oxygen Signaling in Vascular Smooth Muscle Cells in Hypertension and Atherosclerosis. Am J Hypertens 2020; 33:902-913. [PMID: 32498083 DOI: 10.1093/ajh/hpaa089] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/16/2022] Open
Abstract
Hypertension and atherosclerosis, the predecessors of stroke and myocardial infarction, are chronic vascular inflammatory reactions. Tumor necrosis factor alpha (TNFα), the "master" proinflammatory cytokine, contributes to both the initiation and maintenance of vascular inflammation. TNFα induces reactive oxygen species (ROS) production which drives the redox reactions that constitute "ROS signaling." However, these ROS may also cause oxidative stress which contributes to vascular dysfunction. Mice lacking TNFα or its receptors are protected against both acute and chronic cardiovascular injury. Humans suffering from TNFα-driven inflammatory conditions such as rheumatoid arthritis and psoriasis are at increased cardiovascular risk. When treated with highly specific biologic agents that target TNFα signaling (Etanercept, etc.) they display marked reductions in that risk. The ability of TNFα to induce endothelial dysfunction, often the first step in a progression toward serious vasculopathy, is well recognized and has been reviewed elsewhere. However, TNFα also has profound effects on vascular smooth muscle cells (VSMCs) including a fundamental change from a contractile to a secretory phenotype. This "phenotypic switching" promotes proliferation and production of extracellular matrix proteins which are associated with medial hypertrophy. Additionally, it promotes lipid storage and enhanced motility, changes that support the contribution of VSMCs to neointima and atherosclerotic plaque formation. This review focuses on the role of TNFα in driving the inflammatory changes in VSMC biology that contribute to cardiovascular disease. Special attention is given to the mechanisms by which TNFα promotes ROS production at specific subcellular locations, and the contribution of these ROS to TNFα signaling.
Collapse
Affiliation(s)
- Fred S Lamb
- Division of Pediatric Critical Care, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Hyehun Choi
- Division of Pediatric Critical Care, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Michael R Miller
- Division of Pediatric Critical Care, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ryan J Stark
- Division of Pediatric Critical Care, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
17
|
González-Fernández D, Pons EDC, Rueda D, Sinisterra OT, Murillo E, Scott ME, Koski KG. Identification of High-Risk Pregnancies in a Remote Setting Using Ambulatory Blood Pressure: The MINDI Cohort. Front Public Health 2020; 8:86. [PMID: 32292772 PMCID: PMC7121149 DOI: 10.3389/fpubh.2020.00086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/03/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Ambulatory blood pressure is a potential tool for early detection of complications during pregnancy, but its utility in impoverished settings has not been assessed. This cross-sectional study aimed to determine whether maternal infections, nutrient deficiencies and inflammation (MINDI) were associated with four measures of maternal blood pressure (BP) and to determine their association with symphysis-fundal-height (SFH). Methods: Environmental and dietary factors, intake of iron and a multiple-nutrient supplement (MNS), markers of inflammation, protein, anemia, folate, vitamins B12, A and D status, and urogenital, skin, oral and intestinal nematode infections were measured in indigenous pregnant Panamanian women. Stepwise multiple linear and logistic regression models explored determinants of systolic and diastolic blood pressure (SBP, DBP), hypotension (SBP < 100 and DBP < 60), mean arterial pressure (MAP), elevated MAP (eMAP), and pulse pressure (PP). Associations of BP with intestinal nematodes and with SFH Z scores (≥16 wk) were also explored. Results: Despite absence of high SBP or DBP, 11.2% of women had eMAP. Furthermore, 24.1% had hypotension. Linear regression showed that hookworm infection was associated with higher SBP (P = 0.049), DBP (P = 0.046), and MAP (P = 0.016), whereas Ascaris was associated with lower DBP (P = 0.018) and MAP (P = 0.028). Trichomonas was also associated with lower SBP (P < 0.0001) and MAP (P = 0.009). The presence of Trichuris (OR: 6.7, 95% CI 1.0-44.5) and folic acid deficiency (OR: 6.9, 95% CI 1.4-33.8) were associated with increased odds of eMAP. The odds of low BP was higher in the presence of Ascaris (OR: 3.63 ± 2.28, P = 0.040), but odds were lowered by MNS (OR: 0.35 ± 0.11, P = 0.001), more intake of animal-source foods/wk (OR: 0.7, 95% CI 0.5-0.9) and by higher concentrations of IL-17 (OR: 0.87 ± 0.05, P = 0.016). Conclusion: MINDI were bi-directionally associated with blood pressure indicators. In this MINDI cohort, infections, nutrients and cytokines both raised, and lowered BP indices. The presence of eMAP identified pregnant women at risk of hypertension whereas low PP was associated with lower SFH. Therefore, MAP and PP may help in detecting women at risk of adverse pregnancy outcomes in settings with limited access to technology.
Collapse
Affiliation(s)
- Doris González-Fernández
- School of Human Nutrition, Faculty of Agricultural and Environmental Sciences, McGill University (Macdonald Campus), Ste-Anne-de-Bellevue, QC, Canada
| | | | - Delfina Rueda
- "Comarca Ngäbe-Buglé" Health Region, Ministry of Health, San Félix, Panama
| | | | - Enrique Murillo
- Department of Biochemistry, University of Panama, Panama City, Panama
| | - Marilyn E Scott
- Faculty of Agricultural and Environmental Sciences, Institute of Parasitology, McGill University, Ste-Anne-de-Bellevue, QC, Canada
| | - Kristine G Koski
- School of Human Nutrition, Faculty of Agricultural and Environmental Sciences, McGill University (Macdonald Campus), Ste-Anne-de-Bellevue, QC, Canada
| |
Collapse
|
18
|
Ishihara M, Tono Y, Miyahara Y, Muraoka D, Harada N, Kageyama S, Sasaki T, Hori Y, Soga N, Uchida K, Shiraishi T, Sato E, Kanda H, Mizuno T, Webster GA, Ikeda H, Katayama N, Sugimura Y, Shiku H. First-in-human phase I clinical trial of the NY-ESO-1 protein cancer vaccine with NOD2 and TLR9 stimulants in patients with NY-ESO-1-expressing refractory solid tumors. Cancer Immunol Immunother 2020; 69:663-675. [PMID: 31980914 PMCID: PMC7113205 DOI: 10.1007/s00262-020-02483-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 01/04/2020] [Indexed: 12/17/2022]
Abstract
Cholesteryl pullulan (CHP) is a novel antigen delivery system. CHP and New York esophageal squamous cell carcinoma 1 (NY-ESO-1) antigen complexes (CHP-NY-ESO-1) present multiple epitope peptides to the MHC class I and II pathways. Adjuvants are essential for cancer vaccines. MIS416 is a non-toxic microparticle that activates immunity via the nucleotide-binding oligomerization domain 2 (NOD2) and TLR9 pathways. However, no reports have explored MIS416 as a cancer vaccine adjuvant. We conducted a first-in-human clinical trial of CHP-NY-ESO-1 with MIS416 in patients with NY-ESO-1-expressing refractory solid tumors. CHP-NY-ESO-1/MIS416 (μg/μg) was administered at 100/200, 200/200, 200/400 or 200/600 (cohorts 1, 2, 3 and 4, respectively) every 2 weeks for a total of 6 doses (treatment phase) followed by one vaccination every 4 weeks until disease progression or unacceptable toxicity (maintenance phase). The primary endpoints were safety and tolerability, and the secondary endpoint was the immune response. In total, 26 patients were enrolled. Seven patients (38%) continued vaccination in the maintenance phase. Grade 3 drug-related adverse events (AEs) were observed in six patients (23%): anorexia and hypertension were observed in one and five patients, respectively. No grade 4–5 drug-related AEs were observed. Eight patients (31%) had stable disease (SD). Neither augmentation of the NY-ESO-1-specific IFN-γ-secreting CD8+ T cell response nor an increase in the level of anti-NY-ESO-1 IgG1 was observed as the dose of MIS416 was increased. In a preclinical study, adding anti-PD-1 monoclonal antibody to CHP-NY-ESO-1 and MIS416 induced significant tumor suppression. This combination therapy is a promising next step.
Collapse
Affiliation(s)
- Mikiya Ishihara
- Department of Medical Oncology, Mie University Hospital, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| | - Yasutaka Tono
- Department of Medical Oncology, Mie University Hospital, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Yoshihiro Miyahara
- Department of Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, 1577 Kurimamachiya-cho, Tsu, Mie, 514-8507, Japan
| | - Daisuke Muraoka
- Department of Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, Nagasaki, 852-8523, Japan
| | - Naozumi Harada
- United Immunity, Co., Ltd., Room220, Mie University Campus Incubator, 1577 Kurimamachiya-cho, Tsu, Mie, 514-8507, Japan
| | - Shinichi Kageyama
- Department of Immuno-Gene Therapy, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Takeshi Sasaki
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Yasuhide Hori
- Kameyama Nephro-Urologic Clinic, 1488-215 Sakaemachi, Kameyama, Mie, 519-0111, Japan
| | - Norihito Soga
- Department of Urology, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, 464-8681, Japan
| | - Katsunori Uchida
- Department of Pathology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Taizo Shiraishi
- Department of Pathology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Eiichi Sato
- Department of Pathology, Institute of Medical Science (Medical Research Center), Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Hideki Kanda
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Toshiro Mizuno
- Department of Medical Oncology, Mie University Hospital, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Gill A Webster
- Innate Immunotherapeutics, Melbourne, VIC, 3051, Australia
| | - Hiroaki Ikeda
- Department of Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, Nagasaki, 852-8523, Japan
| | - Naoyuki Katayama
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Yoshiki Sugimura
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Hiroshi Shiku
- Department of Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, 1577 Kurimamachiya-cho, Tsu, Mie, 514-8507, Japan. .,Department of Immuno-Gene Therapy, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| |
Collapse
|
19
|
Xiao L, Harrison DG. Inflammation in Hypertension. Can J Cardiol 2020; 36:635-647. [PMID: 32389337 DOI: 10.1016/j.cjca.2020.01.013] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/26/2019] [Accepted: 01/02/2020] [Indexed: 12/22/2022] Open
Abstract
For more than 50 years, evidence has accumulated that inflammation contributes to the pathogenesis of hypertension. Immune cells have been observed in vessels and kidneys of hypertensive humans. Biomarkers of inflammation, including high sensitivity C-reactive protein, various cytokines, and products of the complement pathway are elevated in humans with hypertension. Emerging evidence suggests that hypertension is accompanied and indeed initiated by activation of complement, the inflammasome, and by a change in the phenotype of circulating immune cells, particularly myeloid cells. High-dimensional transcriptomic analyses are providing insight into new subclasses of immune cells that are likely injurious in hypertension. These inflammatory events are interdependent and there is ultimately engagement of the adaptive immune system through mechanisms involving oxidative stress, modification of endogenous proteins, and alterations in antigen processing and presentation. These observations suggest new therapeutic opportunities to reduce end organ damage in hypertension might be used and guided by levels of inflammatory biomarkers.
Collapse
Affiliation(s)
- Liang Xiao
- Departments of Medicine, Pharmacology, and Physiology, and Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - David G Harrison
- Departments of Medicine, Pharmacology, and Physiology, and Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|