1
|
Khafizova GV, Matveeva TV. Agrobacterium-mediated transformation of <i>Nicotiana glauca</i> and <i>Nicotiana sylvestris</i>. Vavilovskii Zhurnal Genet Selektsii 2022; 26:697-703. [DOI: 10.18699/vjgb-22-84] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/01/2022] [Accepted: 07/08/2022] [Indexed: 12/03/2022] Open
Affiliation(s)
- G. V. Khafizova
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)
| | | |
Collapse
|
2
|
Chen K, Dorlhac de Borne F, Sierro N, Ivanov NV, Alouia M, Koechler S, Otten L. Organization of the TC and TE cellular T-DNA regions in Nicotiana otophora and functional analysis of three diverged TE-6b genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:274-287. [PMID: 29396989 DOI: 10.1111/tpj.13853] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/17/2018] [Accepted: 01/22/2018] [Indexed: 05/27/2023]
Abstract
Nicotiana otophora contains Agrobacterium-derived T-DNA sequences introduced by horizontal gene transfer (Chen et al., 2014). Sixty-nine contigs were assembled into four different cellular T-DNAs (cT-DNAs) totalling 83 kb. TC and TE result from two successive transformation events, each followed by duplication, yielding two TC and two TE inserts. TC is also found in other Nicotiana species, whereas TE is unique to N. otophora. Both cT-DNA regions are partially duplicated inverted repeats. Analysis of the cT-DNA divergence patterns allowed reconstruction of the evolution of the TC and TE regions. TC and TE carry 10 intact open reading frames. Three of these are TE-6b genes, derived from a single 6b gene carried by the Agrobacterium strain which inserted TE in the N. otophora ancestor. 6b genes have so far only been found in Agrobacterium tumefaciens or Agrobacterium vitis T-DNAs and strongly modify plant growth (Chen and Otten, 2016). The TE-6b genes were expressed in Nicotiana tabacum under the constitutive 2 × 35S promoter. TE-1-6b-R and TE-2-6b led to shorter plants, dark-green leaves, a strong increase in leaf vein development and modified petiole wings. TE-1-6b-L expression led to a similar phenotype, but in addition leaves show outgrowths at the margins, flowers were modified and plants became viviparous, i.e. embryos germinated in the capsules at an early stage of their development. Embryos could be rescued by culture in vitro. The TE-6b phenotypes are very different from the earlier described 6b phenotypes and could provide new insight into the mode of action of the 6b genes.
Collapse
Affiliation(s)
- Ke Chen
- Department of Molecular Mechanisms of Phenotypic Plasticity, Institut de Biologie Moléculaire des Plantes, Rue du Général Zimmer 12, 67084, Strasbourg, France
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | | | - Nicolas Sierro
- PMI R&D, Philip Morris Products S.A. [part of Philip Morris International group of companies], Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Nikolai V Ivanov
- PMI R&D, Philip Morris Products S.A. [part of Philip Morris International group of companies], Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Malek Alouia
- Department of Molecular Mechanisms of Phenotypic Plasticity, Institut de Biologie Moléculaire des Plantes, Rue du Général Zimmer 12, 67084, Strasbourg, France
| | - Sandrine Koechler
- Department of Molecular Mechanisms of Phenotypic Plasticity, Institut de Biologie Moléculaire des Plantes, Rue du Général Zimmer 12, 67084, Strasbourg, France
| | - Léon Otten
- Department of Molecular Mechanisms of Phenotypic Plasticity, Institut de Biologie Moléculaire des Plantes, Rue du Général Zimmer 12, 67084, Strasbourg, France
| |
Collapse
|
3
|
Abstract
The transfer of T-DNA sequences from Agrobacterium to plant cells is a well-understood process of natural genetic engineering. The expression of T-DNA genes in plants leads to tumors, hairy roots, or transgenic plants. The transformed cells multiply and synthesize small molecules, called opines, used by Agrobacteria for their growth. Several T-DNA genes stimulate or influence plant growth. Among these, iaaH and iaaM encode proteins involved in auxin synthesis, whereas ipt encodes a protein involved in cytokinin synthesis. Growth can also be induced or modified by other T-DNA genes, collectively called plast genes (for phenotypic plasticity). The plast genes are defined by their common ancestry and are mostly found on T-DNAs. They can influence plant growth in different ways, but the molecular basis of their morphogenetic activity remains largely unclear. Only some plast genes, such as 6b, rolB, rolC, and orf13, have been studied in detail. Plast genes have a significant potential for applied research and may be used to modify the growth of crop plants. In this review, I summarize the most important findings and models from 30 years of plast gene research and propose some outlooks for the future.
Collapse
|
4
|
Alburquerque N, Faize L, Burgos L. Silencing of Agrobacterium tumefaciens oncogenes ipt and iaaM induces resistance to crown gall disease in plum but not in apricot. PEST MANAGEMENT SCIENCE 2017; 73:2163-2173. [PMID: 28449201 DOI: 10.1002/ps.4600] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 04/05/2017] [Accepted: 04/22/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND In this study, two vectors with short-length chimeric transgenes were used to produce Prunus rootstocks resistant to crown gall disease through RNA-interference-mediated gene silencing of the Agrobacterium tumefaciens oncogenes ipt and iaaM. RESULTS Transgenic plum and apricot lines were produced with efficiencies of up to 7.7 and 1.1% respectively. An in vitro evaluation method allowed identification of susceptible lines and reduction in the number of lines to be evaluated in the greenhouse. Five transgenic plum lines, expressing transgene-derived small interfering RNA (siRNA) and low levels of transgene hairpin RNA (hpRNA), showed a significant reduction in the development of the disease after infection with Agrobacterium strains C58 and A281 under greenhouse conditions. However, unexpectedly, all transgenic apricot lines were gall susceptible. The infection of apricot plants with a binary vector containing only the 6b oncogene demonstrated that the expression of this gene is involved in the induction of tumours in the apricot species. CONCLUSION RNAi-mediated gene silencing can be used for inducing crown gall resistance in plum rootstocks. These could be used to graft non-genetically modified commercial fruit cultivars reducing, or eliminating, the disease symptoms. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Nuria Alburquerque
- Grupo de Biotecnología de Frutales, Departamento de Mejora Vegetal, CEBAS-CSIC, Murcia, Spain
| | - Lydia Faize
- Grupo de Biotecnología de Frutales, Departamento de Mejora Vegetal, CEBAS-CSIC, Murcia, Spain
| | - Lorenzo Burgos
- Grupo de Biotecnología de Frutales, Departamento de Mejora Vegetal, CEBAS-CSIC, Murcia, Spain
| |
Collapse
|
5
|
Chen K, Otten L. Morphological analysis of the 6b oncogene-induced enation syndrome. PLANTA 2016; 243:131-48. [PMID: 26353911 DOI: 10.1007/s00425-015-2387-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 08/14/2015] [Indexed: 06/05/2023]
Abstract
MAIN CONCLUSION The T-DNA 6b oncogene induces complex and partly unprecedented phenotypic changes in tobacco stems and leaves, which result from hypertrophy and hyperplasia with ectopic spot-like, ridge-like and sheet-like meristems. The Agrobacterium T-DNA oncogene 6b causes complex growth changes in tobacco including enations; this unusual phenotype has been called "6b enation syndrome". A detailed morphological and anatomical analysis of the aerial part of Nicotiana tabacum plants transformed with a dexamethasone-inducible dex-T-6b gene revealed several striking growth phenomena. Among these were: uniform growth of ectopic photosynthetic cells on the abaxial leaf side, gutter-like petioles with multiple parallel secondary veins, ectopic leaf primordia emerging behind large glandular trichomes, corniculate structures emerging from distal ends of secondary veins, pin-like structures with remarkable branching patterns, ectopic vascular strands in midveins and petioles extending down along the stem, epiascidia and hypoascidia, double enations and complete inhibition of leaf outgrowth. Ectopic stipule-like leaves and inverted leaves were found at the base of the petioles. Epinastic and hyponastic growth of petioles and midveins yielded complex but predictable leaf folding patterns. Detailed anatomical analysis of over sixty different 6b-induced morphological changes showed that the different modifications are derived from hypertrophy and abaxial hyperplasia, with ectopic photosynthetic cells forming spot-like, ridge-like and sheet-like meristems and ectopic vascular strands forming regular patterns in midveins, petioles and stems. Part of the enation syndrome is due to an unknown phloem-mobile enation factor. Graft experiments showed that the 6b mRNA is mobile and could be the enation factor. Our work provides a better insight in the basic effects of the 6b oncogene.
Collapse
Affiliation(s)
- Ke Chen
- Department of Molecular Mechanisms of Phenotypic Plasticity, Institut de Biologie Moléculaire des Plantes, Rue du Général Zimmer 12, 67084, Strasbourg, France
| | - Léon Otten
- Department of Molecular Mechanisms of Phenotypic Plasticity, Institut de Biologie Moléculaire des Plantes, Rue du Général Zimmer 12, 67084, Strasbourg, France.
| |
Collapse
|
6
|
Ishibashi N, Kitakura S, Terakura S, Machida C, Machida Y. Protein encoded by oncogene 6b from Agrobacterium tumefaciens has a reprogramming potential and histone chaperone-like activity. FRONTIERS IN PLANT SCIENCE 2014; 5:572. [PMID: 25389429 PMCID: PMC4211554 DOI: 10.3389/fpls.2014.00572] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 10/05/2014] [Indexed: 05/31/2023]
Abstract
Crown gall tumors are formed mainly by actions of a group of genes in the T-DNA that is transferred from Agrobacterium tumefaciens and integrated into the nuclear DNA of host plants. These genes encode enzymes for biosynthesis of auxin and cytokinin in plant cells. Gene 6b in the T-DNA affects tumor morphology and this gene alone is able to induce small tumors on certain plant species. In addition, unorganized calli are induced from leaf disks of tobacco that are incubated on phytohormone-free media; shooty teratomas, and morphologically abnormal plants, which might be due to enhanced competence of cell division and meristematic states, are regenerated from the calli. Thus, the 6b gene appears to stimulate a reprogramming process in plants. To uncover mechanisms behind this process, various approaches including the yeast-two-hybrid system have been exploited and histone H3 was identified as one of the proteins that interact with 6b. It has been also demonstrated that 6b acts as a histone H3 chaperon in vitro and affects the expression of various genes related to cell division competence and the maintenance of meristematic states. We discuss current views on a role of 6b protein in tumorigenesis and reprogramming in plants.
Collapse
Affiliation(s)
- Nanako Ishibashi
- Division of Biological Science, Graduate School of Science, Nagoya UniversityNagoya, Japan
| | - Saeko Kitakura
- Division of Biological Science, Graduate School of Science, Nagoya UniversityNagoya, Japan
- Graduate School of Bioscience and Biotechnology, Chubu UniversityKasugai, Japan
| | - Shinji Terakura
- Division of Biological Science, Graduate School of Science, Nagoya UniversityNagoya, Japan
| | - Chiyoko Machida
- Graduate School of Bioscience and Biotechnology, Chubu UniversityKasugai, Japan
| | - Yasunori Machida
- Division of Biological Science, Graduate School of Science, Nagoya UniversityNagoya, Japan
| |
Collapse
|
7
|
Takahashi S, Sato R, Takahashi M, Hashiba N, Ogawa A, Toyofuku K, Sawata T, Ohsawa Y, Ueda K, Wabiko H. Ectopic localization of auxin and cytokinin in tobacco seedlings by the plant-oncogenic AK-6b gene of Agrobacterium tumefaciens AKE10. PLANTA 2013; 238:753-70. [PMID: 23873395 DOI: 10.1007/s00425-013-1930-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Accepted: 07/05/2013] [Indexed: 06/02/2023]
Abstract
The oncogenic 6b gene of Agrobacterium tumefaciens induces a number of morphological and metabolic alterations in plants. Although molecular functions associated with the 6b genes have been proposed, including auxin transport, sugar transport, transcriptional regulation, and miRNA metabolism, so far an unequivocal conclusion has not been obtained. We investigated the association between auxin accumulation and tumor development of the tobacco seedlings expressing the AK-6b gene under the control of the dexamethasone-inducible promoter. Indole-3-acetic acid (IAA) localization was examined by immunochemical staining with monoclonal antibody against IAA and by histochemical analysis using the IAA-specific induced construct, DR5::GUS (β-glucuronidase). Both procedures indicated that IAA preferentially accumulated in the tumorous protrusions as well as in newly developing vascular bundles in the tumors. Furthermore, true leaves also showed abaxial IAA localization, leading to altered leaves in which the adaxial and abaxial identities were no longer evident. Co-localization of cytokinin and auxin in the abaxial tumors was verified by immunochemical staining with an antibody against cytokinin. Treatment of AK-6b-seedlings with N-1-naphthylphthalamic acid, an inhibitor of polar auxin transport, promoted the morphological severity of phenotypes, whereas 1-naphthoxyacetic acid, a specific auxin influx carrier inhibitor, induced tumor regression on cotyledons and new tumorous proliferations on hypocotyls. Prominent accumulation of both auxin and cytokinin was observed in both regressed and newly developing tumors. We suggest from these results that modulation of auxin/cytokinin localization as a result of AK-6b gene expression is responsible for the tumorous proliferation.
Collapse
Affiliation(s)
- Sachiko Takahashi
- Department of Biological Production, Faculty of Bioresource Sciences, Akita Prefectural University, 241-438 Kaidobata Nishi, Nakano-Aza, Shimoshinjo, Akita, 010-0195, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Wang M, Soyano T, Machida S, Yang JY, Jung C, Chua NH, Yuan YA. Molecular insights into plant cell proliferation disturbance by Agrobacterium protein 6b. Genes Dev 2010; 25:64-76. [PMID: 21156810 DOI: 10.1101/gad.1985511] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Agrobacterium Ti plasmid (T-DNA) 6b proteins interact with many different host proteins implicated in plant cell proliferation. Here, we show that Arabidopsis plants overexpressing 6b display microRNA (miRNA) deficiency by directly targeting SERRATE and AGO1 via a specific loop fragment (residues 40-55). In addition, we report the crystal structures of Agrobacterium tumefaciens AK6b at 2.1 Å, Agrobacterium vitis AB6b at 1.65 Å, and Arabidopsis ADP ribosylation factor (ARF) at 1.8 Å. The 6b structure adopts an ADP-ribosylating toxin fold closely related to cholera toxin. In vitro ADP ribosylation analysis demonstrates that 6b represents a new toxin family, with Tyr 66, Thr 93, and Tyr 153 as the ADP ribosylation catalytic residues in the presence of Arabidopsis ARF and GTP. Our work provides molecular insights, suggesting that 6b regulates plant cell growth by the disturbance of the miRNA pathway through its ADP ribosylation activity.
Collapse
Affiliation(s)
- Meimei Wang
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | | | | | | | | | | | | |
Collapse
|
9
|
Shao JL, Long YS, Chen G, Xie J, Xu ZF. The reversed terminator of octopine synthase gene on the Agrobacterium Ti plasmid has a weak promoter activity in prokaryotes. Mol Biol Rep 2009; 37:2157-62. [PMID: 19669666 DOI: 10.1007/s11033-009-9688-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2009] [Accepted: 07/28/2009] [Indexed: 11/26/2022]
Abstract
Agrobacterium tumefaciens transfers DNA from its Ti plasmid to plant host cells. The genes located within the transferred DNA of Ti plasmid including the octopine synthase gene (OCS) are expressed in plant host cells. The 3'-flanking region of OCS gene, known as OCS terminator, is widely used as a transcriptional terminator of the transgenes in plant expression vectors. In this study, we found the reversed OCS terminator (3'-OCS-r) could drive expression of hygromycin phosphotransferase II gene (hpt II) and beta-glucuronidase gene in Escherichia coli, and expression of hpt II in A. tumefaciens. Furthermore, reverse transcription-polymerase chain reaction analysis revealed that an open reading frame (ORF12) that is located downstream to the 3'-OCS-r was transcribed in A. tumefaciens, which overlaps in reverse with the coding region of the OCS gene in octopine Ti plasmid.
Collapse
Affiliation(s)
- Jun-Li Shao
- Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory of Biocontrol, College of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, China
| | | | | | | | | |
Collapse
|
10
|
Kitakura S, Terakura S, Yoshioka Y, Machida C, Machida Y. Interaction between Agrobacterium tumefaciens oncoprotein 6b and a tobacco nucleolar protein that is homologous to TNP1 encoded by a transposable element of Antirrhinum majus. JOURNAL OF PLANT RESEARCH 2008; 121:425-33. [PMID: 18463947 DOI: 10.1007/s10265-008-0160-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2007] [Accepted: 03/12/2008] [Indexed: 05/26/2023]
Abstract
When gene 6b on the T-DNA of Agrobacterium tumefaciens is transferred to plant cells, its expression causes plant hormone-independent division of cells in in vitro culture and abnormal cell growth, which induces various morphological defects in 6b-expressing transgenic Arabidopsis thaliana and Nicotiana tabacum plants. Protein 6b localizes to the nuclei, a requirement for the abnormal cell growth, and binds to a tobacco nuclear protein called NtSIP1 and histone H3. In addition, 6b has histone chaperone-like activity in vitro and affects the expression of various plant genes, including cell division-related genes and meristem-related class 1 KNOX homeobox genes, in transgenic Arabidopsis. Here, we report that 6b binds to a newly identified protein NtSIP2, whose amino acid sequence is predicted to be 30% identical and 51% similar to that of the TNP1 protein encoded by the transposon Tam1 of Antirrhinum majus. Immunolocalization analysis using anti-T7 antibodies showed nucleolar localization of most of the T7 epitope-tagged NtSIP2 proteins. A similar analysis with the T7-tagged 6b protein also showed subnucleolar as well as nuclear localization of the 6b protein. These results suggest the involvement of 6b along with NtSIP2 in certain molecular processes in the nucleolus as well as the nucleoplasm.
Collapse
Affiliation(s)
- Saeko Kitakura
- College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | | | | | | | | |
Collapse
|
11
|
Terakura S, Ueno Y, Tagami H, Kitakura S, Machida C, Wabiko H, Aiba H, Otten L, Tsukagoshi H, Nakamura K, Machida Y. An oncoprotein from the plant pathogen agrobacterium has histone chaperone-like activity. THE PLANT CELL 2007; 19:2855-65. [PMID: 17890376 PMCID: PMC2048699 DOI: 10.1105/tpc.106.049551] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2006] [Revised: 08/23/2007] [Accepted: 08/27/2007] [Indexed: 05/17/2023]
Abstract
Protein 6b, encoded by T-DNA from the pathogen Agrobacterium tumefaciens, stimulates the plant hormone-independent division of cells in culture in vitro and induces aberrant cell growth and the ectopic expression of various genes, including genes related to cell division and meristem-related class 1 KNOX homeobox genes, in 6b-expressing transgenic Arabidopsis thaliana and Nicotiana tabacum plants. Protein 6b is found in nuclei and binds to several plant nuclear proteins. Here, we report that 6b binds specifically to histone H3 in vitro but not to other core histones. Analysis by bimolecular fluorescence complementation revealed an interaction in vivo between 6b and histone H3. We recovered 6b from a chromatin fraction from 6b-expressing plant cells. A supercoiling assay and digestion with micrococcal nuclease indicated that 6b acts as a histone chaperone with the ability to mediate formation of nucleosomes in vitro. Mutant 6b, lacking the C-terminal region that is required for cell division-stimulating activity and interaction with histone H3, was deficient in histone chaperone activity. Our results suggest a relationship between alterations in nucleosome structure and the expression of growth-regulating genes on the one hand and the induction of aberrant cell proliferation on the other.
Collapse
Affiliation(s)
- Shinji Terakura
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Clément B, Perot J, Geoffroy P, Legrand M, Zon J, Otten L. Abnormal accumulation of sugars and phenolics in tobacco roots expressing the Agrobacterium T-6b oncogene and the role of these compounds in 6b-induced growth. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:53-62. [PMID: 17249422 DOI: 10.1094/mpmi-20-0053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The Agrobacterium T-DNA oncogene 6b induces tumors and modifies the growth of transgenic plants by an unknown mechanism. We have investigated changes in roots of tobacco seedlings that express a dexamethasone-inducible T-6b (dex-T-6b) gene. On induction medium with sucrose, intact or isolated dex-T-6b roots accumulated sucrose, glucose, and fructose and changed their growth, contrary to noninduced roots. Root fragments bridging agar blocks with or without sucrose accumulated sugars at the site of sucrose uptake, resulting in local growth. Induced root fragments showed enhanced uptake of 14C-labeled sucrose, glucose, and fructose. When seedlings were placed on sucrose-free induction medium, sugar levels strongly decreased in roots and increased in cotyledons. Collectively, these results demonstrate that 6b stimulates sugar uptake and retention with drastic effects on growth. Apart from sugars, phenolic compounds also have been found to accumulate in 6b tissues and have been proposed earlier to play a role in 6b-induced growth. Induced dex-T-6b roots accumulated high levels of 5-caffeoylquinic acid (or chlorogenic acid [CGA]), but only under conditions where endogenous sugars increased. Inhibition of phenylalanine ammonia-lyase with the competitive inhibitor 2-aminoindan-2-phosphonic acid (AIP) abolished CGA accumulation without modifying sugar accumulation or affecting the 6b phenotype. We conclude that the absorption, retention, and abnormal accumulation of sugars are essential factors in 6b-induced growth changes, whereas phenylpropanoids only marginally contribute to the 6b seedling phenotype.
Collapse
Affiliation(s)
- Bernadette Clément
- Department of Cell Biology, Plant Molecular Biology Institute of the C. N. R. S., Rue du Général Zimmer 12, Strasbourg 67084, France
| | | | | | | | | | | |
Collapse
|
13
|
Terakura S, Kitakura S, Ishikawa M, Ueno Y, Fujita T, Machida C, Wabiko H, Machida Y. Oncogene 6b from Agrobacterium tumefaciens induces abaxial cell division at late stages of leaf development and modifies vascular development in petioles. PLANT & CELL PHYSIOLOGY 2006; 47:664-72. [PMID: 16547081 DOI: 10.1093/pcp/pcj036] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The 6b gene in the T-DNA region of the Ti plasmids of Agrobacterium tumefaciens and A. vitis is able to generate shooty calli in phytohormone-free culture of leaf sections of tobacco transformed with 6b. In the present study, we report characteristic morphological abnormalities of the leaves of transgenic tobacco and Arabidopsis that express 6b from pTiAKE10 (AK-6b), and altered expression of genes related to cell division and meristem formation in the transgenic plants. Cotyledons and leaves of both transgenic tobacco and Arabidopsis exhibited various abnormalities including upward curling of leaf blades, and transgenic tobacco leaves produced leaf-like outgrowths from the abaxial side. Transcripts of some class 1 KNOX homeobox genes, which are thought to be related to meristem functions, and cell cycle regulating genes were ectopically accumulated in mature leaves. M phase-specific genes were also ectopically expressed at the abaxial sides of mature leaves. These results suggest that the AK-6b gene stimulates the cellular potential for division and meristematic functions preferentially in the abaxial side of leaves and that the leaf phenotypes generated by AK-6b are at least in part due to such biased cell division during polar development of leaves. The results of the present experiments with a fusion gene between the AK-6b gene and the glucocorticoid receptor gene showed that nuclear import of the AK-6b protein was essential for upward curling of leaves and hormone-free callus formation, suggesting a role for AK-6b in nuclear events.
Collapse
MESH Headings
- Agrobacterium tumefaciens/genetics
- Arabidopsis/genetics
- Arabidopsis/growth & development
- Arabidopsis/microbiology
- Cell Differentiation/genetics
- Cell Differentiation/physiology
- Cell Division/genetics
- Cell Division/physiology
- Cell Proliferation
- Gene Expression Regulation, Plant/physiology
- Genes, Homeobox/genetics
- Genes, Homeobox/physiology
- Genes, Plant/genetics
- Genes, Plant/physiology
- Meristem/cytology
- Meristem/growth & development
- Meristem/physiology
- Oncogene Proteins/analysis
- Oncogene Proteins/genetics
- Oncogene Proteins/physiology
- Plant Leaves/chemistry
- Plant Leaves/cytology
- Plant Leaves/growth & development
- Plant Proteins/analysis
- Plant Proteins/genetics
- Plant Proteins/physiology
- Plant Stems/chemistry
- Plant Stems/cytology
- Plant Stems/growth & development
- Plant Tumor-Inducing Plasmids/genetics
- Plants, Genetically Modified
- Receptors, Glucocorticoid/analysis
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/physiology
- Nicotiana/cytology
- Nicotiana/genetics
- Nicotiana/physiology
- Transcription, Genetic
Collapse
Affiliation(s)
- Shinji Terakura
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602 Japan
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Clément B, Pollmann S, Weiler E, Urbanczyk-Wochniak E, Otten L. The Agrobacterium vitis T-6b oncoprotein induces auxin-independent cell expansion in tobacco. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 45:1017-27. [PMID: 16507091 DOI: 10.1111/j.1365-313x.2006.02663.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Among the Agrobacterium T-DNA genes, rolB, rolC, orf13, orf8, lso, 6b and several other genes encode weakly homologous proteins with remarkable effects on plant growth. The 6b oncogene induces tumors and enations. In order to study its properties we have used transgenic tobacco plants that carry a dexamethasone-inducible 6b gene, dex-T-6b. Upon induction, dex-T-6b plants develop a large array of morphological modifications, some of which involve abnormal cell expansion. In the present investigation, dex-T-6b-induced expansion was studied in intact leaves and an in vitro leaf disc system. Although T-6b and indole-3-acetic acid (IAA) both induced expansion and were non-additive, T-6b expression did not increase IAA levels, nor did it induce an IAA-responsive gene. Fusicoccin (FC) is known to stimulate expansion by increasing cell wall plasticity. T-6b- and FC-induced expansion were additive at saturating FC concentrations, indicating that T-6b does not act by a similar mechanism to FC. T-6b expression led to higher leaf osmolality values, in contrast to FC, suggesting that the T-6b gene induces expansion by increasing osmolyte concentrations. Metabolite profiling showed that glucose and fructose played a major role in this increase. We infer that T-6b disrupts the osmoregulatory controls that govern cell expansion during development and wound healing.
Collapse
Affiliation(s)
- Bernadette Clément
- Department of Cell Biology, Institut de Biologie Moléculaire des Plantes, Rue du Général Zimmer 12, 67084 Strasbourg, France
| | | | | | | | | |
Collapse
|
15
|
Moriuchi H, Okamoto C, Nishihama R, Yamashita I, Machida Y, Tanaka N. Nuclear localization and interaction of RolB with plant 14-3-3 proteins correlates with induction of adventitious roots by the oncogene rolB. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 38:260-75. [PMID: 15078329 DOI: 10.1111/j.1365-313x.2004.02041.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The rooting-locus gene B (rolB) on the T-DNA of the root-inducing (Ri) plasmid in Agrobacterium rhizogenes is responsible for the induction of transformed adventitious roots, although the root induction mechanism is unknown. We report here that the RolB protein of pRi1724 (1724RolB) is associated with Nicotianatabacum14-3-3-like protein omegaII (Nt14-3-3 omegaII) in tobacco bright yellow (BY)-2 cells. Nt14-3-3 omegaII directly interacts with 1724RolB protein. Green fluorescent protein (GFP)-fused 1724RolB is localized to the nucleus. GFP-fused mutant 1724RolB proteins having a deletion or amino acid substitution are unable to interact with Nt14-3-3 omegaII and also show impaired nuclear localization. Moreover, these 1724RolB mutants show decreased capacity for adventitious root induction. These results suggest that adventitious root induction by 1724RolB protein correlates with its interaction with Nt14-3-3 omegaII and the nuclear localization of 1724RolB protein.
Collapse
Affiliation(s)
- Hiroshi Moriuchi
- Center for Gene Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Grémillon L, Helfer A, Clément B, Otten L. New plant growth-modifying properties of the Agrobacterium T-6b oncogene revealed by the use of a dexamethasone-inducible promoter. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 37:218-28. [PMID: 14690506 DOI: 10.1046/j.1365-313x.2003.01956.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Agrobacterium 6b oncogenes induce tumours on Nicotiana glauca and enations and associated modifications in transgenic N. tabacum plants. 2x35S-AB-6b tobacco rootstocks produced a graft-transmissible factor that induced enations in wild-type scions; the nature of this enation factor remains to be identified. Here, we report on the properties of tobacco plants carrying a dexamethasone-inducible T-6b gene (dex-T-6b). Induction with dex led to complex growth modifications, many of which have not been reported previously. Modifications were only found in growing tissues; mature tissues remained unaffected. Growth could be either stimulated or inhibited. Dex induction of young plants led to morphogenetic gradients that included enations, tubular leaves and fragmented leaf primordia. Root elongation was increased or slowed down, while radial root growth was strongly enhanced. Additional cell divisions were found in the root pericycle and vasculature. Enation factor import from mature tissues did not have the same effects on growing tissues as local T-6b synthesis: normal scions grafted on induced dex-T-6b rootstocks formed enations, whereas local dex-T-6b induction at the shoot apex led to numerous dark-green spots on the abaxial side of the leaves. In leaf patch assays, the 23-kDa T-6b protein was found to move through leaves and to enter the vascular system. This and the fact that rootstocks of spontaneous tobacco enation mutants did not modify wild-type scions contrary to 6b plants indicate that the 6b protein might be the enation factor.
Collapse
Affiliation(s)
- Louis Grémillon
- Institut de Biologie Moléculaire des Plantes, CNRS UPR2357, Rue du Général Zimmer 12, 67084 Strasbourg, France
| | | | | | | |
Collapse
|
17
|
Gális I, Kakiuchi Y, Simek P, Wabiko H. Agrobacterium tumefaciens AK-6b gene modulates phenolic compound metabolism in tobacco. PHYTOCHEMISTRY 2004; 65:169-79. [PMID: 14732276 DOI: 10.1016/j.phytochem.2003.10.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The 6b gene (AK-6b) of Agrobacterium tumefaciens AKE10 can substitute for the requirement of tobacco tissues for auxin and cytokinin to maintain callus growth in the culture medium. To identify compounds that might be involved in this process we analyzed phenolic metabolites in transgenic tobacco tissues expressing the AK-6b gene. On medium containing both cytokinin and auxin (SH medium), transgenic calli accumulated higher levels of chlorogenic acid, caffeoyl putrescine, rutin and kaempferol-3-rutinoside, than did wild-type tissues. In contrast, the levels of scopolin and its aglycone, scopoletin were lower in transgenic tissues. On hormone-free medium, these phenolic compounds showed neither significant levels nor an apparent relationship with AK-6b transcript levels, except for the negatively correlated levels of scopoletin and AK-6b transcripts. Apparently, the AK-6b gene acts, in SH medium, to redirect the synthesis of scopolin in tobacco tissues towards the preferential synthesis of caffeic acid derivatives and flavonoids.
Collapse
Affiliation(s)
- Ivan Gális
- Faculty of Bioresource Sciences, Akita Prefectural University, Nishi 241-7, Nakano-Aza Kaidobata, Akita 010-0195, Shimoshinjo, Japan
| | | | | | | |
Collapse
|
18
|
Umber M, Voll L, Weber A, Michler P, Otten L. The rolB-like part of the Agrobacterium rhizogenes orf8 gene inhibits sucrose export in tobacco. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2002; 15:956-62. [PMID: 12236602 DOI: 10.1094/mpmi.2002.15.9.956] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Many Agrobacterium T-DNA genes belong to the highly diverse rolB family. The mode of action of most of these genes is still unknown. rolB-like sequences also are present at the 5' ends of the T-DNA-located iaaM genes and the iaaM homolog orf8, whereas iaaM genes from Pseudomonas and Erwinia spp. lack such sequences. iaaM genes encode tryptophan monooxygenases; these enzymes convert tryptophan into indole-3-acetamide, a precursor of indole-3-acetic acid. Tobacco plants expressing the rolB-like part of the A4 orf8 gene (2x35S-A4-Norf8 plants) accumulate glucose, fructose, sucrose, and starch and resemble sucrose transporter (NtSUT1) antisense plants. Different lines of evidence indicate that 2x35S-A4-Norf8 plants export less sucrose from source leaves. Glucose, fructose, sucrose, and starch accumulate in source leaves during sink-source transition, whereas sink tissues like petioles and midveins contain lower levels than normal. Petiole exudation experiments demonstrate a significant decrease in export of label after 14C-sucrose infiltration and after 14CO2 labeling. Grafting of stunted homozygous 2x35S-A4-Norf8 plants onto wild-type rootstocks restores growth, indicating that unloading is not affected. Growth of 2x35S-A4-Norf8 seedlings is inhibited on naphthalene acetic acid-containing media, suggesting a link between sucrose transport and auxin sensitivity.
Collapse
Affiliation(s)
- Marie Umber
- Institut de Biologie Moléculaire des Plantes, CNRS UPR2357, Strasbourg, France
| | | | | | | | | |
Collapse
|
19
|
Gális I, Simek P, Van Onckelen HA, Kakiuchi Y, Wabiko H. Resistance of transgenic tobacco seedlings expressing the Agrobacterium tumefaciens C58-6b gene, to growth-inhibitory levels of cytokinin is associated with elevated IAA levels and activation of phenylpropanoid metabolism. PLANT & CELL PHYSIOLOGY 2002; 43:939-50. [PMID: 12198197 DOI: 10.1093/pcp/pcf112] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
We previously reported that the Agrobacterium tumefaciens C58-6b gene confers resistance to growth-inhibitory levels of exogenously applied N(6)-benzyladenine (BA, cytokinin) in transgenic tobacco (Nicotiana tabacum) seedlings. Here, we found that intracellular levels of indoleacetic acid (IAA, auxin) increased in transgenics but declined in wild-type seedlings upon BA treatment. Since exogenously supplied 1-naphthalene acetic acid (NAA), a stable synthetic auxin, counteracted the growth inhibition of wild-type seedlings by BA, we suggest that BA-induced growth inhibition in wild-type seedlings occurs, at least in part, as a result of intracellular IAA deficiency. Further HPLC analysis of cell extracts from BA-treated seedlings revealed that a fluorescent compound, later identified as the phenylpropanoid, scopolin, and the major phenolic compound, chlorogenic acid, accumulated earlier in transgenics than in wild-type seedlings. Gene transcripts encoding phenylalanine ammonia-lyase, cinnamate 4-hydroxylase, and 4-coumarate:CoA ligase, which are responsible for the early steps of phenylpropanoid biosynthesis, accumulated earlier and to higher levels in transgenics than in wild-type seedlings as determined by Northern hybridization analysis, thus accounting for the early accumulation of scopolin and chlorogenic acid in transgenics. As some phenolic compounds, including chlorogenic acid and scopoletin (aglycon of scopolin) are suggested to inhibit IAA catabolism, we further propose that C58-6b gene expression protects IAA from degradation by inducing the early phenylpropanoid pathway.
Collapse
Affiliation(s)
- Ivan Gális
- Biotechnology Institute, Akita Prefectural University, 2-2 Minami, Ohgata, Akita, 010-0444 Japan
| | | | | | | | | |
Collapse
|
20
|
Otten L, Helfer A. Biological activity of the rolB-like 5' end of the A4-orf8 gene from the Agrobacterium rhizogenes TL-DNA. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2001; 14:405-11. [PMID: 11277438 DOI: 10.1094/mpmi.2001.14.3.405] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The iaaM gene from different plant-associated bacteria encodes a tryptophan monooxygenase (IaaM) that catalyzes the synthesis of indole-3-acetamide (IAM), a precursor of indole-3-acetic acid (IAA). Unlike the IaaM proteins from other bacteria, Agrobacterium spp. T-DNA-encoded IaaM proteins carry a 200 amino acid N-terminal extension with low homology to various members of the RolB protein family. This family is composed of 18 highly divergent T-DNA-encoded proteins, the basic functions of which are still largely undetermined. Deletion of the 5' rolB-like extension of the iaaM gene from Agrobacterium tumefaciens strain Ach5 did not lead to a reduction in IAM synthesis in plants. When expressed in tobacco, the rolB-like fragment did not affect growth or morphology. An iaaM homolog (A4-orf8) from the TL-DNA of Agrobacterium rhizogenes strain A4 also was investigated. Neither the full-size A4-orf8 gene nor the 5'-truncated form induced detectable IAM synthesis. Plants expressing the rolB-like part of the A4-orf8 gene, however, were dwarfed and mottled to various extents and synthesized abnormally high amounts of glucose, fructose, sucrose, and starch.
Collapse
Affiliation(s)
- L Otten
- Department of Cell Biology, Plant Molecular Biology Institute of the CNRS, Strasbourg, France.
| | | |
Collapse
|
21
|
Zhu J, Oger PM, Schrammeijer B, Hooykaas PJ, Farrand SK, Winans SC. The bases of crown gall tumorigenesis. J Bacteriol 2000; 182:3885-95. [PMID: 10869063 PMCID: PMC94570 DOI: 10.1128/jb.182.14.3885-3895.2000] [Citation(s) in RCA: 246] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- J Zhu
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | |
Collapse
|
22
|
Meyer AD, Aebi R, Meins F. Tobacco plants carrying a tms locus of Ti-plasmid origin and the Hl-1 allele are tumor prone. Differentiation 1997; 61:213-21. [PMID: 9203344 DOI: 10.1046/j.1432-0436.1997.6140213.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The autonomous growth of plant tumor cells is believed to result from their persistent loss of the requirement for growth hormones such as auxin and cytokinin. The partially dominant gene Habituated leaf-1 (Hl-1) regulates the requirement of cultures tissues of Havana 425 tobacco (Nicotiana tabacum L.) for cytokinins. The Hl-1 allele can partially restore the tumor phenotype in tobacco cells transformed with a Agrobacterium tumefaciens Ti plasmid defective in the isopentenyl transferase locus, which encodes a key enzyme in cytokinin biosynthesis and is required for neoplastic growth. To investigate the oncogenic function of Hl-1, we transformed wild-type (hl-1/hl-1) and Hl-1/Hl-1 tobacco plants with the tms locus derived from the limited-host-range Ti plasmid pTiAg162. This locus encodes enzymes for biosynthesis of the auxin indole-3-acetic acid. Grafting tests and measurements of the hormone requirement of cultured explants show that wound-induced overgrowths arising in tms transformed Hl-1 plants are tumorous. While some wound-induced overgrowths also formed in hl-1/hl-1 transformants, these showed slight hormone-autotrophic growth and weak tumorigenicity in grafting tests. In addition, Hl-1/Hl-1 tms/tms plants, but not hl-1/hl-1 tms/tms plants, spontaneously developed rooty teratomatous overgrowths, showed flowering abnormalities, and formed calli at the base of the stem in young seedlings. Thus, Hl-1 tms plants exhibit a tumor-prone phenotype, and in this regard closely resemble tumor-prone hybrids that arise in certain interspecific crosses of Nicotiana species. Our results show that the interaction of just two genetic elements-the mutant Hl-1 allele of the tobacco host with tms genes of Ti plasmid origin-are sufficient for a tumor-prone phenotype.
Collapse
Affiliation(s)
- A D Meyer
- Friedrich Miescher-Institute, Basel, Switzerland
| | | | | |
Collapse
|
23
|
Natural genetic engineering of plant cells: the molecular biology of crown gall and hairy root disease. World J Microbiol Biotechnol 1996; 12:327-51. [DOI: 10.1007/bf00340209] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/07/1996] [Accepted: 02/10/1996] [Indexed: 11/26/2022]
|
24
|
Zhang XD, Letham DS, Zhang R, Higgins TJ. Expression of the isopentenyl transferase gene is regulated by auxin in transgenic tobacco tissues. Transgenic Res 1996; 5:57-65. [PMID: 8589740 DOI: 10.1007/bf01979922] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The isopentenyl transferase gene (ipt) from Agrobacterium tumefaciens was isolated and introduced, via a disarmed binary vector, into tobacco using the Agrobacterium tumefaciens-mediated gene transfer system. The expression of the ipt gene was monitored by RNA hybridization, western blotting and cytokinin analysis. The addition of auxin to the media rapidly reduced the level of cytokinins in the transgenic tissues and this was associated with a reduction in IPT mRNA and protein levels. It is concluded that the hormone auxin can regulate expression of a gene involved in biosynthesis of the second hormone cytokinin. Although exogenous benzyladenine did not directly affect ipt gene expression, it did antagonize the effect of auxin on levels of cytokinins and IPT mRNA and protein.
Collapse
Affiliation(s)
- X D Zhang
- CSIRO Division of Plant Industry, Canberra, Australia
| | | | | | | |
Collapse
|
25
|
Bagyan IL, Revenkova EV, Pozmogova GE, Kraev AS, Skryabin KG. 5'-regulatory region of Agrobacterium tumefaciens T-DNA gene 6b directs organ-specific, wound-inducible and auxin-inducible expression in transgenic tobacco. PLANT MOLECULAR BIOLOGY 1995; 29:1299-304. [PMID: 8616226 DOI: 10.1007/bf00020470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The regulatory activity of a 826 bp DNA fragment located upstream of the pTiBo542 TL-DNA gene 6b coding region was analyzed in transgenic tobacco, using beta-glucuronidase (gus) as a reporter gene. The region was shown to drive organ-specific, wound- and auxin-inducible expression of the reporter, the effect being dependent on the type and concentration of auxin.
Collapse
Affiliation(s)
- I L Bagyan
- Centre of Bioengineering, Academy of Sciences of Russia, Moscow, Russia
| | | | | | | | | |
Collapse
|
26
|
Abstract
The plant hormones, auxins and cytokinins, are involved in several stages of plant growth and development such as cell elongation, cell division, tissue differentiation, and apical dominance. The biosynthesis and the underlying mechanism of auxins and cytokinins action are subjects of intense investigation. Not only plants but also microorganisms can synthesize auxins and cytokinins. The role of phytohormone biosynthesis by microorganisms is not fully elucidated: in several cases of pathogenic fungi and bacteria these compounds are involved in pathogenesis on plants; auxin and cytokinin production may also be involved in root growth stimulation by beneficial bacteria and associative symbiosis. The genetic mechanism of auxin biosynthesis and regulation by Pseudomonas, Agrobacterium, Rhizobium, Bradyrhizobium, and Azospirillum, are well studied; in these bacteria several physiological effects have been correlated to the bacterial phytohormones biosynthesis. The pathogenic bacteria Pseudomonas and Agrobacterium produce indole-3-acetic acid via the indole-3-acetamide pathway, for which the genes are plasmid borne. However, they do possess also the indole-3-pyruvic acid pathway, which is chromosomally encoded. In addition, they have genes that can conjugate free auxins or hydrolyze conjugated forms of auxins and cytokinins. In Agrobacterium there are also several genes, located near the auxin and cytokinin biosynthetic genes, that are involved in the regulation of auxins and cytokinins sensibility of the transformed plant tissue. Symbiotic bacteria Rhizobium and Bradyrhizobium synthesize indole-3-acetic acid via indole-3-pyruvic acid; also the genetic determinants for the indole-3-acetamide pathway have been detected, but their activity has not been demonstrated. In the plant growth-promoting bacterium Azospirillum, as in Agrobacterium and Pseudomonas, both the indole-3-pyruvic acid and the indole-3-acetamide pathways are present, although in Azospirillum the indole-3-pyruvic acid pathway is of major significance. In addition, biochemical evidence for a tryptophan-independent indole-3-acetic acid pathway in Azospirillum has been presented.
Collapse
Affiliation(s)
- A Costacurta
- F.A. Janssens Laboratory of Genetics, KU Leuven, Heverlee, Belgium
| | | |
Collapse
|
27
|
Abstract
Answers to long-standing questions concerning the molecular mechanism of auxin action and auxin's exact functions in plant growth and development are beginning to be uncovered through studies using mutant and transgenic plants. We review recent work in this area in vascular plants. A number of conclusions can be drawn from these studies. First, auxin appears essential for cell division and viability, as auxin auxotrophs isolated in tissue culture are dependent on auxin for growth and cannot be regenerated into plants even when auxin is supplied exogenously. Secondly, plants with transgenes that alter auxin levels are able to regulate cellular auxin concentrations by synthesis and conjugation; wild-type plants are probably also capable of such regulation. Thirdly, the phenotypes of transgenic plants with altered auxin levels and of mutant plants with altered sensitivity to auxin confirm earlier physiological studies which indicated a role for auxin in regulation of apical dominance, in development of roots and vascular tissue, and in the gravitropic response. Finally, the cloning of a mutationally identified gene important for auxin action, along with accumulating biochemical evidence, hints at a major role for protein degradation in the auxin response pathway.
Collapse
Affiliation(s)
- L Hobbie
- Department of Biology, Indiana University, Bloomington 47405, USA
| | | |
Collapse
|