1
|
Wang Y, Gong H, Zhang Z, Sun Z, Liu S, Ma C, Wang X, Liu Z. Effects of microbial communities during the cultivation of three salt-tolerant plants in saline-alkali land improvement. Front Microbiol 2024; 15:1470081. [PMID: 39545234 PMCID: PMC11560748 DOI: 10.3389/fmicb.2024.1470081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/27/2024] [Indexed: 11/17/2024] Open
Abstract
Planting vegetation on saline-alkaline land enhances soil fertility and sustainability by improving salt-alkali tolerance. Different salt-tolerant plant species interact with soil microorganisms, enriching bacterial communities and promoting nutrient availability. In this study, mechanisms affecting microbial communities in severely saline-alkaline soils planted with salt-tolerant plants are investigated. Over 4 years, the potential to cultivate three salt-tolerant plant species (tall wheatgrass Agropyron elongatum, chicory Chicorium intybus, and alfalfa Medicago sativa) in severely saline-alkaline soils is compared with a non-cultivated control. Bacterial and fungal communities were characterized through high-throughput sequencing of the 16S rRNA gene V3-V4 region and the V4 region, respectively. Cultivating these three plant species significantly reduces soil electrical conductivity values. Chicory cultivation notably increased soil nutrients, bacterial alpha richness, and fungal alpha diversity and richness. Microbial community structures vary considerably between the control and treatments, significantly correlating with the soil quality index. This index enables an assessment of soil health and fertility by integrating variables such as nutrient content, microbial diversity, and salinity levels. In each plant treatment, particularly alfalfa, the relative abundances of fungal pathogens like Neocosmospora and Gibellulopsis increase, which may pose risks to subsequent crops such as tomatoes, requiring careful consideration in future planting decisions. Conversely, in alfalfa and tall wheatgrass treatments, there was an increase in the relative abundances of fungal genera (e.g., Alternaria and Podospora) that antagonize fungal pathogens, while Paraphoma increased in the chicory treatment. The strong relationship between microorganisms and the rise in pathogen-resistant fungi across different plant treatments highlights robust and beneficial structural characteristics. According to soil quality index scores, each treatment, but especially that of chicory, improved the severely saline-alkaline soil environment.
Collapse
Affiliation(s)
- Yijun Wang
- State Key Laboratory of Nutrient Use and Management, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Agro-Environment of Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, Jinan, China
- Institute of Agricultural Resources and Environment, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Huarui Gong
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Zongxiao Zhang
- College of Geographic Science and Tourism, Xinjiang Normal University, Ürümqi, China
| | - Zeqiang Sun
- State Key Laboratory of Nutrient Use and Management, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Agro-Environment of Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, Jinan, China
- Institute of Agricultural Resources and Environment, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Shenglin Liu
- State Key Laboratory of Nutrient Use and Management, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Agro-Environment of Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, Jinan, China
- Institute of Agricultural Resources and Environment, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Changjian Ma
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Institute of Modern Agriculture on Yellow River Delta of Shandong Academy of Agricultural Sciences, Dongying, China
| | - Xuejun Wang
- State Key Laboratory of Nutrient Use and Management, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Agro-Environment of Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, Jinan, China
- Institute of Agricultural Resources and Environment, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Zhaohui Liu
- State Key Laboratory of Nutrient Use and Management, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Agro-Environment of Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, Jinan, China
- Institute of Agricultural Resources and Environment, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
2
|
Kapoor R, Kumar G, Pawar L, Salvi P, Devanna BN, Singh K, Sharma TR. Stress responsive OsHyPRP16 promoter driven early expression of resistance gene Pi54 potentiate the resistance against Magnaporthe oryzae in transgenic rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 324:111413. [PMID: 35963493 DOI: 10.1016/j.plantsci.2022.111413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
The rice Hybrid Proline Rich Protein (HyPRP) encoding gene, OsHyPRP16 expression exhibit early upregulation in response to Magnaporthe oryzae inoculation. Here, we functionally characterized the OsHyPRP16 promoter through deletion analysis in transgenic Arabidopsis using GUS (β-glucuronidase) reporter assay. The promoter fragments, sequentially deleted from the 5' end could induce differential GUS activity in response to stresses induced by different hormones and abiotic stress conditions. In addition, a strong GUS induction was observed in M. oryzae inoculated transgenic Arabidopsis. Based on the insilico and stress-inducibility of D1 promoter fragment against various phytohormones and rice blast fungus, and with no basal activity under control conditions, we rationally selected D1 promoter fragment to drive the expression of a major rice blast resistance gene; Pi54 in the genetic background of blast susceptible TP309 rice line. The D1 promoter fragment was able to induce the expression of Pi54 at immediate-early stages of M. oryzae infection in transgenic rice. The transgenic plants with Pi54 under the control of D1 promoter fragment displayed complete resistance against M. oryzae infection as compared to control plants. The present study suggests that the D1 fragment of OsHyPRP16 promoter is a valuable tool for breeding and development of rice lines with early-inducible and pathogen-responsive enhanced disease resistance.
Collapse
Affiliation(s)
- Ritu Kapoor
- National Agri-Food Biotechnology Institute, Mohali 140306, Punjab, India; Department of Biotechnology, Panjab University, Chandigarh, India
| | - Gulshan Kumar
- National Agri-Food Biotechnology Institute, Mohali 140306, Punjab, India
| | - Lata Pawar
- National Agri-Food Biotechnology Institute, Mohali 140306, Punjab, India
| | - Prafull Salvi
- National Agri-Food Biotechnology Institute, Mohali 140306, Punjab, India
| | - Basavantraya N Devanna
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, Odisha, India
| | - Kashmir Singh
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Tilak Raj Sharma
- National Agri-Food Biotechnology Institute, Mohali 140306, Punjab, India; Indian council of Agricultural Research, New Delhi, India.
| |
Collapse
|
3
|
Zhang X, Gong X, Li D, Yue H, Qin Y, Liu Z, Li M, Ma F. Genome-Wide Identification of PRP Genes in Apple Genome and the Role of MdPRP6 in Response to Heat Stress. Int J Mol Sci 2021; 22:5942. [PMID: 34073055 PMCID: PMC8198058 DOI: 10.3390/ijms22115942] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/23/2021] [Accepted: 05/27/2021] [Indexed: 12/18/2022] Open
Abstract
Plant proline-rich proteins (PRPs) are cell wall proteins that occur in the plant kingdom and are involved in plant development and stress response. In this study, 9 PRP genes were identified from the apple genome and a comprehensive analysis of the PRP family was conducted, including gene structures, phylogenetic analysis, chromosome mapping, and so on. The expression of MdPRPs varied among tissues and in response to different types of stresses. MdPRP4 and MdPRP7 were induced by five detected stress treatments, including heat, drought, abscisic acid, cold, and salt; the expression patterns of the others varied under different types of stress. Subcellular localization showed that MdPRPs mainly functioned in the cytoplasm, except for MdPRP1 and MdPRP5, which also functioned in the nucleus. When MdPRP6 was overexpressed in tobacco, the transgenic plants showed higher tolerance to high temperature (48 °C) compared with wild-type (WT) plants. The transgenic plants showed milder wilting, a lower accumulation of electrolyte leakage, MDA and ROS, and a higher level of chlorophyll and SOD and POD activity, indicating that MdPRP6 may be an important gene in apples for heat stress tolerance. Overall, this study suggested that MdPRPs are critically important for the ability of apple responses to stresses.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mingjun Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, China; (X.Z.); (X.G.); (D.L.); (H.Y.); (Y.Q.); (Z.L.)
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, China; (X.Z.); (X.G.); (D.L.); (H.Y.); (Y.Q.); (Z.L.)
| |
Collapse
|
4
|
Saikia B, Singh S, Debbarma J, Velmurugan N, Dekaboruah H, Arunkumar KP, Chikkaputtaiah C. Multigene CRISPR/Cas9 genome editing of hybrid proline rich proteins (HyPRPs) for sustainable multi-stress tolerance in crops: the review of a promising approach. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:857-869. [PMID: 32377037 PMCID: PMC7196567 DOI: 10.1007/s12298-020-00782-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/07/2020] [Accepted: 02/21/2020] [Indexed: 05/05/2023]
Abstract
The recent global climate change has directly impacted major biotic and abiotic stress factors affecting crop productivity worldwide. Therefore, the need of the hour is to develop sustainable multiple stress tolerant crops through modern biotechnological approaches to cope with climate change. Hybrid proline rich proteins (HyPRPs) are the cell-wall structural proteins, which contain an N-terminal repetitive proline-rich domain and a C-terminal conserved eight-cysteine motif domain. HyPRPs are known to regulate multiple abiotic and biotic stress responses in plants. Recently, a few HyPRPs have been characterized as negative regulators of abiotic and biotic stress responses in different plants. Disruption of such negative regulators for desirable positive phenotypic traits has been made possible through the advent of advanced genome engineering tools. In the past few years, CRISPR/Cas9 has emerged as a novel breakthrough technology for crop improvement by target specific editing of known negative regulatory host genes. Here, we have described the mechanism of action and the role of known HyPRPs in regulating different biotic and abiotic stress responses in major crop plants. We have also discussed the importance of the CRISPR/Cas9 based genome editing system in targeting known negative regulatory HyPRPs for multi-stress crop tolerance using the tomato crop model. Application of genome editing to manipulate the HyPRPs of major crop plants holds promise in developing newer stress management methods in this rapidly changing climate and would lead in the future to sustain crop productivity.
Collapse
Affiliation(s)
- Banashree Saikia
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam 785006 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NEIST Campus, Jorhat, Assam 785006 India
| | - Sanjay Singh
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam 785006 India
| | - Johni Debbarma
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam 785006 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NEIST Campus, Jorhat, Assam 785006 India
| | - Natarajan Velmurugan
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NEIST Campus, Jorhat, Assam 785006 India
- Biological Sciences Division, Branch Laboratory-Itanagar, CSIR-NEIST, Naharlagun, Arunachal Pradesh 791110 India
| | - Hariprasanna Dekaboruah
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam 785006 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NEIST Campus, Jorhat, Assam 785006 India
| | - Kallare P. Arunkumar
- Central Muga Eri Research and Training Institute (CMER&TI), Lahdoigarh, Jorhat, Assam 785700 India
| | - Channakeshavaiah Chikkaputtaiah
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam 785006 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NEIST Campus, Jorhat, Assam 785006 India
| |
Collapse
|
5
|
Kapoor R, Kumar G, Arya P, Jaswal R, Jain P, Singh K, Sharma TR. Genome-Wide Analysis and Expression Profiling of Rice Hybrid Proline-Rich Proteins in Response to Biotic and Abiotic Stresses, and Hormone Treatment. PLANTS (BASEL, SWITZERLAND) 2019; 8:E343. [PMID: 31514343 PMCID: PMC6784160 DOI: 10.3390/plants8090343] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 12/13/2022]
Abstract
Hybrid proline-rich proteins (HyPRPs) belong to the family of 8-cysteine motif (8CM) containing proteins that play important roles in plant development processes, and tolerance to biotic and abiotic stresses. To gain insight into the rice HyPRPs, we performed a systematic genome-wide analysis and identified 45 OsHyPRP genes encoding 46 OsHyPRP proteins. The phylogenetic relationships of OsHyPRP proteins with monocots (maize, sorghum, and Brachypodium) and a dicot (Arabidopsis) showed clustering of the majority of OsHyPRPs along with those from other monocots, which suggests lineage-specific evolution of monocots HyPRPs. Based on our previous RNA-Seq study, we selected differentially expressed OsHyPRPs genes and used quantitative real-time-PCR (qRT-PCR) to measure their transcriptional responses to biotic (Magnaporthe oryzae) and abiotic (heat, cold, and salt) stresses and hormone treatment (Abscisic acid; ABA, Methyl-Jasmonate; MeJA, and Salicylic acid; SA) in rice blast susceptible Pusa Basmati-1 (PB1) and blast-resistant near-isogenic line PB1+Pi9. The induction of OsHyPRP16 expression in response to the majority of stresses and hormonal treatments was highly correlated with the number of cis-regulatory elements present in its promoter region. In silico docking analysis of OsHyPRP16 showed its interaction with sterols of fungal/protozoan origin. The characterization of the OsHyPRP gene family enables us to recognize the plausible role of OsHyPRP16 in stress tolerance.
Collapse
Affiliation(s)
- Ritu Kapoor
- Department of Biotechnology, Panjab University, Chandigarh 160014, Punjab, India.
| | - Gulshan Kumar
- National Agri-Food Biotechnology Institute, Mohali 140306, Punjab, India.
| | - Preeti Arya
- National Agri-Food Biotechnology Institute, Mohali 140306, Punjab, India.
| | - Rajdeep Jaswal
- National Agri-Food Biotechnology Institute, Mohali 140306, Punjab, India.
- Department of Microbiology, Panjab University, Chandigarh 160014, Punjab, India.
| | - Priyanka Jain
- National Institute of Plant Biotechnology, New Delhi 110012, India.
| | - Kashmir Singh
- Department of Biotechnology, Panjab University, Chandigarh 160014, Punjab, India.
| | - Tilak Raj Sharma
- National Agri-Food Biotechnology Institute, Mohali 140306, Punjab, India.
| |
Collapse
|
6
|
Yang J, Zhang Y, Wang X, Wang W, Li Z, Wu J, Wang G, Wu L, Zhang G, Ma Z. HyPRP1 performs a role in negatively regulating cotton resistance to V. dahliae via the thickening of cell walls and ROS accumulation. BMC PLANT BIOLOGY 2018; 18:339. [PMID: 30526498 PMCID: PMC6286592 DOI: 10.1186/s12870-018-1565-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 11/22/2018] [Indexed: 05/06/2023]
Abstract
BACKGROUND Developing tolerant cultivars by incorporating resistant genes is regarded as a potential strategy for controlling Verticillium wilt that causes severe losses in the yield and fiber quality of cotton. RESULTS Here, we identified the gene GbHyPRP1 in Gossypium barbadense, which encodes a protein containing both proline-rich repetitive and Pollen Ole e I domains. GbHyPRP1 is located in the cell wall. The transcription of this gene mainly occurs in cotton roots and stems, and is drastically down-regulated upon infection with Verticillium dahliae. Silencing HyPRP1 dramatically enhanced cotton resistance to V. dahliae. Over-expression of HyPRP1 significantly compromised the resistance of transgenic Arabidopsis plants to V. dahliae. The GbHyPRP1 promoter region contained several putative phytohormone-responsive elements, of which SA was associated with gene down-regulation. We compared the mRNA expression patterns of HyPRP1-silenced plants and the control at the global level by RNA-Seq. A total of 1735 unique genes exhibited significant differential expression. Of these, 79 DEGs involved in cell wall biogenesis and 43 DEGs associated with the production of ROS were identified. Further, we observed a dramatic thickening of interfascicular fibers and vessel walls and an increase in lignin in the HyPRP1-silenced cotton plants compared with the control after inoculation with V. dahliae. Additionally, silencing of HyPRP1 markedly enhanced ROS accumulation in the root tips of cotton inoculated with V. dahliae. CONCLUSIONS Taken together, our results suggest that HyPRP1 performs a role in the negative regulation of cotton resistance to V. dahliae via the thickening of cell walls and ROS accumulation.
Collapse
Affiliation(s)
- Jun Yang
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001 China
| | - Yan Zhang
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001 China
| | - Xingfen Wang
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001 China
| | - Weiqiao Wang
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001 China
| | - Zhikun Li
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001 China
| | - Jinhua Wu
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001 China
| | - Guoning Wang
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001 China
| | - Liqiang Wu
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001 China
| | - Guiyin Zhang
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001 China
| | - Zhiying Ma
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001 China
| |
Collapse
|
7
|
Ramu VS, Swetha TN, Sheela SH, Babitha CK, Rohini S, Reddy MK, Tuteja N, Reddy CP, Prasad TG, Udayakumar M. Simultaneous expression of regulatory genes associated with specific drought-adaptive traits improves drought adaptation in peanut. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1008-20. [PMID: 26383697 PMCID: PMC11388866 DOI: 10.1111/pbi.12461] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 07/28/2015] [Accepted: 08/05/2015] [Indexed: 05/04/2023]
Abstract
Adaptation of crops to drought-prone rain-fed conditions can be achieved by improving plant traits such as efficient water mining (by superior root characters) and cellular-level tolerance mechanisms. Pyramiding these drought-adaptive traits by simultaneous expression of genes regulating drought-adaptive mechanisms has phenomenal relevance in improving stress tolerance. In this study, we provide evidence that peanut transgenic plants expressing Alfalfa zinc finger 1 (Alfin1), a root growth-associated transcription factor gene, Pennisetum glaucum heat-shock factor (PgHSF4) and Pea DNA helicase (PDH45) involved in protein turnover and protection showed improved tolerance, higher growth and productivity under drought stress conditions. Stable integration of all the transgenes was noticed in transgenic lines. The transgenic lines showed higher root growth, cooler crop canopy air temperature difference (less CCATD) and higher relative water content (RWC) under drought stress. Low proline levels in transgenic lines substantiate the maintenance of higher water status. The survival and recovery of transgenic lines was significantly higher under gradual moisture stress conditions with higher biomass. Transgenic lines also showed significant tolerance to ethrel-induced senescence and methyl viologen-induced oxidative stress. Several stress-responsive genes such as heat-shock proteins (HSPs), RING box protein-1 (RBX1), Aldose reductase, late embryogenesis abundant-5 (LEA5) and proline-rich protein-2 (PRP2), a gene involved in root growth, showed enhanced expression under stress in transgenic lines. Thus, the simultaneous expression of regulatory genes contributing for drought-adaptive traits can improve crop adaptation and productivity under water-limited conditions.
Collapse
Affiliation(s)
- Vemanna S Ramu
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bangalore, India
| | - Thavarekere N Swetha
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bangalore, India
| | - Shekarappa H Sheela
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bangalore, India
| | | | - Sreevathsa Rohini
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bangalore, India
- National Research Centre for Plant Biotechnology, New Delhi, India
| | - Malireddy K Reddy
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Narendra Tuteja
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Chandrashekar P Reddy
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bangalore, India
| | - Trichi Ganesh Prasad
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bangalore, India
| | - Makarla Udayakumar
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bangalore, India
| |
Collapse
|
8
|
Mellacheruvu S, Tamirisa S, Vudem DR, Khareedu VR. Pigeonpea Hybrid-Proline-Rich Protein (CcHyPRP) Confers Biotic and Abiotic Stress Tolerance in Transgenic Rice. FRONTIERS IN PLANT SCIENCE 2015; 6:1167. [PMID: 26834756 PMCID: PMC4722794 DOI: 10.3389/fpls.2015.01167] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/07/2015] [Indexed: 05/20/2023]
Abstract
In this study, we report the overexpression of Cajanus cajan hybrid-proline-rich protein encoding gene (CcHyPRP) in rice which resulted in increased tolerance to both abiotic and biotic stresses. Compared to the control plants, the transgenic rice lines, expressing CcHyPRP, exhibited high-level tolerance against major abiotic stresses, viz., drought, salinity, and heat, as evidenced by increased biomass, chlorophyll content, survival rate, root, and shoot growth. Further, transgenic rice lines showed increased panicle size and grain number compared to the control plants under different stress conditions. The CcHyPRP transgenics, as compared to the control, revealed enhanced activities of catalase and superoxide dismutase (SOD) enzymes and reduced malondialdehyde (MDA) levels. Expression pattern of CcHyPRP::GFP fusion-protein confirmed its predominant localization in cell walls. Moreover, the CcHyPRP transgenics, as compared to the control, exhibited increased resistance to the fungal pathogen Magnaporthe grisea which causes blast disease in rice. Higher levels of bZIP and endochitinase transcripts as well as endochitinase activity were observed in transgenic rice compared to the control plants. The overall results demonstrate the intrinsic role of CcHyPRP in conferring multiple stress tolerance at the whole-plant level. The multipotent CcHyPRP seems promising as a prime candidate gene to fortify crop plants for enhanced tolerance/resistance to different stress factors.
Collapse
|
9
|
Peng T, Jia MM, Liu JH. RNAi-based functional elucidation of PtrPRP, a gene encoding a hybrid proline rich protein, in cold tolerance of Poncirus trifoliata. FRONTIERS IN PLANT SCIENCE 2015; 6:808. [PMID: 26483822 PMCID: PMC4587090 DOI: 10.3389/fpls.2015.00808] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/16/2015] [Indexed: 05/18/2023]
Abstract
Hybrid proline-rich proteins (HyPRPs) have been suggested to play important roles in various plant development and stress response. In this study, we report the cloning and functional analysis of PtrPRP, a HyPRP-encoding gene of Poncirus trifoliata. PtrPRP contains 176 amino acids, among which 21% are proline residues, and has an 8-cysteine motif (8 CM) domain at the C terminal, a signal peptide and a proline-rich region at the N terminal. PtrPRP is constitutively expressed in root, stem and leaf, with the highest expression levels in leaf. It was progressively induced by cold, but transiently upregulated by salt and ABA. Transgenic P. trifoliata plants with knock-down PtrPRP by RNA interference (RNAi) were generated to investigate the role of PtrPRP in cold tolerance. When challenged by low temperature, the PtrPRP-RNAi plants displayed more sensitive performance compared with wild type (WT), as shown by higher electrolyte leakage and malondialdehyde content. In addition, the RNAi lines accumulated more reactive oxygen species (ROS) and lower levels of proline relative to WT. These results suggested that PtrPRP might be positively involved in cold tolerance by maintaining membrane integrity and ROS homeostasis.
Collapse
Affiliation(s)
- Ting Peng
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, WuhanChina
- National Navel Orange Engineering Research Center, College of Navel Orange, Gannan Normal University, GanzhouChina
| | - Mao-Mao Jia
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, WuhanChina
| | - Ji-Hong Liu
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, WuhanChina
- *Correspondence: Ji-Hong Liu, Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China,
| |
Collapse
|
10
|
Kavi Kishor PB, Hima Kumari P, Sunita MSL, Sreenivasulu N. Role of proline in cell wall synthesis and plant development and its implications in plant ontogeny. FRONTIERS IN PLANT SCIENCE 2015; 6:544. [PMID: 26257754 PMCID: PMC4507145 DOI: 10.3389/fpls.2015.00544] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/06/2015] [Indexed: 05/21/2023]
Abstract
Proline is a proteogenic amino acid and accumulates both under stress and non-stress conditions as a beneficial solute in plants. Recent discoveries point out that proline plays an important role in plant growth and differentiation across life cycle. It is a key determinant of many cell wall proteins that plays important roles in plant development. The role of extensins, arabinogalactan proteins and hydroxyproline- and proline-rich proteins as important components of cell wall proteins that play pivotal roles in cell wall signal transduction cascades, plant development and stress tolerance is discussed in this review. Molecular insights are also provided here into the plausible roles of proline transporters modulating key events in plant development. In addition, the roles of proline during seed developmental transitions including storage protein synthesis are discussed.
Collapse
Affiliation(s)
- Polavarapu B. Kavi Kishor
- Department of Genetics, Osmania University, HyderabadIndia
- *Correspondence: Polavarapu B. Kavi Kishor, Department of Genetics, Osmania University, Hyderabad 500007, India,
| | - P. Hima Kumari
- Department of Genetics, Osmania University, HyderabadIndia
| | | | - Nese Sreenivasulu
- Leibniz Institute of Plant Genetics and Crop Plant Research, GaterslebenGermany
- Grain Quality and Nutrition Center, International Rice Research Institute, Metro ManilaPhilippines
| |
Collapse
|
11
|
Chen L, Jiang B, Wu C, Sun S, Hou W, Han T. GmPRP2 promoter drives root-preferential expression in transgenic Arabidopsis and soybean hairy roots. BMC PLANT BIOLOGY 2014; 14:245. [PMID: 25224536 PMCID: PMC4172956 DOI: 10.1186/s12870-014-0245-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 09/09/2014] [Indexed: 05/03/2023]
Abstract
BACKGROUND Promoters play important roles in gene expression and function. There are three basic types of promoters: constitutive, specific, and inducible. Constitutive promoters are widely used in genetic engineering, but these promoters have limitations. Inducible promoters are activated by specific inducers. Tissue-specific promoters are a type of specific promoters that drive gene expression in specific tissues or organs. Here, we cloned and characterized the GmPRP2 promoter from soybean. The expression pattern indicated that this promoter is root-preferential in transgenic Arabidopsis and the hairy roots of soybean. It can be used to improve the root resistance or tolerance to pathogens, pests, malnutrition and other abiotic stresses which cause extensive annual losses in soybean production. RESULTS The GmPRP2 promoter (GmPRP2p-1062) was isolated from soybean cv. Williams 82. Sequence analysis revealed that this promoter contains many cis-acting elements, including root-specific motifs. The GmPRP2p-1062 and its 5'-deletion fragments were fused with the GUS reporter gene and introduced into Arabidopsis and the hairy roots of soybean to further determine promoter activity. Histochemical analysis in transgenic Arabidopsis showed that GUS activity was mainly detected in roots and hypocotyls in all deletion fragments except GmPRP2p-471 (a 5'-deletion fragment of GmPRP2p-1062 with 471 bp length). GUS activity was higher in transgenic Arabidopsis and hairy roots with GmPRP2p-1062 and GmPRP2p-852 (a 5'-deletion fragment of GmPRP2p-1062 with 852 bp length) constructs than the other two constructs. GUS activity was enhanced by NaCl, PEG, IAA and JM treatments and decreased by SA, ABA and GA treatments in transgenic Arabidopsis. CONCLUSIONS GmPRP2p-1062 is a root-preferential promoter, and its core fragment for root-preferential expression might lie between -369 and +1. GmPRP2p-852 may be useful in the genetic engineering of novel soybean cultivars in the future.
Collapse
Affiliation(s)
- Li Chen
- MOA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bingjun Jiang
- MOA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, Beijing, China
| | - Cunxiang Wu
- MOA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shi Sun
- MOA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wensheng Hou
- MOA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tianfu Han
- MOA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
12
|
Fujino K, Obara M, Sato K. Diversification of the plant-specific hybrid glycine-rich protein (HyGRP) genes in cereals. FRONTIERS IN PLANT SCIENCE 2014; 5:489. [PMID: 25309566 PMCID: PMC4174136 DOI: 10.3389/fpls.2014.00489] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 09/03/2014] [Indexed: 05/20/2023]
Abstract
Plant-specific hybrid proline- or glycine-rich proteins (HyP/GRPs) are involved in diverse gene functions including plant development and responses to biotic and abiotic stresses. The quantitative trait locus, qLTG3-1, enhances seed germination in rice under low-temperature conditions and encodes a member with a glycine-rich motif of the HyP/GRP family. The function of this gene may be related to the weakening of tissue covering the embryo during seed germination. In the present study, the diversification of the HyP/GRP gene family was elucidated in rice based on phylogenetic relationships and gene expression levels. At least 21 members of the HyP/GRP family have been identified in the rice genome and clustered in five regions on four chromosomes by tandem and chromosomal duplications. Of these, OsHyPRP05 (qLTG3-1) and its paralogous gene, OsHyPRP21, had a glycine-rich motif. Furthermore, orthologous genes with a glycine-rich motif and the HyP/GRP gene family were detected in four genome-sequenced monocots: 12 in barley, 10 in Brachypodium, 20 in maize, and 28 in sorghum, using a BLAST search of qLTG3-1 as the query. All members of the HyP/GRP family in these five species were classified into seven main groups, which were clustered together in these species. These results suggested that the HyP/GRP gene family was formed in the ancestral genome before the divergence of these species. The collinearity of chromosomal regions around qLTG3-1 and its orthologous genes were conserved among rice, Brachypodium, sorghum, and maize, indicating that qLTG3-1 and orthologous genes conserve gene function during seed germination.
Collapse
Affiliation(s)
- Kenji Fujino
- *Correspondence: Kenji Fujino, NARO Hokkaido Agricultural Research Center, National Agricultural Research Organization, Hitsujigaoka 1, Sapporo 062-8555, Japan e-mail:
| | | | | |
Collapse
|
13
|
Tan J, Zhuo C, Guo Z. Nitric oxide mediates cold- and dehydration-induced expression of a novel MfHyPRP that confers tolerance to abiotic stress. PHYSIOLOGIA PLANTARUM 2013; 149:310-20. [PMID: 23387330 DOI: 10.1111/ppl.12032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 12/29/2012] [Accepted: 01/07/2013] [Indexed: 05/10/2023]
Abstract
Hybrid proline-rich proteins (HyPRPs) are cell wall-localized proteins, and are frequently responsive to environmental stresses. The coding sequence of a HyPRP cDNA was isolated from Medicago falcata, a forage crop that shows cold and drought tolerance. The predicted MfHyPRP contains a proline-rich domain at N-terminus after the signal peptide and a conserved eight-cysteine motif at the C-terminus. Higher level of MfHyPRP transcript was observed in leaves than in stems and roots under control conditions, while more MfHyPRP transcript was induced in leaves and stems than in roots after cold treatment. Levels of MfHyPRP transcript and MfHyPRP protein in leaves were induced by cold, dehydration, abscisic acid (ABA), hydrogen peroxide (H2 O2) and nitric oxide (NO), but not responsive to salt stress. The cold- or dehydration-induced expression of MfHyPRP was blocked by scavenger of NO, but not affected by inhibitor of ABA biosynthesis or scavenger of H2 O2. The results indicated that NO, but not ABA and H2 O2, was essential in the cold- and dehydration-induced expression of MfHyPRP. Overexpression of MfHyPRP in tobacco led to increased tolerance to freezing, chilling and osmotic stress as well as methyl viologen-induced oxidative stress. The increased cold and osmotic stress tolerance was proposed to be associated with improved protection against oxidative damages. It is suggested that NO mediates cold- and dehydration-induced expression of MfHyPRP that confers tolerance to abiotic stress.
Collapse
Affiliation(s)
- Jiali Tan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China; Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, 510642, China
| | | | | |
Collapse
|
14
|
Neto LB, de Oliveira RR, Wiebke-Strohm B, Bencke M, Weber RLM, Cabreira C, Abdelnoor RV, Marcelino FC, Zanettini MHB, Passaglia LMP. Identification of the soybean HyPRP family and specific gene response to Asian soybean rust disease. Genet Mol Biol 2013; 36:214-24. [PMID: 23885204 PMCID: PMC3715288 DOI: 10.1590/s1415-47572013005000017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 12/19/2012] [Indexed: 12/19/2022] Open
Abstract
Soybean [Glycine max (L.) Merril], one of the most important crop species in the world, is very susceptible to abiotic and biotic stress. Soybean plants have developed a variety of molecular mechanisms that help them survive stressful conditions. Hybrid proline-rich proteins (HyPRPs) constitute a family of cell-wall proteins with a variable N-terminal domain and conserved C-terminal domain that is phylogenetically related to non-specific lipid transfer proteins. Members of the HyPRP family are involved in basic cellular processes and their expression and activity are modulated by environmental factors. In this study, microarray analysis and real time RT-qPCR were used to identify putative HyPRP genes in the soybean genome and to assess their expression in different plant tissues. Some of the genes were also analyzed by time-course real time RT-qPCR in response to infection by Phakopsora pachyrhizi, the causal agent of Asian soybean rust disease. Our findings indicate that the time of induction of a defense pathway is crucial in triggering the soybean resistance response to P. pachyrhizi. This is the first study to identify the soybean HyPRP group B family and to analyze disease-responsive GmHyPRP during infection by P. pachyrhizi.
Collapse
Affiliation(s)
- Lauro Bücker Neto
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
RamanaRao MV, Weindorf D, Breitenbeck G, Baisakh N. Differential expression of the transcripts of Spartina alterniflora Loisel (smooth cordgrass) induced in response to petroleum hydrocarbon. Mol Biotechnol 2012; 51:18-26. [PMID: 21732077 DOI: 10.1007/s12033-011-9436-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Petroleum hydrocarbons (PHC) in soil are potentially toxic to plants and exert negative effect on the environment and human health. To understand the effect of PHC on the gene expression profile of a wetland plant Spartina alterniflora in the coastal Louisiana, plants were subject up to 40% PHC under greenhouse conditions. The plants exposed to PHC showed 21% reduction of leaf total chlorophyll after 2 weeks of stress. Using 20 annealing control primers, 28 differentially expressing genes (DEGs) were identified in leaf and root tissues of S. alterniflora in response to PHC stress. Eleven of these 28 DEGs had role in either molecular function (chlorophyll a-b binding protein, HSP70, NADH, RAN1-binding protein, and RNA-binding protein), biological processes (cell wall protein, nucelosome/chromatin assembly factor) or cellular function (30 S ribosomal protein). This indicated that genes in different regulatory pathways of S. alterniflora were involved in response to PHC. All DEGs showed reduced transcript accumulation in root under oil stress, whereas they showed up- or down-regulation in their transcript abundance in leaf depending on the concentration of the PHC. The genes identified through this study could be used in the genetic screen of S. alterniflora for resistance to PHC.
Collapse
Affiliation(s)
- Mangu Venkata RamanaRao
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | | | | | | |
Collapse
|
16
|
Dvořáková L, Srba M, Opatrny Z, Fischer L. Hybrid proline-rich proteins: novel players in plant cell elongation? ANNALS OF BOTANY 2012; 109:453-62. [PMID: 22028464 PMCID: PMC3268530 DOI: 10.1093/aob/mcr278] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 10/05/2011] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS Hybrid proline-rich proteins (HyPRPs) represent a large family of putative cell-wall proteins characterized by the presence of a variable N-terminal domain and a conserved C-terminal domain that is related to non-specific lipid transfer proteins. The function of HyPRPs remains unclear, but their widespread occurrence and abundant expression patterns indicate that they may be involved in a basic cellular process. METHODS To elucidate the cellular function of HyPRPs, we modulated the expression of three HyPRP genes in tobacco (Nicotiana tabacum) BY-2 cell lines and in potato (Solanum tuberosum) plants. KEY RESULTS In BY-2 lines, over-expression of the three HyPRP genes with different types of N-terminal domains resulted in similar phenotypic changes, namely increased cell elongation, both in suspension culture and on solid media where the over-expression resulted in enhanced calli size. The over-expressing cells showed increased plasmolysis in a hypertonic mannitol solution and accelerated rate of protoplast release, suggesting loosening of the cell walls. In contrast to BY-2 lines, no phenotypic changes were observed in potato plants over-expressing the same or analogous HyPRP genes, presumably due to more complex compensatory mechanisms in planta. CONCLUSIONS Based on the results from BY-2 lines, we propose that HyPRPs, more specifically their C-terminal domains, represent a novel group of proteins involved in cell expansion.
Collapse
Affiliation(s)
| | | | | | - Lukas Fischer
- Charles University in Prague, Faculty of Science, Department of Experimental Plant Biology, Vinicna 5, CZ 128 44 Prague 2, Czech Republic
| |
Collapse
|
17
|
Stein H, Honig A, Miller G, Erster O, Eilenberg H, Csonka LN, Szabados L, Koncz C, Zilberstein A. Elevation of free proline and proline-rich protein levels by simultaneous manipulations of proline biosynthesis and degradation in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 181:140-50. [PMID: 21683879 DOI: 10.1016/j.plantsci.2011.04.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 04/22/2011] [Accepted: 04/22/2011] [Indexed: 05/08/2023]
Abstract
Proline-rich proteins (PRP) are cell wall and plasma membrane-anchored factors involved in cell wall maintenance and its stress-induced fortification. Here we compare the synthesis of P5C as the proline (Pro) precursor in the cytosol and chloroplast by an introduced alien system and evaluate correlation between PRP synthesis and free Pro accumulation in plants. We developed a Pro over-producing system by generating transgenic tobacco plants overexpressing E. coli P5C biosynthetic enzymes; Pro-indifferent gamma-glutamyl kinase 74 (GK74) and gamma-glutamylphosphate reductase (GPR), as well as antisensing proline dehydrogenase (ProDH) transcription. GK74 and GPR enzymes were targeted either to the cytosol or plastids. Molecular analyses indicated that the two bacterial enzymes are efficiently expressed in plant cells, correctly targeted to the cytosol or chloroplasts, and processed to active enzymatic complexes in the two compartments. Maximal Pro increase is obtained when GK74 and GPR are active in chloroplasts, and ProDH mRNA level is reduced by anti-sense silencing, resulting in more than 50-fold higher Pro content compared to that of wild type tobacco plants. The Pro over-producing system efficiently works in tobacco and Arabidopsis. The elevation of Pro levels promotes accumulation of ectopically expressed Cell Wall Linker Protein (AtCWLP), a membrane protein with an external Pro-rich domain. These results suggest that the Pro-generating system can support endogenous or alien PRP production in plants.
Collapse
Affiliation(s)
- Hanan Stein
- Department of Plant Sciences, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Huang G, Gong S, Xu W, Li P, Zhang D, Qin L, Li W, Li X. GhHyPRP4, a cotton gene encoding putative hybrid proline-rich protein, is preferentially expressed in leaves and involved in plant response to cold stress. Acta Biochim Biophys Sin (Shanghai) 2011; 43:519-27. [PMID: 21642274 DOI: 10.1093/abbs/gmr040] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Plant hybrid proline-rich proteins (HyPRPs) usually consist of an N-terminal signal peptide, a central proline-rich domain, and a conserved eight-cysteine motif C-terminal domain. In this study, one gene (designated as GhHyPRP4) encoding putative HyPRP was isolated from cotton cDNA library. Northern blot and quantitative reverse transcriptase-polymerase chain reaction analyses revealed that GhHyPRP4 was preferentially expressed in leaves. Under cold stress, GhHyPRP4 expression was significantly up-regulated in leaves of cotton seedlings. Using the genome walking approach, a promoter fragment of GhHyPRP4 gene was isolated from cotton genome. GUS (β-glucuronidase) gene driven by GhHyPRP4 promoter was specifically expressed in leaves and cotyledons of the transgenic Arabidopsis thaliana. Furthermore, GUS expression in leaves was remarkably induced by cold stress. Overexpression of GhHyPRP4 in yeast (Schizosaccharomyces pombe) significantly enhanced the cell survival rate upon treatment under -20°C for 60 h. These data suggested that GhHyPRP4 may be involved in plant response to cold stress during seedling development of cotton.
Collapse
Affiliation(s)
- Gengqing Huang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Huazhong Normal University, Wuhan, China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Priyanka B, Sekhar K, Reddy VD, Rao KV. Expression of pigeonpea hybrid-proline-rich protein encoding gene (CcHyPRP) in yeast and Arabidopsis affords multiple abiotic stress tolerance. PLANT BIOTECHNOLOGY JOURNAL 2010; 8:76-87. [PMID: 20055960 DOI: 10.1111/j.1467-7652.2009.00467.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A hybrid-proline-rich protein encoding gene (CcHyPRP) has been isolated and characterized, for the first time, from the subtracted cDNA library of pigeonpea (Cajanus cajan L.) plants subjected to drought stress. Functionality of CcHyPRP has been validated for abiotic stress tolerance using the heterologous yeast and Arabidopsis systems. The CcHyPRP contained a repetitive proline-rich (PR) N-terminal domain and a conserved eight cysteine motif (8CM) at the C-terminus. Southern analysis disclosed single-copy nature of CcHyPRP gene in the pigeonpea genome. Northern analysis revealed higher levels of CcHyPRP transcripts in PEG, NaCl, heat (42 degrees C), cold and ABA-treated plants compared with the weak signals observed in the untreated plants, suggesting stress-responsive nature of the CcHyPRP gene. In yeast, expression of CcHyPRP imparted marked tolerance against abiotic stresses exerted by PEG, high temperature, NaCl and LiCl. Transgenic Arabidopsis lines, expressing CcHyPRP under the control of CaMV35S and rd29A promoters, when subjected to PEG, mannitol, NaCl, LiCl and heat (42 degrees C) stress, developed into healthy plants with profuse root system and increased biomass in contrast to the weak-stunted wild-type plants. The CcHyPRP-transgenics driven by stress-inducible rd29A exhibited similar stress-tolerance as that of CaMV35S-lines without any negative effects on plant morphology, implying that stress-inducible promoters are preferable for production of stress tolerant transgenics. The overall results amply demonstrate the profound effect of CcHyPRP in bestowing multiple abiotic stress tolerance at cellular and whole plant levels. Accordingly, the multipotent CcHyPRP seems promising as a prime candidate gene to fortify crop plants with abiotic stress tolerance.
Collapse
Affiliation(s)
- Bhyri Priyanka
- Centre for Plant Molecular Biology, Osmania University, Hyderabad, AP, India
| | | | | | | |
Collapse
|
20
|
He C, Wu X, Dongfang Y, Du B, Zhang J, Chen S. Isolation and characterization of a new defense gene from soybean. ACTA ACUST UNITED AC 2008; 44:409-20. [PMID: 18726422 DOI: 10.1007/bf02879608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2001] [Indexed: 11/25/2022]
Abstract
A cDNA clone of a single-copy gene designated SbPRP was isolated and characterized from 2-week-old soybean seedlings. It putatively encodes a bimodular protein similar to developmentally regulated proteins in other plant species. The deduced amino acid sequence consists of 126 amino acids with a distinct proline-rich domain (17 amino acids) and a long hydrophobically cysteine-rich domain (84 amino acids), plus a signal peptide of 25 amino acids in N terminal. SbPRP mRNA transcripts accumulated in an organ specific manner. It can be detected in leaves and epicotyls of soybean seedlings, whereas virtually expression signal of SbPRP was not detected in cotyledons, hypocotyls and roots. Further Northern hybridization suggested that SbPRP steady-state mRNA level accumulated differentially not only in response to salicylic acid, but to the inoculation of soybean mosaic virus Sa strain. Also it was responsive to drought treatment and salt (NaCl) stress. Therefore it is likely that SbPRP functions as a defense gene in soybean.
Collapse
Affiliation(s)
- C He
- Institute of Genetics, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | |
Collapse
|
21
|
Wang X, Wang H, Li Y, Cao K, Ge X. A rice lipid transfer protein binds to plasma membrane proteinaceous sites. Mol Biol Rep 2008; 36:745-50. [PMID: 18461470 DOI: 10.1007/s11033-008-9238-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2007] [Accepted: 03/26/2008] [Indexed: 11/30/2022]
Abstract
Nonspecific lipid transfer protein (nsLTP) is usually basic and secreted low-molecular-mass protein in plants. The 3-D structure of nsLTP1 resembles that of elicitin produced by the plant pathogen Phytophthora cryptogea, which can bind to the plant plasma membrane putative receptor and activate the downstream responses. It is inferred that nsLTP1 may have similar binding sites on the plasma membranes. In this work, rice recombinant protein TRX-nsLTP110 labeled with (125)I was shown to bind to rice plasma membrane preparations in a saturable curve, with an apparent K(d) of 13.6 nM and B(max) of 150 fmol/mg proteins. Competition experiments revealed that the binding of TRX-nsLTP110 was specific, in contrast to the nonspecific binding of the fusion tag thioredoxin. Protease treatment assay showed that the binding sites were proteinaceous. Our results suggest that the binding sites of nsLTPs on plasma membranes may be ubiquitous in the plant kingdom. They may be competed out from the binding sites under pathogen attack, supporting a role for nsLTP1 in host defense response to pathogens.
Collapse
Affiliation(s)
- Xiaofeng Wang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry and Molecular Biology, School of Life Sciences, Fudan University, Handan Road 220#, Shanghai 200433, China
| | | | | | | | | |
Collapse
|
22
|
Zhang Y, Schläppi M. Cold responsive EARLI1 type HyPRPs improve freezing survival of yeast cells and form higher order complexes in plants. PLANTA 2007; 227:233-43. [PMID: 17786468 DOI: 10.1007/s00425-007-0611-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Accepted: 08/01/2007] [Indexed: 05/03/2023]
Abstract
Plants have large families of proteins sharing a conserved eight-cysteine-motif (8CM) domain. The biological functions of these proteins are largely unknown. EARLI1 is a cold responsive Arabidopsis gene that encodes a hybrid proline-rich protein (HyPRP) with a three-domain architecture: a putative signal peptide at the N-terminus, a proline-rich domain (PRD) in the middle, and an 8CM domain at the C-terminus. We report here that yeast cells expressing different EARLI1 genes had significantly higher rates of freezing survival than empty-vector transformed controls. Arabidopsis plants with knocked down EARLI1 genes had an increased tendency for freezing-induced cellular damage. EARLI1-GFP fluorescence in transgenic plants and immunoblot analyses using protoplasts suggested cell wall localization for EARLI1 proteins. Immunoblot analyses showed that EARLI1 proteins form higher order complexes in plants, and that the PRD is a soluble and the 8CM an insoluble protein domain. We propose that EARLI1 proteins have a bimodular architecture in which the PRD may interact with the cell wall and the 8CM domain with the plasma membrane to protect the cells during freezing stress.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | | |
Collapse
|
23
|
Dvoráková L, Cvrcková F, Fischer L. Analysis of the hybrid proline-rich protein families from seven plant species suggests rapid diversification of their sequences and expression patterns. BMC Genomics 2007; 8:412. [PMID: 17997832 PMCID: PMC2216038 DOI: 10.1186/1471-2164-8-412] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Accepted: 11/12/2007] [Indexed: 11/13/2022] Open
Abstract
Background Plant hybrid proline-rich proteins (HyPRPs) are putative cell wall proteins consisting, usually, of a repetitive proline-rich (PR) N-terminal domain and a conserved eight-cysteine motif (8 CM) C-terminal domain. Understanding the evolutionary dynamics of HyPRPs might provide not only insight into their so far elusive function, but also a model for other large protein families in plants. Results We have performed a phylogenetic analysis of HyPRPs from seven plant species, including representatives of gymnosperms and both monocot and dicot angiosperms. Every species studied possesses a large family of 14–52 HyPRPs. Angiosperm HyPRPs exhibit signs of recent major diversification involving, at least in Arabidopsis and rice, several independent tandem gene multiplications. A distinct subfamily of relatively well-conserved C-type HyPRPs, often with long hydrophobic PR domains, has been identified. In most of gymnosperm (pine) HyPRPs, diversity appears within the C-type group while angiosperms have only a few of well-conserved C-type representatives. Atypical (glycine-rich or extremely short) N-terminal domains apparently evolved independently in multiple lineages of the HyPRP family, possibly via inversion or loss of sequences encoding proline-rich domains. Expression profiles of potato and Arabidopsis HyPRP genes exhibit instances of both overlapping and complementary organ distribution. The diversified non-C-type HyPRP genes from recently amplified chromosomal clusters in Arabidopsis often share their specialized expression profiles. C-type genes have broader expression patterns in both species (potato and Arabidopsis), although orthologous genes exhibit some differences. Conclusion HyPRPs represent a dynamically evolving protein family apparently unique to seed plants. We suggest that ancestral HyPRPs with long proline-rich domains produced the current diversity through ongoing gene duplications accompanied by shortening, modification or loss of the proline-rich domains. Most of the diversity in gymnosperms and angiosperms originates from different branches of the HyPRP family. Rapid sequence diversification is consistent with only limited requirements for structure conservation and, together with high variability of gene expression patterns, limits the interpretation of any functional study focused on a single HyPRP gene or a couple of HYPRP genes in single plant species.
Collapse
Affiliation(s)
- Lenka Dvoráková
- Charles University in Prague, Faculty of Science, Department of Plant Physiology, Vinicná 5, 128 44 Prague 2, Czech Republic.
| | | | | |
Collapse
|
24
|
Kim SH, Kim JY, Kim SJ, An KS, An G, Kim SR. Isolation of cold stress-responsive genes in the reproductive organs, and characterization of the OsLti6b gene from rice (Oryza sativa L.). PLANT CELL REPORTS 2007; 26:1097-110. [PMID: 17219102 DOI: 10.1007/s00299-006-0297-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 10/24/2006] [Accepted: 12/16/2006] [Indexed: 05/10/2023]
Abstract
During their reproductive stage, rice crops often are exposed to cold stress, which leads to sterility and reduced yields. To understand the cold response mechanism at that stage, we used an mRNA differential display method to isolate cold-responsive genes from pre-anthesis flowers. Approximately 5,000 transcripts were identified here, of which 123 were found to be displayed differentially between the control (30 degrees C) and cold-treated (12 degrees C) flowers. Among them, 26 were analyzed by northern analysis; 8 of those clones were confirmed as cold-responsive. OsLti6b, encoding a hydrophobic protein homologous to Arabidopsis RCI2, was analyzed in detail. RNA blot analysis revealed that its transcript is increased by cold, salt, drought, or ABA treatments. In situ hybridization indicated that this transcript is highly accumulated in the ovaries and stamens of cold-treated flowers, particularly in the anther walls and vascular tissues of the filaments. Over-expression of OsLti6b increased cold tolerance as revealed by seedling wilting rates and ion leakages of mature leaves, demonstrating that the extent of the tolerance correlates well with its expression level.
Collapse
Affiliation(s)
- Sung-Hyun Kim
- Department of Life Science, Sogang University, Seoul 121-742, Korea
| | | | | | | | | | | |
Collapse
|
25
|
Battaglia M, Solórzano RM, Hernández M, Cuéllar-Ortiz S, García-Gómez B, Márquez J, Covarrubias AA. Proline-rich cell wall proteins accumulate in growing regions and phloem tissue in response to water deficit in common bean seedlings. PLANTA 2007; 225:1121-33. [PMID: 17109151 DOI: 10.1007/s00425-006-0423-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Accepted: 10/10/2006] [Indexed: 05/10/2023]
Abstract
Plant cell walls undergo dynamic changes in response to different environmental stress conditions. In response to water deficit, two related proline-rich glycoproteins, called p33 and p36, accumulate in the soluble fraction of the cell walls in Phaseolus vulgaris (Covarrubias et al. in Plant Physiol 107:1119-1128, 1995). In this work, we show that p33 and p36 are able to form a 240 kDa oligomer, which is found in the cell wall soluble fraction. We present evidence indicating that the highest accumulation of these proteins in response to water deficit occurs in the growing regions of common bean seedlings, particularly in the phloem tissues. These proteins were detected in P. vulgaris cell suspension cultures, where the p33/p36 ratio was higher under hyperosmotic conditions than in bean seedlings subjected to the same treatment. The results support a role for these proteins during the plant cell response to changes in its water status, and suggest that cell wall modifications are induced in active growing cells of common bean in response to water limitation.
Collapse
Affiliation(s)
- Marina Battaglia
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, 62250 Cuernavaca, Morelos, Mexico
| | | | | | | | | | | | | |
Collapse
|
26
|
Ha YI, Lim JM, Ko SM, Liu JR, Choi DW. A ginseng-specific abundant protein (GSAP) located on the cell wall is involved in abiotic stress tolerance. Gene 2006; 386:115-22. [PMID: 17067765 DOI: 10.1016/j.gene.2006.08.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2005] [Revised: 05/15/2006] [Accepted: 08/23/2006] [Indexed: 11/25/2022]
Abstract
Ginseng ESTs allowed us to identify an unknown transcript which is highly abundant in rhizomes and seeds. We called the cDNA ginseng-specific abundant protein (GSAP), and identified three homologues, GSAP1, GSAP2, and GSAP3. GSAP cDNAs encode a small polypeptide consisting of 121 or 117 amino acids, and GSAP3 shows 87.6% amino acid sequence homology with GSAP1. GSAP transcripts were detected in most plant tissues, but GSAP3 is highly expressed in seeds, and is up-regulated under stressed conditions, water deficit. GSAP3-GFP fusion protein is located in the cell wall when expressed in onion epidermis cells. The transgenic Arabidopsis seedlings which over-expressed GSAP3 grew faster than those of the wild-type plant on the medium containing 300 mM mannitol and 100 mM NaCl. GSAP3 may play a role in altering the characteristics of the cell wall to allow for more tolerance of water deficit stress under abiotic stress conditions.
Collapse
Affiliation(s)
- Young Im Ha
- Eugentech Inc. 52 Oun-Dong, Yusong, Daejon 305-333, Republic of Korea
| | | | | | | | | |
Collapse
|
27
|
Mahalakshmi S, Christopher GSB, Reddy TP, Rao KV, Reddy VD. Isolation of a cDNA clone (PcSrp) encoding serine-rich-protein from Porteresia coarctata T. and its expression in yeast and finger millet (Eleusine coracana L.) affording salt tolerance. PLANTA 2006; 224:347-59. [PMID: 16450172 DOI: 10.1007/s00425-005-0218-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2005] [Accepted: 12/21/2005] [Indexed: 05/06/2023]
Abstract
A 1.4 Kb cDNA clone encoding a serine-rich protein has been isolated from the cDNA library of salt stressed roots of Porteresia coarctata, and designated as P. coarctata serine-rich-protein (PcSrp) encoding gene. Northern analysis and in situ mRNA hybridization revealed the expression of PcSrp in the salt stressed roots and rhizome of P. coarctata. However, no such expression was seen in the salt stressed leaves and in the unstressed tissues of root, rhizome and leaf, indicating that PcSrp is under the control of a salt-inducible tissue-specific promoter. In yeast, the PcSrp conferred increased NaCl tolerance, implicating its role in salinity tolerance at cellular level. Further, PcSrp was cloned downstream to rice Actin-1 promoter and introduced into finger millet through particle-inflow-gun method. Transgenic plants expressing PcSrp were able to grow to maturity and set seed under 250 mM NaCl stress. The untransformed control plants by contrast failed to survive under similar salt stress. The stressed roots of transgenic plants invariably accumulated higher Na(+) and K(+) ion contents compared to roots of untransformed plants; whereas, shoots of transgenics accumulated lower levels of both the ions than that of untransformed plants under identical stress, clearly suggesting the involvement of PcSrp in ion homeostasis contributing to salt tolerance.
Collapse
Affiliation(s)
- S Mahalakshmi
- Centre for Plant Molecular Biology, Osmania University, 500 007 Hyderabad, AP, India
| | | | | | | | | |
Collapse
|
28
|
Winicov I, Valliyodan B, Xue L, Hoober JK. The MsPRP2 promoter enables strong heterologous gene expression in a root-specific manner and is enhanced by overexpression of Alfin 1. PLANTA 2004; 219:925-35. [PMID: 15179514 DOI: 10.1007/s00425-004-1296-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2004] [Accepted: 04/22/2004] [Indexed: 05/19/2023]
Abstract
Promoter specificity and efficiency of utilization are essential for endogenous and transgene expression. Selective root expression remains to be defined in terms of both promoter elements and transcription factors that provide high levels of ubiquitous expression. We characterized expression from the MsPRP2 promoter with the green fluorescent protein (GFP) reporter transgene in alfalfa (Medicago sativa) and found that a promoter fragment (+1 to -652 bp) retained the root and callus specificity of the endogenous MsPRP2 gene and hence this promoter fragment contains elements necessary for root-specific expression. The strong ubiquitous expression obtained from this promoter was comparable to that of the CaMV 35S promoter in roots and was enhanced by transgenic overexpression of Alfin 1, a root- and callus-specific transcription factor in alfalfa. No transgenic expression was obtained in leaves with this promoter in the presence or absence of Alfin 1. The increased expression of GFP in alfalfa containing the Alfin 1 transgene confirms the function of Alfin 1 binding sites in the MsPRP2 promoter fragment and also indicates that Alfin 1 concentrations are limiting for maximal expression in calli and roots. These findings characterize the MsPRP2 promoter as a novel root- and callus-specific promoter of plant origin that can be used as an effective tool for strong root-directed gene expression. In addition, we have demonstrated that the signal sequence of MsPRP2 can be used for efficient secretion of transgene products from callus and roots.
Collapse
Affiliation(s)
- Ilga Winicov
- Department of Plant Biology, Arizona State University, Main Campus PO Box 871601, Tempe, AZ 85287-01601, USA.
| | | | | | | |
Collapse
|
29
|
Boominathan P, Shukla R, Kumar A, Manna D, Negi D, Verma PK, Chattopadhyay D. Long term transcript accumulation during the development of dehydration adaptation in Cicer arietinum. PLANT PHYSIOLOGY 2004; 135:1608-20. [PMID: 15247380 PMCID: PMC519075 DOI: 10.1104/pp.104.043141] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2004] [Revised: 04/18/2004] [Accepted: 04/19/2004] [Indexed: 05/17/2023]
Abstract
Cool season crops face intermittent drought. Exposure to drought and other abiotic stresses is known to increase tolerance of the plants against subsequent exposure to such stresses. Storage of environmental signals is also proposed. Preexposure to a dehydration shock improved adaptive response during subsequent dehydration treatment in a cool season crop chickpea (Cicer arietinum). We have identified 101 dehydration-inducible transcripts of chickpea by repetitive rounds of cDNA subtraction; differential DNA-array hybridization followed by northern-blot analysis and analyzed their responses to exogenous application of abscisic acid (ABA). Steady-state expression levels of the dehydration-induced transcripts were monitored during the recovery period between 2 consecutive dehydration stresses. Seven of them maintained more than 3-fold of expression after 24 h and more than 2-fold of expression level even at 72 h after the removal of stress. Noticeably, all of them were inducible by exogenous ABA treatment. When the seedlings were subjected to recover similarly after an exposure to exogenous ABA, the steady-state abundances of 6 of them followed totally different kinetics returning to basal level expression within 24 h. This observation indicated a correlation between the longer period of abundance of those transcripts in the recovery period and improved adaptation of the plants to subsequent dehydration stress and suggested that both ABA-dependent and -independent mechanisms are involved in the maintenance of the messages from the previous stress experience.
Collapse
Affiliation(s)
- P Boominathan
- National Centre for Plant Genome Research, JNU Campus, New Delhi 110067, India
| | | | | | | | | | | | | |
Collapse
|
30
|
Ueda A, Shi W, Sanmiya K, Shono M, Takabe T. Functional analysis of salt-inducible proline transporter of barley roots. PLANT & CELL PHYSIOLOGY 2001; 42:1282-9. [PMID: 11726714 DOI: 10.1093/pcp/pce166] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We cloned a cDNA encoding Hordeum vulgare Proline Transporter (HvProT) from salt-stressed barley roots by differential display. HvProT was 2,161 bp long and had an open reading frame encoding 450 amino acids. The deduced amino acid sequence of HvProT was similar to those of proline transporter proteins of rice (65.7%), Arabidopsis (57.7%) and tomato (42.0%). Northern blot analysis showed that the transcript level of HvProT was induced in roots at 30 min after 200 mM NaCl treatment and its peak was observed at 3 h. However, the transcript level was very low in leaves and did not increase by salt stress. The expression level of Delta(1)-pyrroline-5-carboxylate synthetase (P5CS), encoding a key enzyme of proline synthesis, was induced later than HvProT by salt stress. A transport assay using a yeast with mutation in proline uptake revealed that HvProT was a transporter with high affinity for L-proline (K(m) = 25 microM). HvProT was found to be a unique transporter with high affinity for L-proline. Since its transport activity was dependent on the pH gradient, HvProT was suggested to be a H(+)/amino acid symporter. In situ hybridization analysis showed that the HvProT mRNA was strongly expressed in root cap cells under salt stress. HvProT might play an important role in the transport of proline to root tip region urgently upon salt stress.
Collapse
Affiliation(s)
- A Ueda
- Bioscience Center, Nagoya University, Chikusa, Nagoya, 464-8601 Japan
| | | | | | | | | |
Collapse
|
31
|
|
32
|
Harrak H, Chamberland H, Plante M, Bellemare G, Lafontaine JG, Tabaeizadeh Z. A proline-, threonine-, and glycine-rich protein down-regulated by drought is localized in the cell wall of xylem elements. PLANT PHYSIOLOGY 1999; 121:557-64. [PMID: 10517847 PMCID: PMC59418 DOI: 10.1104/pp.121.2.557] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A cDNA clone encoding a proline-, threonine-, and glycine-rich protein (PTGRP) was isolated from a wild tomato species (Lycopersicon chilense) (L.X. Yu, H. Chamberland, J.G. Lafontain, Z. Tabaeizadeh [1996] Genome 39: 1185-1193). Northern-blot analysis and in situ hybridization studies revealed that PTGRP is down-regulated by drought stress. The level of the mRNA in leaves and stems of 8-d drought-stressed plants decreased 5- to 10-fold compared with that in regularly watered plants. The mRNA re-accumulated when drought-stressed plants were rewatered. Antibodies raised against a glutathione S-transferase/PTGRP fusion protein were used to elucidate the subcellular localization of the protein by immunogold labeling. In regularly watered L. chilense plants, PTGRP protein was found to be localized in xylem pit membranes and disintegrated primary walls. Examination of sections from drought-stressed plants revealed a significant decrease in the levels of labeling. In these samples, only a few scattered gold particles were detected in the same areas. In the leaf tissues of plants that had been rewatered for 3 d following an 8-d drought stress, the labeling pattern was similar to that of the regularly watered plants. To our knowledge, PTGRP is the first drought-regulated protein that has been precisely localized in the cell wall.
Collapse
Affiliation(s)
- H Harrak
- Department of Biological Sciences, University of Quebec, P.O. Box 8888, Station Centre Ville, Montreal, Quebec, Canada H3C 3P8
| | | | | | | | | | | |
Collapse
|
33
|
Gijzen M, Miller SS, Kuflu K, Buzzell RI, Miki BL. Hydrophobic protein synthesized in the pod endocarp adheres to the seed surface. PLANT PHYSIOLOGY 1999; 120:951-9. [PMID: 10444078 PMCID: PMC59354 DOI: 10.1104/pp.120.4.951] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/1999] [Accepted: 05/12/1999] [Indexed: 05/19/2023]
Abstract
Soybean (Glycine max [L.] Merr.) hydrophobic protein (HPS) is an abundant seed constituent and a potentially hazardous allergen that causes asthma in persons allergic to soybean dust. By analyzing surface extracts of soybean seeds with sodium dodecyl sulfate-polyacrylamide gel electrophoresis and amino-terminal microsequencing, we determined that large amounts of HPS are deposited on the seed surface. The quantity of HPS present varies among soybean cultivars and is more prevalent on dull-seeded phenotypes. We have also isolated cDNA clones encoding HPS and determined that the preprotein is translated with a membrane-spanning signal sequence and a short hydrophilic domain. Southern analysis indicated that multiple copies of the HPS gene are present in the soybean genome, and that the HPS gene structure is polymorphic among cultivars that differ in seed coat luster. The pattern of HPS gene expression, determined by in situ hybridization and RNA analysis, shows that HPS is synthesized in the endocarp of the inner ovary wall and is deposited on the seed surface during development. This study demonstrates that a seed dust allergen is associated with the seed luster phenotype in soybean and that compositional properties of the seed surface may be altered by manipulating gene expression in the ovary wall.
Collapse
Affiliation(s)
- M Gijzen
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, 1391 Sandford Street, London, Ontario, Canada N5V 4T3.
| | | | | | | | | |
Collapse
|
34
|
Winicov I, Bastola DR. Transgenic overexpression of the transcription factor alfin1 enhances expression of the endogenous MsPRP2 gene in alfalfa and improves salinity tolerance of the plants. PLANT PHYSIOLOGY 1999; 120:473-80. [PMID: 10364398 PMCID: PMC59285 DOI: 10.1104/pp.120.2.473] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/1998] [Accepted: 02/24/1999] [Indexed: 05/18/2023]
Abstract
Alfin1 cDNA encodes a putative transcription factor associated with NaCl tolerance in alfalfa (Medicago sativa L.). The recombinant protein binds DNA in a sequence-specific manner, including promoter fragments of the NaCl-inducible gene MsPRP2. Alfin1 function was tested in transgenic alfalfa under the control of the 35S promoter in the sense and antisense orientations with the endogenous MsPRP2 as a reporter gene. Calli overexpressing Alfin1 were more resistant to growth inhibition by 171 mM NaCl than vector-transformed controls, whereas calli expressing Alfin1 in the antisense orientation were more sensitive to NaCl inhibition. Transgenic plants overexpressing Alfin1 in the sense orientation grew well. In contrast, the antisense transgenic plants grew poorly in soil, demonstrating that Alfin1 expression is essential for normal plant development. Transgenic calli and plant roots overexpressing Alfin1 showed enhanced levels of endogenous MsPRP2 mRNA accumulation. However, MsPRP2 mRNA accumulation was also regulated in a tissue-specific manner, as shown in leaves of transgenic plants overexpressing Alfin1. These results suggest that Alfin1 acts as a transcriptional regulator in plants and regulates MsPRP2 expression in alfalfa. Alfin1 overexpressing transgenic plants showed salinity tolerance comparable to one of our NaCl-tolerant plants, indicating that Alfin1 also functions in gene regulation in NaCl tolerance.
Collapse
Affiliation(s)
- I Winicov
- Departments of Microbiology and Biochemistry, University of Nevada, Reno, Nevada 89557, USA
| | | |
Collapse
|
35
|
Abstract
Molecular studies of drought stress in plants use a variety of strategies and include different species subjected to a wide range of water deficits. Initial research has by necessity been largely descriptive, and relevant genes have been identified either by reference to physiological evidence or by differential screening. A large number of genes with a potential role in drought tolerance have been described, and major themes in the molecular response have been established. Particular areas of importance are sugar metabolism and late-embryogenesis-abundant (LEA) proteins. Studies have begun to examine mechanisms that control the gene expression, and putative regulatory pathways have been established. Recent attempts to understand gene function have utilized transgenic plants. These efforts are of clear agronomic importance.
Collapse
Affiliation(s)
- J. Ingram
- Max-Planck-Institut fur Zuchtungsforschung, Carl-von-Linne-Weg 10 Koln, 50829 Germany
| | | |
Collapse
|
36
|
Choi DW, Song JY, Kwon YM, Kim SG. Characterization of a cDNA encoding a proline-rich 14 kDa protein in developing cortical cells of the roots of bean (Phaseolus vulgaris) seedlings. PLANT MOLECULAR BIOLOGY 1996; 30:973-82. [PMID: 8639755 DOI: 10.1007/bf00020808] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
A cDNA clone, corresponding to mRNAs preferentially expressed in the roots of bean (Phaseolus vulgaris L.) seedlings, was isolated. This clone contains a 381 bp open reading frame encoding a polypeptide of 13.5 kDa, designated PVR5 (Phaseolus vulgaris root 5). The amino acid sequence of this clone is rich in proline (13.5%) and leucine (12.7%) and shares significant amino acid sequence homology with root-specific and proline-rich proteins from monocots (maize and rice), and proline-rich proteins from dicots (carrot, oilseed rape, and Madagascar periwinkle). The precise biological roles of these polypeptides are unknown. PVR5 mRNA accumulation is developmentally regulated within the root, with high levels at the root apex and declining levels at distances further from the root tip. In situ hybridization shows that PVR5 mRNA specifically accumulates in the cortical ground meristem in which maximal cell division occurs. Southern blot analysis suggests that genomic DNA corresponding to PVR5 cDNA is encoded by a single gene or a small gene family.
Collapse
Affiliation(s)
- D W Choi
- Department of Biology, Seoul National University, Seoul, Korea
| | | | | | | |
Collapse
|