1
|
Reddy AS, Day IS. Analysis of the myosins encoded in the recently completed Arabidopsis thaliana genome sequence. Genome Biol 2001; 2:RESEARCH0024. [PMID: 11516337 PMCID: PMC55321 DOI: 10.1186/gb-2001-2-7-research0024] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2001] [Revised: 04/27/2001] [Accepted: 05/21/2001] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Three types of molecular motors play an important role in the organization, dynamics and transport processes associated with the cytoskeleton. The myosin family of molecular motors move cargo on actin filaments, whereas kinesin and dynein motors move cargo along microtubules. These motors have been highly characterized in non-plant systems and information is becoming available about plant motors. The actin cytoskeleton in plants has been shown to be involved in processes such as transportation, signaling, cell division, cytoplasmic streaming and morphogenesis. The role of myosin in these processes has been established in a few cases but many questions remain to be answered about the number, types and roles of myosins in plants. RESULTS Using the motor domain of an Arabidopsis myosin we identified 17 myosin sequences in the Arabidopsis genome. Phylogenetic analysis of the Arabidopsis myosins with non-plant and plant myosins revealed that all the Arabidopsis myosins and other plant myosins fall into two groups - class VIII and class XI. These groups contain exclusively plant or algal myosins with no animal or fungal myosins. Exon/intron data suggest that the myosins are highly conserved and that some may be a result of gene duplication. CONCLUSIONS Plant myosins are unlike myosins from any other organisms except algae. As a percentage of the total gene number, the number of myosins is small overall in Arabidopsis compared with the other sequenced eukaryotic genomes. There are, however, a large number of class XI myosins. The function of each myosin has yet to be determined.
Collapse
Affiliation(s)
- A S Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA.
| | | |
Collapse
|
2
|
Abstract
Molecular motors that hydrolyze ATP and use the derived energy to generate force are involved in a variety of diverse cellular functions. Genetic, biochemical, and cellular localization data have implicated motors in a variety of functions such as vesicle and organelle transport, cytoskeleton dynamics, morphogenesis, polarized growth, cell movements, spindle formation, chromosome movement, nuclear fusion, and signal transduction. In non-plant systems three families of molecular motors (kinesins, dyneins, and myosins) have been well characterized. These motors use microtubules (in the case of kinesines and dyneins) or actin filaments (in the case of myosins) as tracks to transport cargo materials intracellularly. During the last decade tremendous progress has been made in understanding the structure and function of various motors in animals. These studies are yielding interesting insights into the functions of molecular motors and the origin of different families of motors. Furthermore, the paradigm that motors bind cargo and move along cytoskeletal tracks does not explain the functions of some of the motors. Relatively little is known about the molecular motors and their roles in plants. In recent years, by using biochemical, cell biological, molecular, and genetic approaches a few molecular motors have been isolated and characterized from plants. These studies indicate that some of the motors in plants have novel features and regulatory mechanisms. The role of molecular motors in plant cell division, cell expansion, cytoplasmic streaming, cell-to-cell communication, membrane trafficking, and morphogenesis is beginning to be understood. Analyses of the Arabidopsis genome sequence database (51% of genome) with conserved motor domains of kinesin and myosin families indicates the presence of a large number (about 40) of molecular motors and the functions of many of these motors remain to be discovered. It is likely that many more motors with novel regulatory mechanisms that perform plant-specific functions are yet to be discovered. Although the identification of motors in plants, especially in Arabidopsis, is progressing at a rapid pace because of the ongoing plant genome sequencing projects, only a few plant motors have been characterized in any detail. Elucidation of function and regulation of this multitude of motors in a given species is going to be a challenging and exciting area of research in plant cell biology. Structural features of some plant motors suggest calcium, through calmodulin, is likely to play a key role in regulating the function of both microtubule- and actin-based motors in plants.
Collapse
Affiliation(s)
- A S Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins 80523, USA
| |
Collapse
|
3
|
Sokac AM, Bement WM. Regulation and expression of metazoan unconventional myosins. INTERNATIONAL REVIEW OF CYTOLOGY 2001; 200:197-304. [PMID: 10965469 DOI: 10.1016/s0074-7696(00)00005-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Unconventional myosins are molecular motors that convert adenosine triphosphate (ATP) hydrolysis into movement along actin filaments. On the basis of primary structure analysis, these myosins are represented by at least 15 distinct classes (classes 1 and 3-16), each of which is presumed to play a specific cellular role. However, in contrast to the conventional myosins-2, which drive muscle contraction and cytokinesis and have been studied intensively for many years in both uni- and multicellular organisms, unconventional myosins have only been subject to analysis in metazoan systems for a short time. Here we critically review what is known about unconventional myosin regulation, function, and expression. Several points emerge from this analysis. First, in spite of the high relative conservation of motor domains among the myosin classes, significant differences are found in biochemical and enzymatic properties of these motor domains. Second, the idea that characteristic distributions of unconventional myosins are solely dependent on the myosin tail domain is almost certainly an oversimplification. Third, the notion that most unconventional myosins function as transport motors for membranous organelles is challenged by recent data. Finally, we present a scheme that clarifies relationships between various modes of myosin regulation.
Collapse
Affiliation(s)
- A M Sokac
- Program in Cellular and Molecular Biology, University of Wisconsin, Madison 53706, USA
| | | |
Collapse
|
4
|
Abstract
This first analysis of monocotyledon myosin genes showed that at least five genes, one of which was probably spliced to yield two isoforms, were expressed in maize (Zea mays L.). The complete coding sequence of ZMM1 was determined, as were most of the sequences of two other myosin cDNAs (ZMM2 and ZMM3). ZMM1 and ZMM2 belonged to myosin class XI while ZMM3 was in class VIII. ZMM1 was abundantly expressed in leaves, roots, coleoptiles, and stems. ZMM3 showed a similar distribution but was expressed poorly in pollen. ZMM2 was predominantly expressed in seeds and may be part of a suite of cytoskeletal proteins in reproductive tissues. Phylogenetic analysis suggested that the origin of myosin classes VIII and XI predated that of angiosperms. Immunofluorescence studies using M11L1, a myosin XI antibody specific for the exposed loop 1 head region of myosin, indicated that myosin XI occurred in the cytoplasm of all root tip cells. The highest concentration of myosin XI was in the differentiating epidermal cells. In dividing cells, myosin XI was present near the cytokinetic apparatus at approximately the same concentration seen in other portions of the cytoplasm. Western blot analysis of subcellular fractions indicated that myosin XI was concentrated in mitochondria and low-density membranes.
Collapse
Affiliation(s)
- L Liu
- Biological Laboratories, Harvard University, Cambridge, Massachusetts, USA
| | | | | |
Collapse
|
5
|
Abstract
The plant actin cytoskeleton is characterized by a high diversity in regard to gene families, isoforms, and degree of polymerization. In addition to the most abundant F-actin assemblies like filaments and their bundles, G-actin obviously assembles in the form of actin oligomers composed of a few actin molecules which can be extensively cross-linked into complex dynamic meshworks. The role of the actomyosin complex as a force generating system - based on principles operating as in muscle cells - is clearly established for long-range mass transport in large algal cells and specialized cell types of higher plants. Extended F-actin networks, mainly composed of F-actin bundles, are the structural basis for this cytoplasmic streaming of high velocities On the other hand, evidence is accumulating that delicate meshworks built of short F-actin oligomers are critical for events occurring at the plasma membrane, e.g., actin interventions into activities of ion channels and hormone carriers, signaling pathways based on phospholipids, and exo- and endocytotic processes. These unique F-actin arrays, constructed by polymerization-depolymerization processes propelled via synergistic actions of actin-binding proteins such as profilin and actin depolymerizing factor (ADF)/cofilin are supposed to be engaged in diverse aspects of plant morphogenesis. Finally, rapid rearrangements of F-actin meshworks interconnecting endocellular membranes turn out to be especially important for perception-signaling purposes of plant cells, e.g., in association with guard cell movements, mechano- and gravity-sensing, plant host-pathogen interactions, and wound-healing.
Collapse
Affiliation(s)
- D Volkmann
- Botany Institute, University of Bonn, Germany.
| | | |
Collapse
|
6
|
Yokota, Yukawa, Muto, Sonobe, Shimmen. Biochemical and immunocytochemical characterization of two types of myosins in cultured tobacco bright yellow-2 cells. PLANT PHYSIOLOGY 1999; 121:525-34. [PMID: 10517844 PMCID: PMC59415 DOI: 10.1104/pp.121.2.525] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/1999] [Accepted: 06/14/1999] [Indexed: 05/21/2023]
Abstract
We have isolated a myosin (referred to as 170-kD myosin) from lily pollen tubes, which consists of 170-kD heavy chain and calmodulin (CaM) light chain and is responsible for cytoplasmic streaming. A 170-kD polypeptide that has similar antigenicity to the 170-kD myosin heavy chain of lily pollen tubes was also present in cultured tobacco (Nicotiana tabacum) Bright Yellow-2 (BY-2) cells, and possessed the ability to interact with F-actin in an ATP-dependent manner. In addition to this myosin, we identified biochemically another kind of myosin in BY-2 cells. This myosin consisted of a CaM light chain and a 175-kD heavy chain with antigenicity different from the 170-kD myosin heavy chain. In the present study, we referred to this myosin as 175-kD myosin. This myosin was able to translocate rhodamine-phalloidin (RP)-labeled F-actin at an average velocity of about 9 &mgr;m/s in the motility assay in vitro. In contrast, the sliding velocity of RP-labeled F-actin translocated by fractions containing the 170-kD myosin was 3 to 4 &mgr;m/s. The velocity of cytoplasmic streaming in living BY-2 cells ranged from 2 to 9 &mgr;m/s. The motile activity of 175-kD myosin in vitro was inhibited by Ca(2+) at concentrations higher than 10(-6) M. Immunoblot analyses using an antiserum against the heavy chain of 170- or 175-kD myosin revealed that in tobacco plants, the 175-kD myosin was expressed in leaf, stem, and root, but not in germinating pollen, while 170-kD myosin was present in all of these plant parts and in germinating pollen. These results suggest that the two types of myosins, 170 and 175 kD, presumably participate in cytoplasmic streaming in BY-2 cells and other somatic cells of tobacco plants.
Collapse
Affiliation(s)
- Yokota
- Department of Life Science, Faculty of Science, Himeji Institute of Technology, Harima Science Park City, Hyogo 678-12, Japan
| | | | | | | | | |
Collapse
|
7
|
Reichelt S, Knight AE, Hodge TP, Baluska F, Samaj J, Volkmann D, Kendrick-Jones J. Characterization of the unconventional myosin VIII in plant cells and its localization at the post-cytokinetic cell wall. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1999; 19:555-67. [PMID: 10504577 DOI: 10.1046/j.1365-313x.1999.00553.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Myosins are a large superfamily of motor proteins which, in association with actin, are involved in intra- cellular motile processes. In addition to the conventional myosins involved in muscle contractility, there is, in animal cells, a wide range of unconventional myosins implicated in membrane-associated processes, such as vesicle transport and membrane dynamics. In plant cells, however, very little is known about myosins. We have raised an antibody to the recombinant tail region of Arabidopsis thaliana myosin 1 (a class VIII myosin) and used it in immunofluorescence and EM studies on root cells from cress and maize. The plant myosin VIII is found to be concentrated at newly formed cross walls at the stage in which the phragmoplast cytoskeleton has depolymerized and the new cell plate is beginning to mature. These walls are rich in plasmodesmata and we show that they are the regions where the longitudinal actin cables appear to attach. Myosin VIII appears to be localized in these plasmodesmata and we suggest that this protein is involved in maturation of the cell plate and the re-establishment of cytoplasmic actin cables at sites of intercellular communication.
Collapse
Affiliation(s)
- S Reichelt
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | | | | | | | | | |
Collapse
|
8
|
Radford JE, White RG. Localization of a myosin-like protein to plasmodesmata. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1998; 14:743-50. [PMID: 9681037 DOI: 10.1046/j.1365-313x.1998.00162.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Myosin has been localized to plasmodesmata in root tissues of Allium cepa, Zea mays and Hordeum vulgare using a polyclonal antibody to animal myosin in both fluorescence and electron microscopy. Labelling was also observed throughout the cytoplasm, mainly associated with the endoplasmic reticulum and plasma membrane. On Western blots, bands of 180 and 110 kDa were consistently labelled in all three species. These bands were also labelled when the blot was incubated in actin prior to staining with antibodies to actin, raising the possibility that either of these proteins (180 kDa or 110 kDa) may be present in plasmodesmata. Pre-treatment of the tissue with 2,3-butanedione monoxime (BDM), an inhibitor of actin-myosin motility, resulted in a strong constriction of the neck region of plasmodesmata. These results indicate that a myosin-like protein may be present in plasmodesmata and may also play a role in the regulation of transport at the neck region.
Collapse
Affiliation(s)
- J E Radford
- Department of Biological Sciences, Monash University, Clayton, Victoria, Australia.
| | | |
Collapse
|
9
|
Li YQ, Moscatelli A, Cai G, Cresti M. Functional interactions among cytoskeleton, membranes, and cell wall in the pollen tube of flowering plants. INTERNATIONAL REVIEW OF CYTOLOGY 1997; 176:133-99. [PMID: 9394919 DOI: 10.1016/s0074-7696(08)61610-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The pollen tube is a cellular system that plays a fundamental role during the process of fertilization in higher plants. Because it is so important, the pollen tube has been subjected to intensive studies with the aim of understanding its biology. The pollen tube represents a fascinating model for studying interactions between the internal cytoskeletal machinery, the membrane system, and the cell wall. These compartments, often studied as independent units, show several molecular interactions and can influence the structure and organization of each other. The way the cell wall is constructed, the dynamics of the endomembrane system, and functions of the cytoskeleton suggest that these compartments are a molecular "continuum," which represents a link between the extracellular environment and the pollen tube cytoplasm. Several experimental approaches have been used to understand how these interactions may translate the pollen-pistil interactions into differential processes of pollen tube growth.
Collapse
Affiliation(s)
- Y Q Li
- Dipartimento Biologia Ambientale, Università di Siena, Italy
| | | | | | | |
Collapse
|
10
|
Peterson MD, Urioste AS, Titus MA. Dictyostelium discoideum myoJ: a member of a broadly defined myosin V class or a class XI unconventional myosin? J Muscle Res Cell Motil 1996; 17:411-24. [PMID: 8884597 DOI: 10.1007/bf00123358] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The simple eukaryote Dictyostelium discoideum contains at least 12 unconventional myosin genes. Here we report the characterization of one of these, myoJ, a gene initially identified through a physical mapping screen. The myoJ gene encodes a high molecular weight myosin, and analysis of the available deduced amino acid sequence reveals that it possesses six IQ motifs and sequences typical of alpha helical coiled coils in the tail region. Therefore, myoJ is predicted to exist as a dimer with up to 12 associated light chains (six per heavy chain). The 7.8 kb myoJ mRNA is expressed all throughout the life cycle of D. discoideum. The myoJ gene has been disrupted and a phenotypic analysis of the mutant cells initiated. Finally, phylogenetic analysis of the head region reveals that myoJ is most similar to two plant myosin genes, Arabidopsis MYA1 and MYA2, that have been alternatively suggested to be either members of the myosin V class or founding members of the myosin XI class.
Collapse
Affiliation(s)
- M D Peterson
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
11
|
The plant cytoskeleton. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s1874-6020(96)80016-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
|
12
|
Miller DD, Scordilis SP, Hepler PK. Identification and localization of three classes of myosins in pollen tubes of Lilium longiflorum and Nicotiana alata. J Cell Sci 1995; 108 ( Pt 7):2549-63. [PMID: 7593296 DOI: 10.1242/jcs.108.7.2549] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The presence and localization of actin and myosin have been examined in pollen tubes of Lilium longiflorum and Nicotiana alata. Immunoblot analysis of pollen tube extracts with antibodies to actin, myosins IA and IB, myosin II, and myosin V reveals the presence of these contractile proteins. Immunofluorescence microscopy using various methods to preserve the pollen tubes; chemical fixation, rapid freeze fixation and freeze substitution (RF-FS) followed by rehydration or by embeddment in a methacrylate mixture, was performed to optimize preservation. Immunocytochemistry reaffirmed that actin is localized longitudinally in the active streaming lanes and near the cortical surface of the pollen tube. Myosin I was localized to the plasma membrane, larger organelles, the surface of the generative cell and the vegetative nucleus, whereas, myosin V was found in the vegetative cytoplasm in a punctate fashion representing smaller organelles. Myosin II subfragment 1 and light meromyosin were localized in a punctate fashion on the larger organelles throughout the vegetative cytoplasm. In addition, isolated generative cells and vegetative nuclei labeled only with the myosin I antibody. Competition studies indicated the specificity of the heterologous antibodies utilized in this study suggesting the presence of three classes of myosins in pollen. These results lead to the following hypothesis: Myosin I may move the generative cell and vegetative nucleus unidirectionally through the pollen tube to the tip, while myosin V moves the smaller organelles and myosins I and II move the larger organelles (bidirectionally) that are involved in growth.
Collapse
Affiliation(s)
- D D Miller
- Molecular and Cellular Biology Program, Morrill Science Center, University of Massachusetts, Amherst 01003, USA
| | | | | |
Collapse
|
13
|
Kinkema M, Wang H, Schiefelbein J. Molecular analysis of the myosin gene family in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 1994; 26:1139-1153. [PMID: 7811972 DOI: 10.1007/bf00040695] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Myosin is believed to act as the molecular motor for many actin-based motility processes in eukaryotes. It is becoming apparent that a single species may possess multiple myosin isoforms, and at least seven distinct classes of myosin have been identified from studies of animals, fungi, and protozoans. The complexity of the myosin heavy-chain gene family in higher plants was investigated by isolating and characterizing myosin genomic and cDNA clones from Arabidopsis thaliana. Six myosin-like genes were identified from three polymerase chain reaction (PCR) products (PCR1, PCR11, PCR43) and three cDNA clones (ATM2, MYA2, MYA3). Sequence comparisons of the deduced head domains suggest that these myosins are members of two major classes. Analysis of the overall structure of the ATM2 and MYA2 myosins shows that they are similar to the previously-identified ATM1 and MYA1 myosins, respectively. The MYA3 appears to possess a novel tail domain, with five IQ repeats, a six-member imperfect repeat, and a segment of unique sequence. Northern blot analyses indicate that some of the Arabidopsis myosin genes are preferentially expressed in different plant organs. Combined with previous studies, these results show that the Arabidopsis genome contains at least eight myosin-like genes representing two distinct classes.
Collapse
Affiliation(s)
- M Kinkema
- Department of Biology, University of Michigan, Ann Arbor 48109
| | | | | |
Collapse
|