1
|
Fan H, Zhou J, Wang Q, Zhang M, Huang Z, Han J, Ying Y, Yu Z, Kai G. Comprehensive Genome-Wide Analysis and Expression Profiling of Pathogenesis-Related Protein 1 ( PR-1) Genes in Salvia miltiorrhiza. Food Sci Nutr 2025; 13:e70117. [PMID: 40313798 PMCID: PMC12041668 DOI: 10.1002/fsn3.70117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/17/2025] [Accepted: 03/13/2025] [Indexed: 05/03/2025] Open
Abstract
The pathogenesis-related 1 (PR-1) gene family is essential for plant defense and stress response. In this study, 11 SmPR-1 genes were identified in Salvia miltiorrhiza through comprehensive genomic analysis, all of which encoded proteins with conserved CAP (cysteine-rich secretory protein, antigen 5, and pathogenesis-related 1) domains and signal peptides. Phylogenetic analysis categorized these genes into five evolutionary clusters, reflecting their evolutionary divergence. Chromosomal localization analysis revealed that the SmPR-1 gene family is distributed across three chromosomes: Chr1 contains six genes, Chr6 contains three, and Chr8 contains one. Intraspecific collinearity analysis indicated segmental duplications of SmPR-1-5 and SmPR-1-11 on Chr1. Interspecific collinearity analysis showed that five SmPR-1 genes are collinear with both Arabidopsis thaliana and Scutellaria baicalensis, with SmPR-1-1 also exhibiting collinearity with Oryza sativa and Zea mays. Tissue-specific expression profiling indicated high expression levels in the flowers and stems, indicating their roles in various developmental processes. Differential expression patterns under hormonal and biotic stress revealed that SmPR-1-5 was particularly responsive to brassinosteroid (BR) treatment. Subcellular localization analysis indicated that SmPR-1-5 was present in both the cytoplasm and nucleus, suggesting its involvement in intracellular signaling. Additionally, CMV infection triggered a time-dependent expression pattern, activating specific genes during the early and late infection stages. These findings provide valuable insights into the functional roles of SmPR-1 genes in stress responses and immunity, laying the groundwork for breeding disease-resistant S. miltiorrhiza varieties. Future research should explore the regulatory mechanisms and interactions of SmPR-1 genes with other defense pathways to fully understand their contribution to plant resistance.
Collapse
Affiliation(s)
- Huiyan Fan
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Jingzhi Zhou
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Qichao Wang
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Minhui Zhang
- College of Pharmaceutical ScienceFujian University of Traditional Chinese MedicineFuzhouChina
| | - Ziru Huang
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Jiayi Han
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Yiling Ying
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Zhenming Yu
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Guoyin Kai
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
- College of Pharmaceutical ScienceFujian University of Traditional Chinese MedicineFuzhouChina
| |
Collapse
|
2
|
Chen B, Bian X, Tu M, Yu T, Jiang L, Lu Y, Chen X. Moderate Salinity Stress Increases the Seedling Biomass in Oilseed Rape ( Brassica napus L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:1650. [PMID: 37111872 PMCID: PMC10144440 DOI: 10.3390/plants12081650] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 06/19/2023]
Abstract
Oilseed rape (Brassica napus L.), an important oil crop of the world, suffers various abiotic stresses including salinity stress during the growth stage. While most of the previous studies paid attention to the adverse effects of high salinity stress on plant growth and development, as well as their underlying physiological and molecular mechanisms, less attention was paid to the effects of moderate or low salinity stress. In this study, we first tested the effects of different concentrations of NaCl solution on the seedling growth performance of two oilseed rape varieties (CH336, a semi-winter type, and Bruttor, a spring type) in pot cultures. We found that moderate salt concentrations (25 and 50 mmol L-1 NaCl) can stimulate seedling growth by a significant increase (10~20%, compared to controls) in both above- and underground biomasses, as estimated at the early flowering stage. We then performed RNA-seq analyses of shoot apical meristems (SAMs) from six-leaf-aged seedlings under control (CK), low (LS, 25 mmol L-1), and high (HS, 180 mmol L-1) salinity treatments in the two varieties. The GO and KEGG enrichment analyses of differentially expressed genes (DEGs) demonstrated that such a stimulating effect on seedling growth by low salinity stress may be caused by a more efficient capacity for photosynthesis as compensation, accompanied by a reduced energy loss for the biosynthesis of secondary metabolites and redirecting of energy to biomass formation. Our study provides a new perspective on the cultivation of oilseed rape in saline regions and new insights into the molecular mechanisms of salt tolerance in Brassica crops. The candidate genes identified in this study can serve as targets for molecular breeding selection and genetic engineering toward enhancing salt tolerance in B. napus.
Collapse
Affiliation(s)
- Beini Chen
- Institute of Crop Science, Jinhua Academy of Agricultural Sciences, Zhihe Road 1158, Jinhua 321017, China (T.Y.)
- Institute of Crop Science, Zhejiang University, Yu-Hang-Tang Road 866, Hangzhou 310058, China
| | - Xiaobo Bian
- Institute of Crop Science, Jinhua Academy of Agricultural Sciences, Zhihe Road 1158, Jinhua 321017, China (T.Y.)
| | - Mengxin Tu
- Institute of Crop Science, Zhejiang University, Yu-Hang-Tang Road 866, Hangzhou 310058, China
| | - Tao Yu
- Institute of Crop Science, Jinhua Academy of Agricultural Sciences, Zhihe Road 1158, Jinhua 321017, China (T.Y.)
| | - Lixi Jiang
- Institute of Crop Science, Zhejiang University, Yu-Hang-Tang Road 866, Hangzhou 310058, China
| | - Yunhai Lu
- Institute of Crop Science, Zhejiang University, Yu-Hang-Tang Road 866, Hangzhou 310058, China
| | - Xiaoyang Chen
- Institute of Crop Science, Jinhua Academy of Agricultural Sciences, Zhihe Road 1158, Jinhua 321017, China (T.Y.)
| |
Collapse
|
3
|
Berrabah F, Bernal G, Elhosseyn AS, El Kassis C, L’Horset R, Benaceur F, Wen J, Mysore KS, Garmier M, Gourion B, Ratet P, Gruber V. Insight into the control of nodule immunity and senescence during Medicago truncatula symbiosis. PLANT PHYSIOLOGY 2023; 191:729-746. [PMID: 36305683 PMCID: PMC9806560 DOI: 10.1093/plphys/kiac505] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Medicago (Medicago truncatula) establishes a symbiosis with the rhizobia Sinorhizobium sp, resulting in the formation of nodules where the bacteria fix atmospheric nitrogen. The loss of immunity repression or early senescence activation compromises symbiont survival and leads to the formation of nonfunctional nodules (fix-). Despite many studies exploring an overlap between immunity and senescence responses outside the nodule context, the relationship between these processes in the nodule remains poorly understood. To investigate this phenomenon, we selected and characterized three Medicago mutants developing fix- nodules and showing senescence responses. Analysis of specific defense (PATHOGENESIS-RELATED PROTEIN) or senescence (CYSTEINE PROTEASE) marker expression demonstrated that senescence and immunity seem to be antagonistic in fix- nodules. The growth of senescence mutants on non-sterile (sand/perlite) substrate instead of sterile in vitro conditions decreased nodule senescence and enhanced defense, indicating that environment can affect the immunity/senescence balance. The application of wounding stress on wild-type (WT) fix+ nodules led to the death of intracellular rhizobia and associated with co-stimulation of defense and senescence markers, indicating that in fix+ nodules the relationship between the two processes switches from opposite to synergistic to control symbiont survival during response to the stress. Our data show that the immune response in stressed WT nodules is linked to the repression of DEFECTIVE IN NITROGEN FIXATION 2 (DNF2), Symbiotic CYSTEINE-RICH RECEPTOR-LIKE KINASE (SymCRK), and REGULATOR OF SYMBIOSOME DIFFERENTIATION (RSD), key genes involved in symbiotic immunity suppression. This study provides insight to understand the links between senescence and immunity in Medicago nodules.
Collapse
Affiliation(s)
- Fathi Berrabah
- Faculty of Sciences, Department of Biology, Amar Telidji University, 03000 Laghouat, Algeria
- Research Unit of Medicinal Plants (RUMP), National Center of Biotechnology Research, CRBt, 25000 Constantine, Algeria
| | - Gautier Bernal
- Université Paris-Saclay, CNRS, INRAE, Université d’Évry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
- Université Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | - Ait-Salem Elhosseyn
- Université Paris-Saclay, CNRS, INRAE, Université d’Évry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
- Université Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | - Cyrille El Kassis
- Université Paris-Saclay, CNRS, INRAE, Université d’Évry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
- Université Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | - Roxane L’Horset
- Pôle de Protection des Plantes, UMR PVBMT, 97410 Saint-Pierre, Réunion, France
| | - Farouk Benaceur
- Faculty of Sciences, Department of Biology, Amar Telidji University, 03000 Laghouat, Algeria
- Research Unit of Medicinal Plants (RUMP), National Center of Biotechnology Research, CRBt, 25000 Constantine, Algeria
| | - Jiangqi Wen
- The Institute of Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401, USA
| | - Kirankumar S Mysore
- The Institute of Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401, USA
| | - Marie Garmier
- Université Paris-Saclay, CNRS, INRAE, Université d’Évry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
- Université Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | - Benjamin Gourion
- LIPME, Université de Toulouse, INRAE, CNRS, 31320 Castanet-Tolosan, France
| | - Pascal Ratet
- Université Paris-Saclay, CNRS, INRAE, Université d’Évry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
- Université Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | - Véronique Gruber
- Université Paris-Saclay, CNRS, INRAE, Université d’Évry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
- Université Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| |
Collapse
|
4
|
Ayatollahi Z, Kazanaviciute V, Shubchynskyy V, Kvederaviciute K, Schwanninger M, Rozhon W, Stumpe M, Mauch F, Bartels S, Ulm R, Balazadeh S, Mueller-Roeber B, Meskiene I, Schweighofer A. Dual control of MAPK activities by AP2C1 and MKP1 MAPK phosphatases regulates defence responses in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2369-2384. [PMID: 35088853 PMCID: PMC9015810 DOI: 10.1093/jxb/erac018] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades transmit environmental signals and induce stress and defence responses in plants. These signalling cascades are negatively controlled by specific Ser/Thr protein phosphatases of the type 2C (PP2C) and dual-specificity phosphatase (DSP) families that inactivate stress-induced MAPKs; however, the interplay between phosphatases of these different types has remained unknown. This work reveals that different Arabidopsis MAPK phosphatases, the PP2C-type AP2C1 and the DSP-type MKP1, exhibit both specific and overlapping functions in plant stress responses. Each single mutant, ap2c1 and mkp1, and the ap2c1 mkp1 double mutant displayed enhanced stress-induced activation of the MAPKs MPK3, MPK4, and MPK6, as well as induction of a set of transcription factors. Moreover, ap2c1 mkp1 double mutants showed an autoimmune-like response, associated with increased levels of the stress hormones salicylic acid and ethylene, and of the phytoalexin camalexin. This phenotype was reduced in the ap2c1 mkp1 mpk3 and ap2c1 mkp1 mpk6 triple mutants, suggesting that the autoimmune-like response is due to MAPK misregulation. We conclude that the evolutionarily distant MAPK phosphatases AP2C1 and MKP1 contribute crucially to the tight control of MAPK activities, ensuring appropriately balanced stress signalling and suppression of autoimmune-like responses during plant growth and development.
Collapse
Affiliation(s)
- Zahra Ayatollahi
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr.-Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Vaiva Kazanaviciute
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr.-Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Volodymyr Shubchynskyy
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr.-Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Kotryna Kvederaviciute
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
| | - Manfred Schwanninger
- Department of Chemistry, University of Natural Resources and Applied Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Wilfried Rozhon
- Department of Agriculture, Ecotrophology, and Landscape Development, Anhalt University of Applied Sciences, Strenzfelder Allee 28, D-06406 Bernburg, Germany
| | - Michael Stumpe
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
| | - Felix Mauch
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
| | - Sebastian Bartels
- Faculty of Biology, Institute of Biology II, University of Freiburg, Schänzlestraße 1, D-79104 Freiburg, Germany
| | - Roman Ulm
- Department of Botany and Plant Biology, Section of Biology, Faculty of Sciences, University of Geneva, 30 Quai E. Ansermet, CH-1211 Geneva, Switzerland
| | - Salma Balazadeh
- Max-Planck-Institute of Molecular Plant Physiology (MPIMP), Am Mühlenberg 1, D-14476 Potsdam, Germany
- University of Potsdam, Karl-Liebknecht-Straße 24, D-14476 Potsdam, Germany
- Institute of Biology Leiden (IBL), Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Bernd Mueller-Roeber
- Max-Planck-Institute of Molecular Plant Physiology (MPIMP), Am Mühlenberg 1, D-14476 Potsdam, Germany
- University of Potsdam, Karl-Liebknecht-Straße 24, D-14476 Potsdam, Germany
- Center of Plant Systems Biology and Biotechnology (CPSBB), Ruski 139 Blvd., Plovdiv 4000, Bulgaria
| | - Irute Meskiene
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr.-Bohr-Gasse 9, A-1030 Vienna, Austria
- Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria
| | - Alois Schweighofer
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr.-Bohr-Gasse 9, A-1030 Vienna, Austria
- Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria
| |
Collapse
|
5
|
Xu J, Zhang N, Wang K, Xian Q, Dong J, Qi X, Chen X. Chitinase Chi 2 Positively Regulates Cucumber Resistance against Fusarium oxysporum f. sp. cucumerinum. Genes (Basel) 2021; 13:62. [PMID: 35052402 PMCID: PMC8775131 DOI: 10.3390/genes13010062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/17/2021] [Accepted: 12/24/2021] [Indexed: 11/29/2022] Open
Abstract
Cucumber (Cucumis sativus L.) is an important vegetable crop worldwide, and Fusarium wilt (FW), caused by Fusarium oxysporum f. sp. cucumerinum (Foc), severely restricts cucumber growth and yield. Accumulating lines of evidence indicate that chitinases play important roles in attacking the invading fungal pathogens through catalyzing their cell wall degradation. Here, we identified the chitinase (Chi) genes in cucumber and further screened the FW-responsive genes via a comparative transcriptome analysis and found that six common genes were predominantly expressed in roots but also significantly upregulated after Foc infection. Expression verification further conformed that Chi2 and Chi14 were obviously induced by Foc as well as by hormone treatments, compared with the controls. The purified Chi2 and Chi14 proteins significantly affected the growth of Foc in vitro, compared with the controls. Knockdown of Chi2 in cucumber by virus-induced gene silencing (VIGS) increased susceptibility to FW, compared with the Chi14-silenced and control plants, and silencing of Chi2 drastically impaired gene activation in the jasmonic acid pathway, suggesting that the Chi2 gene might play positive roles in cucumber FW defense and, therefore, can provide a gene resource for developing cucumber-FW-resistance breeding programs.
Collapse
Affiliation(s)
- Jun Xu
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (J.X.); (N.Z.); (K.W.); (Q.X.); (J.D.); (X.Q.)
| | - Ningyuan Zhang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (J.X.); (N.Z.); (K.W.); (Q.X.); (J.D.); (X.Q.)
| | - Ke Wang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (J.X.); (N.Z.); (K.W.); (Q.X.); (J.D.); (X.Q.)
| | - Qianqian Xian
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (J.X.); (N.Z.); (K.W.); (Q.X.); (J.D.); (X.Q.)
| | - Jingping Dong
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (J.X.); (N.Z.); (K.W.); (Q.X.); (J.D.); (X.Q.)
| | - Xiaohua Qi
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (J.X.); (N.Z.); (K.W.); (Q.X.); (J.D.); (X.Q.)
| | - Xuehao Chen
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (J.X.); (N.Z.); (K.W.); (Q.X.); (J.D.); (X.Q.)
- State Key Laboratory of Vegetable Germplasm Innovation, Tianjin 300192, China
| |
Collapse
|
6
|
Hung CY, Zhang J, Bhattacharya C, Li H, Kittur FS, Oldham CE, Wei X, Burkey KO, Chen J, Xie J. Transformation of Long-Lived Albino Epipremnum aureum 'Golden Pothos' and Restoring Chloroplast Development. FRONTIERS IN PLANT SCIENCE 2021; 12:647507. [PMID: 34054894 PMCID: PMC8149757 DOI: 10.3389/fpls.2021.647507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/19/2021] [Indexed: 05/27/2023]
Abstract
Chloroplasts are organelles responsible for chlorophyll biosynthesis, photosynthesis, and biosynthesis of many metabolites, which are one of key targets for crop improvement. Elucidating and engineering genes involved in chloroplast development are important approaches for studying chloroplast functions as well as developing new crops. In this study, we report a long-lived albino mutant derived from a popular ornamental plant Epipremnum aureum 'Golden Pothos' which could be used as a model for analyzing the function of genes involved in chloroplast development and generating colorful plants. Albino mutant plants were isolated from regenerated populations of variegated 'Golden Pothos' whose albino phenotype was previously found to be due to impaired expression of EaZIP, encoding Mg-protoporphyrin IX monomethyl ester cyclase. Using petioles of the mutant plants as explants with a traceable sGFP gene, an efficient transformation system was developed. Expressing Arabidopsis CHL27 (a homolog of EaZIP) but not EaZIP in albino plants restored green color and chloroplast development. Interestingly, in addition to the occurrence of plants with solid green color, plants with variegated leaves and pale-yellow leaves were also obtained in the regenerated populations. Nevertheless, our study shows that these long-lived albino plants along with the established efficient transformation system could be used for creating colorful ornamental plants. This system could also potentially be used for investigating physiological processes associated with chlorophyll levels and chloroplast development as well as certain biological activities, which are difficult to achieve using green plants.
Collapse
Affiliation(s)
- Chiu-Yueh Hung
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, United States
| | - Jianhui Zhang
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, United States
| | - Chayanika Bhattacharya
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, United States
| | - Hua Li
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, United States
| | - Farooqahmed S. Kittur
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, United States
| | - Carla E. Oldham
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, United States
| | - Xiangying Wei
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Kent O. Burkey
- USDA-ARS Plant Science Research Unit, Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, United States
| | - Jianjun Chen
- Environmental Horticulture Department, Mid-Florida Research and Education Center, University of Florida, Apopka, FL, United States
| | - Jiahua Xie
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, United States
| |
Collapse
|
7
|
Ma C, Chen Q, Wang S, Lers A. Downregulation of GeBP-like α factor by MiR827 suggests their involvement in senescence and phosphate homeostasis. BMC Biol 2021; 19:90. [PMID: 33941183 PMCID: PMC8091714 DOI: 10.1186/s12915-021-01015-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 03/29/2021] [Indexed: 01/15/2023] Open
Abstract
Background Leaf senescence is a genetically controlled degenerative process intimately linked to phosphate homeostasis during plant development and responses to environmental conditions. Senescence is accelerated by phosphate deficiency, with recycling and mobilization of phosphate from senescing leaves serving as a major phosphate source for sink tissues. Previously, miR827 was shown to play a significant role in regulating phosphate homeostasis, and induction of its expression was also observed during Arabidopsis leaf senescence. However, whether shared mechanisms underlie potentially common regulatory roles of miR827 in both processes is not understood. Here, we dissect the regulatory machinery downstream of miR827. Results Overexpression or inhibited expression of miR827 led to an acceleration or delay in the progress of senescence, respectively. The transcriptional regulator GLABRA1 enhancer-binding protein (GeBP)-like (GPLα) gene was identified as a possible target of miR827. GPLα expression was elevated in miR827-suppressed lines and reduced in miR827-overexpressing lines. Furthermore, heterologous co-expression of pre-miR827 in tobacco leaves reduced GPLα transcript levels, but this effect was eliminated when pre-miR827 recognition sites in GPLα were mutated. GPLα expression is induced during senescence and its inhibition or overexpression resulted in senescence acceleration and inhibition, accordingly. Furthermore, GPLα expression was induced by phosphate deficiency, and overexpression of GPLα led to reduced expression of phosphate transporter 1 genes, lower leaf phosphate content, and related root morphology. The encoded GPLα protein was localized to the nucleus. Conclusions We suggest that MiR827 and the transcription factor GPLα may be functionally involved in senescence and phosphate homeostasis, revealing a potential new role for miR827 and the function of the previously unstudied GPLα. The close interactions between senescence and phosphate homeostasis are further emphasized by the functional involvement of the two regulatory components, miR827 and GPLα, in both processes and the interactions between them.
Collapse
Affiliation(s)
- Chao Ma
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.,Department of Postharvest Science, Agricultural Research Organization, Volcani Center, HaMaccabim Road 68, 7505101, Rishon LeZion, Israel
| | - Qiuju Chen
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shiping Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Amnon Lers
- Department of Postharvest Science, Agricultural Research Organization, Volcani Center, HaMaccabim Road 68, 7505101, Rishon LeZion, Israel.
| |
Collapse
|
8
|
Comparative physiological and metabolomic analyses revealed that foliar spraying with zinc oxide and silica nanoparticles modulates metabolite profiles in cucumber (
Cucumis sativus
L.). Food Energy Secur 2021. [DOI: 10.1002/fes3.269] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
9
|
Vangelisti A, Guidi L, Cavallini A, Natali L, Lo Piccolo E, Landi M, Lorenzini G, Malorgio F, Massai R, Nali C, Pellegrini E, Rallo G, Remorini D, Vernieri P, Giordani T. Red versus green leaves: transcriptomic comparison of foliar senescence between two Prunus cerasifera genotypes. Sci Rep 2020; 10:1959. [PMID: 32029804 PMCID: PMC7005320 DOI: 10.1038/s41598-020-58878-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/02/2020] [Indexed: 11/08/2022] Open
Abstract
The final stage of leaf ontogenesis is represented by senescence, a highly regulated process driven by a sequential cellular breakdown involving, as the first step, chloroplast dismantling with consequent reduction of photosynthetic efficiency. Different processes, such as pigment accumulation, could protect the vulnerable photosynthetic apparatus of senescent leaves. Although several studies have produced transcriptomic data on foliar senescence, just few works have attempted to explain differences in red and green leaves throughout ontogenesis. In this work, a transcriptomic approach was used on green and red leaves of Prunus cerasifera to unveil molecular differences from leaf maturity to senescence. Our analysis revealed a higher gene regulation in red leaves compared to green ones, during leaf transition. Most of the observed DEGs were shared and involved in transcription factor activities, senescing processes and cell wall remodelling. Significant differences were detected in cellular functions: genes related to photosystem I and II were highly down-regulated in the green genotype, whereas transcripts involved in flavonoid biosynthesis, such as UDP glucose-flavonoid-3-O-glucosyltransferase (UFGT) were exclusively up-regulated in red leaves. In addition, cellular functions involved in stress response (glutathione-S-transferase, Pathogen-Related) and sugar metabolism, such as three threalose-6-phosphate synthases, were activated in senescent red leaves. In conclusion, data suggests that P. cerasifera red genotypes can regulate a set of genes and molecular mechanisms that cope with senescence, promoting more advantages during leaf ontogenesis than compared to the green ones.
Collapse
Affiliation(s)
- Alberto Vangelisti
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Lucia Guidi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
- CIRSEC, Centre for Climate Change Impact, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Andrea Cavallini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Lucia Natali
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
- CIRSEC, Centre for Climate Change Impact, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Ermes Lo Piccolo
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Marco Landi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
- CIRSEC, Centre for Climate Change Impact, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Giacomo Lorenzini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
- CIRSEC, Centre for Climate Change Impact, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Fernando Malorgio
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Rossano Massai
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Cristina Nali
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
- CIRSEC, Centre for Climate Change Impact, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Elisa Pellegrini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
- CIRSEC, Centre for Climate Change Impact, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Giovanni Rallo
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
- CIRSEC, Centre for Climate Change Impact, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Damiano Remorini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
- CIRSEC, Centre for Climate Change Impact, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Paolo Vernieri
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
- CIRSEC, Centre for Climate Change Impact, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Tommaso Giordani
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy.
| |
Collapse
|
10
|
Yuan J, Sun X, Guo T, Chao Y, Han L. Global transcriptome analysis of alfalfa reveals six key biological processes of senescent leaves. PeerJ 2020; 8:e8426. [PMID: 32002335 PMCID: PMC6979412 DOI: 10.7717/peerj.8426] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 12/18/2019] [Indexed: 11/20/2022] Open
Abstract
Leaf senescence is a complex organized developmental stage limiting the yield of crop plants, and alfalfa is an important forage crop worldwide. However, our understanding of the molecular mechanism of leaf senescence and its influence on biomass in alfalfa is still limited. In this study, RNA sequencing was utilized to identify differentially expressed genes (DEGs) in young, mature, and senescent leaves, and the functions of key genes related to leaf senescence. A total of 163,511 transcripts and 77,901 unigenes were identified from the transcriptome, and 5,133 unigenes were differentially expressed. KEGG enrichment analyses revealed that ribosome and phenylpropanoid biosynthesis pathways, and starch and sucrose metabolism pathways are involved in leaf development and senescence in alfalfa. GO enrichment analyses exhibited that six clusters of DEGs are involved in leaf morphogenesis, leaf development, leaf formation, regulation of leaf development, leaf senescence and negative regulation of the leaf senescence biological process. The WRKY and NAC families of genes mainly consist of transcription factors that are involved in the leaf senescence process. Our results offer a novel interpretation of the molecular mechanisms of leaf senescence in alfalfa.
Collapse
Affiliation(s)
- Jianbo Yuan
- College of Grassland Science, Beijing Forestry University, Beijing, China
| | - Xinbo Sun
- College of Agronomy, Hebei Agricultural University, Key Laboratory of Crop Growth Regulation of Hebei Province, China
| | - Tao Guo
- College of Grassland Science, Beijing Forestry University, Beijing, China
| | - Yuehui Chao
- College of Grassland Science, Beijing Forestry University, Beijing, China
| | - Liebao Han
- College of Grassland Science, Beijing Forestry University, Beijing, China
| |
Collapse
|
11
|
Sun L, Zhang P, Wang R, Wan J, Ju Q, Rothstein SJ, Xu J. The SNAC-A Transcription Factor ANAC032 Reprograms Metabolism in Arabidopsis. PLANT & CELL PHYSIOLOGY 2019; 60:999-1010. [PMID: 30690513 DOI: 10.1093/pcp/pcz015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/11/2019] [Indexed: 06/09/2023]
Abstract
Studies have indicated that the carbon starvation response leads to the reprogramming of the transcriptome and metabolome, and many genes, including several important regulators, such as the group S1 basic leucine zipper transcription factors (TFs) bZIP1, bZIP11 and bZIP53, the SNAC-A TF ATAF1, etc., are involved in these physiological processes. Here, we show that the SNAC-A TF ANAC032 also plays important roles in this process. The overexpression of ANAC032 inhibits photosynthesis and induces reactive oxygen species accumulation in chloroplasts, thereby reducing sugar accumulation and resulting in carbon starvation. ANAC032 reprograms carbon and nitrogen metabolism by increasing sugar and amino acid catabolism in plants. The ChIP-qPCR and transient dual-luciferase reporter assays indicated that ANAC032 regulates trehalose metabolism via the direct regulation of TRE1 expression. Taken together, these results show that ANAC032 is an important regulator of the carbon/energy status that represses photosynthesis to induce carbon starvation.
Collapse
Affiliation(s)
- Liangliang Sun
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, China
| | - Ping Zhang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ruling Wang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, China
| | - Jinpeng Wan
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiong Ju
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, China
| | - Steven J Rothstein
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Jin Xu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, China
| |
Collapse
|
12
|
Mierek-Adamska A, Dąbrowska GB, Blindauer CA. The type 4 metallothionein from Brassica napus seeds folds in a metal-dependent fashion and favours zinc over other metals. Metallomics 2018; 10:1430-1443. [DOI: 10.1039/c8mt00161h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rapeseed MT4 only folds properly in the presence of Zn2+ and thus may serve as a selectivity filter for metal accumulation in plant embryos.
Collapse
Affiliation(s)
- Agnieszka Mierek-Adamska
- Department of Genetics
- Faculty of Biology and Environmental Protection
- Nicolaus Copernicus University
- 87-100 Toruń
- Poland
| | - Grażyna B. Dąbrowska
- Department of Genetics
- Faculty of Biology and Environmental Protection
- Nicolaus Copernicus University
- 87-100 Toruń
- Poland
| | | |
Collapse
|
13
|
Mason KE, Hilmer JK, Maaty WS, Reeves BD, Grieco PA, Bothner B, Fischer AM. Proteomic comparison of near-isogenic barley (Hordeum vulgare L.) germplasm differing in the allelic state of a major senescence QTL identifies numerous proteins involved in plant pathogen defense. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 109:114-127. [PMID: 27665045 DOI: 10.1016/j.plaphy.2016.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 09/08/2016] [Accepted: 09/09/2016] [Indexed: 05/24/2023]
Abstract
Senescence is the last developmental phase of plant tissues, organs and, in the case of monocarpic senescence, entire plants. In monocarpic crops such as barley, it leads to massive remobilization of nitrogen and other nutrients to developing seeds. To further investigate this process, a proteomic comparison of flag leaves of near-isogenic late- and early-senescing barley germplasm was performed. Protein samples at 14 and 21 days past anthesis were analyzed using both two-dimensional gel-based and label-free quantitative mass spectrometry-based ('shotgun') proteomic techniques. This approach identified >9000 barley proteins, and one-third of them were quantified. Analysis focused on proteins that were significantly (p < 0.05; difference ≥1.5-fold) upregulated in early-senescing line '10_11' as compared to late-senescing variety 'Karl', as these may be functionally important for senescence. Proteins in this group included family 1 pathogenesis-related proteins, intracellular and membrane receptors or co-receptors (NBS-LRRs, LRR-RLKs), enzymes involved in attacking pathogen cell walls (glucanases), enzymes with possible roles in cuticle modification, and enzymes involved in DNA repair. Additionally, proteases and elements of the ubiquitin-proteasome system were upregulated in line '10_11', suggesting involvement of nitrogen remobilization and regulatory processes. Overall, the proteomic data highlight a correlation between early senescence and upregulated defense functions. This correlation emerges more clearly from the current proteomic data than from a previously performed transcriptomic comparison of 'Karl' and '10_11'. Our findings stress the value of studying biological systems at both the transcript and protein levels, and point to the importance of pathogen defense functions during developmental leaf senescence.
Collapse
Affiliation(s)
- Katelyn E Mason
- Chemistry and Biochemistry Department, Montana State University, Bozeman, MT 59717, United States
| | - Jonathan K Hilmer
- Chemistry and Biochemistry Department, Montana State University, Bozeman, MT 59717, United States; Proteomics, Metabolomics and Mass Spectrometry Facility, Montana State University, Bozeman, MT 59717, United States
| | - Walid S Maaty
- Chemistry and Biochemistry Department, Montana State University, Bozeman, MT 59717, United States
| | - Benjamin D Reeves
- Chemistry and Biochemistry Department, Montana State University, Bozeman, MT 59717, United States
| | - Paul A Grieco
- Chemistry and Biochemistry Department, Montana State University, Bozeman, MT 59717, United States
| | - Brian Bothner
- Chemistry and Biochemistry Department, Montana State University, Bozeman, MT 59717, United States; Proteomics, Metabolomics and Mass Spectrometry Facility, Montana State University, Bozeman, MT 59717, United States
| | - Andreas M Fischer
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, United States.
| |
Collapse
|
14
|
Xu J, Xu X, Tian L, Wang G, Zhang X, Wang X, Guo W. Discovery and identification of candidate genes from the chitinase gene family for Verticillium dahliae resistance in cotton. Sci Rep 2016; 6:29022. [PMID: 27354165 PMCID: PMC4926273 DOI: 10.1038/srep29022] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 06/14/2016] [Indexed: 12/02/2022] Open
Abstract
Verticillium dahliae, a destructive and soil-borne fungal pathogen, causes massive losses in cotton yields. However, the resistance mechanism to V. dahilae in cotton is still poorly understood. Accumulating evidence indicates that chitinases are crucial hydrolytic enzymes, which attack fungal pathogens by catalyzing the fungal cell wall degradation. As a large gene family, to date, the chitinase genes (Chis) have not been systematically analyzed and effectively utilized in cotton. Here, we identified 47, 49, 92, and 116 Chis from four sequenced cotton species, diploid Gossypium raimondii (D5), G. arboreum (A2), tetraploid G. hirsutum acc. TM-1 (AD1), and G. barbadense acc. 3-79 (AD2), respectively. The orthologous genes were not one-to-one correspondence in the diploid and tetraploid cotton species, implying changes in the number of Chis in different cotton species during the evolution of Gossypium. Phylogenetic classification indicated that these Chis could be classified into six groups, with distinguishable structural characteristics. The expression patterns of Chis indicated their various expressions in different organs and tissues, and in the V. dahliae response. Silencing of Chi23, Chi32, or Chi47 in cotton significantly impaired the resistance to V. dahliae, suggesting these genes might act as positive regulators in disease resistance to V. dahliae.
Collapse
Affiliation(s)
- Jun Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R&D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoyang Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R&D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Liangliang Tian
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R&D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Guilin Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R&D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Xueying Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R&D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinyu Wang
- College of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R&D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
15
|
Wang P, Sun X, Xie Y, Li M, Chen W, Zhang S, Liang D, Ma F. Melatonin regulates proteomic changes during leaf senescence in Malus hupehensis. J Pineal Res 2014; 57:291-307. [PMID: 25146528 DOI: 10.1111/jpi.12169] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 08/15/2014] [Indexed: 01/10/2023]
Abstract
Despite the relationship between melatonin and aging, the overall changes and regulation of proteome profiling by long-term melatonin exposure during leaf senescence is not well understood. In this study, leaf senescence in Malus hupehensis plants was delayed when exogenous melatonin was regularly applied to the roots for 2 months compared with natural leaf senescence. Proteins of samples 0 and 50 day for both treatments were extracted and labeled with TMT regents before being examined via NanoLC-MS/MS. The proteomics data showed that 622 and 309 proteins were altered by senescence and melatonin, respectively. Our GO analysis by Blast2GO revealed that most of the altered proteins that are involved in major metabolic processes exhibited hydrolase activity and were mainly located in the plastids. These proteins were classified into several senescence-related functional categories, including degradation of macromolecules, redox and stress responses, transport, photosynthesis, development, and other regulatory proteins. We found that melatonin treatment led to the downregulation of proteins that are normally upregulated during senescence. The melatonin-related delay in senescence might have occurred due to the altering of proteins involved in processes associated with senescence. And as well, there are many unknown regulatory proteins possibly being involved in the melatonin's function. This study is the first to demonstrate changes at the proteome level in response to exogenous melatonin in plants. Our findings provide a set of informative and fundamental data about the role of melatonin in apple leaf senescence.
Collapse
Affiliation(s)
- Ping Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Celton JM, Dheilly E, Guillou MC, Simonneau F, Juchaux M, Costes E, Laurens F, Renou JP. Additional amphivasal bundles in pedicel pith exacerbate central fruit dominance and induce self-thinning of lateral fruitlets in apple. PLANT PHYSIOLOGY 2014; 164:1930-51. [PMID: 24550240 PMCID: PMC3982754 DOI: 10.1104/pp.114.236117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Apple (Malus × domestica) trees naturally produce an excess of fruitlets that negatively affect the commercial value of fruits brought to maturity and impact their capacity to develop flower buds the following season. Therefore, chemical thinning has become an important cultural practice, allowing the selective removal of unwanted fruitlets. As the public pressure to limit the use of chemical agents increases, the control of thinning becomes a major issue. Here, we characterized the self-thinning capacity of an apple hybrid genotype from the tree scale to the molecular level. Additional amphivasal vascular bundles were identified in the pith of pedicels supporting the fruitlets with the lowest abscission potential (central fruitlet), indicating that these bundles might have a role in the acquisition of dominance over lateral fruitlets. Sugar content analysis revealed that central fruitlets were better supplied in sorbitol than lateral fruitlets. Transcriptomic profiles allowed us to identify genes potentially involved in the overproduction of vascular tissues in central pedicels. In addition, histological and transcriptomic data permitted a detailed characterization of abscission zone development and the identification of key genes involved in this process. Our data confirm the major role of ethylene, auxin, and cell wall-remodeling enzymes in abscission zone formation. The shedding process in this hybrid appears to be triggered by a naturally exacerbated dominance of central fruitlets over lateral ones, brought about by an increased supply of sugars, possibly through additional amphivasal vascular bundles. The characterization of this genotype opens new perspectives for the selection of elite apple cultivars.
Collapse
|
17
|
Ahmed NU, Park JI, Jung HJ, Kang KK, Hur Y, Lim YP, Nou IS. Molecular characterization of stress resistance-related chitinase genes of Brassica rapa. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 58:106-115. [PMID: 22796900 DOI: 10.1016/j.plaphy.2012.06.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 06/19/2012] [Indexed: 06/01/2023]
Abstract
Brassica is an important vegetable group worldwide that is impacted by biotic and abiotic stresses. Molecular biology techniques offer the most efficient approach to address these concerns. Inducible plant defense responses include the production of pathogenesis-related (PR) proteins, and chitinases are very important PR proteins. We collected 30 chitinase like genes, three from our full-length cDNA library of Brassica rapa cv. Osome and 27 from Brassica databases. Sequence analysis and comparison study confirmed that they were all class I-V and VII chitinase genes. These genes also showed a high degree of homology with other biotic stress resistance-related plant chitinases. An organ-specific expression of these genes was observed and among these, seven genes showed significant responses after infection with Fusarium oxysporum f.sp. conglutinans in cabbage and sixteen genes showed responsive expression after abiotic stress treatments in Chinese cabbage. BrCLP1, 8, 10, 17 and 18 responded commonly after biotic and abiotic stress treatments indicating their higher potentials. Taken together, the results presented herein suggest that these chitinase genes may be useful resources in the development of stress resistant Brassica.
Collapse
Affiliation(s)
- Nasar Uddin Ahmed
- Department of Horticulture, Sunchon National University, 413 Jungangno, Suncheon, Jeonnam 540-742, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
18
|
Sašek V, Nováková M, Jindřichová B, Bóka K, Valentová O, Burketová L. Recognition of avirulence gene AvrLm1 from hemibiotrophic ascomycete Leptosphaeria maculans triggers salicylic acid and ethylene signaling in Brassica napus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:1238-50. [PMID: 22624662 DOI: 10.1094/mpmi-02-12-0033-r] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Interaction of a plant with a fungal pathogen is an encounter with hundreds of molecules. In contrast to this, a single molecule often decides between the disease and resistance. In the present article, we describe the defense responses triggered by AvrLm1, an avirulence gene from a hemibiotrophic ascomycete, Leptosphaeria maculans, responsible for an incompatible interaction with Brassica napus. Using multiple hormone quantification and expression analysis of defense-related genes, we investigated signaling events in Rlm1 plants infected with two sister isolates of L. maculans differentiated by the presence or absence of AvrLm1. Infection with the isolate carrying AvrLm1 increased the biosynthesis of salicylic acid (SA) and induced expression of the SA-associated genes ICS1, WRKY70, and PR-1, a feature characteristic of responses to biotrophic pathogens and resistance gene-mediated resistance. In addition to SA-signaling elements, we also observed the induction of ASC2a, HEL, and CHI genes associated with ethylene (ET) signaling. Pharmacological experiments confirmed the positive roles of SA and ET in mediating resistance to L. maculans. The unusual cooperation of SA and ET signaling might be a response to the hemibiotrophic nature of L. maculans. Our results also demonstrate the profound difference between the natural host B. napus and the model plant Arabidopsis in their response to L. maculans infection.
Collapse
Affiliation(s)
- Vladimír Sašek
- Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | | | |
Collapse
|
19
|
Sarma K, Dehury B, Sahu J, Sarmah R, Sahoo S, Sahu M, Sen P, Modi MK, Barooah M. A comparative proteomic approach to analyse structure, function and evolution of rice chitinases: a step towards increasing plant fungal resistance. J Mol Model 2012; 18:4761-80. [DOI: 10.1007/s00894-012-1470-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 05/14/2012] [Indexed: 11/30/2022]
|
20
|
Guo Y, Gan SS. Convergence and divergence in gene expression profiles induced by leaf senescence and 27 senescence-promoting hormonal, pathological and environmental stress treatments. PLANT, CELL & ENVIRONMENT 2012; 35:644-55. [PMID: 21988545 DOI: 10.1111/j.1365-3040.2011.02442.x] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In addition to age and developmental progress, leaf senescence and senescence-associated genes (SAGs) can be induced by other factors such as plant hormones, pathogen infection and environmental stresses. The relationship is not clear, however, between these induced senescence processes and developmental leaf senescence, and to what extent these senescence-promoting signals mimic age and developmental senescence in terms of gene expression profiles. By analysing microarray expression data from 27 different treatments (that are known to promote senescence) and comparing them with that from developmental leaf senescence, we were able to show that at early stages of treatments, different hormones and stresses showed limited similarity in the induction of gene expression to that of developmental leaf senescence. Once the senescence process is initiated, as evidenced by visible yellowing, generally after a prolonged period of treatments, a great proportion of SAGs of developmental leaf senescence are shared by gene expression profiles in response to different treatments. This indicates that although different signals that lead to initiation of senescence may do so through distinct signal transduction pathways, senescence processes induced either developmentally or by different senescence-promoting treatments may share common execution events.
Collapse
Affiliation(s)
- Yongfeng Guo
- Department of Horticulture, Cornell University, Ithaca, NY 14853-5904, USA
| | | |
Collapse
|
21
|
Tapia G, Morales-Quintana L, Inostroza L, Acuña H. Molecular characterisation of Ltchi7, a gene encoding a Class III endochitinase induced by drought stress in Lotus spp. PLANT BIOLOGY (STUTTGART, GERMANY) 2011; 13:69-77. [PMID: 21143727 DOI: 10.1111/j.1438-8677.2009.00311.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Chitinases are enzymes that digest chitin molecules, present principally in insects and fungi. In plants, these enzymes play an important role in defence against pathogen attack, although they have also been described as induced by mechanical damage, ozone, heavy metals, cold, salinity, etc. Using an annealing control primer, we isolated a gene fragment whose translated sequence has high homology with a class III endochitinase. The gene, named Ltchi7, consisted of one ORF of 1005 bp, which codes for a peptide of 334 amino acids, including a deduced signal peptide of 27 amino acid that directs protein to the extracellular space. Phylogenetic analysis suggests that Ltchi7 is within a cluster that includes Sesbania rostrata, Medicago sativa and Glycine max class III endochitinases. This group is differentiated from other species of endochitinases by the presence of an additional extension in carboxy-terminal region. Moreover, in comparison with the majority of chitinases, Ltchi7 has two additional cysteine residues, which, according to 3D modelling studies, are very close. Gene expression analysis showed enhanced transcript abundance of this gene during drought stress in Lotus tenuis and Lotus japonicus, compared with growth under normal conditions. Furthermore, its expression is restricted to nodules and roots. Expression of this gene was also induced by salt stress, hydrogen peroxide and weakly with abscisic acid.
Collapse
Affiliation(s)
- G Tapia
- Unidad de Recursos Genéticos, Instituto de Investigaciones Agropecuarias, INIA-Quilamapu, Chillán, Chile.
| | | | | | | |
Collapse
|
22
|
Hossain MA, Noh HN, Kim KI, Koh EJ, Wi SG, Bae HJ, Lee H, Hong SW. Mutation of the chitinase-like protein-encoding AtCTL2 gene enhances lignin accumulation in dark-grown Arabidopsis seedlings. JOURNAL OF PLANT PHYSIOLOGY 2010; 167:650-8. [PMID: 20056293 DOI: 10.1016/j.jplph.2009.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 12/02/2009] [Accepted: 12/02/2009] [Indexed: 05/03/2023]
Abstract
Several genes that encode a chitinase-like protein (called the CTL group) have been identified in Arabidopsis, rice, pea, and cotton. Members of the CTL group have attracted much attention because of their possible role in the biosynthesis of the cell wall in plants. The hot2 mutation in the CTL1 (AtCTL1) gene of Arabidopsis thaliana causes multiple defects in growth and development. The Arabidopsis genome possesses the AtCTL2 gene, which exhibits 70% similarity to AtCTL1 at the amino acid level. We showed that the AtCTL2 gene was predominantly expressed in stems, which was in contrast to the presence of AtCTL1 transcripts in most organs of Arabidopsis. In addition, beta-glucuronidase (GUS) staining was detectable in all tissues of the stem in transgenic plants expressing the AtCTL1::GUS construct, while GUS activity under control of the AtCTL2 promoter was significantly restricted to the xylem and to interfascicular fibers in stems. The phenotypes of atctl2 single mutant and of hot2, atctl2 double mutant plants were significantly similar to those of wild-type and of hot2 single mutant plants, respectively. The expression levels of CESA1 and CESA4 transcripts were not affected in the two single mutants or corresponding double mutant plants, compared with the levels in wild-type plants. The accumulation of lignin in etiolated hypocotyls, however, was increased by mutation of AtCTL2. These findings suggest that AtCTL2 is required for proper cell wall biosynthesis in etiolated seedlings of Arabidopsis.
Collapse
Affiliation(s)
- Md Aktar Hossain
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Nocito FF, Espen L, Fedeli C, Lancilli C, Musacchi S, Serra S, Sansavini S, Cocucci M, Sacchi GA. Oxidative stress and senescence-like status of pear calli co-cultured on suspensions of incompatible quince microcalli. TREE PHYSIOLOGY 2010; 30:450-8. [PMID: 20190345 DOI: 10.1093/treephys/tpq006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
This work presents a simple in vitro system to study physiological, biochemical and molecular changes occurring in a pear callus (Pyrus communis L., cv. Beurré Bosc) grown in close proximity to spatially separated undifferentiated homologous (pear) or heterologous (quince; Cydonia oblonga Mill., East Malling clone C) cells in its neighboring environment. After a 7-day co-culture period, the presence of heterologous cells produced negative effects on the pear callus, whose relative weight increase and adenylate energy charge decreased by 30 and 24%, respectively. Such behavior was associated with a higher O(2) consumption rate (+125%) which did not seem to be coupled to adenosine triphosphate synthesis. Analyses of alternative oxidase and enzymatic activities involved in reactive oxygen species (ROS) detoxification strongly suggested that the higher O(2) consumption rate, measured in the pear callus grown in the heterologous combination, may probably be ascribed to extra-respiratory activities. These, in turn, might contribute to generate metabolic scenarios where ROS-induced oxidative stresses may have the upper hand. The increase in the levels of 2-thiobarbituric acid reactive metabolites, considered as diagnostic indicators of ROS-induced lipid peroxidation, seemed to confirm this hypothesis. Moreover, reverse transcription polymerase chain reaction analysis revealed that the expression levels of a few senescence-associated genes were higher in the pear callus grown in the heterologous combination than in the homologous one. Taken as a whole, physiological and molecular data strongly suggest that undifferentiated cells belonging to a pear graft-incompatible quince clone may induce an early senescence-like status in a closely co-cultured pear callus.
Collapse
Affiliation(s)
- Fabio F Nocito
- Dipartimento di Produzione Vegetale, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Mukherjee M, Larrimore KE, Ahmed NJ, Bedick TS, Barghouthi NT, Traw MB, Barth C. Ascorbic acid deficiency in arabidopsis induces constitutive priming that is dependent on hydrogen peroxide, salicylic acid, and the NPR1 gene. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:340-51. [PMID: 20121455 DOI: 10.1094/mpmi-23-3-0340] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The ascorbic acid (AA)-deficient Arabidopsis thaliana vtc1-1 mutant exhibits increased resistance to the virulent bacterial pathogen Pseudomonas syringae. This response correlates with heightened levels of salicylic acid (SA), which induces antimicrobial pathogenesis-related (PR) proteins. To determine if SA-mediated, enhanced disease resistance is a general phenomenon of AA deficiency, to elucidate the signal that stimulates SA synthesis, and to identify the biosynthetic pathway through which SA accumulates, we studied the four AA-deficient vtc1-1, vtc2-1, vtc3-1, and vtc4-1 mutants. We also studied double mutants defective in the AA-biosynthetic gene VTC1 and the SA signaling pathway genes PAD4, EDS5, and NPR1, respectively. All vtc mutants were more resistant to P. syringae than the wild type. With the exception of vtc4-1, this correlated with constitutively upregulated H(2)O(2), SA, and messenger RNA levels of PR genes. Double mutants exhibited decreased SA levels and enhanced susceptibility to P. syringae compared with the wild type, suggesting that vtc1-1 requires functional PAD4, EDS5, and NPR1 for SA biosynthesis and pathogen resistance. We suggest that AA deficiency causes constitutive priming through a buildup of H(2)O(2) that stimulates SA accumulation, conferring enhanced disease resistance in vtc1-1, vtc2-1, and vtc3-1, whereas vtc4-1 might be sensitized to H(2)O(2) and SA production after infection.
Collapse
Affiliation(s)
- Madhumati Mukherjee
- Department Of Biology, West Virginia University, 53 Campus Drive, Morgantown, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Albinsky D, Kusano M, Higuchi M, Hayashi N, Kobayashi M, Fukushima A, Mori M, Ichikawa T, Matsui K, Kuroda H, Horii Y, Tsumoto Y, Sakakibara H, Hirochika H, Matsui M, Saito K. Metabolomic screening applied to rice FOX Arabidopsis lines leads to the identification of a gene-changing nitrogen metabolism. MOLECULAR PLANT 2010; 3:125-42. [PMID: 20085895 DOI: 10.1093/mp/ssp069] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plant metabolomics developed as a powerful tool to examine gene functions and to gain deeper insight into the physiology of the plant cell. In this study, we screened Arabidopsis lines overexpressing rice full-length (FL) cDNAs (rice FOX Arabidopsis lines) using a gas chromatography-time-of-flight mass spectrometry (GC-TOF/MS)-based technique to identify rice genes that caused metabolic changes. This screening system allows fast and reliable identification of candidate lines showing altered metabolite profiles. We performed metabolomic and transcriptomic analysis of a rice FOX Arabidopsis line that harbored the FL cDNA of the rice ortholog of the Lateral Organ Boundaries (LOB) Domain (LBD)/Asymmetric Leaves2-like (ASL) gene of Arabidopsis, At-LBD37/ASL39. The investigated rice FOX Arabidopsis line showed prominent changes in the levels of metabolites related to nitrogen metabolism. The transcriptomic data as well as the results from the metabolite analysis of the Arabidopsis At-LBD37/ASL39-overexpressor plants were consistent with these findings. Furthermore, the metabolomic and transcriptomic analysis of the Os-LBD37/ASL39-overexpressing rice plants indicated that Os-LBD37/ASL39 is associated with processes related to nitrogen metabolism in rice. Thus, the combination of a metabolomics-based screening method and a gain-of-function approach is useful for rapid characterization of novel genes in both Arabidopsis and rice.
Collapse
|
26
|
Hong JH, Chung G, Cowan AK. Delayed leaf senescence by exogenous lyso-phosphatidylethanolamine: towards a mechanism of action. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2009; 47:526-534. [PMID: 19167900 DOI: 10.1016/j.plaphy.2008.12.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 12/11/2008] [Accepted: 12/18/2008] [Indexed: 05/27/2023]
Abstract
Exogenous application of the lysophospholipid, lyso-phosphatidylethanolamine (LPE) is purported to delay leaf senescence in plants. However, lyso-phospholipids are well known to possess detergent-like activity and application of LPE to plant tissues might be expected to rather elicit a wound-like response and enhance senescence progression. Since phosphatidic acid (PA) accumulation and leaf cell death are a consequence of wounding, PA- and hormone-induced senescence was studied in leaf discs from Philodendron cordatum (Vell.) Kunth plants in the presence or absence of egg-derived 18:0-LPE and senescence progression quantified by monitoring both lipid peroxidation (as the change in malondialdehyde concentration), and by measuring retention of total chlorophyll (Chl(a+b)) and carotenoids (C(c+x)). Only abscisic acid (ABA) stimulated lipid peroxidation whereas ABA, 1-aminocyclopropane-1-carboxylic acid (ACC), the immediate precursor to ethylene (ETH), and 16:0-18:2-PA stimulated loss of chloroplast pigments. Results using primary alcohols as attenuators of the endogenous PA signal confirmed a role for PA as an intermediate in both ABA- and ETH-mediated senescence progression. Exogenous 18:0-LPE did not appear to influence senescence progression and was unable to reverse hormone-induced senescence progression. However, when supplied together with 16:0-18:2-PA at 1:1 (mol:mol), activity of phosphatidylglycerol (PG) hydrolase, chlorophyllase (E.C. 3.1.1.14), and progression of leaf senescence were negated. This apparent anti-senescence activity of exogenous 18:0-LPE was associated with induction of the pathogenesis-related protein, extracellular acid invertase (Ac INV, E.C. 3.2.1.26) suggesting that 18:0-LPE like 16:0-18:2-PA functions as an elicitor.
Collapse
Affiliation(s)
- Ji Heun Hong
- Biotech Institute, Glonet BU, Doosan Corporation, Yongin, South Korea
| | | | | |
Collapse
|
27
|
Wawrzynska A, Christiansen KM, Lan Y, Rodibaugh NL, Innes RW. Powdery mildew resistance conferred by loss of the ENHANCED DISEASE RESISTANCE1 protein kinase is suppressed by a missense mutation in KEEP ON GOING, a regulator of abscisic acid signaling. PLANT PHYSIOLOGY 2008; 148:1510-22. [PMID: 18815384 PMCID: PMC2577273 DOI: 10.1104/pp.108.127605] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Accepted: 09/05/2008] [Indexed: 05/18/2023]
Abstract
Loss-of-function mutations in the Arabidopsis (Arabidopsis thaliana) ENHANCED DISEASE RESISTANCE1 (EDR1) gene confer enhanced resistance to infection by powdery mildew (Golovinomyces cichoracearum). EDR1 encodes a protein kinase, but its substrates and the pathways regulated by EDR1 are unknown. To identify components of the EDR1 signal transduction pathway(s), we conducted a forward genetic screen for mutations that suppressed edr1-mediated disease resistance. Genetic mapping and cloning of one of these suppressor mutations revealed a recessive missense mutation in the KEEP ON GOING gene (KEG; At5g13530), which we designated keg-4. KEG encodes a multidomain protein that includes a RING E3 ligase domain, a kinase domain, ankyrin repeats, and HERC2-like repeats. The KEG protein has previously been shown to have ubiquitin ligase activity and to negatively regulate protein levels of the transcription factor ABCISIC ACID INSENSITIVE5. KEG mRNA levels were found to be 3-fold higher in edr1 mutant plants compared to wild type. Loss-of-function mutations in KEG are seedling lethal and are hypersensitive to glucose and abscisic acid (ABA). The keg-4 mutation, in contrast, conferred resistance to 6% glucose and suppressed edr1-mediated hypersensitivity to ABA, suggesting that the keg-4 mutation suppresses ABA signaling by altering KEG function. Several ABA-responsive genes were found to be further up-regulated in the edr1 mutant following ABA treatment, and this up-regulation was suppressed by the keg-4 mutation. We conclude that edr1-mediated resistance to powdery mildew is mediated, in part, by enhanced ABA signaling.
Collapse
Affiliation(s)
- Anna Wawrzynska
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | | | | | | | | |
Collapse
|
28
|
Price AM, Aros Orellana DF, Salleh FM, Stevens R, Acock R, Buchanan-Wollaston V, Stead AD, Rogers HJ. A comparison of leaf and petal senescence in wallflower reveals common and distinct patterns of gene expression and physiology. PLANT PHYSIOLOGY 2008; 147:1898-912. [PMID: 18539778 PMCID: PMC2492645 DOI: 10.1104/pp.108.120402] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Accepted: 06/02/2008] [Indexed: 05/21/2023]
Abstract
Petals and leaves share common evolutionary origins but perform very different functions. However, few studies have compared leaf and petal senescence within the same species. Wallflower (Erysimum linifolium), an ornamental species closely related to Arabidopsis (Arabidopsis thaliana), provide a good species in which to study these processes. Physiological parameters were used to define stages of development and senescence in leaves and petals and to align these stages in the two organs. Treatment with silver thiosulfate confirmed that petal senescence in wallflower is ethylene dependent, and treatment with exogenous cytokinin and 6-methyl purine, an inhibitor of cytokinin oxidase, suggests a role for cytokinins in this process. Subtractive libraries were created, enriched for wallflower genes whose expression is up-regulated during leaf or petal senescence, and used to create a microarray, together with 91 senescence-related Arabidopsis probes. Several microarray hybridization classes were observed demonstrating similarities and differences in gene expression profiles of these two organs. Putative functions were ascribed to 170 sequenced DNA fragments from the libraries. Notable similarities between leaf and petal senescence include a large proportion of remobilization-related genes, such as the cysteine protease gene SENESCENCE-ASSOCIATED GENE12 that was up-regulated in both tissues with age. Interesting differences included the up-regulation of chitinase and glutathione S-transferase genes in senescing petals while their expression remained constant or fell with age in leaves. Semiquantitative reverse transcription-polymerase chain reaction of selected genes from the suppression subtractive hybridization libraries revealed more complex patterns of expression compared with the array data.
Collapse
|
29
|
Farage-Barhom S, Burd S, Sonego L, Perl-Treves R, Lers A. Expression analysis of the BFN1 nuclease gene promoter during senescence, abscission, and programmed cell death-related processes. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:3247-58. [PMID: 18603613 PMCID: PMC2529240 DOI: 10.1093/jxb/ern176] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 05/19/2008] [Accepted: 06/03/2008] [Indexed: 05/18/2023]
Abstract
Little is known about the biological role of nucleases induced during plant senescence and programmed cell death (PCD). Arabidopsis BFN1 has been identified as a senescence-associated type I nuclease, whose protein sequence shares high homology with some other senescence- or PCD-associated plant nucleases. To learn about BFN1 regulation, its expression pattern was analysed. A 2.3 kb portion of the 5' promoter sequence of BFN1 was cloned and its ability to activate the GUS reporter gene was examined. Transgenic Arabidopsis and tomato plants harbouring this chimeric construct were analysed for GUS expression. In both, the BFN1 promoter was able specifically to direct GUS expression in senescent leaves, differentiating xylem and the abscission zone of flowers. Thus, at least part of the regulation of BFN1 is mediated at the transcriptional level, and the regulatory elements are recognized in the two different plants. In tomato, specific expression was observed in the leaf and the fruit abscission zones. The BFN1 promoter was also active in other tissues, including developing anthers and seeds, and in floral organs after fertilization. PCD has been implicated in all of these processes, suggesting that in addition to senescence, BFN1 is involved in PCD associated with different development processes in Arabidopsis.
Collapse
Affiliation(s)
- Sarit Farage-Barhom
- Department of Postharvest Science of Fresh Produce, Volcani Center, Agricultural Research Organization, Bet Dagan 50250, Israel
- Faculty of Life Science, Bar Ilan University, Ramat Gan, Israel
| | - Shaul Burd
- Department of Postharvest Science of Fresh Produce, Volcani Center, Agricultural Research Organization, Bet Dagan 50250, Israel
| | - Lilian Sonego
- Department of Postharvest Science of Fresh Produce, Volcani Center, Agricultural Research Organization, Bet Dagan 50250, Israel
| | | | - Amnon Lers
- Department of Postharvest Science of Fresh Produce, Volcani Center, Agricultural Research Organization, Bet Dagan 50250, Israel
| |
Collapse
|
30
|
Kim ST, Kim SG, Kang YH, Wang Y, Kim JY, Yi N, Kim JK, Rakwal R, Koh HJ, Kang KY. Proteomics Analysis of Rice Lesion Mimic Mutant (spl1) Reveals Tightly Localized Probenazole-Induced Protein (PBZ1) in Cells Undergoing Programmed Cell Death. J Proteome Res 2008; 7:1750-60. [DOI: 10.1021/pr700878t] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Sun Tae Kim
- Environmental Biotechnology National Core Research Center, Division of Applied Life Science (BK21 program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Chinju 660-701, Korea, Division of Bioscience and Bioinformatics, Myongji University, Yongin 449–728, Korea, Human Stress Signal Research Center (HSS), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba West, 16-1 Ongogawa, Tsukuba 305-8569, Japan, and School of Agricultural
| | - Sang Gon Kim
- Environmental Biotechnology National Core Research Center, Division of Applied Life Science (BK21 program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Chinju 660-701, Korea, Division of Bioscience and Bioinformatics, Myongji University, Yongin 449–728, Korea, Human Stress Signal Research Center (HSS), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba West, 16-1 Ongogawa, Tsukuba 305-8569, Japan, and School of Agricultural
| | - Young Hyun Kang
- Environmental Biotechnology National Core Research Center, Division of Applied Life Science (BK21 program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Chinju 660-701, Korea, Division of Bioscience and Bioinformatics, Myongji University, Yongin 449–728, Korea, Human Stress Signal Research Center (HSS), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba West, 16-1 Ongogawa, Tsukuba 305-8569, Japan, and School of Agricultural
| | - Yiming Wang
- Environmental Biotechnology National Core Research Center, Division of Applied Life Science (BK21 program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Chinju 660-701, Korea, Division of Bioscience and Bioinformatics, Myongji University, Yongin 449–728, Korea, Human Stress Signal Research Center (HSS), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba West, 16-1 Ongogawa, Tsukuba 305-8569, Japan, and School of Agricultural
| | - Jae-Yean Kim
- Environmental Biotechnology National Core Research Center, Division of Applied Life Science (BK21 program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Chinju 660-701, Korea, Division of Bioscience and Bioinformatics, Myongji University, Yongin 449–728, Korea, Human Stress Signal Research Center (HSS), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba West, 16-1 Ongogawa, Tsukuba 305-8569, Japan, and School of Agricultural
| | - Nari Yi
- Environmental Biotechnology National Core Research Center, Division of Applied Life Science (BK21 program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Chinju 660-701, Korea, Division of Bioscience and Bioinformatics, Myongji University, Yongin 449–728, Korea, Human Stress Signal Research Center (HSS), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba West, 16-1 Ongogawa, Tsukuba 305-8569, Japan, and School of Agricultural
| | - Ju-Kon Kim
- Environmental Biotechnology National Core Research Center, Division of Applied Life Science (BK21 program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Chinju 660-701, Korea, Division of Bioscience and Bioinformatics, Myongji University, Yongin 449–728, Korea, Human Stress Signal Research Center (HSS), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba West, 16-1 Ongogawa, Tsukuba 305-8569, Japan, and School of Agricultural
| | - Randeep Rakwal
- Environmental Biotechnology National Core Research Center, Division of Applied Life Science (BK21 program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Chinju 660-701, Korea, Division of Bioscience and Bioinformatics, Myongji University, Yongin 449–728, Korea, Human Stress Signal Research Center (HSS), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba West, 16-1 Ongogawa, Tsukuba 305-8569, Japan, and School of Agricultural
| | - Hee-Jong Koh
- Environmental Biotechnology National Core Research Center, Division of Applied Life Science (BK21 program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Chinju 660-701, Korea, Division of Bioscience and Bioinformatics, Myongji University, Yongin 449–728, Korea, Human Stress Signal Research Center (HSS), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba West, 16-1 Ongogawa, Tsukuba 305-8569, Japan, and School of Agricultural
| | - Kyu Young Kang
- Environmental Biotechnology National Core Research Center, Division of Applied Life Science (BK21 program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Chinju 660-701, Korea, Division of Bioscience and Bioinformatics, Myongji University, Yongin 449–728, Korea, Human Stress Signal Research Center (HSS), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba West, 16-1 Ongogawa, Tsukuba 305-8569, Japan, and School of Agricultural
| |
Collapse
|
31
|
Minic Z. Physiological roles of plant glycoside hydrolases. PLANTA 2008; 227:723-40. [PMID: 18046575 DOI: 10.1007/s00425-007-0668-y] [Citation(s) in RCA: 206] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Accepted: 11/01/2007] [Indexed: 05/20/2023]
Abstract
The functions of plant glycoside hydrolases and transglycosidases have been studied using different biochemical and molecular genetic approaches. These enzymes are involved in the metabolism of various carbohydrates containing compounds present in the plant tissues. The structural and functional diversity of the carbohydrates implies a vast spectrum of enzymes involved in their metabolism. Complete genome sequence of Arabidopsis and rice has allowed the classification of glycoside hydrolases in different families based on amino acid sequence data. The genomes of these plants contain 29 families of glycoside hydrolases. This review summarizes the current research on plant glycoside hydrolases concerning their principal functional roles, which were attributed to different families. The majority of these plant glycoside hydrolases are involved in cell wall polysaccharide metabolism. Other functions include their participation in the biosynthesis and remodulation of glycans, mobilization of energy, defence, symbiosis, signalling, secondary plant metabolism and metabolism of glycolipids.
Collapse
Affiliation(s)
- Zoran Minic
- Department of Chemistry, University of Saskatchewan, 110 Science Place, S7N 5C9 Saskatoon, SK, Canada.
| |
Collapse
|
32
|
Etienne P, Desclos M, Le Gou L, Gombert J, Bonnefoy J, Maurel K, Le Dily F, Ourry A, Avice JC. N-protein mobilisation associated with the leaf senescence process in oilseed rape is concomitant with the disappearance of trypsin inhibitor activity. FUNCTIONAL PLANT BIOLOGY : FPB 2007; 34:895-906. [PMID: 32689418 DOI: 10.1071/fp07088] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Accepted: 07/23/2007] [Indexed: 06/11/2023]
Abstract
Brassica napus L. (oilseed rape) is an important crop plant characterised by low nitrogen (N) use efficiency. This is mainly due to a weak N recycling from leaves that is related to incomplete protein degradation. Assuming that protease inhibitors are involved throughout protein mobilisation, the goal of this study was to determine their role in the control of N mobilisation associated with leaf senescence. Results showed that a 19-kDa polypeptide exhibiting trypsin inhibitor (TI) activity presented an increased gradient from the older to the younger leaves. According to the SAG12/Cab gene expression profile, which is an indicator of leaf senescence, mature leaves of nitrate-deprived plants presented an earlier initiation of senescence and a decrease in protein concentration when compared with nitrate-replete plants. This coincided with disappearance of both TI activity and a reduction in the transcript level of the BnD22 gene (encoding a protein sharing homology with Künitz protease inhibitor). In young leaves of N-deprived plants, initiation of senescence was delayed; soluble protein concentration was maintained while both TI activity and BnD22 transcripts were high. This indicates that in oilseed rape growing under nitrate deprivation, the more efficient N recycling from mature leaves contributes to the maintenance of growth in young leaves. The data suggest a significant role for protease inhibitors in the regulation of proteolytic processes associated with N mobilisation during leaf senescence.
Collapse
Affiliation(s)
- Philippe Etienne
- UMR INRA/UCBN 950 Ecophysiologie Végétale, Agronomie (EVA) & Nutrition NCS; ISBIO, Institut de Biologie Fondamentale et Appliquée, Université de CAEN Basse-Normandie, F-14032 Caen Cedex, France
| | - Marie Desclos
- UMR INRA/UCBN 950 Ecophysiologie Végétale, Agronomie (EVA) & Nutrition NCS; ISBIO, Institut de Biologie Fondamentale et Appliquée, Université de CAEN Basse-Normandie, F-14032 Caen Cedex, France
| | - Lucie Le Gou
- UMR INRA/UCBN 950 Ecophysiologie Végétale, Agronomie (EVA) & Nutrition NCS; ISBIO, Institut de Biologie Fondamentale et Appliquée, Université de CAEN Basse-Normandie, F-14032 Caen Cedex, France
| | - Julie Gombert
- UMR INRA/UCBN 950 Ecophysiologie Végétale, Agronomie (EVA) & Nutrition NCS; ISBIO, Institut de Biologie Fondamentale et Appliquée, Université de CAEN Basse-Normandie, F-14032 Caen Cedex, France
| | - Josette Bonnefoy
- UMR INRA/UCBN 950 Ecophysiologie Végétale, Agronomie (EVA) & Nutrition NCS; ISBIO, Institut de Biologie Fondamentale et Appliquée, Université de CAEN Basse-Normandie, F-14032 Caen Cedex, France
| | - Karine Maurel
- UMR INRA/UCBN 950 Ecophysiologie Végétale, Agronomie (EVA) & Nutrition NCS; ISBIO, Institut de Biologie Fondamentale et Appliquée, Université de CAEN Basse-Normandie, F-14032 Caen Cedex, France
| | - Frédérik Le Dily
- UMR INRA/UCBN 950 Ecophysiologie Végétale, Agronomie (EVA) & Nutrition NCS; ISBIO, Institut de Biologie Fondamentale et Appliquée, Université de CAEN Basse-Normandie, F-14032 Caen Cedex, France
| | - Alain Ourry
- UMR INRA/UCBN 950 Ecophysiologie Végétale, Agronomie (EVA) & Nutrition NCS; ISBIO, Institut de Biologie Fondamentale et Appliquée, Université de CAEN Basse-Normandie, F-14032 Caen Cedex, France
| | - Jean-Christophe Avice
- UMR INRA/UCBN 950 Ecophysiologie Végétale, Agronomie (EVA) & Nutrition NCS; ISBIO, Institut de Biologie Fondamentale et Appliquée, Université de CAEN Basse-Normandie, F-14032 Caen Cedex, France
| |
Collapse
|
33
|
Ulker B, Shahid Mukhtar M, Somssich IE. The WRKY70 transcription factor of Arabidopsis influences both the plant senescence and defense signaling pathways. PLANTA 2007; 226:125-37. [PMID: 17310369 DOI: 10.1007/s00425-006-0474-y] [Citation(s) in RCA: 170] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Accepted: 12/21/2006] [Indexed: 05/14/2023]
Abstract
Regulatory proteins play critical roles in controlling the kinetics of various cellular processes during the entire life span of an organism. Leaf senescence, an integral part of the plant developmental program, is fine-tuned by a complex transcriptional regulatory network ensuring a successful switch to the terminal life phase. To expand our understanding on how transcriptional control coordinates leaf senescence, we characterized AtWRKY70, a gene encoding a WRKY transcription factor that functions as a negative regulator of developmental senescence. To gain insight into the interplay of senescence and plant defense signaling pathways, we employed a collection of mutants, allowing us to specifically define the role of AtWRKY70 in the salicylic acid-mediated signaling cascades and to further dissect the cross-talk of signal transduction pathways during the onset of senescence in Arabidopsis thaliana. Our results provide strong evidence that AtWRKY70 influences plant senescence and defense signaling pathways. These studies could form the basis for further unraveling of these two complex interlinked regulatory networks.
Collapse
Affiliation(s)
- Bekir Ulker
- Max Planck Institute for Plant Breeding Research, Abteilung Molekulare Phytopathologie, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | | | | |
Collapse
|
34
|
Xu F, Fan C, He Y. Chitinases in Oryza sativa ssp. japonica and Arabidopsis thaliana. J Genet Genomics 2007; 34:138-50. [PMID: 17469786 DOI: 10.1016/s1673-8527(07)60015-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Accepted: 05/31/2006] [Indexed: 11/22/2022]
Abstract
Chitinases (EC3.2.1.14), found in a wide range of organisms, catalyze the hydrolysis of chitin and play a major role in defense mechanisms against fungal pathogens. The alignment and typical domains were analyzed using basic local alignment search tool (BLAST) and simple modular architecture research tool (SMART), respectively. On the basis of the annotations of rice (Oryza sativa L.) and Arabidopsis genomic sequences and using the bio-software SignalP3.0, TMHMM2.0, TargetP1.1, and big-Pi Predictor, 25 out of 37 and 16 out of 24 open reading frames (ORFs) with chitinase activity from rice and Arabidopsis, respectively, were predicted to have signal peptides (SPs), which have an average of 24.8 amino acids at the N-terminal region. Some of the chitinases were secreted extracellularly, whereas some were located in the vacuole. The phylogenic relationship was analyzed with 61 ORFs and 25 known chitinases and they were classified into 6 clusters using Clustal X and MEGA3.1. This classification is not completely consistent when compared with the traditional system that classifies the chitinases into 7 classes. The frequency of distribution of amino acid residues was distinct in different clusters. The contents of alanine, glycine, serine, and leucine were very high in each cluster, whereas the contents of methionine, histidine, tryptophan, and cysteine were lower than 20%. Each cluster had distinct amino acid characteristics. Alanine, valine, leucine, cysteine, serine, and lysine were rich in Clusters I to VI, respectively.
Collapse
Affiliation(s)
- Fenghua Xu
- Key Laboratory of Plant Pathology of the Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | | | | |
Collapse
|
35
|
Mishina TE, Lamb C, Zeier J. Expression of a nitric oxide degrading enzyme induces a senescence programme in Arabidopsis. PLANT, CELL & ENVIRONMENT 2007; 30:39-52. [PMID: 17177875 DOI: 10.1111/j.1365-3040.2006.01604.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Nitric oxide (NO) has been proposed to act as a factor delaying leaf senescence and fruit maturation in plants. Here we show that expression of a NO degrading dioxygenase (NOD) in Arabidopsis thaliana initiates a senescence-like phenotype, an effect that proved to be more pronounced in older than in younger leaves. This senescence phenotype was preceded by a massive switch in gene expression in which photosynthetic genes were down-regulated, whereas many senescence-associated genes (SAGs) and the 1-aminocyclopropane-1-carboxylic acid (ACC) synthase gene ACS6 involved in ethylene synthesis were up-regulated. External fumigation of NOD plants with NO as well as environmental conditions known to stimulate endogenous NO production attenuated the induced senescence programme. For instance, both high light conditions and nitrate feeding reduced the senescence phenotype and attenuated the down-regulation of photosynthetic genes as well as the up-regulation of SAGs. Treatment of plants with the cytokinin 6-benzylaminopurin (BAP) reduced the down-regulation of photosynthesis, although it had no consistent effect on SAG expression. Metabolic changes during NOD-induced senescence comprehended increases in salicylic acid (SA) levels, accumulation of the phytoalexin camalexin and elevation of leaf gamma-tocopherol contents, all of which occurred during natural senescence in Arabidopsis leaves as well. Moreover, NO fumigation delayed the senescence process induced by darkening individual Arabidopsis Columbia-0 (Col-0) leaves. Our data thus support the notion that NO acts as a negative regulator of leaf senescence.
Collapse
Affiliation(s)
- Tatiana E Mishina
- Julius-von-Sachs-Institute of Biological Sciences, Department of Botany II, University of Würzburg, Julius-von-Sachs-Platz 3, D-97082 Würzburg, Germany
| | | | | |
Collapse
|
36
|
Campos MA, Rosa DD, Teixeira JÉC, Targon MLP, Souza AA, Paiva LV, Stach-Machado DR, Machado MA. PR gene families of citrus: their organ specific-biotic and abiotic inducible expression profiles based on ESTs approach. Genet Mol Biol 2007. [DOI: 10.1590/s1415-47572007000500020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
37
|
Genetic analysis and molecular mapping of a presenescing leaf gene psl1 in rice (Oryza sativa L.). ACTA ACUST UNITED AC 2006. [DOI: 10.1007/s11434-006-2222-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
38
|
Wingler A, Brownhill E, Pourtau N. Mechanisms of the light-dependent induction of cell death in tobacco plants with delayed senescence. JOURNAL OF EXPERIMENTAL BOTANY 2005; 56:2897-905. [PMID: 16157651 DOI: 10.1093/jxb/eri284] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The relationship between leaf senescence and cell death was investigated using tobacco with delayed senescence due to auto-regulated production of cytokinin (SAG12-IPT). Although leaf senescence ultimately results in cell death, the results show that senescence and cell death can be uncoupled: in nutrient-deficient, but not in fertilized SAG12-IPT plants, necrotic lesions were detected in old, but otherwise green leaves. By contrast, wild-type leaves of the same age were yellow, but not necrotic. Chlorophyll fluorescence analysis revealed an over-reduction of the electron transport chain in old SAG12-IPT leaves, in combination with characteristic spatial patterns of minimum fluorescence (F0) quantum efficiency of open photosystem II centres (F(v)/F(m)) and non-photochemical quenching (NPQ), as determined by fluorescence imaging. The same patterns of F0, F(v)/F(m), and NPQ were induced by incubation of leaf discs from nutrient-deficient SAG12-IPT plants under illumination, but not in the dark, indicating that light-dependent reactions were responsible for the cell death. RT-PCR analysis showed that the pathogenesis-related (PR) genes PR-1b and PR-Q were strongly induced in old SAG12-IPT tobacco leaves with necrotic lesions. In addition, the ethylene-synthesis gene ACO was induced before lesions became visible in SAG12-IPT. It is proposed that over-reduction of the electron transport chain in combination with decreased electron consumption due to nutrient-deficiency led to oxidative stress, which, mediated by ethylene formation, can induce PR gene expression and hypersensitive cell death. Probably as a consequence of inefficient nutrient mobilization, flower development was prematurely aborted and reproduction thereby impaired in nutrient-deficient SAG12-IPT plants.
Collapse
Affiliation(s)
- Astrid Wingler
- Department of Biology, University College London, Gower Street, London WC1E 6BT, UK.
| | | | | |
Collapse
|
39
|
Wiedemuth K, Müller J, Kahlau A, Amme S, Mock HP, Grzam A, Hell R, Egle K, Beschow H, Humbeck K. Successive maturation and senescence of individual leaves during barley whole plant ontogeny reveals temporal and spatial regulation of photosynthetic function in conjunction with C and N metabolism. JOURNAL OF PLANT PHYSIOLOGY 2005; 162:1226-36. [PMID: 16323274 DOI: 10.1016/j.jplph.2005.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
During ontogeny of barley plants (Hordeum vulgare, L. cv. Barke), a continuous developmental gradient of new leaves at the top and lower leaves undergoing senescence is maintained. In the course of senescence, specific recycling processes efficiently transfer valuable resources, e.g. nitrogen and carbon, to the growing young leaves and ears. In order to understand the temporal and spatial sequence of processes underlying this developmental program of leaf formation and degradation, changes in photosynthetic parameters, as well as C and N levels of all individual leaves were determined. During whole plant ontogeny, a strict sequential pattern of incorporation and degradation of C and N resources in the individual leaves, accompanied by a sequential loss of chlorophyll and photosynthetic function, was observed. In addition, protein levels of key enzymes of C and N anabolism AGPase (ADPglucose pyrophosphorylase) and GS (glutamine synthetase; plastidic isoform) also showed a strict pattern of sequential down-regulation in senescing leaves. Their decline preceded the breakdown of chlorophyll, total C and N levels and photosynthetic performance in the leaves. Quantitative real time PCR measurements revealed that the down-regulation of protein content of AGPase and GS correlated with a drastic decrease in their transcript levels. These data elucidated precise temporal and spatial regulation of C and N metabolism and allocation with photosynthetic function in the leaves during whole plant ontogeny of barley.
Collapse
Affiliation(s)
- Konstanze Wiedemuth
- Institut für Pflanzenphysiologie, Martin-Luther-Universität Halle-Wittenberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Schenk PM, Kazan K, Rusu AG, Manners JM, Maclean DJ. The SEN1 gene of Arabidopsis is regulated by signals that link plant defence responses and senescence. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2005; 43:997-1005. [PMID: 16325410 DOI: 10.1016/j.plaphy.2005.09.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Revised: 06/20/2005] [Accepted: 09/30/2005] [Indexed: 05/05/2023]
Abstract
Plant defence and senescence share many similarities as evidenced by extensive co-regulation of many genes during these responses. To better understand the nature of signals that are common to plant defence and senescence, we studied the regulation of SEN1 encoding a senescence-associated protein during plant defence responses in Arabidopsis. Pathogen inoculations and treatments with defence-related chemical signals, salicylic acid and methyl jasmonate induced changes in SEN1 transcript levels. Analysis of transgenic plants expressing the SEN1 promoter fused to uidA reporter gene confirmed the responsiveness of the SEN1 promoter to defence- and senescence-associated signals. Expression analysis of SEN1 in a number of defence signalling mutants indicated that activation of this gene by pathogen occurs predominantly via the salicylic and jasmonic acid signalling pathways, involving the functions of EDS5, NPR1 and JAR1. In addition, in the absence of pathogen challenge, the cpr5/hys1 mutant showed elevated SEN1 expression and displayed an accelerated senescence response following inoculation with the necrotrophic fungal pathogen Fusarium oxysporum. Although the analysis of the sen1-1 knock-out mutant did not reveal any obvious role for this gene in defence or senescence-associated events, our results presented here show that SEN1 is regulated by signals that link plant defence and senescence responses and thus represents a useful marker gene to study the overlap between these two important physiological events.
Collapse
Affiliation(s)
- Peer M Schenk
- Cooperative Research Centre for Tropical Plant Protection, The University of Queensland, St Lucia, Qld. 4072, Australia.
| | | | | | | | | |
Collapse
|
41
|
Zimmermann P, Zentgraf U. The correlation between oxidative stress and leaf senescence during plant development. Cell Mol Biol Lett 2005. [PMID: 16217560 DOI: 10.1007/s10343-004-0050-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
In plants, besides being the final step leading to the death of the whole organism, senescence has a developmental function involving the coordinated degradation of macromolecules and the mobilization of nutrients out of senescing tissues into developing parts of the plant. Free radicals are thought to play an essential role in senescence, especially those derived from oxygen. Since these molecules are extremely toxic, the levels of the different reactive oxygen species have to be tightly regulated. However, at low concentrations, hydrogen peroxide may also serve as a signalling molecule. Therefore, a coordinated regulation of the free radical scavenging system, which comprises enzymatic components such as catalase, superoxide dismutase and ascorbate peroxidase, and non-enzymatic molecules such as ascorbate and glutathione is essential. The increased radical levels displayed during senescence are not only caused by the elevated production of radicals but also by a loss in antioxidant capacity.
Collapse
Affiliation(s)
- Petra Zimmermann
- ZMBP, Centre of Plant Molecular Biology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | | |
Collapse
|
42
|
Oh KJ, Park YS, Lee KA, Chung YJ, Cho TJ. Molecular characterization of a thiJ-like gene in Chinese cabbage. BMB Rep 2004; 37:343-50. [PMID: 15469717 DOI: 10.5483/bmbrep.2004.37.3.343] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A cDNA clone for a salicylic acid-induced gene in Chinese cabbage (Brassica rapa subsp. pekinensis) was isolated and characterized. The cabbage gene encoding a protein of 392 amino acids contained a tandem array of two thiJ-like sequences. ThiJ is a thiamin biosynthesis enzyme that catalyzes the phosphorylation of hydroxymethylpyrimidine (HMP) to HMP monophosphate. Although the cabbage gene shows a similarity to bacterial thiJ genes, it also shares a similarity with the human DJ-1, a multifunctional protein that is involved in transcription regulation, male fertility, and parkinsonism. The cabbage thiJ-like gene is strongly induced by salicylic acid and a nonhost pathogen, Pseudomonas syringae pv. tomato, which elicits a hypersensitive response in Chinese cabbage. Treatment of the cabbage leaves with BTH, methyl jasmonate, or ethephon showed that the cabbage thiJ-like gene expression is also strongly induced by BTH, but not by methyl jasmonate or ethylene. This indicates that the cabbage gene is activated via a salicylic acid-dependent signaling pathway. Examination of the tissue-specific expression revealed that the induction of the cabbage gene expression by BTH occurs in the leaf, stem, and floral tissues but not in the root.
Collapse
Affiliation(s)
- Kyung-Jin Oh
- Division of Life Sciences, College of Natural Sciences, Chungbuk National University, Cheongju 360-763, Korea
| | | | | | | | | |
Collapse
|
43
|
Kobayashi K, Sarrobert C, Ares X, Rivero MM, Maldonado S, Robaglia C, Mentaberry A. Over-expression of potato virus X TGBp1 movement protein in transgenic tobacco plants causes developmental and metabolic alterations. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2004; 42:731-8. [PMID: 15474379 DOI: 10.1016/j.plaphy.2004.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2003] [Accepted: 07/23/2004] [Indexed: 04/30/2023]
Abstract
Transgenic Nicotiana tabacum plants expressing the TGBp1 movement protein of potato virus X (PVX) were studied to investigate the effects caused by this protein on plant physiology and development. TGBp1 caused consistent reductions of size and weight in different organs of these plants; however shoot-to-root ratios were similar to those of control plants. Transgenic seedlings showed smaller root meristems and calli derived from TGBp1 leaves grew at a slower rate through successive subcultures. Microscopic observations of TGBp1 plants revealed flattened chloroplasts containing plastoglobuli-like bodies. Further analyses showed a considerable reduction in photosynthetic rate, lower starch levels in leaves and roots, higher nitrate accumulation in leaves and induction of pathogenesis-related (PR) protein genes. Since these changes were not observed when other PVX sequences were expressed in tobacco, we postulate that TGBp1 is an important symptom contributor in PVX infections.
Collapse
Affiliation(s)
- Ken Kobayashi
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (CONICET), Facultad de Ciencias Exactas y Naturales (UBA), Vuelta de Obligado 2490, 1428 Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
44
|
Miao Y, Laun T, Zimmermann P, Zentgraf U. Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis. PLANT MOLECULAR BIOLOGY 2004; 55:853-867. [PMID: 15604721 DOI: 10.1007/s11103-005-2142-1] [Citation(s) in RCA: 410] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Arabidopsis WRKY proteins comprise a family of plant specific zinc-finger-type transcription factors involved in the regulation of gene expression during pathogen defense, wounding, trichome development, and senescence. To understand the regulatory role of the senescence-related WRKY53 factor, we identified target genes of this transcription factor by a pull down assay using genomic DNA and recombinant WRKY53 protein. We isolated a number of candidate target genes including other transcription factors, also of the WRKY family, stress- and defence related genes, and senescence-associated genes (SAGs). WRKY53 protein could bind to these different promoters in vitro and in vivo and it could act either as transcriptional activator or transcriptional repressor depending on the sequences surrounding the W-boxes. Overexpression, RNAi and knock-out lines showed accelerated and delayed senescence phenotypes, respectively, and exhibited altered expression levels of the target genes. WRKY53 can be induced by H2O2 and can regulate its own expression in a negative feed back loop. Our results suggest that WRKY53 acts in a complex transcription factor signalling network regulating senescence specific gene expression and that hydrogen peroxide might be involved in signal transduction.
Collapse
Affiliation(s)
- Y Miao
- ZMBP (Centre of Molecular Biology of Plants), Department of General Genetics, University Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | | | | | | |
Collapse
|
45
|
Schiltz S, Gallardo K, Huart M, Negroni L, Sommerer N, Burstin J. Proteome reference maps of vegetative tissues in pea. An investigation of nitrogen mobilization from leaves during seed filling. PLANT PHYSIOLOGY 2004; 135:2241-60. [PMID: 15299134 PMCID: PMC520794 DOI: 10.1104/pp.104.041947] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Revised: 05/27/2004] [Accepted: 06/11/2004] [Indexed: 05/19/2023]
Abstract
A proteomic approach was used to analyze protein changes during nitrogen mobilization (N mobilization) from leaves to filling seeds in pea (Pisum sativum). First, proteome reference maps were established for mature leaves and stems. They displayed around 190 Coomassie Blue-stained spots with pIs from 4 to 7. A total of 130 spots were identified by mass spectrometry as corresponding to 80 different proteins implicated in a variety of cellular functions. Although the leaf proteome map contained more abundant spots, corresponding to proteins involved in energy/carbon metabolism, than the stem map, their comparison revealed a highly similar protein profile. Second, the leaf proteome map was used to analyze quantitative variations in leaf proteins during N mobilization. Forty percent of the spots showed significant changes in their relative abundance in the total protein extract. The results confirmed the importance of Rubisco as a source of mobilizable nitrogen, and suggested that in pea leaves the rate of degradation of Rubisco may vary throughout N mobilization. Correlated with the loss of Rubisco was an increase in relative abundance of chloroplastic protease regulatory subunits. Concomitantly, the relative abundance of some proteins related to the photosynthetic apparatus (Rubisco activase, Rubisco-binding proteins) and of several chaperones increased. A role for these proteins in the maintenance of a Rubisco activation state and in the PSII repair during the intense proteolytic activity within the chloroplasts was proposed. Finally, two 14-3-3-like proteins, with a potential regulatory role, displayed differential expression patterns during the massive remobilization of nitrogen.
Collapse
Affiliation(s)
- Séverine Schiltz
- Unité de Génétique et Ecophysiologie des Légumineuses à Graines, Institut National de la Recherche Agronomique, 21065 Dijon cedex, France.
| | | | | | | | | | | |
Collapse
|
46
|
Kumar V, Mills DJ, Anderson JD, Mattoo AK. An alternative agriculture system is defined by a distinct expression profile of select gene transcripts and proteins. Proc Natl Acad Sci U S A 2004; 101:10535-40. [PMID: 15249656 PMCID: PMC489972 DOI: 10.1073/pnas.0403496101] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2003] [Indexed: 11/18/2022] Open
Abstract
Conventional agriculture has relied heavily on chemical inputs that have negatively impacted the environment and increased production costs. Transition to agricultural sustainability is a major challenge and requires that alternative agricultural practices are scientifically analyzed to provide a sufficiently informative knowledge base in favor of alternative farming practices. We show a molecular basis for delayed leaf senescence and tolerance to diseases in tomato plants cultivated in a legume (hairy vetch) mulch-based alternative agricultural system. In the hairy vetch-cultivated plants, expression of specific and select classes of genes is up-regulated compared to those grown on black polyethylene mulch. These include N-responsive genes such as NiR, GS1, rbcL, rbcS, and G6PD; chaperone genes such as hsp70 and BiP; defense genes such as chitinase and osmotin; a cytokinin-responsive gene CKR; and gibberellic acid 20 oxidase. We present a model of how their protein products likely complement one another in a field scenario to effect efficient utilization and mobilization of C and N, promote defense against disease, and enhance longevity.
Collapse
Affiliation(s)
- Vinod Kumar
- Vegetable Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, United States Department of Agriculture, Agricultural Research Service, Building 010A, Beltsville, MD 20705-2350, USA
| | | | | | | |
Collapse
|
47
|
Zentgraf U, Jobst J, Kolb D, Rentsch D. Senescence-related gene expression profiles of rosette leaves of Arabidopsis thaliana: leaf age versus plant age. PLANT BIOLOGY (STUTTGART, GERMANY) 2004; 6:178-83. [PMID: 15045669 DOI: 10.1055/s-2004-815735] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Senescence is a form of programmed cell death (PCD) which leads to the death of whole organs, e.g., leaves or flowers, and eventually to the death of entire plants. Like all forms of PCD, senescence is a highly regulated and energy consuming process. Senescence parameters, like protein content, chlorophyll content, expression of photosynthesis-associated genes or senescence-associated genes (SAGs), reveal that senescence occurs in old leaves derived from young plants (6 week old) as well as in young leaves derived from older plants (8 week old), indicating that it is governed by the actual age of the leaves. In order to analyse the differential gene expression profiles during leaf senescence, hybridizations of high-density genome arrays were performed with: i) individual leaves within the rosette of a 6-week-old plant and ii) leaves of the same position within the rosette but harvested from plants of different ages, ranging from 5 to 8 weeks. Cluster and genetree analyses, according to the expression pattern revealed that genes which are up-regulated with respect to the age of the entire plant, showed completely different expression profiles with respect to the age of the individual leaves within one rosette. This was observed even though the actual difference in leaf age was approximately the same. This indicates that gene expression appears to be governed by different parameters: i) the age of the individual leaf and ii) the age and developmental stage of the entire plant.
Collapse
Affiliation(s)
- U Zentgraf
- Centre of Molecular Biolology of Plants, University of Tübingen, Tübingen, Germany.
| | | | | | | |
Collapse
|
48
|
Breeze E, Wagstaff C, Harrison E, Bramke I, Rogers H, Stead A, Thomas B, Buchanan-Wollaston V. Gene expression patterns to define stages of post-harvest senescence in Alstroemeria petals. PLANT BIOTECHNOLOGY JOURNAL 2004; 2:155-68. [PMID: 17147607 DOI: 10.1111/j.1467-7652.2004.00059.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Petal senescence in many species is regulated by ethylene but some flowers, such as those on the monocotyledonous plant Alstroemeria, var. Rebecca are ethylene insensitive. Changes in gene expression during the post-harvest senescence of Alstroemeria flowers were investigated using several different techniques. Suppressive subtractive hybridization (SSH) was used to obtain cDNA libraries enriched for genes expressed at selected stages of petal senescence. Sequencing of the EST clones obtained resulted in over 1000 sequences that represent approximately 500 different genes. Analysis of the potential functions of these genes provides a snapshot of the processes that are taking place during petal development. Both cell wall related genes and genes involved in metabolism were present at a higher proportion in the earlier stages. Genes encoding metal binding proteins (mostly metallothionein-like) were the major component of senescence enhanced libraries. This limited the diversity of genes identified showing differential expression at the later stages. Changes in the expression of all genes were analysed using microarray hybridization, and genes showing either up or down-regulation were identified. The expression pattern of a selection of genes was confirmed using Northern hybridization. Northern hybridization confirmed the up-regulation of metallothioneins after floral opening, however, this was not detected by the microarray analysis, indicating the importance of using a combination of methods to investigate gene expression patterns. Considerably more genes were up-regulated than down-regulated. This may reflect the need during Alstroemeria petal senescence for the expression of a whole new set of genes involved with degradation and mobilization. The potential uses of expression profiling to improve floral quality in breeding programmes or as a diagnostic tool are discussed.
Collapse
Affiliation(s)
- Emily Breeze
- Horticulture Research International, Wellesbourne, Warwick, CV35 9EF, UK
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Fecht-Christoffers MM, Braun HP, Lemaitre-Guillier C, VanDorsselaer A, Horst WJ. Effect of manganese toxicity on the proteome of the leaf apoplast in cowpea. PLANT PHYSIOLOGY 2003; 133:1935-46. [PMID: 14605229 PMCID: PMC300745 DOI: 10.1104/pp.103.029215] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2003] [Revised: 07/21/2003] [Accepted: 08/27/2003] [Indexed: 05/19/2023]
Abstract
Excess manganese (Mn) supply causes formation of visible brown depositions in the cell walls of leaves of cowpea (Vigna unguiculata), which consist of oxidized Mn and oxidized phenols. Because oxidation of Mn and phenolic compounds in the leaf apoplast was proposed to be catalyzed by apoplastic peroxidases (PODs), induction of these enzymes by Mn excess was investigated. POD activity increased upon prolonged Mn treatment in the leaf tissue. Simultaneously, a significant increase in the concentration of soluble apoplastic proteins in "apoplastic washing fluid" was observed. The identity of the released proteins was systematically characterized by analysis of the apoplast proteome using two-dimensional gel electrophoresis and liquid chromatography-tandem mass spectrometry. Some of the identified proteins exhibit sequence identity to acidic PODs from other plants. Several other proteins show homologies to pathogenesis-related proteins, e.g. glucanase, chitinase, and thaumatin-like proteins. Because pathogenesis-related-like proteins are known to be induced by various other abiotic and biotic stresses, a specific physiological role of these proteins in response to excess Mn supply remains to be established. The specific role of apoplastic PODs in the response of plants to Mn stress is discussed.
Collapse
|
50
|
Gepstein S, Sabehi G, Carp MJ, Hajouj T, Nesher MFO, Yariv I, Dor C, Bassani M. Large-scale identification of leaf senescence-associated genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 36:629-42. [PMID: 14617064 DOI: 10.1046/j.1365-313x.2003.01908.x] [Citation(s) in RCA: 242] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Leaf senescence is a form of programmed cell death, and is believed to involve preferential expression of a specific set of "senescence-associated genes" (SAGs). To decipher the molecular mechanisms and the predicted complex network of regulatory pathways involved in the senescence program, we have carried out a large-scale gene identification study in a reference plant, Arabidopsis thaliana. Using suppression subtractive hybridization, we isolated approximately 800 cDNA clones representing SAGs expressed in senescing leaves. Differential expression was confirmed by Northern blot analysis for 130 non-redundant genes. Over 70 of the identified genes have not previously been shown to participate in the senescence process. SAG-encoded proteins are likely to participate in macromolecule degradation, detoxification of oxidative metabolites, induction of defense mechanisms, and signaling and regulatory events. Temporal expression profiles of selected genes displayed several distinct patterns, from expression at a very early stage, to the terminal phase of the senescence syndrome. Expression of some of the novel SAGs, in response to age, leaf detachment, darkness, and ethylene and cytokinin treatment was compared. The large repertoire of SAGs identified here provides global insights about regulatory, biochemical and cellular events occurring during leaf senescence.
Collapse
Affiliation(s)
- Shimon Gepstein
- Faculty of Biology, Technion, Israel Institute of Technology, Haifa 32000, Israel.
| | | | | | | | | | | | | | | |
Collapse
|