1
|
Kielkopf CL, Bauer W, Urbatsch IL. Expressing Cloned Genes for Protein Production, Purification, and Analysis. Cold Spring Harb Protoc 2021; 2021:pdb.top102129. [PMID: 33272973 DOI: 10.1101/pdb.top102129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Obtaining high quantities of a specific protein directly from native sources is often challenging, particularly when dealing with human proteins. To overcome this obstacle, many researchers take advantage of heterologous expression systems by cloning genes into artificial vectors designed to operate within easily cultured cells, such as Escherichia coli, Pichia pastoris (yeast), and several varieties of insect and mammalian cells. Heterologous expression systems also allow for easy modification of the protein to optimize expression, mutational analysis of specific sites within the protein and facilitate their purification with engineered affinity tags. Some degree of purification of the target protein is usually required for functional analysis. Purification to near homogeneity is essential for characterization of protein structure by X-ray crystallography or nuclear magnetic resonance (NMR) and characterization of the biochemical and biophysical properties of a protein, because contaminating proteins almost always adversely affect the results. Methods for producing and purifying proteins in several different expression platforms and using a variety of vectors are introduced here.
Collapse
|
2
|
Tropomyosin Ser-283 pseudo-phosphorylation slows myofibril relaxation. Arch Biochem Biophys 2012; 535:30-8. [PMID: 23232082 DOI: 10.1016/j.abb.2012.11.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 11/21/2012] [Accepted: 11/22/2012] [Indexed: 12/15/2022]
Abstract
Tropomyosin (Tm) is a central protein in the Ca(2+) regulation of striated muscle. The αTm isoform undergoes phosphorylation at serine residue 283. While the biochemical and steady-state muscle function of muscle purified Tm phosphorylation have been explored, the effects of Tm phosphorylation on the dynamic properties of muscle contraction and relaxation are unknown. To investigate the kinetic regulatory role of αTm phosphorylation we expressed and purified native N-terminal acetylated Ser-283 wild-type, S283A phosphorylation null and S283D pseudo-phosphorylation Tm mutants in insect cells. Purified Tm's regulate thin filaments similar to that reported for muscle purified Tm. Steady-state Ca(2+) binding to troponin C (TnC) in reconstituted thin filaments did not differ between the 3 Tm's, however disassociation of Ca(2+) from filaments containing pseudo-phosphorylated Tm was slowed compared to wild-type Tm. Replacement of pseudo-phosphorylated Tm into myofibrils similarly prolonged the slow phase of relaxation and decreased the rate of the fast phase without altering activation kinetics. These data demonstrate that Tm pseudo-phosphorylation slows deactivation of the thin filament and muscle force relaxation dynamics in the absence of dynamic and steady-state effects on muscle activation. This supports a role for Tm as a key protein in the regulation of muscle relaxation dynamics.
Collapse
|
3
|
Yamashiro S, Gokhin DS, Kimura S, Nowak RB, Fowler VM. Tropomodulins: pointed-end capping proteins that regulate actin filament architecture in diverse cell types. Cytoskeleton (Hoboken) 2012; 69:337-70. [PMID: 22488942 DOI: 10.1002/cm.21031] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 03/23/2012] [Accepted: 03/26/2012] [Indexed: 01/31/2023]
Abstract
Tropomodulins are a family of four proteins (Tmods 1-4) that cap the pointed ends of actin filaments in actin cytoskeletal structures in a developmentally regulated and tissue-specific manner. Unique among capping proteins, Tmods also bind tropomyosins (TMs), which greatly enhance the actin filament pointed-end capping activity of Tmods. Tmods are defined by a TM-regulated/Pointed-End Actin Capping (TM-Cap) domain in their unstructured N-terminal portion, followed by a compact, folded Leucine-Rich Repeat/Pointed-End Actin Capping (LRR-Cap) domain. By inhibiting actin monomer association and dissociation from pointed ends, Tmods regulate actin dynamics and turnover, stabilizing actin filament lengths and cytoskeletal architecture. In this review, we summarize the genes, structural features, molecular and biochemical properties, actin regulatory mechanisms, expression patterns, and cell and tissue functions of Tmods. By understanding Tmods' functions in the context of their molecular structure, actin regulation, binding partners, and related variants (leiomodins 1-3), we can draw broad conclusions that can explain the diverse morphological and functional phenotypes that arise from Tmod perturbation experiments in vitro and in vivo. Tmod-based stabilization and organization of intracellular actin filament networks provide key insights into how the emergent properties of the actin cytoskeleton drive tissue morphogenesis and physiology.
Collapse
Affiliation(s)
- Sawako Yamashiro
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
4
|
Miki M, Makimura S, Saitoh T, Bunya M, Sugahara Y, Ueno Y, Kimura-Sakiyama C, Tobita H. A three-dimensional FRET analysis to construct an atomic model of the actin-tropomyosin complex on a reconstituted thin filament. J Mol Biol 2011; 414:765-82. [PMID: 22051514 DOI: 10.1016/j.jmb.2011.10.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 10/17/2011] [Accepted: 10/19/2011] [Indexed: 11/29/2022]
Abstract
Fluorescence resonance energy transfer (FRET) was used to construct an atomic model of the actin-tropomyosin (Tm) complex on a reconstituted thin filament. We generated five single-cysteine mutants in the 146-174 region of rabbit skeletal muscle α-Tm. An energy donor probe was attached to a single-cysteine Tm residue, while an energy acceptor probe was located in actin Gln41, actin Cys374, or the actin nucleotide binding site. From these donor-acceptor pairs, FRET efficiencies were determined with and without Ca(2+). Using the atomic coordinates for F-actin and Tm, we searched all possible arrangements for Tm segment 146-174 on F-actin to calculate the FRET efficiency for each donor-acceptor pair in each arrangement. By minimizing the squared sum of deviations for the calculated FRET efficiencies from the observed FRET efficiencies, we determined the location of the Tm segment on the F-actin filament. Furthermore, we generated a set of five single-cysteine mutants in each of the four Tm regions 41-69, 83-111, 216-244, and 252-279. Using the same procedures, we determined each segment's location on the F-actin filament. In the best-fit model, Tm runs along actin residues 217-236, which were reported to compose the Tm binding site. Electrostatic, hydrogen-bonding, and hydrophobic interactions are involved in actin and Tm binding. The C-terminal region of Tm was observed to contact actin more closely than did the N-terminal region. Tm contacts more residues on actin without Ca(2+) than with it. Ca(2+)-induced changes on the actin-Tm contact surface strongly affect the F-actin structure, which is important for muscle regulation.
Collapse
Affiliation(s)
- Masao Miki
- Division of Applied Chemistry and Biotechnology, Graduate School of Engineering Science, University of Fukui, Fukui 910-8507, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Abdel Rahman AM, Kamath SD, Lopata AL, Robinson JJ, Helleur RJ. Biomolecular characterization of allergenic proteins in snow crab (Chionoecetes opilio) and de novo sequencing of the second allergen arginine kinase using tandem mass spectrometry. J Proteomics 2011; 74:231-41. [DOI: 10.1016/j.jprot.2010.10.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 10/25/2010] [Accepted: 10/28/2010] [Indexed: 11/15/2022]
|
6
|
Abdel Rahman AM, Kamath S, Lopata AL, Helleur RJ. Analysis of the allergenic proteins in black tiger prawn (Penaeus monodon) and characterization of the major allergen tropomyosin using mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2010; 24:2462-2470. [PMID: 20658686 DOI: 10.1002/rcm.4664] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Crustaceans are the third most prevalent cause of food-induced anaphylaxis after peanuts and tree nuts. The severity of the allergenic proteins depends mainly on the amino acid sequence that induces production of IgE antibodies. In black tiger prawn (Penaeus monodon), the crude protein extract was profiled and its allergenic potency was examined against patient's sera. Proteins having strong immunoreactivity with patient's IgE were characterized using peptide mass fingerprinting (PMF). Tropomyosin (TM) (33 kDa), myosin light chain (20 kDa), and arginine kinase (40 kDa) were identified as allergenic proteins. Tropomyosin, the most abundant and potent allergen, was purified using ion-exchange chromatography for de novo sequencing experiments. Using bottom up tandem mass spectrometry, the full amino acid sequence was achieved by a combination of matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI) tandem mass spectrometry (QqToF). Myosin light chain and arginine kinase were also characterized, and their related peptides were de novo sequenced using the same approach. The immunological reactivity of the crude prawn extracts and purified TM samples were analyzed using a large number of patients' sera. A signature peptide was assigned for the TM protein for future quantification work of black tiger prawn TM levels in different matrices (i.e. water, air, food) in the seafood industry.
Collapse
Affiliation(s)
- Anas M Abdel Rahman
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3X7, Canada.
| | | | | | | |
Collapse
|
7
|
Abdel Rahman AM, Lopata AL, O'Hehir RE, Robinson JJ, Banoub JH, Helleur RJ. Characterization and de novo sequencing of snow crab tropomyosin enzymatic peptides by both electrospray ionization and matrix-assisted laser desorption ionization QqToF tandem mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2010; 45:372-381. [PMID: 20198602 DOI: 10.1002/jms.1721] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The protein tropomyosin (TM) is a known major allergen present in shellfish causing frequent food allergies. TM is also an occupational allergen generated in the working environment of snow crab (Chionoecetes opilio) processing plants. The TM protein was purified from both claw and leg meats of snow crab and analyzed by electrospray ionization and matrix-assisted laser desorption/ionization (MALDI) using hybrid quadruple time-of-flight tandem mass spectrometry (QqToF-MS). The native polypeptide molecular weight of TM was determined to be 32,733 Da. The protein was further characterized using the 'bottom-up' MS approach. A peptide mass fingerprinting was obtained by two different enzymatic digestions and de novo sequencing of the most abundant peptides performed. Any post-translational modifications were identified by searching their calculated and predicted molecular weights in precursor ion spectra. The immunological reactivity of snow crab extract was evaluated using specific antibodies and allergenic reactivity assessed with serum of allergic patients. Subsequently, a signature peptide for TM was identified and evaluated in terms of identity and homology using the basic local alignment search tool (BLAST). The identification of a signature peptide for the allergen TM using MALDI-QqToF-MS will be critical for the sensitive and specific quantification of this highly allergenic protein in the work place.
Collapse
Affiliation(s)
- Anas M Abdel Rahman
- Department of Chemistry, Memorial University of Newfoundland, St John's, Newfoundland, Canada A1B 3X7.
| | | | | | | | | | | |
Collapse
|
8
|
Goonasekara CL, Heeley DH. Effect of Removing the Amino-Terminal Hexapeptide of Tropomyosin on the Properties of the Thin Filament. Biochemistry 2009; 48:3538-44. [DOI: 10.1021/bi802004j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - David H. Heeley
- Department of Biochemistry, Memorial University, St. John’s, Newfoundland, Canada A1B 3X9
| |
Collapse
|
9
|
Alvite G, Esteves A. Echinococcus granulosus tropomyosin isoforms: from gene structure to expression analysis. Gene 2008; 433:40-9. [PMID: 19100819 DOI: 10.1016/j.gene.2008.11.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 10/21/2008] [Accepted: 11/04/2008] [Indexed: 11/25/2022]
Abstract
Tropomyosins (Trps) constitute a family of actin filament-binding proteins found in all eukaryotic cells. In muscle cells, they play a central role in contraction by regulating calcium-sensitive interaction of actin and myosin. In non-muscle cells, tropomyosins regulate actin filament organization and dynamics. Trps genes exhibit extensive cell type-specific isoform diversity generated by alternative splicing. Here, we report the characterization of tropomyosin gene transcribed sequences from the parasitic platyhelminth Echinococcus granulosus. Using RT-PCR approach we isolated three isoforms (egtrpA, egtrpB and egtrpC), which display significant homologies to know tropomyosins of different phylogenetic origin. The corresponding gene, egtrp (5656 bp), contains eight introns and nine exons. Southern blot hybridization studies showed that egtrp is present as single copy locus in E. granulosus. We demonstrated that egtrp expresses three different transcripts which differ in alternatively spliced exon 4 and intron VI. Interestingly, intron VI suffers intron retention and contains an internal stop codon in frame. Three major bands are also detected by Western blot analysis using a specific anti-rEgTrp antiserum. Immune-localization and in situ hybridization studies showed that egtrp transcription and translation is mostly localized at the protoscoleces suckers. This is the first report of alternative splicing in this parasite.
Collapse
Affiliation(s)
- Gabriela Alvite
- Biochemistry Section, Cellular and Molecular Biology Department, Faculty of Sciences, University of the Republic, Montevideo, Uruguay.
| | | |
Collapse
|
10
|
Two-crystal structures of tropomyosin C-terminal fragment 176-273: exposure of the hydrophobic core to the solvent destabilizes the tropomyosin molecule. Biophys J 2008; 95:710-9. [PMID: 18339732 DOI: 10.1529/biophysj.107.126144] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tropomyosin (Tm) is a two-stranded alpha-helical coiled-coil protein, and when associated with troponin, it is responsible for the actin filament-based regulation of muscle contraction in vertebrate skeletal and cardiac muscles. It is widely believed that Tm adopts a flexible rod-like structure in which the flexibility must play a crucial role in its functions. To obtain more information about the flexibility of Tm, we solved and compared two crystal structures of the identical C-terminal segments, spanning approximately 40% of the entire length. We also compared these structures with our previously reported crystal structure of an almost identical Tm segment in a distinct crystal form. The parameters specifying the local coiled-coil geometry, such as the separation between two helices and the local helical pitch, undulate along the length of Tm in the same way as among the three crystal structures, indicating that these parameters are defined by the amino acid sequence. In the region of increased separation, around Glu-218 and Gln-263, the hydrophobic core is disrupted by three holes. Moreover, for the first time to our knowledge, for Tm, water molecules have been identified in these holes. In some structures, the B-factors are higher around the holes than in the rest of the molecule. The Tm coiled-coil must be destabilized and therefore may be flexible, not only in the alanine clusters but also in the regions of the broken core. A closer look at the local staggering between the two chains and the local bending revealed that the strain accumulates at the alanine cluster and may be relaxed in the broken core region. Moreover, the strain is distributed over a long range, even when a deformation like bending may occur at a limited number of spots. Thus, Tm should not be regarded as a train of short rigid rods connected by flexible linkers, but rather as a seamless rubber rod patched with relatively more flexible regions.
Collapse
|
11
|
Sumida JP, Wu E, Lehrer SS. Conserved Asp-137 imparts flexibility to tropomyosin and affects function. J Biol Chem 2007; 283:6728-34. [PMID: 18165684 DOI: 10.1074/jbc.m707485200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tropomyosin (Tm) is an alpha-helical coiled-coil that controls muscle contraction by sterically regulating the myosin-actin interaction. Tm moves between three states on F-actin as either a uniform or a non-uniform semi-flexible rod. Tm is stabilized by hydrophobic residues in the "a" and "d" positions of the heptad repeat. The highly conserved Asp-137 is unusual in that it introduces a negative charge on each chain in a position typically occupied by hydrophobic residues. The occurrence of two charged residues in the hydrophobic region is expected to destabilize the region and impart flexibility. To determine whether this region is unstable, we have substituted hydrophobic Leu for Asp-137 and studied changes in Tm susceptibility to limited proteolysis by trypsin and changes in regulation. We found that native and Tm controls that contain Asp-137 were readily cleaved at Arg-133 with t 1/2 of 5 min. In contrast, the Leu-137 mutant was not cleaved under the same conditions. Actin stabilized Tm, causing a 10-fold reduction in the rate of cleavage at Arg-133. The actin-myosin subfragment S1 ATPase activity was greater for the Leu mutant compared with controls in the absence of troponin and in the presence of troponin and Ca2+. We conclude that the highly conserved Asp-137 destabilizes the middle of Tm, resulting in a more flexible region that is important for the cooperative activation of the thin filament by myosin. We thus have shown a link between the dynamic properties of Tm and its function.
Collapse
Affiliation(s)
- John P Sumida
- Cardiovascular Program, Boston Biomedical Research Institute, Watertown, Massachusetts 02472, USA
| | | | | |
Collapse
|
12
|
Coulton AT, Koka K, Lehrer SS, Geeves MA. Role of the Head-to-Tail Overlap Region in Smooth and Skeletal Muscle β-Tropomyosin. Biochemistry 2007; 47:388-97. [DOI: 10.1021/bi701144g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Arthur T. Coulton
- Department of Biosciences, University of Kent, Canterbury CT2 7NY, U.K., and Cardiovascular Program, Boston Biomedical Research Institute, Watertown, Massachusetts 02472-2829
| | - Kezia Koka
- Department of Biosciences, University of Kent, Canterbury CT2 7NY, U.K., and Cardiovascular Program, Boston Biomedical Research Institute, Watertown, Massachusetts 02472-2829
| | - Sherwin S. Lehrer
- Department of Biosciences, University of Kent, Canterbury CT2 7NY, U.K., and Cardiovascular Program, Boston Biomedical Research Institute, Watertown, Massachusetts 02472-2829
| | - Michael A. Geeves
- Department of Biosciences, University of Kent, Canterbury CT2 7NY, U.K., and Cardiovascular Program, Boston Biomedical Research Institute, Watertown, Massachusetts 02472-2829
| |
Collapse
|
13
|
Kimura-Sakiyama C, Ueno Y, Wakabayashi K, Miki M. Fluorescence resonance energy transfer between residues on troponin and tropomyosin in the reconstituted thin filament: modeling the troponin-tropomyosin complex. J Mol Biol 2007; 376:80-91. [PMID: 18155235 DOI: 10.1016/j.jmb.2007.10.078] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Revised: 10/24/2007] [Accepted: 10/28/2007] [Indexed: 10/22/2022]
Abstract
Troponin (Tn), in association with tropomyosin (Tm), plays a central role in the calcium regulation of striated muscle contraction. Fluorescence resonance energy transfer (FRET) between probes attached to the Tn subunits (TnC, TnI, TnT) and to Tm was measured to study the spatial relationship between Tn and Tm on the thin filament. We generated single-cysteine mutants of rabbit skeletal muscle alpha-Tm, TnI and the beta-TnT 25-kDa fragment. The energy donor was attached to a single-cysteine residue at position 60, 73, 127, 159, 200 or 250 on TnT, at 98 on TnC and at 1, 9, 133 or 181 on TnI, while the energy acceptor was located at 13, 146, 160, 174, 190, 209, 230, 271 or 279 on Tm. FRET analysis showed a distinct Ca(2+)-induced conformational change of the Tm-Tn complex and revealed that TnT60 and TnT73 were closer to Tm13 than Tm279, indicating that the elongated N-terminal region of TnT extends beyond the beginning of the next Tm molecule on the actin filament. Using the atomic coordinates of the crystal structures of Tm and the Tn core domain, we searched for the disposition and orientation of these structures by minimizing the deviations of the calculated FRET efficiencies from the observed FRET efficiencies in order to construct atomic models of the Tn-Tm complex with and without bound Ca(2+). In the best-fit models, the Tn core domain is located on residues 160-200 of Tm, with the arrowhead-shaped I-T arm tilting toward the C-terminus of Tm. The angle between the Tm axis and the long axis of TnC is approximately 75 degrees and approximately 85 degrees with and without bound Ca(2+), respectively. The models indicate that the long axis of TnC is perpendicular to the thin filament without bound Ca(2+), and that TnC and the I-T arm tilt toward the filament axis and rotate around the Tm axis by approximately 20 degrees upon Ca(2+) binding.
Collapse
Affiliation(s)
- Chieko Kimura-Sakiyama
- Division of Applied Chemistry and Biotechnology, Graduate School of Engineering Science, Fukui University, Fukui 910-8507, Japan
| | | | | | | |
Collapse
|
14
|
Goonasekara CL, Gallivan LJ, Jackman DM, Heeley DH. Some binding properties of Omp T digested muscle tropomyosin. J Muscle Res Cell Motil 2007; 28:175-82. [PMID: 17805980 DOI: 10.1007/s10974-007-9114-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Accepted: 07/10/2007] [Indexed: 10/22/2022]
Abstract
Cleavage of vertebrate muscle tropomyosin by bacterial Omp T produces an amino-terminally truncated product (residues 7-284). The proteolysed protein, which is resolved from the parent by electrophoresis in the presence of sodium dodecylsulphate, can be generated from a variety of striated and smooth muscle tropomyosins, including ones from mammal, bird and fish. Edman-based sequencing and mass analysis confirm that the main site of chain hydrolysis is the peptide bond between Lys 6 and Lys 7. Loss of the hexapeptide, together with the blocking group, from tropomyosin weakens its affinity for troponin. Compared to wild type, the shortened forms of rabbit skeletal tropomyosin and Atlantic salmon fast skeletal tropomyosin, as well as the unacetylated (full-length) version of the latter, all display reduced affinity for both troponin and the amino-terminal fragment of troponin-T (residues 1-158), as judged by affinity chromatography. This is consistent with the view that the amino terminal region is required for full interaction with troponin-T. Truncated tropomyosin fails to bind to F-actin at micromolar concentration, as expected. Interestingly, binding is restored by troponin in the presence of either added Ca(2+) or EGTA. Digestion of muscle tropomyosin by Omp T, which can be carried out on quantitative amounts of protein, is concluded to yield a product that has useful biochemical applications.
Collapse
Affiliation(s)
- Charitha L Goonasekara
- Department of Biochemistry, Memorial University, 2 Livyers Loop, St. John's, NL, Canada A1B3X9
| | | | | | | |
Collapse
|
15
|
Nitanai Y, Minakata S, Maeda K, Oda N, Maéda Y. Crystal structures of tropomyosin: flexible coiled-coil. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 592:137-51. [PMID: 17278362 DOI: 10.1007/978-4-431-38453-3_13] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Tropomyosin (Tm) is a 400 angstroms long coiled coil protein, and with troponin it regulates contraction in skeletal and cardiac muscles in a [Ca2+]-dependent manner. Tm consists of multiple domains with diverse stabilities in the coiled coil form, thus providing Tm with dynamic flexibility. This flexibility must play important roles in the actin binding and the cooperative transition between the calcium regulated states of the entire muscle thin filament. In order to understand the flexibility of Tm in its entirety, the atomic coordinates of Tm are needed. Here we report the two crystal structures of Tm segments. One is rabbit skeletal muscle alpha-Tm encompassing residues 176-284 with an N-terminal extension of 25 residues from the leucine zipper sequence of GCN4, which includes the region that interacts with the troponin core domain. The other is alpha-Tm encompassing residues 176-273 with N- and C-terminal extensions of the leucine zipper sequences. These two crystal structures imply that this molecule is a flexible coiled coil. First, Tm's are not homogeneous and smooth coiled coils, but instead they undulate, with highly fluctuating local parameters specifying the coiled coil. Independent fluctuating showed by two crystal structures is important. Second, in the first crystal, the coiled coil is bent by 9 degrees in the region centered about Y214-E218-Y221, where the inter-helical distance has its maximum. On the other hand, no bend is observed at the same region in the second crystal even if its inter-helical distance has also its maximum. E218, an unusual negatively charged residue at the a position in the heptad repeat, seems to play the key role in destabilizing the coiled coil with alanine destabilizing clusters.
Collapse
Affiliation(s)
- Yasushi Nitanai
- ERATO Actin Filament Dynamics Project, JST, Sayo, Hyogo 679-5148, Japan
| | | | | | | | | |
Collapse
|
16
|
Coulton A, Lehrer SS, Geeves MA. Functional homodimers and heterodimers of recombinant smooth muscle tropomyosin. Biochemistry 2006; 45:12853-8. [PMID: 17042503 PMCID: PMC2546869 DOI: 10.1021/bi0613224] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Skeletal and smooth muscle tropomyosin (Tm) require acetylation of their N-termini to bind strongly to actin. Tm containing an N-terminal alanine-serine (AS) extension to mimic acetylation has been widely used to increase binding. The current study investigates the ability of an N-terminal AS extension to mimic native acetylation for both alpha alpha and beta beta smooth Tm homodimers. We show that (1) AS alpha-Tm binds actin 100-fold tighter than alpha-Tm and 2-fold tighter than native smooth alphabeta-Tm, (2) beta-Tm requires an AS extension to bind actin, and (3) AS beta-Tm binds actin 10-fold weaker than AS alpha-Tm. Tm is present in smooth muscle tissues as >95% heterodimer; therefore, we studied the binding of recombinant alphabeta heterodimers with different AS extensions. This study shows that recombinant Tm requires an AS extension on both alpha and beta chains to bind like native Tm and that the alpha chain contributes more to actin binding than the beta chain. Once assembled onto an actin filament, all smooth muscle Tm's regulate S1 binding to actin Tm in the same way, irrespective of the presence of an AS extension.
Collapse
Affiliation(s)
- Arthur Coulton
- Department of Biosciences, University of Kent, Canterbury, CT2 7NY, UK
| | - Sherwin S. Lehrer
- Muscle and Motility Group, Boston Biomedical Research Institute, Watertown, MA, 02472-2829 U.S.A
| | - Michael A. Geeves
- Department of Biosciences, University of Kent, Canterbury, CT2 7NY, UK
- Corresponding author: Michael A Geeves Department of Biosciences, University of Kent, Canterbury, CT2 7NY, UK E-mail: , Tel +44 1227 827597, Fax +44 1227 763912
| |
Collapse
|
17
|
Sakuma A, Kimura-Sakiyama C, Onoue A, Shitaka Y, Kusakabe T, Miki M. The second half of the fourth period of tropomyosin is a key region for Ca(2+)-dependent regulation of striated muscle thin filaments. Biochemistry 2006; 45:9550-8. [PMID: 16878989 DOI: 10.1021/bi060963w] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Rabbit skeletal muscle alpha-tropomyosin (Tm), a 284-residue dimeric coiled-coil protein, spans seven actin monomers and contains seven quasiequivalent periods. X-ray analysis of cocrystals of Tm and troponin (Tn) placed the Tn core domain near residues 150-180 of Tm. To identify the Ca(2+)-sensitive Tn interaction site on Tm, we generated three Tm mutants to compare the consequences of sequence substitution inside and outside of the Tn core domain-binding region. Residues 152-165 and 156-162 in the second half of period 4 were replaced by corresponding residues 33-46 and 37-43 in the second half of period 1, respectively (termed mTm152-165 and mTm156-162, respectively), and residues 134-147 in the first half of period 4 were replaced with residues 15-28 in the first half of period 1 (mTm134-147). Recombinant Tms designed with an additional tripeptide, Ala-Ala-Ser, at the N-terminus were expressed in Escherichia coli. Both mTm152-165 and mTm156-162 suppressed the actin-activated myosin subfragment-1 Mg(2+)-ATPase rate regardless of whether Ca(2+) and Tn were present. On the other hand, mTm134-147 retained the normal Ca(2+)-sensitive regulation, although the actin binding of mTm alone was significantly impaired. Differential scanning calorimetry showed that the sequence substitution in the second half of period 4 affected the thermal stability of the complete Tm molecule and also the actin-induced stabilization. These results suggest that the second half of period 4 of Tm is a key region for inducing conformational changes of the regulated thin filament required for its fully activated state.
Collapse
Affiliation(s)
- Akiko Sakuma
- Department of Applied Chemistry and Biotechnology, Fukui University, 3-9-1 Bunkyo, Fukui 910-8507, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Huang MC, Ochiai Y. Fish fast skeletal muscle tropomyosins show species-specific thermal stability. Comp Biochem Physiol B Biochem Mol Biol 2005; 141:461-71. [PMID: 15967697 DOI: 10.1016/j.cbpc.2005.05.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Revised: 05/09/2005] [Accepted: 05/12/2005] [Indexed: 01/14/2023]
Abstract
Tropomyosin (TM) was isolated from the fast skeletal muscle of six fish species, whose amino acid sequences of this protein have already been revealed. The thermal stability of these TMs was measured by differential scanning calorimetry (DSC) and circular dichroism (CD), while the molecular weights were measured by mass spectrometry. The results showed clear differences in thermostability among these fish TMs, though the identity of amino acid sequences was more than 93.3%. Therefore, only a few amino acid substitutions could affect the overall stability of the TM molecule. Especially, several residues located on the molecular surface were considered to be responsible for such stability difference. In contrast, the molecular weights of these TMs as measured by mass spectrometry were higher than those calculated from amino acid composition, suggesting the presence of post-translational modification(s) which could also affect their thermal stability.
Collapse
Affiliation(s)
- Ming-Chih Huang
- Laboratory of Aquatic Molecular Biology and Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | | |
Collapse
|
19
|
Paulucci AA, Katsuyama AM, Sousa AD, Farah CS. A specific C-terminal deletion in tropomyosin results in a stronger head-to-tail interaction and increased polymerization. ACTA ACUST UNITED AC 2004; 271:589-600. [PMID: 14728686 DOI: 10.1111/j.1432-1033.2003.03961.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Tropomyosin is a 284 residue dimeric coiled-coil protein that interacts in a head-to-tail manner to form linear filaments at low ionic strengths. Polymerization is related to tropomyosin's ability to bind actin, and both properties depend on intact N- and C-termini as well as alpha-amino acetylation of the N-terminus of the muscle protein. Nalpha-acetylation can be mimicked by an N-terminal Ala-Ser fusion in recombinant tropomyosin (ASTm) produced in Escherichia coli. Here we show that a recombinant tropomyosin fragment, corresponding to the protein's first 260 residues plus an Ala-Ser fusion [ASTm(1-260)], polymerizes to a much greater extent than the corresponding full-length recombinant protein, despite the absence of the C-terminal 24 amino acids. This polymerization is sensitive to ionic strength and is greatly reduced by the removal of the N-terminal Ala-Ser fusion [nfTm(1-260)]. CD studies show that nonpolymerizable tropomyosin fragments, which terminate at position 260 [Tm(167-260) and Tm(143-260)], as well as Tm(220-284), are able to interact with ASTm(1-142), a nonpolymerizable N-terminal fragment, and that the head-to-tail interactions observed for these fragment pairs are accompanied by a significant degree of folding of the C-terminal tropomyosin fragment. These results suggest that the new C-terminus, created by the deletion, polymerizes in a manner similar to the full-length protein. Head-to-tail binding for fragments terminating at position 260 may be explained by the presence of a greater concentration of negatively charged residues, while, at the same time, maintaining a conserved pattern of charged and hydrophobic residues found in polymerizable tropomyosins from a variety of sources.
Collapse
Affiliation(s)
- Adriana A Paulucci
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | | | | |
Collapse
|
20
|
Sano KI, Maeda K, Oki M, Maéda Y. Enhancement of protein expression in insect cells by a lobster tropomyosin cDNA leader sequence. FEBS Lett 2002; 532:143-6. [PMID: 12459479 DOI: 10.1016/s0014-5793(02)03659-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We describe a cis element that dramatically increases the expression levels of exogenous genes in baculovirus-infected insect cells. This 21 bp sequence element is derived from a 5' untranslated leader sequence of a lobster tropomyosin cDNA (L21). By using a transfer vector carrying L21, the expression levels of tropomyosin and luciferase were 20- and seven-fold higher with L21 than without L21, respectively. L21 has both the Kozak sequence and the A-rich sequence found in the polyhedrin leader sequence. We assume that both sequence elements are essential for the enhancement of protein expression in the baculovirus-based expression system.
Collapse
Affiliation(s)
- Ken-Ichi Sano
- RIKEN Harima Institute at SPring-8, Laboratory for Structural Biochemistry, Mikazuki, Sayo, Hyogo 679-5148, Japan
| | | | | | | |
Collapse
|
21
|
Hilario E, Lataro RC, Alegria MC, Lavarda SC, Ferro JA, Bertolini MC. High-level production of functional muscle alpha-tropomyosin in Pichia pastoris. Biochem Biophys Res Commun 2001; 284:955-60. [PMID: 11409886 DOI: 10.1006/bbrc.2001.5059] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although numerous studies have reported the production of skeletal muscle alpha-tropomyosin in E. coli, the protein needs to be modified at the amino terminus in order to be active. Without these modifications the protein does not bind to actin, does not exhibit head-to-tail polymerization, and does not inhibit the actomyosin Mg(2+)-ATPase in the absence of troponin. On the other hand, the protein produced in insect cells using baculovirus as an expression vector (Urbancikova, M., and Hitchcock-DeGregori, S. E., J. Biol. Chem., 269, 24310-24315, 1994) is only partially acetylated at its amino terminal and therefore is not totally functional. In an attempt to produce an unmodified functional recombinant muscle alpha-tropomyosin for structure-function correlation studies we have expressed the chicken skeletal alpha-tropomyosin cDNA in the yeast Pichia pastoris. Recombinant protein was produced at a high level (20 mg/L) and was similar to the wild type muscle protein in its ability to polymerize, to bind to actin and to regulate the actomyosin S1 Mg(2+)-ATPase.
Collapse
Affiliation(s)
- E Hilario
- Departamento de Bioquímica e Tecnologia Química, Instituto de Química-UNESP, postal code 355, Araraquara, SP, 14800-900, Brazil
| | | | | | | | | | | |
Collapse
|
22
|
Maytum R, Konrad M, Lehrer SS, Geeves MA. Regulatory properties of tropomyosin effects of length, isoform, and N-terminal sequence. Biochemistry 2001; 40:7334-41. [PMID: 11401582 DOI: 10.1021/bi010072i] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The regulatory properties of naturally occurring tropomyosins (Tms) of differing lengths have been examined. These Tms span from 4 to 7 actin subunits. Native proteins have been used to study the common 7 actin-spanning skeletal and smooth muscle variants and expressed recombinant proteins to study the shorter fibroblast 5a, 5b, yeast Tm1 and yeast Tm2 Tms (6, 6, 5, and 4 actin-spanning variants, respectively). The yTm2 has been overexpressed in Escherichia coli with N-terminal constructs equivalent to those previously used for yTm1 [Maytum, R., et al. (2000) Biochemistry 39, 11913]. The regulation of myosin subfragment 1 (S1) binding to actin by Tm has been assessed using a sensitive S1 binding titration. The equilibrium between closed and open (C to M states, KT = 0.1-0.14) was similar for all vertebrate Tms. Apart from skTm where the apparent cooperative unit size (n) is the same as the structural size (n = 7 actin sites), the other vertebrate Tms that were studied exhibited large n values (n = 12-14). The yeast Tms also exhibited large values of n (6-9) in comparison to their structural sizes (4-5). The determined value of KT depended on the N-terminal sequence (KT = 0.15-1). These results are compared with the effect of S1 upon Tm's affinity for actin. The yeast Tms have regulatory parameters similar to those of skTm, but unlike skTm, S1 has little effect upon their actin affinity. This shows that an actin state with a high affinity for S1 and Tm is not necessary for regulation, and the higher affinity of S1 for actin in the presence of vertebrate Tms is probably the result of a direct interaction of S1 with Tm.
Collapse
Affiliation(s)
- R Maytum
- Department of Biosciences, University of Kent at Canterbury, Canterbury, UK.
| | | | | | | |
Collapse
|
23
|
Hitchcock-DeGregori SE, Song Y, Moraczewska J. Importance of internal regions and the overall length of tropomyosin for actin binding and regulatory function. Biochemistry 2001; 40:2104-12. [PMID: 11329279 DOI: 10.1021/bi002421z] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Tropomyosin (Tm) binds along actin filaments, one molecule spanning four to seven actin monomers, depending on the isoform. Periodic repeats in the sequence have been proposed to correspond to actin binding sites. To learn the functional importance of length and the internal periods we made a series of progressively shorter Tms, deleting from two up to six of the internal periods from rat striated alpha-TM (dAc2--3, dAc2--4, dAc3--5, dAc2--5, dAc2--6, dAc1.5--6.5). Recombinant Tms (unacetylated) were expressed in Escherichia coli. Tropomyosins that are four or more periods long (dAc2--3, dAc2--4, and dAc3--5) bound well to F-actin with troponin (Tn). dAc2--5 bound weakly (with EGTA) and binding of shorter mutants was undetectable in any condition. Myosin S1-induced binding of Tm to actin in the tight Tm-binding "open" state did not correlate with actin binding. dAc3--5 and dAc2--5 did not bind to actin even when the filament was saturated with S1. In contrast, dAc2--3 and dAc2--4 did, like wild-type-Tm, requiring about 3 mol of S1/mol of Tm for half-maximal binding. The results show the critical importance of period 5 (residues 166--207) for myosin S1-induced binding. The Tms that bound to actin (dAc2--3, dAc2--4, and dAc3--5) all fully inhibited the actomyosin ATPase (+Tn) in EGTA. In the presence of Ca(2+), relief of inhibition by these Tms was incomplete. We conclude (1) four or more actin periods are required for Tm to bind to actin with reasonable affinity and (2) that the structural requirements of Tm for the transition of the regulated filament from the blocked-to-closed/open (relief of inhibition by Ca(2+)) and the closed-to-open states (strong Tm binding to actin-S1) are different.
Collapse
Affiliation(s)
- S E Hitchcock-DeGregori
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, New Jersey 08854, USA.
| | | | | |
Collapse
|
24
|
Maytum R, Geeves MA, Konrad M. Actomyosin regulatory properties of yeast tropomyosin are dependent upon N-terminal modification. Biochemistry 2000; 39:11913-20. [PMID: 11009604 DOI: 10.1021/bi000977g] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The yeast tropomyosin 1 gene (TPM1) encodes the major isoform of the two tropomyosins (Tm) found in yeast. The gene has been expressed in E. coli and the protein purified. The gene product (yTm1) is a 199-amino acid protein that has a low affinity for actin compared to the native yTm1 purified from yeast. Mass spectrometry shows that the native protein is acetylated while the recombinant protein is not. A series of yTm1 N-terminal constructs were made with either an Ala-Ser dipeptide extension previously shown to restore actin binding to skeletal muscle Tm or the natural extension found in fibroblast Tm 5a/b. All constructs bound actin tightly and showed similar CD spectra and thermal stability. All constructs induced cooperativity in the equilibrium binding of myosin subfragment 1, to actin but the binding curves differed significantly between the constructs. The apparent cooperative unit size (n) and closed/open equilibrium (K(T)) were determined using a fluorescence titration technique [Maytum et al. (1998) Biophys. J. 74, A347]. The data could be accounted for by changes in K(T) (0.1-1) with no change in n. Values of n were approximately twice the structural unit size (5 actin sites). The presence of yTm on actin had little effect upon the overall affinity of S1 for actin despite showing an ability to regulate the acto-myosin interaction. These results show that the short yTm can aid our understanding of actomyosin regulation and that the N-terminus of Tm has a major influence upon its regulatory properties.
Collapse
Affiliation(s)
- R Maytum
- Department of Biosciences, University of Kent at Canterbury, Canterbury, U.K.
| | | | | |
Collapse
|
25
|
Sano KI, Maeda K, Taniguchi H, Maéda Y. Amino-acid replacements in an internal region of tropomyosin alter the properties of the entire molecule. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:4870-7. [PMID: 10903522 DOI: 10.1046/j.1432-1327.2000.01549.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Two isoforms of lobster muscle tropomyosin, a fast muscle type, fTm, and a slow muscle type, sTm1, are identical except for 15 residues within the region of amino acids 39-80, which corresponds to exon 2 of the tropomyosin genes of many phyla. Although the difference in the sequence does not include the terminal regions, the two isoforms are extremely different in viscosity, which is a good measure of the head-to-tail interaction strength and should be dependent on the conformation of the terminal 7-9 residues. To determine the influence of amino-acid replacements in the internal region on the overall conformation and the functional properties of the molecule, we compared the physical properties of the two isoforms and their interactions with other proteins, such as actin and myosin subfragment 1 (S1). Limited proteolysis by trypsin and chymotrypsin showed that sTm1 is more susceptible than fTm at the sites outside the region with the replaced residues. Compared with fTm, sTm1 showed higher viscosity, had a higher actin affinity, and inhibited acto-S1 ATPase to a greater extent. Finally, the binding isotherm of S1-ADP to actin-sTm1 is less sigmoidal than that to actin-fTm. These results indicate that the amino-acid replacements in the internal region alter the conformation and the physical properties of the entire molecule as well as its interactions with actin and myosin.
Collapse
Affiliation(s)
- K I Sano
- International Institute for Advanced Research, Central Research Laboratories, Matsushita Electric Industrial, Kyoto, Japan
| | | | | | | |
Collapse
|
26
|
Moraczewska J, Nicholson-Flynn K, Hitchcock-DeGregori SE. The ends of tropomyosin are major determinants of actin affinity and myosin subfragment 1-induced binding to F-actin in the open state. Biochemistry 1999; 38:15885-92. [PMID: 10625454 DOI: 10.1021/bi991816j] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tropomyosin (TM) is thought to exist in equilibrium between two states on F-actin, closed and open [Geeves, M. A., and Lehrer, S. S. (1994) Biophys. J. 67, 273-282]. Myosin shifts the equilibrium to the open state in which myosin binds strongly and develops force. Tropomyosin isoforms, that primarily differ in their N- and C-terminal sequences, have different equilibria between the closed and open states. The aim of the research is to understand how the alternate ends of TM affect cooperative actin binding and the relationship between actin affinity and the cooperativity with which myosin S1 promotes binding of TM to actin in the open state. A series of rat alpha-tropomyosin variants was expressed in Escherichia coli that are identical except for the ends, which are encoded by exons 1a or 1b and exons 9a, 9c or 9d. Both the N- and C-terminal sequences, and the particular combination within a TM molecule, determine actin affinity. Compared to tropomyosins with an exon 1a-encoded N-terminus, found in long isoforms, the exon 1b-encoded sequence, expressed in 247-residue nonmuscle tropomyosins, increases actin affinity in tropomyosins expressing 9a or 9d but has little effect with 9c, a brain-specific exon. The relative actin affinities, in decreasing order, are 1b9d > 1b9a > acetylated 1a9a > 1a9d >> 1a9a > or = 1a9c congruent with 1b9c. Myosin S1 greatly increases the affinity of all tropomyosin variants for actin. In this, the actin affinity is the primary factor in the cooperativity with which myosin S1 induces TM binding to actin in the open state; generally, the higher the actin affinity, the lower the occupancy by myosin required to saturate the actin with tropomyosin: 1b9d >1a9d> 1b9a > or = acetylated 1a9a > 1a9a > 1a9c congruent with 1b9c.
Collapse
Affiliation(s)
- J Moraczewska
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, New Jersey 08854, USA
| | | | | |
Collapse
|
27
|
Jackman DM, Waddleton DM, Younghusband B, Heeley DH. Further characterisation of fast, slow and cardiac muscle tropomyosins from salmonid fish. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 242:363-71. [PMID: 8973655 DOI: 10.1111/j.1432-1033.1996.0363r.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Separate cDNA libraries were constructed from cardiac muscle and slow myotomal muscle of mature brown trout (Salmo trutta). The complete sequence of tropomyosin (TM) that is specific to these muscles was determined from full-length transcripts isolated from the corresponding library. The identity of the sequences was supported by protein data. When compared to the sequence of Atlantic salmon fast myotomal TM [Heeley, D. H., Bieger, T., Waddleton, D. M., Hong, C., Jackman, D. M., McGowan, C., Davidson, W. S. & Beavis, R. C. (1995) Characterisation of fast, slow and cardiac muscle tropomyosins from salmonid fish, Eur. J. Biochem. 232, 226-234], the main difference in the N- and C-terminal sequences comprising the site of end-to-end overlap occurs at residue 276 where an asparagine in fast TM is replaced by a histidine in both cardiac and slow TM. Trout cardiac TM exhibited greatest similarity to chicken cardiac TM while trout slow TM exhibited greatest similarity to skeletal alpha-TMs. Thus, none of the three salmonid TM sequences corresponds to a beta-type TM. In calorimetry experiments (0.1 M salt, pH 7.00, t = 10-60 degrees C), in the presence of dithiothreitol, differences were observed in the thermal unfolding profiles of the purified isoforms. A single endotherm (tm = 39.5 degrees C) was noted for cardiac TM. Two endotherms were observed for fast TM [tm = 26.5 degrees C and 39.8 degrees C (main)] and slow TM [tm = 37.4 degrees C and 46.9 degrees C (main)]. Fast TM was cloned and over expressed in the bacterial cell lines JM105 and BL21. Upon cell lysis, recombinant TM (rc TM) made in JM105 was rapidly and quantitatively cleaved between residues 6 and 7. Intact rc TM was produced by using BL21, as shown by Edman-based sequencing, carboxypeptidase digestion and mass analysis. In viscometry assays, performed at low ionic strength (pH 7.00, t = 5 degrees C) the full-length rc TM exhibited markedly lower relative viscosity values than the corresponding wild type.
Collapse
Affiliation(s)
- D M Jackman
- Department of Biochemistry, Memorial University of Newfoundland, St John's, Canada
| | | | | | | |
Collapse
|
28
|
Miegel A, Sano KI, Yamamoto K, Maeda K, Maéda Y, Taniguchi H, Yao M, Wakatsuki S. Production and crystallization of lobster muscle tropomyosin expressed in Sf9 cells. FEBS Lett 1996; 394:201-5. [PMID: 8843164 DOI: 10.1016/0014-5793(96)00949-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A new form of muscle tropomyosin crystal has been obtained, by employing new strategies in protein preparation and crystallization. Non-polymerizable tropomyosin was prepared by removing 11 amino acids at the C-terminus. The truncated tropomyosin was expressed in Sf9 insect cells by use of the baculovirus-based expression system, to obtain highly homogeneous protein preparations. By routinely monitoring homogeneity by mass spectrometry, we found that the homogeneity played a key role in obtaining good crystals. The crystal quality was also dependent on isoforms; the crystals raised from a slow muscle-specific isoform diffracted to a higher resolution, compared with a fast muscle-specific counterpart. For crystallization, a high concentration of organic solvent was used as the precipitant; in the presence of 35% DMSO, tetragonal crystals were formed, which belong to space group P4(3)(1)2(1)2 with cell constants of a=b=105.6 angstrom, c=506.9 angstrom. The crystals gave rise to reflections the intensities of which were characteristically determined by the transform of alpha-helical coiled-coil. Thus in the region of 10-5.5 angstrom resolut along the c*-axis, the reflections were weak. For accurate measurement of these reflection intensities, beam-line ID2 in ESRF Grenoble was advantageous owing to the high brilliance and a low background. There the crystals diffracted to beyond 3.0 A along the c*-axis, whereas along the a*-b*-plane reflections were limited to 6.6 angstrom. Data analysis is under way on a data set from a PtCl4 derivative.
Collapse
Affiliation(s)
- A Miegel
- International Institute for Advanced Research, Central Research Laboratories, Seika, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Affiliation(s)
- A L Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco 94143-0446, USA
| | | | | |
Collapse
|
30
|
Hammell RL, Hitchcock-DeGregori SE. Mapping the functional domains within the carboxyl terminus of alpha-tropomyosin encoded by the alternatively spliced ninth exon. J Biol Chem 1996; 271:4236-42. [PMID: 8626768 DOI: 10.1074/jbc.271.8.4236] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Tropomyosins are highly conserved, coiled-coil actin binding proteins found in most eukaryotic cells. Striated and smooth muscle alpha-tropomyosins differ by the regions encoded by exons 2 and 9. Unacetylated smooth tropomyosin expressed in Escherichia coli binds actin with high affinity, whereas unacetylated striated tropomyosin requires troponin, found only in striated muscle, for strong actin binding. The residues encoded by exon 9 cause these differences (Cho, Y.-J., and Hitchcock-DeGregori, S. E. (1991) Proc. Natl. Acad. Sci. U. S. A. 88, 10153-10157). We mapped the functional domains encoded by the alpha-tropomyosin exon 9a (striated muscle-specific) and 9d (constitutively expressed), by measuring actin binding and regulation of the actomyosin MgATPase by tropomyosin exon 9 chimeras and truncation mutants expressed in E. coli. We have shown that: 1) the carboxyl-terminal nine residues define the actin affinity of unacetylated tropomyosin; 2) in the presence of Ca2+, the entire exon 9a is required for troponin to promote fully high affinity actin binding; 3) the first 18 residues encoded by exon 9a are critical for the interaction of troponin with tropomyosin on the thin filament, even in the absence of Ca2+. The results give new insight into the structural requirements of tropomyosin for thin filament assembly and regulatory function.
Collapse
Affiliation(s)
- R L Hammell
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|