1
|
Herdering E, Reif-Trauttmansdorff T, Kumar A, Habenicht T, Hochberg G, Bohn S, Schuller J, Schmitz RA. 2-oxoglutarate triggers assembly of active dodecameric Methanosarcina mazei glutamine synthetase. eLife 2025; 13:RP97484. [PMID: 40163028 PMCID: PMC11957540 DOI: 10.7554/elife.97484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
Glutamine synthetases (GS) are central enzymes essential for the nitrogen metabolism across all domains of life. Consequently, they have been extensively studied for more than half a century. Based on the ATP-dependent ammonium assimilation generating glutamine, GS expression and activity are strictly regulated in all organisms. In the methanogenic archaeon Methanosarcina mazei, it has been shown that the metabolite 2-oxoglutarate (2-OG) directly induces the GS activity. Besides, modulation of the activity by interaction with small proteins (GlnK1 and sP26) has been reported. Here, we show that the strong activation of M. mazei GS (GlnA1) by 2-OG is based on the 2-OG dependent dodecamer assembly of GlnA1 by using mass photometry (MP) and single particle cryo-electron microscopy (cryo-EM) analysis of purified strep-tagged GlnA1. The dodecamer assembly from dimers occurred without any detectable intermediate oligomeric state and was not affected in the presence of GlnK1. The 2.39 Å cryo-EM structure of the dodecameric complex in the presence of 12.5 mM 2-OG demonstrated that 2-OG is binding between two monomers. Thereby, 2-OG appears to induce the dodecameric assembly in a cooperative way. Furthermore, the active site is primed by an allosteric interaction cascade caused by 2-OG-binding towards an adaption of an open active state conformation. In the presence of additional glutamine, strong feedback inhibition of GS activity was observed. Since glutamine dependent disassembly of the dodecamer was excluded by MP, feedback inhibition most likely relies on the binding of glutamine to the catalytic site. Based on our findings, we propose that under nitrogen limitation the induction of M. mazei GS into a catalytically active dodecamer is not affected by GlnK1 and crucially depends on the presence of 2-OG.
Collapse
Affiliation(s)
- Eva Herdering
- Institute for General Microbiology, Christian Albrechts UniversityKielGermany
| | - Tristan Reif-Trauttmansdorff
- Center for Synthetic Microbiology (SYNMIKRO) Research Center and Department of Chemistry, Philipps-Universität MarburgMarburgGermany
| | - Anuj Kumar
- Center for Synthetic Microbiology (SYNMIKRO) Research Center and Department of Chemistry, Philipps-Universität MarburgMarburgGermany
| | - Tim Habenicht
- Institute for General Microbiology, Christian Albrechts UniversityKielGermany
| | - Georg Hochberg
- Center for Synthetic Microbiology (SYNMIKRO) Research Center and Department of Chemistry, Philipps-Universität MarburgMarburgGermany
- Evolutionary Biochemistry Group, Max Planck Institute for Terrestrial MicrobiologyMarburgGermany
- Department of Chemistry, Philipps-Universität MarburgMarburgGermany
| | - Stefan Bohn
- Cryo-Electron Microscopy Platform and Institute of Structural Biology, Helmholtz MunichNeuherbergGermany
| | - Jan Schuller
- Center for Synthetic Microbiology (SYNMIKRO) Research Center and Department of Chemistry, Philipps-Universität MarburgMarburgGermany
| | - Ruth Anne Schmitz
- Institute for General Microbiology, Christian Albrechts UniversityKielGermany
| |
Collapse
|
2
|
Zhang M, Zhu W, Liu H, Pan K, Li Q, Zhu Q, Huang Y, Wang C, Hu J, Jiang M, Yan X, Hong Q. Unveiling the analgesic and antipyretic drug acetaminophen catabolic mechanism in Pseudomonas taiwanensis AP-1. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136281. [PMID: 39471631 DOI: 10.1016/j.jhazmat.2024.136281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/23/2024] [Accepted: 10/23/2024] [Indexed: 11/01/2024]
Abstract
Acetaminophen (APAP), an analgesic and antipyretic drug, is commonly detected in wastewater treatment plant (WWTP) effluents, surface water, and soil, indicating its status as an emerging environmental contaminant. In this study, we isolated a bacterium, Pseudomonas taiwanensis AP-1, capable of completely mineralizing APAP and utilizing it as the sole carbon source for growth. A newly identified metabolite, γ-glutamyl-4-aminophenol (γ-G4AP), was reported for the first time in the degradation of APAP by strain AP-1. Two amidases (ApaH1 and ApaH2), responsible for the conversion of APAP to 4-aminophenol (4-AP), were identified through a combination of genomic comparison, heterologous expression, and gene knockout. Notably, ApaH1 played a pivotal role in the degradation of APAP by strain AP-1. The catalytic triad of ApaH1 (K82-S161-S185) and ApaH2 (K85-S160-S184) were identified as by molecular docking and site-directed mutagenesis. Additionally, a gene cluster apd for the metabolism of 4-AP was also successfully identified in strain AP-1, consisting of the aniline dioxygenase gene cluster apdBCD1D2EF and the BT catabolic gene apdGH. Interestingly, the 4-AP metabolic gene cluster apd was highly conserved among other Pseudomonas strains capable of APAP degradation. Our results provide new insights into the mechanism of APAP biodegradation and strain AP-1 may be a promising bacterium for the bioremediation of APAP pollutions.
Collapse
Affiliation(s)
- Mingliang Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Weihao Zhu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Hongfei Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Kaihua Pan
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Qian Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Qian Zhu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Yanni Huang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Changchang Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Junqiang Hu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Mingli Jiang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Xin Yan
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Qing Hong
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.
| |
Collapse
|
3
|
Müller MC, Lemaire ON, Kurth JM, Welte CU, Wagner T. Differences in regulation mechanisms of glutamine synthetases from methanogenic archaea unveiled by structural investigations. Commun Biol 2024; 7:111. [PMID: 38243071 PMCID: PMC10799026 DOI: 10.1038/s42003-023-05726-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 12/19/2023] [Indexed: 01/21/2024] Open
Abstract
Glutamine synthetases (GS) catalyze the ATP-dependent ammonium assimilation, the initial step of nitrogen acquisition that must be under tight control to fit cellular needs. While their catalytic mechanisms and regulations are well-characterized in bacteria and eukaryotes, only limited knowledge exists in archaea. Here, we solved two archaeal GS structures and unveiled unexpected differences in their regulatory mechanisms. GS from Methanothermococcus thermolithotrophicus is inactive in its resting state and switched on by 2-oxoglutarate, a sensor of cellular nitrogen deficiency. The enzyme activation overlays remarkably well with the reported cellular concentration for 2-oxoglutarate. Its binding to an allosteric pocket reconfigures the active site through long-range conformational changes. The homolog from Methermicoccus shengliensis does not harbor the 2-oxoglutarate binding motif and, consequently, is 2-oxoglutarate insensitive. Instead, it is directly feedback-inhibited through glutamine recognition by the catalytic Asp50'-loop, a mechanism common to bacterial homologs, but absent in M. thermolithotrophicus due to residue substitution. Analyses of residue conservation in archaeal GS suggest that both regulations are widespread and not mutually exclusive. While the effectors and their binding sites are surprisingly different, the molecular mechanisms underlying their mode of action on GS activity operate on the same molecular determinants in the active site.
Collapse
Affiliation(s)
- Marie-Caroline Müller
- Microbial Metabolism Research Group, Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359, Bremen, Germany
| | - Olivier N Lemaire
- Microbial Metabolism Research Group, Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359, Bremen, Germany
| | - Julia M Kurth
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
- Microcosm Earth Center, Philipps-University Marburg and Max Planck Institute for Terrestrial Microbiology, Hans-Meerwein-Str. 4, 35032, Marburg, Germany
| | - Cornelia U Welte
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Tristan Wagner
- Microbial Metabolism Research Group, Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359, Bremen, Germany.
| |
Collapse
|
4
|
Gao B, Li G, Gu D, Wang J. Research progress on GlnR-mediated regulation in Actinomycetes. Front Microbiol 2023; 14:1282523. [PMID: 38075861 PMCID: PMC10704036 DOI: 10.3389/fmicb.2023.1282523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/07/2023] [Indexed: 04/03/2025] Open
Abstract
This review constitutes a summary of current knowledge on GlnR, a global regulator, that assumes a critical function in the regulation of nitrogen metabolism of Actinomycetes. In cross-regulation with other regulators, GlnR was also shown to play a role in the regulation of carbon and phosphate metabolisms as well as of secondary metabolism. A description of the structure of the GlnR protein and of its binding sites in various genes promoters regions is also provided. This review thus provides a global understanding of the critical function played by GlnR in the regulation of primary and secondary metabolism in Actinomycetes.
Collapse
Affiliation(s)
- Bo Gao
- Department of Laboratory Medicine, Shenzhen Key Laboratory of Medical Laboratory and Molecular Diagnostics, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Guoqiang Li
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Dayong Gu
- Department of Laboratory Medicine, Shenzhen Key Laboratory of Medical Laboratory and Molecular Diagnostics, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Jin Wang
- Department of Laboratory Medicine, Shenzhen Key Laboratory of Medical Laboratory and Molecular Diagnostics, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| |
Collapse
|
5
|
Schumacher MA, Salinas R, Travis BA, Singh RR, Lent N. M. mazei glutamine synthetase and glutamine synthetase-GlnK1 structures reveal enzyme regulation by oligomer modulation. Nat Commun 2023; 14:7375. [PMID: 37968329 PMCID: PMC10651883 DOI: 10.1038/s41467-023-43243-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/03/2023] [Indexed: 11/17/2023] Open
Abstract
Glutamine synthetases (GS) play central roles in cellular nitrogen assimilation. Although GS active-site formation requires the oligomerization of just two GS subunits, all GS form large, multi-oligomeric machines. Here we describe a structural dissection of the archaeal Methanosarcina mazei (Mm) GS and its regulation. We show that Mm GS forms unstable dodecamers. Strikingly, we show this Mm GS oligomerization property is leveraged for a unique mode of regulation whereby labile Mm GS hexamers are stabilized by binding the nitrogen regulatory protein, GlnK1. Our GS-GlnK1 structure shows that GlnK1 functions as molecular glue to affix GS hexamers together, stabilizing formation of GS active-sites. These data, therefore, reveal the structural basis for a unique form of enzyme regulation by oligomer modulation.
Collapse
Affiliation(s)
- Maria A Schumacher
- Department of Biochemistry, 307 Research Dr., Box 3711, Duke University Medical Center, Durham, NC, 27710, USA.
| | - Raul Salinas
- Department of Biochemistry, 307 Research Dr., Box 3711, Duke University Medical Center, Durham, NC, 27710, USA
| | - Brady A Travis
- Department of Biochemistry, 307 Research Dr., Box 3711, Duke University Medical Center, Durham, NC, 27710, USA
| | - Rajiv Ranjan Singh
- Department of Biochemistry, 307 Research Dr., Box 3711, Duke University Medical Center, Durham, NC, 27710, USA
| | - Nicholas Lent
- Department of Biochemistry, 307 Research Dr., Box 3711, Duke University Medical Center, Durham, NC, 27710, USA
| |
Collapse
|
6
|
Thangaraj S, Kim HR, Heo JM, Son S, Ryu J, Park JW, Kim JH, Kim SY, Jung HK, Kim IN. Unraveling prokaryotic diversity distribution and functional pattern on nitrogen and methane cycling in the subtropical Western North Pacific Ocean. MARINE POLLUTION BULLETIN 2023; 196:115569. [PMID: 37922593 DOI: 10.1016/j.marpolbul.2023.115569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 11/07/2023]
Abstract
Prokaryotes play an important role in marine nitrogen and methane cycles. However, their community changes and metabolic modifications to the concurrent impact of ocean warming (OW), acidification (OA), deoxygenation (OD), and anthropogenic‑nitrogen-deposition (AND) from the surface to the deep ocean remains unknown. We examined here the amplicon sequencing approach across the surface (0-200 m; SL), intermediate (200-1000 m; IL), and deep layers (1000-2200 m; DL), and characterized the simultaneous impacts of OW, OA, OD, and AND on the Western North Pacific Ocean prokaryotic changes and their functional pattern in nitrogen and methane cycles. Results showed that SL possesses higher ammonium oxidation community/metabolic composition assumably the reason for excess nitrogen input from AND and modification of their kinetic properties to OW adaptation. Expanding OD at IL showed hypoxic conditions in the oxygen minimum layer, inducing higher microbial respiration that elevates the dimerization of nitrification genes for higher nitrous oxide production. The aerobic methane-oxidation composition was dominant in SL presumably the reason for adjustment in prokaryotic optimal temperature to OW, while anaerobic oxidation composition was dominant at IL due to the evolutionary changes coupling with higher nitrification. Our findings refocus on climate-change impacts on the open ocean ecosystem from the surface to the deep-environment integrating climate-drivers as key factors for higher nitrous-oxide and methane emissions.
Collapse
Affiliation(s)
- Satheeswaran Thangaraj
- Department of Marine Science, Incheon National University, Incheon, South Korea; Freddy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem, Israel; Interuniversity Institute for Marine Sciences, Eilat, Israel; Department of Physiology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Hyo-Ryeon Kim
- Department of Marine Science, Incheon National University, Incheon, South Korea
| | - Jang-Mu Heo
- Department of Marine Science, Incheon National University, Incheon, South Korea
| | - Seunghyun Son
- Cooperative Institute for Satellite Earth System Studies (CISESS) / Earth System Science Interdisciplinary Center (ESSIC), University of Maryland, USA
| | - Jongseong Ryu
- Department of Marine Biotechnology, Anyang University, Incheon, South Korea
| | - Jong-Woo Park
- Tidal Flat Research Center, National Institute of Fisheries Science, Gunsan, South Korea
| | - Ju-Hyoung Kim
- Department of Aquaculture and Aquatic Science, Kunsan National University, Gunsan, South Korea
| | - Seo-Young Kim
- Department of Marine Science, Incheon National University, Incheon, South Korea
| | - Hae-Kun Jung
- Environment and Fisheries Resources Research Division, East Sea Fisheries Institute, National Institute of Fisheries Science, Gangneung, South Korea
| | - Il-Nam Kim
- Department of Marine Science, Incheon National University, Incheon, South Korea.
| |
Collapse
|
7
|
Zhao X, Song Y, Wang T, Hua C, Hu R, Shang Y, Shi H, Chen S. Glutamine synthetase and GlnR regulate nitrogen metabolism in Paenibacillus polymyxa WLY78. Appl Environ Microbiol 2023; 89:e0013923. [PMID: 37668407 PMCID: PMC10537745 DOI: 10.1128/aem.00139-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 07/12/2023] [Indexed: 09/06/2023] Open
Abstract
Paenibacillus polymyxa WLY78, a N2-fixing bacterium, has great potential use as a biofertilizer in agriculture. Recently, we have revealed that GlnR positively and negatively regulates the transcription of the nif (nitrogen fixation) operon (nifBHDKENXhesAnifV) in P. polymyxa WLY78 by binding to two loci of the nif promoter according to nitrogen availability. However, the regulatory mechanisms of nitrogen metabolism mediated by GlnR in the Paenibacillus genus remain unclear. In this study, we have revealed that glutamine synthetase (GS) and GlnR in P. polymyxa WLY78 play a key role in the regulation of nitrogen metabolism. P. polymyxa GS (encoded by glnA within glnRA) and GS1 (encoded by glnA1) belong to distinct groups: GSI-α and GSI-β. Both GS and GS1 have the enzyme activity to convert NH4+ and glutamate into glutamine, but only GS is involved in the repression by GlnR. GlnR represses transcription of glnRA under excess nitrogen, while it activates the expression of glnA1 under nitrogen limitation. GlnR simultaneously activates and represses the expression of amtBglnK and gcvH in response to nitrogen availability. Also, GlnR regulates the expression of nasA, nasD1D2, nasT, glnQHMP, and glnS. IMPORTANCE In this study, we have revealed that Paenibacillus polymyxa GlnR uses multiple mechanisms to regulate nitrogen metabolism. GlnR activates or represses or simultaneously activates and inhibits the transcription of nitrogen metabolism genes in response to nitrogen availability. The multiple regulation mechanisms employed by P. polymyxa GlnR are very different from Bacillus subtilis GlnR which represses nitrogen metabolism under excess nitrogen. Both GS encoded by glnA within the glnRA operon and GS1 encoded by glnA1 in P. polymyxa WLY78 are involved in ammonium assimilation, but only GS is required for regulating GlnR activity. The work not only provides significant insight into understanding the interplay of GlnR and GS in nitrogen metabolism but also provides guidance for improving nitrogen fixation efficiency by modulating nitrogen metabolism.
Collapse
Affiliation(s)
- Xiyun Zhao
- Key Laboratory of Soil Microbiology of Agriculture Ministry and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yi Song
- Key Laboratory of Soil Microbiology of Agriculture Ministry and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Tianshu Wang
- Key Laboratory of Soil Microbiology of Agriculture Ministry and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Chongchong Hua
- Key Laboratory of Soil Microbiology of Agriculture Ministry and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Rui Hu
- Key Laboratory of Soil Microbiology of Agriculture Ministry and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yimin Shang
- Key Laboratory of Soil Microbiology of Agriculture Ministry and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Haowen Shi
- Key Laboratory of Soil Microbiology of Agriculture Ministry and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Sanfeng Chen
- Key Laboratory of Soil Microbiology of Agriculture Ministry and College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
8
|
Ghosh S, Kundu R, Chandana M, Das R, Anand A, Beura S, Bobde RC, Jain V, Prabhu SR, Behera PK, Mohanty AK, Chakrapani M, Satyamoorthy K, Suryawanshi AR, Dixit A, Padmanaban G, Nagaraj VA. Distinct evolution of type I glutamine synthetase in Plasmodium and its species-specific requirement. Nat Commun 2023; 14:4216. [PMID: 37452051 PMCID: PMC10349072 DOI: 10.1038/s41467-023-39670-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/22/2023] [Indexed: 07/18/2023] Open
Abstract
Malaria parasite lacks canonical pathways for amino acid biosynthesis and depends primarily on hemoglobin degradation and extracellular resources for amino acids. Interestingly, a putative gene for glutamine synthetase (GS) is retained despite glutamine being an abundant amino acid in human and mosquito hosts. Here we show Plasmodium GS has evolved as a unique type I enzyme with distinct structural and regulatory properties to adapt to the asexual niche. Methionine sulfoximine (MSO) and phosphinothricin (PPT) inhibit parasite GS activity. GS is localized to the parasite cytosol and abundantly expressed in all the life cycle stages. Parasite GS displays species-specific requirement in Plasmodium falciparum (Pf) having asparagine-rich proteome. Targeting PfGS affects asparagine levels and inhibits protein synthesis through eIF2α phosphorylation leading to parasite death. Exposure of artemisinin-resistant Pf parasites to MSO and PPT inhibits the emergence of viable parasites upon artemisinin treatment.
Collapse
Affiliation(s)
- Sourav Ghosh
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
- Regional Centre for Biotechnology, Faridabad, 121001, Haryana, India
| | - Rajib Kundu
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
- Regional Centre for Biotechnology, Faridabad, 121001, Haryana, India
| | - Manjunatha Chandana
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, Odisha, India
| | - Rahul Das
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
- Regional Centre for Biotechnology, Faridabad, 121001, Haryana, India
| | - Aditya Anand
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
- Regional Centre for Biotechnology, Faridabad, 121001, Haryana, India
| | - Subhashree Beura
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
| | - Ruchir Chandrakant Bobde
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
- Regional Centre for Biotechnology, Faridabad, 121001, Haryana, India
| | - Vishal Jain
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
| | - Sowmya Ramakant Prabhu
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | | | - Akshaya Kumar Mohanty
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
- Ispat General Hospital, Sector 19, Rourkela, 769005, Odisha, India
| | - Mahabala Chakrapani
- Department of Medicine, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | | | - Anshuman Dixit
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
| | - Govindarajan Padmanaban
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | | |
Collapse
|
9
|
Chen WF, Meng XF, Jiao YS, Tian CF, Sui XH, Jiao J, Wang ET, Ma SJ. Bacteroid Development, Transcriptome, and Symbiotic Nitrogen-Fixing Comparison of Bradyrhizobium arachidis in Nodules of Peanut (Arachis hypogaea) and Medicinal Legume Sophora flavescens. Microbiol Spectr 2023; 11:e0107922. [PMID: 36656008 PMCID: PMC9927569 DOI: 10.1128/spectrum.01079-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 12/29/2022] [Indexed: 01/20/2023] Open
Abstract
Bradyrhizobium arachidis strain CCBAU 051107 could differentiate into swollen and nonswollen bacteroids in determinate root nodules of peanut (Arachis hypogaea) and indeterminate nodules of Sophora flavescens, respectively, with different N2 fixation efficiencies. To reveal the mechanism of bacteroid differentiation and symbiosis efficiency in association with different hosts, morphologies, transcriptomes, and nitrogen fixation efficiencies of the root nodules induced by strain CCBAU 051107 on these two plants were compared. Our results indicated that the nitrogenase activity of peanut nodules was 3 times higher than that of S. flavescens nodules, demonstrating the effects of rhizobium-host interaction on symbiotic effectiveness. With transcriptome comparisons, genes involved in biological nitrogen fixation (BNF) and energy metabolism were upregulated, while those involved in DNA replication, bacterial chemotaxis, and flagellar assembly were significantly downregulated in both types of bacteroids compared with those in free-living cells. However, expression levels of genes involved in BNF, the tricarboxylic acid (TCA) cycle, the pentose phosphate pathway, hydrogenase synthesis, poly-β-hydroxybutyrate (PHB) degradation, and peptidoglycan biosynthesis were significantly greater in the swollen bacteroids of peanut than those in the nonswollen bacteroids of S. flavescens, while contrasting situations were found in expression of genes involved in urea degradation, PHB synthesis, and nitrogen assimilation. Especially higher expression of ureABEF and aspB genes in bacteroids of S. flavescens might imply that the BNF product and nitrogen transport pathway were different from those in peanut. Our study revealed the first differences in bacteroid differentiation and metabolism of these two hosts and will be helpful for us to explore higher-efficiency symbiosis between rhizobia and legumes. IMPORTANCE Rhizobial differentiation into bacteroids in leguminous nodules attracts scientists to investigate its different aspects. The development of bacteroids in the nodule of the important oil crop peanut was first investigated and compared to the status in the nodule of the extremely promiscuous medicinal legume Sophora flavescens by using just a single rhizobial strain of Bradyrhizobium arachidis, CCBAU 051107. This strain differentiates into swollen bacteroids in peanut nodules and nonswollen bacteroids in S. flavescens nodules. The N2-fixing efficiency of the peanut nodules is three times higher than that of S. flavescens. By comparing the transcriptomes of their bacteroids, we found that they have similar gene expression spectra, such as nitrogen fixation and motivity, but different spectra in terms of urease activity and peptidoglycan biosynthesis. Those altered levels of gene expression might be related to their functions and differentiation in respective nodules. Our studies provided novel insight into the rhizobial differentiation and metabolic alteration in different hosts.
Collapse
Affiliation(s)
- Wen Feng Chen
- State Key Laboratory of Agrobiotechnology, Beijing, People’s Republic of China
- College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing, People’s Republic of China
| | - Xiang Fei Meng
- State Key Laboratory of Agrobiotechnology, Beijing, People’s Republic of China
- College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing, People’s Republic of China
| | - Yin Shan Jiao
- State Key Laboratory of Agrobiotechnology, Beijing, People’s Republic of China
- College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing, People’s Republic of China
| | - Chang Fu Tian
- State Key Laboratory of Agrobiotechnology, Beijing, People’s Republic of China
- College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing, People’s Republic of China
| | - Xin Hua Sui
- State Key Laboratory of Agrobiotechnology, Beijing, People’s Republic of China
- College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing, People’s Republic of China
| | - Jian Jiao
- State Key Laboratory of Agrobiotechnology, Beijing, People’s Republic of China
- College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing, People’s Republic of China
| | - En Tao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, México
| | - Sheng Jun Ma
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi, Xinjiang Uygur Autonomous Region, People’s Republic of China
| |
Collapse
|
10
|
Walling LR, Kouse AB, Shabalina SA, Zhang H, Storz G. A 3' UTR-derived small RNA connecting nitrogen and carbon metabolism in enteric bacteria. Nucleic Acids Res 2022; 50:10093-10109. [PMID: 36062564 PMCID: PMC9508815 DOI: 10.1093/nar/gkac748] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/11/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Increasing numbers of small, regulatory RNAs (sRNAs) corresponding to 3' untranslated regions (UTR) are being discovered in bacteria. One such sRNA, denoted GlnZ, corresponds to the 3' UTR of the Escherichia coli glnA mRNA encoding glutamine synthetase. Several forms of GlnZ, processed from the glnA mRNA, are detected in cells growing with limiting ammonium. GlnZ levels are regulated transcriptionally by the NtrC transcription factor and post-transcriptionally by RNase III. Consistent with the expression, E. coli cells lacking glnZ show delayed outgrowth from nitrogen starvation compared to wild type cells. Transcriptome-wide RNA-RNA interactome datasets indicated that GlnZ binds to multiple target RNAs. Immunoblots and assays of fusions confirmed GlnZ-mediated repression of glnP and sucA, encoding proteins that contribute to glutamine transport and the citric acid cycle, respectively. Although the overall sequences of GlnZ from E. coli K-12, Enterohemorrhagic E. coli and Salmonella enterica have significant differences due to various sequence insertions, all forms of the sRNA were able to regulate the two targets characterized. Together our data show that GlnZ impacts growth of E. coli under low nitrogen conditions by modulating genes that affect carbon and nitrogen flux.
Collapse
Affiliation(s)
- Lauren R Walling
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-4417, USA
| | - Andrew B Kouse
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-4417, USA
| | - Svetlana A Shabalina
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Hongen Zhang
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-4417, USA
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-4417, USA
| |
Collapse
|
11
|
Travis BA, Peck JV, Salinas R, Dopkins B, Lent N, Nguyen VD, Borgnia MJ, Brennan RG, Schumacher MA. Molecular dissection of the glutamine synthetase-GlnR nitrogen regulatory circuitry in Gram-positive bacteria. Nat Commun 2022; 13:3793. [PMID: 35778410 PMCID: PMC9249791 DOI: 10.1038/s41467-022-31573-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 06/21/2022] [Indexed: 11/23/2022] Open
Abstract
How bacteria sense and respond to nitrogen levels are central questions in microbial physiology. In Gram-positive bacteria, nitrogen homeostasis is controlled by an operon encoding glutamine synthetase (GS), a dodecameric machine that assimilates ammonium into glutamine, and the GlnR repressor. GlnR detects nitrogen excess indirectly by binding glutamine-feedback-inhibited-GS (FBI-GS), which activates its transcription-repression function. The molecular mechanisms behind this regulatory circuitry, however, are unknown. Here we describe biochemical and structural analyses of GS and FBI-GS-GlnR complexes from pathogenic and non-pathogenic Gram-positive bacteria. The structures show FBI-GS binds the GlnR C-terminal domain within its active-site cavity, juxtaposing two GlnR monomers to form a DNA-binding-competent GlnR dimer. The FBI-GS-GlnR interaction stabilizes the inactive GS conformation. Strikingly, this interaction also favors a remarkable dodecamer to tetradecamer transition in some GS, breaking the paradigm that all bacterial GS are dodecamers. These data thus unveil unique structural mechanisms of transcription and enzymatic regulation.
Collapse
Affiliation(s)
- Brady A Travis
- Department of Biochemistry, 307 Research Dr., Box 3711, Duke University Medical Center, Durham, NC, 27710, USA
| | - Jared V Peck
- Cryo-EM core, Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Raul Salinas
- Department of Biochemistry, 307 Research Dr., Box 3711, Duke University Medical Center, Durham, NC, 27710, USA
| | - Brandon Dopkins
- Department of Biochemistry, 307 Research Dr., Box 3711, Duke University Medical Center, Durham, NC, 27710, USA
| | - Nicholas Lent
- Department of Biochemistry, 307 Research Dr., Box 3711, Duke University Medical Center, Durham, NC, 27710, USA
| | - Viet D Nguyen
- Department of Biochemistry, 307 Research Dr., Box 3711, Duke University Medical Center, Durham, NC, 27710, USA
| | - Mario J Borgnia
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Richard G Brennan
- Department of Biochemistry, 307 Research Dr., Box 3711, Duke University Medical Center, Durham, NC, 27710, USA
| | - Maria A Schumacher
- Department of Biochemistry, 307 Research Dr., Box 3711, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
12
|
Fernandes GDC, Turchetto‐Zolet AC, Passaglia LMP. Glutamine synthetase evolutionary history revisited: tracing back beyond the Last Universal Common Ancestor. Evolution 2022; 76:605-622. [DOI: 10.1111/evo.14434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 12/14/2021] [Accepted: 12/22/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Gabriela de Carvalho Fernandes
- Departamento de Genética and Programa de Pós‐graduação em Genética e Biologia Molecular Universidade Federal do Rio Grande do Sul (UFRGS) Av. Bento Gonçalves, 9500, Prédio 43312, Mailbox 15053 Porto Alegre RS 91‐501‐970 Brazil
| | - Andreia Carina Turchetto‐Zolet
- Departamento de Genética and Programa de Pós‐graduação em Genética e Biologia Molecular Universidade Federal do Rio Grande do Sul (UFRGS) Av. Bento Gonçalves, 9500, Prédio 43312, Mailbox 15053 Porto Alegre RS 91‐501‐970 Brazil
| | - Luciane Maria Pereira Passaglia
- Departamento de Genética and Programa de Pós‐graduação em Genética e Biologia Molecular Universidade Federal do Rio Grande do Sul (UFRGS) Av. Bento Gonçalves, 9500, Prédio 43312, Mailbox 15053 Porto Alegre RS 91‐501‐970 Brazil
| |
Collapse
|
13
|
Chen Y, Xu W, Yu S, Ni K, She G, Ye X, Xing Q, Zhao J, Huang C. Assembly status transition offers an avenue for activity modulation of a supramolecular enzyme. eLife 2021; 10:72535. [PMID: 34898426 PMCID: PMC8668187 DOI: 10.7554/elife.72535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
Nature has evolved many supramolecular proteins assembled in certain, sometimes even seemingly oversophisticated, morphological manners. The rationale behind such evolutionary efforts is often poorly understood. Here, we provide atomic-resolution insights into how the dynamic building of a structurally complex enzyme with higher order symmetry offers amenability to intricate regulation. We have established the functional coupling between enzymatic activity and protein morphological states of glutamine synthetase (GS), an old multi-subunit enzyme essential for cellular nitrogen metabolism. Cryo-EM structure determination of GS in both the catalytically active and inactive assembly states allows us to reveal an unanticipated self-assembly-induced disorder-order transition paradigm, in which the remote interactions between two subcomplex entities significantly rigidify the otherwise structurally fluctuating active sites, thereby regulating activity. We further show in vivo evidences that how the enzyme morphology transitions could be modulated by cellular factors on demand. Collectively, our data present an example of how assembly status transition offers an avenue for activity modulation, and sharpens our mechanistic understanding of the complex functional and regulatory properties of supramolecular enzymes.
Collapse
Affiliation(s)
- Yao Chen
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Weiya Xu
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shuwei Yu
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Kang Ni
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, China
| | - Guangbiao She
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xiaodong Ye
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, China
| | - Qiong Xing
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Jian Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Chengdong Huang
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
14
|
Aron O, Wang M, Lin L, Batool W, Lin B, Shabbir A, Wang Z, Tang W. MoGLN2 Is Important for Vegetative Growth, Conidiogenesis, Maintenance of Cell Wall Integrity and Pathogenesis of Magnaporthe oryzae. J Fungi (Basel) 2021; 7:463. [PMID: 34201222 PMCID: PMC8229676 DOI: 10.3390/jof7060463] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/04/2021] [Accepted: 06/06/2021] [Indexed: 11/17/2022] Open
Abstract
Glutamine is a non-essential amino acid that acts as a principal source of nitrogen and nucleic acid biosynthesis in living organisms. In Saccharomyces cerevisiae, glutamine synthetase catalyzes the synthesis of glutamine. To determine the role of glutamine synthetase in the development and pathogenicity of plant fungal pathogens, we used S. cerevisiae Gln1 amino acid sequence to identify its orthologs in Magnaporthe oryzae and named them MoGln1, MoGln2, and MoGln3. Deletion of MoGLN1 and MoGLN3 showed that they are not involved in the development and pathogenesis of M. oryzae. Conversely, ΔMogln2 was reduced in vegetative growth, experienced attenuated growth on Minimal Medium (MM), and exhibited hyphal autolysis on oatmeal and straw decoction and corn media. Exogenous l-glutamine rescued the growth of ΔMogln2 on MM. The ΔMogln2 mutant failed to produce spores and was nonpathogenic on barley leaves, as it was unable to form an appressorium-like structure from its hyphal tips. Furthermore, deletion of MoGLN2 altered the fungal cell wall integrity, with the ΔMogln2 mutant being hypersensitive to H2O2. MoGln1, MoGln2, and MoGln3 are located in the cytoplasm. Taken together, our results shows that MoGLN2 is important for vegetative growth, conidiation, appressorium formation, maintenance of cell wall integrity, oxidative stress tolerance and pathogenesis of M. oryzae.
Collapse
Affiliation(s)
- Osakina Aron
- Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (O.A.); (L.L.); (W.B.); (A.S.)
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.W.); (B.L.)
| | - Min Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.W.); (B.L.)
| | - Lianyu Lin
- Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (O.A.); (L.L.); (W.B.); (A.S.)
| | - Wajjiha Batool
- Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (O.A.); (L.L.); (W.B.); (A.S.)
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.W.); (B.L.)
| | - Birong Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.W.); (B.L.)
| | - Ammarah Shabbir
- Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (O.A.); (L.L.); (W.B.); (A.S.)
| | - Zonghua Wang
- Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (O.A.); (L.L.); (W.B.); (A.S.)
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.W.); (B.L.)
- Marine and Agricultural Biotechnology Center, Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| | - Wei Tang
- Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (O.A.); (L.L.); (W.B.); (A.S.)
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.W.); (B.L.)
| |
Collapse
|
15
|
Gutt M, Jordan B, Weidenbach K, Gudzuhn M, Kiessling C, Cassidy L, Helbig A, Tholey A, Pyper DJ, Kubatova N, Schwalbe H, Schmitz RA. High complexity of Glutamine synthetase regulation in
Methanosarcina mazei
: Small protein 26 interacts and enhances glutamine synthetase activity. FEBS J 2021; 288:5350-5373. [DOI: 10.1111/febs.15799] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/05/2021] [Accepted: 03/02/2021] [Indexed: 12/13/2022]
Affiliation(s)
- Miriam Gutt
- Institute for General Microbiology Christian‐Albrechts‐University Kiel Germany
| | - Britta Jordan
- Institute for General Microbiology Christian‐Albrechts‐University Kiel Germany
| | - Katrin Weidenbach
- Institute for General Microbiology Christian‐Albrechts‐University Kiel Germany
| | - Mirja Gudzuhn
- Institute for General Microbiology Christian‐Albrechts‐University Kiel Germany
| | - Claudia Kiessling
- Institute for General Microbiology Christian‐Albrechts‐University Kiel Germany
| | - Liam Cassidy
- AG Proteomics & Bioanalytics Institute for Experimental Medicine Christian‐Albrechts‐University Kiel Germany
| | - Andreas Helbig
- AG Proteomics & Bioanalytics Institute for Experimental Medicine Christian‐Albrechts‐University Kiel Germany
| | - Andreas Tholey
- AG Proteomics & Bioanalytics Institute for Experimental Medicine Christian‐Albrechts‐University Kiel Germany
| | - Dennis Joshua Pyper
- Institute of Organic Chemistry and Chemical Biology Center for Biomolecular Magnetic Resonance (BMRZ) Johann Wolfgang Goethe University Frankfurt am Main Germany
| | - Nina Kubatova
- Institute of Organic Chemistry and Chemical Biology Center for Biomolecular Magnetic Resonance (BMRZ) Johann Wolfgang Goethe University Frankfurt am Main Germany
| | - Harald Schwalbe
- Institute of Organic Chemistry and Chemical Biology Center for Biomolecular Magnetic Resonance (BMRZ) Johann Wolfgang Goethe University Frankfurt am Main Germany
| | - Ruth Anne Schmitz
- Institute for General Microbiology Christian‐Albrechts‐University Kiel Germany
| |
Collapse
|
16
|
Wang N, Chen XL, Gao C, Peng M, Wang P, Zhang N, Li F, Yang GP, Shen QT, Li S, Chen Y, Zhang YZ, Li CY. Crystal structures of γ-glutamylmethylamide synthetase provide insight into bacterial metabolism of oceanic monomethylamine. J Biol Chem 2021; 296:100081. [PMID: 33199371 PMCID: PMC7948447 DOI: 10.1074/jbc.ra120.015952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/23/2020] [Accepted: 11/16/2020] [Indexed: 11/06/2022] Open
Abstract
Monomethylamine (MMA) is an important climate-active oceanic trace gas and ubiquitous in the oceans. γ-Glutamylmethylamide synthetase (GmaS) catalyzes the conversion of MMA to γ-glutamylmethylamide, the first step in MMA metabolism in many marine bacteria. The gmaS gene occurs in ∼23% of microbial genomes in the surface ocean and is a validated biomarker to detect MMA-utilizing bacteria. However, the catalytic mechanism of GmaS has not been studied because of the lack of structural information. Here, the GmaS from Rhodovulum sp. 12E13 (RhGmaS) was characterized, and the crystal structures of apo-RhGmaS and RhGmaS with different ligands in five states were solved. Based on structural and biochemical analyses, the catalytic mechanism of RhGmaS was explained. ATP is first bound in RhGmaS, leading to a conformational change of a flexible loop (Lys287-Ile305), which is essential for the subsequent binding of glutamate. During the catalysis of RhGmaS, the residue Arg312 participates in polarizing the γ-phosphate of ATP and in stabilizing the γ-glutamyl phosphate intermediate; Asp177 is responsible for the deprotonation of MMA, assisting the attack of MMA on γ-glutamyl phosphate to produce a tetrahedral intermediate; and Glu186 acts as a catalytic base to abstract a proton from the tetrahedral intermediate to finally generate glutamylmethylamide. Sequence analysis suggested that the catalytic mechanism of RhGmaS proposed in this study has universal significance in bacteria containing GmaS. Our results provide novel insights into MMA metabolism, contributing to a better understanding of MMA catabolism in global carbon and nitrogen cycles.
Collapse
Affiliation(s)
- Ning Wang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China; College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Chao Gao
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Ming Peng
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Peng Wang
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Na Zhang
- School of Life Science and Technology, iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Fuchuan Li
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Gui-Peng Yang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, China
| | - Qing-Tao Shen
- School of Life Science and Technology, iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Yin Chen
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China; College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Chun-Yang Li
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
17
|
Martínez-Espinosa RM. Microorganisms and Their Metabolic Capabilities in the Context of the Biogeochemical Nitrogen Cycle at Extreme Environments. Int J Mol Sci 2020; 21:ijms21124228. [PMID: 32545812 PMCID: PMC7349289 DOI: 10.3390/ijms21124228] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 06/12/2020] [Indexed: 12/23/2022] Open
Abstract
Extreme microorganisms (extremophile) are organisms that inhabit environments characterized by inhospitable parameters for most live beings (extreme temperatures and pH values, high or low ionic strength, pressure, or scarcity of nutrients). To grow optimally under these conditions, extremophiles have evolved molecular adaptations affecting their physiology, metabolism, cell signaling, etc. Due to their peculiarities in terms of physiology and metabolism, they have become good models for (i) understanding the limits of life on Earth, (ii) exploring the possible existence of extraterrestrial life (Astrobiology), or (iii) to look for potential applications in biotechnology. Recent research has revealed that extremophilic microbes play key roles in all biogeochemical cycles on Earth. Nitrogen cycle (N-cycle) is one of the most important biogeochemical cycles in nature; thanks to it, nitrogen is converted into multiple chemical forms, which circulate among atmospheric, terrestrial and aquatic ecosystems. This review summarizes recent knowledge on the role of extreme microorganisms in the N-cycle in extremophilic ecosystems, with special emphasis on members of the Archaea domain. Potential implications of these microbes in global warming and nitrogen balance, as well as their biotechnological applications are also discussed.
Collapse
Affiliation(s)
- Rosa María Martínez-Espinosa
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain; ; Tel.: +34-965903400 (ext. 1258)
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Ap. 99, E-03080 Alicante, Spain
| |
Collapse
|
18
|
Rodríguez-Herrero V, Payá G, Bautista V, Vegara A, Cortés-Molina M, Camacho M, Esclapez J, Bonete MJ. Essentiality of the glnA gene in Haloferax mediterranei: gene conversion and transcriptional analysis. Extremophiles 2020; 24:433-446. [PMID: 32296946 DOI: 10.1007/s00792-020-01169-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/27/2020] [Indexed: 11/26/2022]
Abstract
Glutamine synthetase is an essential enzyme in ammonium assimilation and glutamine biosynthesis. The Haloferax mediterranei genome has two other glnA-type genes (glnA2 and glnA3) in addition to the glutamine synthetase gene glnA. To determine whether the glnA2 and glnA3 genes can replace glnA in nitrogen metabolism, we generated deletion mutants of glnA. The glnA deletion mutants could not be generated in a medium without glutamine, and thus, glnA is an essential gene in H. mediterranei. The glnA deletion mutant was achieved by adding 40 mM glutamine to the selective medium. This conditional HM26-ΔglnA mutant was characterised with different approaches in the presence of distinct nitrogen sources and nitrogen starvation. Transcriptomic analysis was performed to compare the expression profiles of the strains HM26-ΔglnA and HM26 under different growth conditions. The glnA deletion did not affect the expression of glnA2, glnA3 and nitrogen assimilation genes under nitrogen starvation. Moreover, the results showed that glnA, glnA2 and glnA3 were not expressed under the same conditions. These results indicated that glnA is an essential gene for H. mediterranei and, therefore, glnA2 and glnA3 cannot replace glnA in the conditions analysed.
Collapse
Affiliation(s)
- V Rodríguez-Herrero
- División de Bioquímica Y Biología Molecular, Departamento de Agroquímica Y Bioquímica, Universidad de Alicante, Carretera de San Vicente del Raspeig s/n, San Vicente del Raspeig, 03690, Alicante, Spain
| | - G Payá
- División de Bioquímica Y Biología Molecular, Departamento de Agroquímica Y Bioquímica, Universidad de Alicante, Carretera de San Vicente del Raspeig s/n, San Vicente del Raspeig, 03690, Alicante, Spain
| | - V Bautista
- División de Bioquímica Y Biología Molecular, Departamento de Agroquímica Y Bioquímica, Universidad de Alicante, Carretera de San Vicente del Raspeig s/n, San Vicente del Raspeig, 03690, Alicante, Spain
| | - A Vegara
- División de Bioquímica Y Biología Molecular, Departamento de Agroquímica Y Bioquímica, Universidad de Alicante, Carretera de San Vicente del Raspeig s/n, San Vicente del Raspeig, 03690, Alicante, Spain
| | - M Cortés-Molina
- Departamento de Matemática Aplicada, Universidad de Alicante, Carretera de San Vicente del Raspeig s/n, San Vicente del Raspeig, 03690, Alicante, Spain
| | - M Camacho
- División de Bioquímica Y Biología Molecular, Departamento de Agroquímica Y Bioquímica, Universidad de Alicante, Carretera de San Vicente del Raspeig s/n, San Vicente del Raspeig, 03690, Alicante, Spain
| | - J Esclapez
- División de Bioquímica Y Biología Molecular, Departamento de Agroquímica Y Bioquímica, Universidad de Alicante, Carretera de San Vicente del Raspeig s/n, San Vicente del Raspeig, 03690, Alicante, Spain
| | - M J Bonete
- División de Bioquímica Y Biología Molecular, Departamento de Agroquímica Y Bioquímica, Universidad de Alicante, Carretera de San Vicente del Raspeig s/n, San Vicente del Raspeig, 03690, Alicante, Spain.
| |
Collapse
|
19
|
Soares R, Trejo J, Lorite MJ, Figueira E, Sanjuán J, Videira e Castro I. Diversity, Phylogeny and Plant Growth Promotion Traits of Nodule Associated Bacteria Isolated from Lotus parviflorus. Microorganisms 2020; 8:microorganisms8040499. [PMID: 32244524 PMCID: PMC7232477 DOI: 10.3390/microorganisms8040499] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/18/2020] [Accepted: 03/30/2020] [Indexed: 11/18/2022] Open
Abstract
Lotus spp. are widely used as a forage to improve pastures, and inoculation with elite rhizobial strains is a common practice in many countries. However, only a few Lotus species have been studied in the context of plant-rhizobia interactions. In this study, forty highly diverse bacterial strains were isolated from root nodules of wild Lotus parviflorus plants growing in two field locations in Portugal. However, only 10% of these isolates could nodulate one or more legume hosts tested, whereas 90% were thought to be opportunistic nodule associated bacteria. Phylogenetic studies place the nodulating isolates within the Bradyrhizobium genus, which is closely related to B. canariense and other Bradyrhizobium sp. strains isolated from genistoid legumes and Ornithopus spp. Symbiotic nodC and nifH gene phylogenies were fully consistent with the taxonomic assignment and host range. The non-nodulating bacteria isolated were alpha- (Rhizobium/Agrobacterium), beta- (Massilia) and gamma-proteobacteria (Pseudomonas, Lysobacter, Luteibacter, Stenotrophomonas and Rahnella), as well as some bacteroidetes from genera Sphingobacterium and Mucilaginibacter. Some of these nodule-associated bacteria expressed plant growth promotion (PGP) traits, such as production of lytic enzymes, antagonistic activity against phytopathogens, phosphate solubilization, or siderophore production. This argues for a potential beneficial role of these L. parviflorus nodule-associated bacteria.
Collapse
Affiliation(s)
- Ricardo Soares
- Laboratório de Microbiologia do Solo, UEISSAFSV, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV, I.P.), 2780-159 Oeiras, Portugal; (R.S.); (J.T.)
- Laboratório de Bioquímica Inorgânica e RMN, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Jesús Trejo
- Laboratório de Microbiologia do Solo, UEISSAFSV, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV, I.P.), 2780-159 Oeiras, Portugal; (R.S.); (J.T.)
| | - Maria J. Lorite
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, E-18160 Granada, Spain; (M.L.); (J.S.)
| | - Etelvina Figueira
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal;
| | - Juan Sanjuán
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, E-18160 Granada, Spain; (M.L.); (J.S.)
| | - Isabel Videira e Castro
- Laboratório de Microbiologia do Solo, UEISSAFSV, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV, I.P.), 2780-159 Oeiras, Portugal; (R.S.); (J.T.)
- Correspondence:
| |
Collapse
|
20
|
Kumar V, Sushma Sri N, Tripathi N, Sharma VK, Bharatam PV, Garg P, Singh S. Structural exploration of glutamine synthetase from Leishmania donovani: Insights from in silico and in vitro analysis. Int J Biol Macromol 2020; 146:860-874. [DOI: 10.1016/j.ijbiomac.2019.09.209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/26/2019] [Accepted: 09/19/2019] [Indexed: 12/20/2022]
|
21
|
Cholet F, Ijaz UZ, Smith CJ. Differential ratio amplicons (R amp ) for the evaluation of RNA integrity extracted from complex environmental samples. Environ Microbiol 2019; 21:827-844. [PMID: 30585386 PMCID: PMC6392129 DOI: 10.1111/1462-2920.14516] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/07/2018] [Accepted: 12/20/2018] [Indexed: 12/31/2022]
Abstract
Reliability and reproducibility of transcriptomics‐based studies are dependent on RNA integrity. In microbial ecology, microfluidics‐based techniques, such as the Ribosomal Integrity Number (RIN), targeting rRNA are currently the only approaches to evaluate RNA integrity. However, the relationship between rRNA and mRNA integrity is unknown. Here, we present an integrity index, the Ratio Amplicon, Ramp, adapted from human clinical studies, to directly monitor mRNA integrity from complex environmental samples. We show, in a suite of experimental degradations of RNA extracted from sediment, that while the RIN generally reflected the degradation status of RNA the Ramp mapped mRNA degradation better. Furthermore, we examined the effect of degradation on transcript community structure by amplicon sequencing of 16S rRNA, amoA and glnA transcripts. We successfully sequenced transcripts for all three targets even from highly‐degraded RNA samples. While RNA degradation changed the community structure of the mRNA profiles, no changes were observed for the 16S rRNA transcript profiles. Since both RT‐Q‐PCR and sequencing results were obtained, even from highly degraded samples, we strongly recommend evaluating RNA integrity prior to downstream processing to ensure meaningful results. For this, both the RIN and Ramp are useful, with the Ramp better evaluating mRNA integrity in this study.
Collapse
Affiliation(s)
- Fabien Cholet
- Infrastructure and Environment Research Division, School of Engineering, University of Glasgow, Glasgow, G12 8LT, UK
| | - Umer Z Ijaz
- Infrastructure and Environment Research Division, School of Engineering, University of Glasgow, Glasgow, G12 8LT, UK
| | - Cindy J Smith
- Infrastructure and Environment Research Division, School of Engineering, University of Glasgow, Glasgow, G12 8LT, UK
| |
Collapse
|
22
|
Bernard G, Greenfield P, Ragan MA, Chan CX. k-mer Similarity, Networks of Microbial Genomes, and Taxonomic Rank. mSystems 2018; 3:e00257-18. [PMID: 30505941 PMCID: PMC6247013 DOI: 10.1128/msystems.00257-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 11/02/2018] [Indexed: 01/27/2023] Open
Abstract
Microbial genomes have been shaped by parent-to-offspring (vertical) descent and lateral genetic transfer. These processes can be distinguished by alignment-based inference and comparison of phylogenetic trees for individual gene families, but this approach is not scalable to whole-genome sequences, and a tree-like structure does not adequately capture how these processes impact microbial physiology. Here we adopted alignment-free approaches based on k-mer statistics to infer phylogenomic networks involving 2,783 completely sequenced bacterial and archaeal genomes and compared the contributions of rRNA, protein-coding, and plasmid sequences to these networks. Our results show that the phylogenomic signal arising from ribosomal RNAs is strong and extends broadly across all taxa, whereas that from plasmids is strong but restricted to closely related groups, particularly Proteobacteria. However, the signal from the other chromosomal regions is restricted in breadth. We show that mean k-mer similarity can correlate with taxonomic rank. We also link the implicated k-mers to genome annotation (thus, functions) and define core k-mers (thus, core functions) in specific phyletic groups. Highly conserved functions in most phyla include amino acid metabolism and transport as well as energy production and conversion. Intracellular trafficking and secretion are the most prominent core functions among Spirochaetes, whereas energy production and conversion are not highly conserved among the largely parasitic or commensal Tenericutes. These observations suggest that differential conservation of functions relates to niche specialization and evolutionary diversification of microbes. Our results demonstrate that k-mer approaches can be used to efficiently identify phylogenomic signals and conserved core functions at the multigenome scale. IMPORTANCE Genome evolution of microbes involves parent-to-offspring descent, and lateral genetic transfer that convolutes the phylogenomic signal. This study investigated phylogenomic signals among thousands of microbial genomes based on short subsequences without using multiple-sequence alignment. The signal from ribosomal RNAs is strong across all taxa, and the signal of plasmids is strong only in closely related groups, particularly Proteobacteria. However, the signal from other chromosomal regions (∼99% of the genomes) is remarkably restricted in breadth. The similarity of subsequences is found to correlate with taxonomic rank and informs on conserved and differential core functions relative to niche specialization and evolutionary diversification of microbes. These results provide a comprehensive, alignment-free view of microbial genome evolution as a network, beyond a tree-like structure.
Collapse
Affiliation(s)
- Guillaume Bernard
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Paul Greenfield
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW, Australia
| | - Mark A. Ragan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Cheong Xin Chan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
23
|
Bolay P, Muro-Pastor MI, Florencio FJ, Klähn S. The Distinctive Regulation of Cyanobacterial Glutamine Synthetase. Life (Basel) 2018; 8:E52. [PMID: 30373240 PMCID: PMC6316151 DOI: 10.3390/life8040052] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/23/2018] [Accepted: 10/25/2018] [Indexed: 12/02/2022] Open
Abstract
Glutamine synthetase (GS) features prominently in bacterial nitrogen assimilation as it catalyzes the entry of bioavailable nitrogen in form of ammonium into cellular metabolism. The classic example, the comprehensively characterized GS of enterobacteria, is subject to exquisite regulation at multiple levels, among them gene expression regulation to control GS abundance, as well as feedback inhibition and covalent modifications to control enzyme activity. Intriguingly, the GS of the ecologically important clade of cyanobacteria features fundamentally different regulatory systems to those of most prokaryotes. These include the interaction with small proteins, the so-called inactivating factors (IFs) that inhibit GS linearly with their abundance. In addition to this protein interaction-based regulation of GS activity, cyanobacteria use alternative elements to control the synthesis of GS and IFs at the transcriptional level. Moreover, cyanobacteria evolved unique RNA-based regulatory mechanisms such as glutamine riboswitches to tightly tune IF abundance. In this review, we aim to outline the current knowledge on the distinctive features of the cyanobacterial GS encompassing the overall control of its activity, sensing the nitrogen status, transcriptional and post-transcriptional regulation, as well as strain-specific differences.
Collapse
Affiliation(s)
- Paul Bolay
- Helmholtz Centre for Environmental Research, Department of Solar Materials, Permoserstrasse 15, D-04318 Leipzig, Germany.
| | - M Isabel Muro-Pastor
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, Américo Vespucio 49, E-41092 Seville, Spain.
| | - Francisco J Florencio
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, Américo Vespucio 49, E-41092 Seville, Spain.
| | - Stephan Klähn
- Helmholtz Centre for Environmental Research, Department of Solar Materials, Permoserstrasse 15, D-04318 Leipzig, Germany.
| |
Collapse
|
24
|
Characterization and improved properties of Glutamine synthetase from Providencia vermicola by site-directed mutagenesis. Sci Rep 2018; 8:15640. [PMID: 30353099 PMCID: PMC6199252 DOI: 10.1038/s41598-018-34022-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 06/19/2018] [Indexed: 11/08/2022] Open
Abstract
In this study, a novel gene for Glutamine synthetase was cloned and characterized for its activities and stabilities from a marine bacterium Providencia vermicola (PveGS). A mutant S54A was generated by site directed mutagenesis, which showed significant increase in the activity and stabilities at a wide range of temperatures. The Km values of PveGS against hydroxylamine, ADP-Na2 and L-Glutamine were 15.7 ± 1.1, (25.2 ± 1.5) × 10-5 and 32.6 ± 1.7 mM, and the kcat were 17.0 ± 0.6, 9.14 ± 0.12 and 30.5 ± 1.0 s-1 respectively. In-silico-analysis revealed that the replacement of Ser at 54th position with Ala increased the catalytic activity of PveGS. Therefore, catalytic efficiency of mutant S54A had increased by 3.1, 0.89 and 2.9-folds towards hydroxylamine, ADP-Na2 and L-Glutamine respectively as compared to wild type. The structure prediction data indicated that the negatively charged pocket becomes enlarged and hydrogen bonding in Ser54 steadily promotes the product release. Interestingly, the residual activity of S54A mutant was increased by 10.7, 3.8 and 3.8 folds at 0, 10 and 50 °C as compared to WT. Structural analysis showed that S54A located on the loop near to the active site improved its flexibility due to the breaking of hydrogen bonds between product and enzyme. This also facilitated the enzyme to increase its cold adaptability as indicated by higher residual activity shown at 0 °C. Thus, replacement of Ala to Ser54 played a pivotal role to enhance the activities and stabilities at a wide range of temperatures.
Collapse
|
25
|
Structural Analysis of Glutamine Synthetase from Helicobacter pylori. Sci Rep 2018; 8:11657. [PMID: 30076387 PMCID: PMC6076278 DOI: 10.1038/s41598-018-30191-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/20/2018] [Indexed: 11/08/2022] Open
Abstract
Glutamine synthetase (GS) is an enzyme that regulates nitrogen metabolism and synthesizes glutamine via glutamate, ATP, and ammonia. GS is a homo-oligomeric protein of eight, ten, or twelve subunits, and each subunit-subunit interface has its own active site. GS can be divided into GS I, GS II, and GS III. GS I and GS III form dodecamer in bacteria and archaea, whereas GS II form decamer in eukaryotes. GS I can be further subdivided into GS I-α and GS I-β according to its sequence and regulatory mechanism. GS is an essential protein for the survival of Helicobacter pylori which its infection could promote gastroduodenal diseases. Here, we determined the crystal structures of the GS from H. pylori (Hpy GS) in its apo- and substrate-bound forms at 2.8 Å and 2.9 Å resolution, respectively. Hpy GS formed a dodecamer composed of two hexameric rings stacked face-to-face. Hpy GS, which belongs to GS I, cannot be clearly classified as either GS I-α or GS I-β based on its sequence and regulatory mechanism. In this study, we propose that Hpy GS could be classified as a new GS-I subfamily and provide structural information on the apo- and substrate-bound forms of the protein.
Collapse
|
26
|
Sabir DK, Grosjean N, Rylott EL, Bruce NC. Investigating differences in the ability of XplA/B-containing bacteria to degrade the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). FEMS Microbiol Lett 2018; 364:3958792. [PMID: 28854671 DOI: 10.1093/femsle/fnx144] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/11/2017] [Indexed: 11/13/2022] Open
Abstract
The xenobiotic hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a toxic explosive and environmental pollutant. This study examines three bacterial species that degrade RDX, using it as a sole source of nitrogen for growth. Although isolated from diverse geographical locations, the species contain near identical copies of genes encoding the RDX-metabolising cytochrome P450, XplA and accompanying reductase, XplB. Sequence analysis indicates a single evolutionary origin for xplA and xplB as part of a genomic island, which has been distributed around the world via horizontal gene transfer. Despite the fact that xplA and xplB are highly conserved between species, Gordonia sp. KTR9 and Microbacterium sp. MA1 degrade RDX more slowly than Rhodococcus rhodochrous 11Y. Both Gordonia sp. KTR9 and Microbacterium sp. MA1 were found to contain single base-pair mutations in xplB which, following expression and purification, were found to encode inactive XplB protein. Additionally, the Gordonia sp. KTR9 XplB was fused to glutamine synthetase, which would be likely to sterically inhibit XplB activity. Although the glutamine synthetase is fused to XplB and truncated by 71 residues, it was found to be active. Glutamine synthetase has been implicated in the regulation of nitrogen levels; controlling nitrogen availability will be important for effective bioremediation of RDX.
Collapse
Affiliation(s)
- Dana Khdr Sabir
- Centre for Novel Agricultural Products, Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK.,Department of General Sciences, Charmo University, 46023 Chamchamal, Sulaimani, Kurdistan Region- IRAQ
| | - Nicolas Grosjean
- Centre for Novel Agricultural Products, Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Elizabeth L Rylott
- Centre for Novel Agricultural Products, Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Neil C Bruce
- Centre for Novel Agricultural Products, Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| |
Collapse
|
27
|
Theron A, Roth RL, Hoppe H, Parkinson C, van der Westhuyzen CW, Stoychev S, Wiid I, Pietersen RD, Baker B, Kenyon CP. Differential inhibition of adenylylated and deadenylylated forms of M. tuberculosis glutamine synthetase as a drug discovery platform. PLoS One 2017; 12:e0185068. [PMID: 28972974 PMCID: PMC5626031 DOI: 10.1371/journal.pone.0185068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 09/06/2017] [Indexed: 11/29/2022] Open
Abstract
Glutamine synthetase is a ubiquitous central enzyme in nitrogen metabolism that is controlled by up to four regulatory mechanisms, including adenylylation of some or all of the twelve subunits by adenylyl transferase. It is considered a potential therapeutic target for the treatment of tuberculosis, being essential for the growth of Mycobacterium tuberculosis, and is found extracellularly only in the pathogenic Mycobacterium strains. Human glutamine synthetase is not regulated by the adenylylation mechanism, so the adenylylated form of bacterial glutamine synthetase is of particular interest. Previously published reports show that, when M. tuberculosis glutamine synthetase is expressed in Escherichia coli, the E. coli adenylyl transferase does not optimally adenylylate the M. tuberculosis glutamine synthetase. Here, we demonstrate the production of soluble adenylylated M. tuberulosis glutamine synthetase in E. coli by the co-expression of M. tuberculosis glutamine synthetase and M. tuberculosis adenylyl transferase. The differential inhibition of adenylylated M. tuberulosis glutamine synthetase and deadenylylated M. tuberulosis glutamine synthetase by ATP based scaffold inhibitors are reported. Compounds selected on the basis of their enzyme inhibition were also shown to inhibit M. tuberculosis in the BACTEC 460TB™ assay as well as the intracellular inhibition of M. tuberculosis in a mouse bone-marrow derived macrophage assay.
Collapse
Affiliation(s)
- A. Theron
- CSIR Biosciences, Pretoria, South Africa
| | - R. L. Roth
- CSIR Biosciences, Pretoria, South Africa
| | - H. Hoppe
- CSIR Biosciences, Pretoria, South Africa
| | - C. Parkinson
- School of Biomedical Sciences, Charles Sturt University, Orange NSW, Australia
| | | | | | - I. Wiid
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town, South Africa
| | - R. D. Pietersen
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town, South Africa
| | - B. Baker
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town, South Africa
| | - C. P. Kenyon
- CSIR Biosciences, Pretoria, South Africa
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town, South Africa
- * E-mail:
| |
Collapse
|
28
|
Kumar V, Yadav S, Soumya N, Kumar R, Babu NK, Singh S. Biochemical and inhibition studies of glutamine synthetase from Leishmania donovani. Microb Pathog 2017; 107:164-174. [DOI: 10.1016/j.micpath.2017.03.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 03/21/2017] [Accepted: 03/23/2017] [Indexed: 10/27/2022]
|
29
|
Characterization of an L-phosphinothricin resistant glutamine synthetase from Exiguobacterium sp. and its improvement. Appl Microbiol Biotechnol 2017; 101:3653-3661. [PMID: 28175947 DOI: 10.1007/s00253-017-8103-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 12/21/2016] [Accepted: 12/28/2016] [Indexed: 10/20/2022]
Abstract
A glutamine synthetase (GS; 1341 bp) gene with potent L-phosphinothricin (PPT) resistance was isolated and characterized from a marine bacterium Exiguobacterium sp. Molecular docking analysis indicated that the substitution of residues Glu60 and Arg64 may lead to significant changes in binding pocket. To enhance the enzymatic property of GS, variants E60A and R64G were obtained by site-directed mutagenesis. The results revealed a noteworthy change in the thermostability and activity in comparison to the wild type (WT). WT exhibited optimum activity at 35 °C, while E60A and R64G exhibited optimum activity at 45 and 40 °C, respectively. The mutant R64G was 4.3 times more stable at 70 °C in comparison to WT, while E60A was 5.7 times more stable. Kinetic analysis revealed that the k cat value of R64G mutant was 8.10-, 7.25- and 7.63-fold that of WT for ADP, glutamine and hydroxylamine, respectively. The kinetic inhibition (K i, 4.91 ± 0.42 mM) of R64G was 2.02-fold that of WT (2.43 ± 0.14 mM) for L-phosphinothricin. The analysis of structure and function relationship showed that the binding pocket underwent dramatic changes when Arg site of 64 was substituted by Gly, thus promoting the rapid capture of substrates and leading to increase in activity and PPT-resistance of mutant R64G. The rearrangements of the residues at the molecular level formed new hydrogen bonds around the active site, which contributed to the increase of thermostability of enzymes. This study provides new insights into substrate binding mechanism of glutamine synthetase and the improved GS gene also has a potential for application in transgenic crops with L-phosphinothricin tolerance.
Collapse
|
30
|
Reinecke DL, Zarka A, Leu S, Boussiba S. Cloning, molecular characterization, and phylogeny of two evolutionary distinct glutamine synthetase isoforms in the green microalga Haematococcus pluvialis (Chlorophyceae). JOURNAL OF PHYCOLOGY 2016; 52:961-972. [PMID: 27402429 DOI: 10.1111/jpy.12444] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/19/2016] [Indexed: 06/06/2023]
Abstract
Haematococcus pluvialis (Chlorophyta) is a widely used microalga of great economic potential, yet its molecular genetics and evolution are largely unknown. We present new detailed molecular and phylogenetic analysis of two glutamine synthetase (GS) enzymes and genes (gln) under the Astaxanthin-inducing conditions of light- and nitrogen-stress. Structure analysis identified key residues and confirmed two decameric GS2 holoenzymes, a cytoplasmic enzyme, termed GS2c , and a plastidic form, termed GS2p , due to chloroplast-transit peptides at its N-terminus. Gene expression analysis showed dissociation of mRNA, protein, and enzyme activity levels for both GS2 under different growth conditions, indicating the strong post-transcriptional regulation. Data-mining identified novel and specified published gln genes from Prasinophyceae, Chlorophyta, Trebouxiophyceae, Charophyceae, Bryophyta, Lycopodiophyta, Spermatophyta, and Rhodophyta. Phylogenetic analysis found homologues to the cytosolic GS2c of H. pluvialis in all other photo- and non-photosynthetic Eukaryota. The chloroplastic GS2p was restricted to Chlorophyta, Bryophyta, some Proteobacteria and Fungii; no homologues were identified in Spermatophyta or other Eukaryota. This indicates two independent prokaryotic donors for these two gln genes in H. pluvialis. Combined phylogenetic analysis of GS, chl-b synthase, elongation factor, and light harvesting complex homologues project a newly refined model of Viridiplantae evolution. Herein, a GS1 evolved into the cytosolic GS2c and was passed on to all Eukaryota. Later, the chloroplastic GS2p entered the Archaeplastida lineage via a horizontal gene transfer at the divergence of Chlorophyta and Rhodophyta lineages. GS2p persisted in Chlorophyta and Bryophyta, but was lost during Spermatophyta evolution. These data suggest the revision of GS classification and nomenclature, and extend our understanding of the photosynthetic Eukaryota evolution.
Collapse
Affiliation(s)
- Diana L Reinecke
- Food and Bioprocess Engineering Group, Wageningen University, P.O. Box 8129, 6700 EV, Wageningen, the Netherlands
| | - Aliza Zarka
- Microalgal Biotechnology Lab, Blaustein Institutes of Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Sede-Boqer, 84990, Israel
| | - Stefan Leu
- Microalgal Biotechnology Lab, Blaustein Institutes of Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Sede-Boqer, 84990, Israel
| | - Sammy Boussiba
- Microalgal Biotechnology Lab, Blaustein Institutes of Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Sede-Boqer, 84990, Israel
| |
Collapse
|
31
|
Portune KJ, Beaumont M, Davila AM, Tomé D, Blachier F, Sanz Y. Gut microbiota role in dietary protein metabolism and health-related outcomes: The two sides of the coin. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.08.011] [Citation(s) in RCA: 227] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
32
|
Abstract
Organophosphonic acids are unique as natural products in terms of stability and mimicry. The C-P bond that defines these compounds resists hydrolytic cleavage, while the phosphonyl group is a versatile mimic of transition-states, intermediates, and primary metabolites. This versatility may explain why a variety of organisms have extensively explored the use organophosphonic acids as bioactive secondary metabolites. Several of these compounds, such as fosfomycin and bialaphos, figure prominently in human health and agriculture. The enzyme reactions that create these molecules are an interesting mix of chemistry that has been adopted from primary metabolism as well as those with no chemical precedent. Additionally, the phosphonate moiety represents a source of inorganic phosphate to microorganisms that live in environments that lack this nutrient; thus, unusual enzyme reactions have also evolved to cleave the C-P bond. This review is a comprehensive summary of the occurrence and function of organophosphonic acids natural products along with the mechanisms of the enzymes that synthesize and catabolize these molecules.
Collapse
Affiliation(s)
- Geoff P Horsman
- Department of Chemistry and Biochemistry, Wilfrid Laurier University , Waterloo, Ontario N2L 3C5, Canada
| | - David L Zechel
- Department of Chemistry, Queen's University , Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
33
|
Sirtuin-dependent reversible lysine acetylation of glutamine synthetases reveals an autofeedback loop in nitrogen metabolism. Proc Natl Acad Sci U S A 2016; 113:6653-8. [PMID: 27247389 DOI: 10.1073/pnas.1525654113] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In cells of all domains of life, reversible lysine acetylation modulates the function of proteins involved in central cellular processes such as metabolism. In this study, we demonstrate that the nitrogen regulator GlnR of the actinomycete Saccharopolyspora erythraea directly regulates transcription of the acuA gene (SACE_5148), which encodes a Gcn5-type lysine acetyltransferase. We found that AcuA acetylates two glutamine synthetases (GlnA1 and GlnA4) and that this lysine acetylation inactivated GlnA4 (GSII) but had no significant effect on GlnA1 (GSI-β) activity under the conditions tested. Instead, acetylation of GlnA1 led to a gain-of-function that modulated its interaction with the GlnR regulator and enhanced GlnR-DNA binding. It was observed that this regulatory function of acetylated GSI-β enzymes is highly conserved across actinomycetes. In turn, GlnR controls the catalytic and regulatory activities (intracellular acetylation levels) of glutamine synthetases at the transcriptional and posttranslational levels, indicating an autofeedback loop that regulates nitrogen metabolism in response to environmental change. Thus, this GlnR-mediated acetylation pathway provides a signaling cascade that acts from nutrient sensing to acetylation of proteins to feedback regulation. This work presents significant new insights at the molecular level into the mechanisms underlying the regulation of protein acetylation and nitrogen metabolism in actinomycetes.
Collapse
|
34
|
Recent Advances in the Nitrogen Metabolism in Haloarchaea and Its Biotechnological Applications. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/978-3-319-13521-2_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
35
|
Saelices L, Robles-Rengel R, Florencio FJ, Muro-Pastor MI. A core of three amino acids at the carboxyl-terminal region of glutamine synthetase defines its regulation in cyanobacteria. Mol Microbiol 2015; 96:483-96. [PMID: 25626767 DOI: 10.1111/mmi.12950] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2015] [Indexed: 11/28/2022]
Abstract
Glutamine synthetase (GS) type I is a key enzyme in nitrogen metabolism, and its activity is finely controlled by cellular carbon/nitrogen balance. In cyanobacteria, a reversible process that involves protein-protein interaction with two proteins, the inactivating factors IF7 and IF17, regulates GS. Previously, we showed that three arginine residues of IFs are critical for binding and inhibition of GS. In this work, taking advantage of the specificity of GS/IFs interaction in the model cyanobacteria Synechocystis sp. PCC 6803 and Anabaena sp. PCC 7120, we have constructed a different chimeric GSs from these two cyanobacteria. Analysis of these proteins, together with a site-directed mutagenesis approach, indicates that a core of three residues (E419, N456 and R459) is essential for the inactivation process. The three residues belong to the last 56 amino acids of the C-terminus of Synechocystis GS. A protein-protein docking modeling of Synechocystis GS in complex with IF7 supports the role of the identified core for GS/IF interaction.
Collapse
Affiliation(s)
- Lorena Saelices
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, Seville, 41092, Spain
| | | | | | | |
Collapse
|
36
|
Genes of the N-methylglutamate pathway are essential for growth of Methylobacterium extorquens DM4 with monomethylamine. Appl Environ Microbiol 2014; 80:3541-50. [PMID: 24682302 DOI: 10.1128/aem.04160-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Monomethylamine (MMA, CH3NH2) can be used as a carbon and nitrogen source by many methylotrophic bacteria. Methylobacterium extorquens DM4 lacks the MMA dehydrogenase encoded by mau genes, which in M. extorquens AM1 is essential for growth on MMA. Identification and characterization of minitransposon mutants with an MMA-dependent phenotype showed that strain DM4 grows with MMA as the sole source of carbon, energy, and nitrogen by the N-methylglutamate (NMG) pathway. Independent mutations were found in a chromosomal region containing the genes gmaS, mgsABC, and mgdABCD for the three enzymes of the pathway, γ-glutamylmethylamide (GMA) synthetase, NMG synthase, and NMG dehydrogenase, respectively. Reverse transcription-PCR confirmed the operonic structure of the two divergent gene clusters mgsABC-gmaS and mgdABCD and their induction during growth with MMA. The genes mgdABCD and mgsABC were found to be essential for utilization of MMA as a carbon and nitrogen source. The gene gmaS was essential for MMA utilization as a carbon source, but residual growth of mutant DM4gmaS growing with succinate and MMA as a nitrogen source was observed. Plasmid copies of gmaS and the gmaS homolog METDI4690, which encodes a protein 39% identical to GMA synthetase, fully restored the ability of mutants DM4gmaS and DM4gmaSΔmetdi4690 to use MMA as a carbon and nitrogen source. Similarly, chemically synthesized GMA, the product of GMA synthetase, could be used as a nitrogen source for growth in the wild-type strain, as well as in DM4gmaS and DM4gmaSΔmetdi4690 mutants. The NADH:ubiquinone oxidoreductase respiratory complex component NuoG was also found to be essential for growth with MMA as a carbon source.
Collapse
|
37
|
Murray DS, Chinnam N, Tonthat NK, Whitfill T, Wray LV, Fisher SH, Schumacher MA. Structures of the Bacillus subtilis glutamine synthetase dodecamer reveal large intersubunit catalytic conformational changes linked to a unique feedback inhibition mechanism. J Biol Chem 2013; 288:35801-11. [PMID: 24158439 DOI: 10.1074/jbc.m113.519496] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glutamine synthetase (GS), which catalyzes the production of glutamine, plays essential roles in nitrogen metabolism. There are two main bacterial GS isoenzymes, GSI-α and GSI-β. GSI-α enzymes, which have not been structurally characterized, are uniquely feedback-inhibited by Gln. To gain insight into GSI-α function, we performed biochemical and cellular studies and obtained structures for all GSI-α catalytic and regulatory states. GSI-α forms a massive 600-kDa dodecameric machine. Unlike other characterized GS, the Bacillus subtilis enzyme undergoes dramatic intersubunit conformational alterations during formation of the transition state. Remarkably, these changes are required for active site construction. Feedback inhibition arises from a hydrogen bond network between Gln, the catalytic glutamate, and the GSI-α-specific residue, Arg(62), from an adjacent subunit. Notably, Arg(62) must be ejected for proper active site reorganization. Consistent with these findings, an R62A mutation abrogates Gln feedback inhibition but does not affect catalysis. Thus, these data reveal a heretofore unseen restructuring of an enzyme active site that is coupled with an isoenzyme-specific regulatory mechanism. This GSI-α-specific regulatory network could be exploited for inhibitor design against Gram-positive pathogens.
Collapse
Affiliation(s)
- David S Murray
- From the Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239
| | | | | | | | | | | | | |
Collapse
|
38
|
Pedro-Roig L, Camacho M, Bonete MJ. Regulation of ammonium assimilation in Haloferax mediterranei: Interaction between glutamine synthetase and two GlnK proteins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:16-23. [DOI: 10.1016/j.bbapap.2012.10.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 10/04/2012] [Accepted: 10/07/2012] [Indexed: 11/30/2022]
|
39
|
Bao Y, Li L, Ye M, Dong Y, Jin W, Lin Z. Expression of glutamine synthetase in Tegillarca granosa (Bivalvia, Arcidae) hemocytes stimulated by Vibrio parahaemolyticus and lipopolysaccharides. GENETICS AND MOLECULAR RESEARCH 2013; 12:1143-54. [DOI: 10.4238/2013.april.10.9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
40
|
Molecular cloning and characterization of glutamine synthetase, a tegumental protein from Schistosoma japonicum. Parasitol Res 2012; 111:2367-76. [PMID: 23011789 DOI: 10.1007/s00436-012-3092-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 08/21/2012] [Indexed: 10/27/2022]
Abstract
Glutamine synthetase catalyzes the synthesis of glutamine, providing nitrogen for the production of purines, pyrimidines, amino acids, and other compounds required in many pivotal cellular events. Herein, a full-length cDNA encoding Schistosoma japonicum glutamine synthetase (SjGS) was isolated from 21-day schistosomes. The entire open reading frame of SjGS contains a 1,095-bp coding region corresponding to 364 amino acids with a calculated molecular weight of 40.7 kDa. NCBIP blast shows that the putative amino acid of SjGS contains a classic β-grasp domain and a catalytic domain of glutamine synthetase. The relative mRNA expression of SjGS was evaluated in 7-, 13-, 21-, 28-, 35-, and 42-day worms of S. japonicum in the final host and higher expression at day 21, and 42 worms were observed. This protein was also detected in worm extracts using Western blot. Immunofluorescence studies indicated that the SjGS protein was mainly distributed on tegument and parenchyma in 28-day adult worms. The recombinant glutamine synthetase with a molecular weight of 45 kDa was expressed in Escherichia coli and purified in its active form. The enzyme activity of the recombinant protein was 3.30 ± 0.67 U.μg-1. The enzyme activity was highly stable over a wide range of pH (6-9) and temperature (25-40 °C) under physiological conditions. The transcription of SjGS was upregulated in praziquantel-treated worms at 2-, 4-, and 24-h posttreatment compared with the untreated control. As a first step towards the clarification of the role of glutamine synthetase in schistosome species, we have cloned and characterized cDNAs encoding SjGS in S. japonicum, and the data presented suggest that SjGS is an important molecule in the development of the schistosome.
Collapse
|
41
|
Ghoshroy S, Robertson DL. MOLECULAR EVOLUTION OF GLUTAMINE SYNTHETASE II AND III IN THE CHROMALVEOLATES(1). JOURNAL OF PHYCOLOGY 2012; 48:768-783. [PMID: 27011094 DOI: 10.1111/j.1529-8817.2012.01169.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Glutamine synthetase (GS) is encoded by three distinct gene families (GSI, GSII, and GSIII) that are broadly distributed among the three domains of life. Previous studies established that GSII and GSIII isoenzymes were expressed in diatoms; however, less is known about the distribution and evolution of the gene families in other chromalveolate lineages. Thus, GSII cDNA sequences were isolated from three cryptophytes (Guillardia theta D. R. A. Hill et Wetherbee, Cryptomonas phaseolus Skuja, and Pyrenomonas helgolandii Santore), and GSIII was sequenced from G. theta. Red algal GSII sequences were obtained from Bangia atropurpurea (Mertens ex Roth) C. Agardh; Compsopogon caeruleus (Balbis ex C. Agardh) Mont.; Flintiella sanguinaria F. D. Ott and Porphyridium aerugineum Geitler; Rhodella violacea (Kornmann) Wehrmeyer and Dixoniella grisea (Geitler) J. L. Scott, S. T. Broadwater, B. D. Saunders, J. P. Thomas et P. W. Gabrielson; and Stylonema alsidii (Zanardini) K. M. Drew. In Bayesian inference and maximum-likelihood (ML) phylogenetic analyses, chromalveolate GSII sequences formed a weakly supported clade that nested among sequences from glaucophytes, red algae, green algae, and plants. Red algal GSII sequences formed two distinct clades. The largest clade contained representatives from the Cyanidiophytina and Rhodophytina and grouped with plants and green algae. The smaller clade (C. caeruleus, Porphyra yezoensis, and S. alsidii) nested within the chromalveolates, although its placement was unresolved. Chromalveolate GSIII sequences formed a well-supported clade in Bayesian and ML phylogenies, and mitochondrial transit peptides were identified in many of the sequences. There was strong support for a stramenopile-haptophyte-cryptophyte GSIII clade in which the cryptophyte sequence diverged from the deepest node. Overall, the evolutionary history of the GS gene families within the algae is complex with evidence for the presence of orthologous and paralogous sequences, ancient and recent gene duplications, gene losses and replacements, and the potential for both endosymbiotic and lateral gene transfers.
Collapse
Affiliation(s)
- Sohini Ghoshroy
- Biology Department, Clark University, 950, Main Street, Worcester, MA 01610, USA
| | - Deborah L Robertson
- Biology Department, Clark University, 950, Main Street, Worcester, MA 01610, USA
| |
Collapse
|
42
|
Dreier A, Stannek L, Blumenberg M, Taviani M, Sigovini M, Wrede C, Thiel V, Hoppert M. The fingerprint of chemosymbiosis: origin and preservation of isotopic biosignatures in the nonseep bivalve Loripes lacteus compared with Venerupis aurea. FEMS Microbiol Ecol 2012; 81:480-93. [DOI: 10.1111/j.1574-6941.2012.01374.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 03/16/2012] [Accepted: 03/19/2012] [Indexed: 12/01/2022] Open
Affiliation(s)
| | - Lorena Stannek
- Institute of Microbiology and Genetics; University of Goettingen; Goettingen; Germany
| | - Martin Blumenberg
- Courant Centre Geobiology; University of Goettingen; Goettingen; Germany
| | | | | | - Christoph Wrede
- Institute of Microbiology and Genetics; University of Goettingen; Goettingen; Germany
| | - Volker Thiel
- Courant Centre Geobiology; University of Goettingen; Goettingen; Germany
| | | |
Collapse
|
43
|
Influence of nutrients and currents on the genomic composition of microbes across an upwelling mosaic. ISME JOURNAL 2012; 6:1403-14. [PMID: 22278668 PMCID: PMC3379637 DOI: 10.1038/ismej.2011.201] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Metagenomic data sets were generated from samples collected along a coastal to open ocean transect between Southern California Bight and California Current waters during a seasonal upwelling event, providing an opportunity to examine the impact of episodic pulses of cold nutrient-rich water into surface ocean microbial communities. The data set consists of ∼5.8 million predicted proteins across seven sites, from three different size classes: 0.1–0.8, 0.8–3.0 and 3.0–200.0 μm. Taxonomic and metabolic analyses suggest that sequences from the 0.1–0.8 μm size class correlated with their position along the upwelling mosaic. However, taxonomic profiles of bacteria from the larger size classes (0.8–200 μm) were less constrained by habitat and characterized by an increase in Cyanobacteria, Bacteroidetes, Flavobacteria and double-stranded DNA viral sequences. Functional annotation of transmembrane proteins indicate that sites comprised of organisms with small genomes have an enrichment of transporters with substrate specificities for amino acids, iron and cadmium, whereas organisms with larger genomes have a higher percentage of transporters for ammonium and potassium. Eukaryotic-type glutamine synthetase (GS) II proteins were identified and taxonomically classified as viral, most closely related to the GSII in Mimivirus, suggesting that marine Mimivirus-like particles may have played a role in the transfer of GSII gene functions. Additionally, a Planctomycete bloom was sampled from one upwelling site providing a rare opportunity to assess the genomic composition of a marine Planctomycete population. The significant correlations observed between genomic properties, community structure and nutrient availability provide insights into habitat-driven dynamics among oligotrophic versus upwelled marine waters adjoining each other spatially.
Collapse
|
44
|
Kim JN, Cann IKO, Mackie RI. Purification, characterization, and expression of multiple glutamine synthetases from Prevotella ruminicola 23. J Bacteriol 2012; 194:176-84. [PMID: 22020637 PMCID: PMC3256599 DOI: 10.1128/jb.05916-11] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 10/14/2011] [Indexed: 11/20/2022] Open
Abstract
The Prevotella ruminicola 23 genome encodes three different glutamine synthetase (GS) enzymes: glutamine synthetase I (GSI) (ORF02151), GSIII-1 (ORF01459), and GSIII-2 (ORF02034). GSI, GSIII-1, and GSIII-2 have each been heterologously expressed in and purified from Escherichia coli. The subunit molecular mass of GSI was 56 kDa, while GSIII-1 and GSIII-2 were both 83 kDa. Optimal conditions for γ-glutamyl transferase activity were found to be 35°C at pH 5.6 with 0.25 mM Mn(2+) ions (GSI) or 37°C at pH 6.0 (GSIII-1 and GSIII-2) with 0.50 to 1.00 mM Mn(2+) ions. GSIII biosynthetic activity was found to be optimal at 50 to 60°C and pH 6.8 to 7.0 with 10 mM Mn(2+) ions, while GSI displayed no GS biosynthetic activity. Kinetic analysis revealed K(m) values for glutamate and ammonium as well as for hydrolysis of ATP to be 8.58, 0.48, and 1.91 mM, respectively, for GSIII-1 and 1.72, 0.43, and 2.65 mM, respectively, for GSIII-2. A quantitative reverse transcriptase PCR assay (qRT-PCR) revealed GSIII-2 to be significantly induced by high concentrations of ammonia, and this corresponded with increases in measured GS activity. Collectively, these results show that both GSIII enzymes in P. ruminicola 23 are functional and indicate that GSIII-2, flanked by GOGAT (gltB and gltD genes), plays an important role in the acquisition and metabolism of ammonia, particularly under nonlimiting ammonia growth conditions.
Collapse
Affiliation(s)
| | - Isaac K. O. Cann
- Department of Animal Sciences
- Department of Microbiology
- Institute for Genomic Biology, University of Illinois, Urbana, Illinois, USA
| | - Roderick I. Mackie
- Department of Animal Sciences
- Institute for Genomic Biology, University of Illinois, Urbana, Illinois, USA
| |
Collapse
|
45
|
Kenyon CP, Steyn A, Roth RL, Steenkamp PA, Nkosi TC, Oldfield LC. The role of the C8 proton of ATP in the regulation of phosphoryl transfer within kinases and synthetases. BMC BIOCHEMISTRY 2011; 12:36. [PMID: 21749731 PMCID: PMC3145573 DOI: 10.1186/1471-2091-12-36] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 07/13/2011] [Indexed: 11/18/2022]
Abstract
BACKGROUND The kinome comprises functionally diverse enzymes, with the current classification indicating very little about the extent of conserved regulatory mechanisms associated with phosphoryl transfer. The apparent Km of the kinases ranges from less than 0.4 μM to in excess of 1000 μM for ATP. It is not known how this diverse range of enzymes mechanistically achieves the regulation of catalysis via an affinity range for ATP varying by three-orders of magnitude. RESULTS We have demonstrated a previously undiscovered mechanism in kinase and synthetase enzymes where the overall rate of reaction is regulated via the C8-H of ATP. Using ATP deuterated at the C8 position (C8D-ATP) as a molecular probe it was shown that the C8-H plays a direct role in the regulation of the overall rate of reaction in a range of kinase and synthetase enzymes. Using comparative studies on the effect of the concentration of ATP and C8D-ATP on the activity of the enzymes we demonstrated that not only did C8D-ATP give a kinetic isotope effect (KIE) but the KIE's obtained are clearly not secondary KIE effects as the magnitude of the KIE in all cases was at least 2 fold and in most cases in excess of 7 fold. CONCLUSIONS Kinase and synthetase enzymes utilise C8D-ATP in preference to non-deuterated ATP. The KIE obtained at low ATP concentrations is clearly a primary KIE demonstrating strong evidence that the bond to the isotopically substituted hydrogen is being broken. The effect of the ATP concentration profile on the KIE was used to develop a model whereby the C8H of ATP plays a role in the overall regulation of phosphoryl transfer. This role of the C8H of ATP in the regulation of substrate binding appears to have been conserved in all kinase and synthetase enzymes as one of the mechanisms associated with binding of ATP. The induction of the C8H to be labile by active site residues coordinated to the ATP purine ring may play a significant role in explaining the broad range of Km associated with kinase enzymes.
Collapse
Affiliation(s)
- Colin P Kenyon
- CSIR, Biosciences, Meiring Naude Road, Pretoria, 0001, Gauteng, South Africa
| | - Anjo Steyn
- CSIR, Biosciences, Meiring Naude Road, Pretoria, 0001, Gauteng, South Africa
| | - Robyn L Roth
- CSIR, Biosciences, Meiring Naude Road, Pretoria, 0001, Gauteng, South Africa
| | - Paul A Steenkamp
- CSIR, Biosciences, Meiring Naude Road, Pretoria, 0001, Gauteng, South Africa
| | - Thokozani C Nkosi
- CSIR, Biosciences, Meiring Naude Road, Pretoria, 0001, Gauteng, South Africa
| | - Lyndon C Oldfield
- CSIR, Biosciences, Meiring Naude Road, Pretoria, 0001, Gauteng, South Africa
| |
Collapse
|
46
|
Abstract
The nitrogen cycle describes the processes through which nitrogen is converted between its various chemical forms. These transformations involve both biological and abiotic redox processes. The principal processes involved in the nitrogen cycle are nitrogen fixation, nitrification, nitrate assimilation, respiratory reduction of nitrate to ammonia, anaerobic ammonia oxidation (anammox) and denitrification. All of these are carried out by micro-organisms, including bacteria, archaea and some specialized fungi. In the present article, we provide a brief introduction to both the biochemical and ecological aspects of these processes and consider how human activity over the last 100 years has changed the historic balance of the global nitrogen cycle.
Collapse
|
47
|
Ghoshroy S, Binder M, Tartar A, Robertson DL. Molecular evolution of glutamine synthetase II: Phylogenetic evidence of a non-endosymbiotic gene transfer event early in plant evolution. BMC Evol Biol 2010; 10:198. [PMID: 20579371 PMCID: PMC2978018 DOI: 10.1186/1471-2148-10-198] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 06/25/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Glutamine synthetase (GS) is essential for ammonium assimilation and the biosynthesis of glutamine. The three GS gene families (GSI, GSII, and GSIII) are represented in both prokaryotic and eukaryotic organisms. In this study, we examined the evolutionary relationship of GSII from eubacterial and eukaryotic lineages and present robust phylogenetic evidence that GSII was transferred from gamma-Proteobacteria (Eubacteria) to the Chloroplastida. RESULTS GSII sequences were isolated from four species of green algae (Trebouxiophyceae), and additional green algal (Chlorophyceae and Prasinophytae) and streptophyte (Charales, Desmidiales, Bryophyta, Marchantiophyta, Lycopodiophyta and Tracheophyta) sequences were obtained from public databases. In Bayesian and maximum likelihood analyses, eubacterial (GSIIB) and eukaryotic (GSIIE) GSII sequences formed distinct clades. Both GSIIB and GSIIE were found in chlorophytes and early-diverging streptophytes. The GSIIB enzymes from these groups formed a well-supported sister clade with the gamma-Proteobacteria, providing evidence that GSIIB in the Chloroplastida arose by horizontal gene transfer (HGT). Bayesian relaxed molecular clock analyses suggest that GSIIB and GSIIE coexisted for an extended period of time but it is unclear whether the proposed HGT happened prior to or after the divergence of the primary endosymbiotic lineages (the Archaeplastida). However, GSIIB genes have not been identified in glaucophytes or red algae, favoring the hypothesis that GSIIB was gained after the divergence of the primary endosymbiotic lineages. Duplicate copies of the GSIIB gene were present in Chlamydomonas reinhardtii, Volvox carteri f. nagariensis, and Physcomitrella patens. Both GSIIB proteins in C. reinhardtii and V. carteri f. nagariensis had N-terminal transit sequences, indicating they are targeted to the chloroplast or mitochondrion. In contrast, GSIIB proteins of P. patens lacked transit sequences, suggesting a cytosolic function. GSIIB sequences were absent in vascular plants where the duplication of GSIIE replaced the function of GSIIB. CONCLUSIONS Phylogenetic evidence suggests GSIIB in Chloroplastida evolved by HGT, possibly after the divergence of the primary endosymbiotic lineages. Thus while multiple GS isoenzymes are common among members of the Chloroplastida, the isoenzymes may have evolved via different evolutionary processes. The acquisition of essential enzymes by HGT may provide rapid changes in biochemical capacity and therefore be favored by natural selection.
Collapse
Affiliation(s)
- Sohini Ghoshroy
- Clark University, Biology Department, 950, Main Street, Worcester, MA 01610, USA
| | - Manfred Binder
- Clark University, Biology Department, 950, Main Street, Worcester, MA 01610, USA
| | - Aurélien Tartar
- Nova Southeastern University, 3301 College Avenue, Fort Lauderdale, FL 33314, USA
| | - Deborah L Robertson
- Clark University, Biology Department, 950, Main Street, Worcester, MA 01610, USA
| |
Collapse
|
48
|
Amon J, Titgemeyer F, Burkovski A. Common patterns - unique features: nitrogen metabolism and regulation in Gram-positive bacteria. FEMS Microbiol Rev 2010; 34:588-605. [PMID: 20337720 DOI: 10.1111/j.1574-6976.2010.00216.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Gram-positive bacteria have developed elaborate mechanisms to control ammonium assimilation, at the levels of both transcription and enzyme activity. In this review, the common and specific mechanisms of nitrogen assimilation and regulation in Gram-positive bacteria are summarized and compared for the genera Bacillus, Clostridium, Streptomyces, Mycobacterium and Corynebacterium, with emphasis on the high G+C genera. Furthermore, the importance of nitrogen metabolism and control for the pathogenic lifestyle and virulence is discussed. In summary, the regulation of nitrogen metabolism in prokaryotes shows an impressive diversity. Virtually every phylum of bacteria evolved its own strategy to react to the changing conditions of nitrogen supply. Not only do the transcription factors differ between the phyla and sometimes even between families, but the genetic targets of a given regulon can also differ between closely related species.
Collapse
Affiliation(s)
- Johannes Amon
- Lehrstuhl für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | | |
Collapse
|
49
|
Hayward D, van Helden PD, Wiid IJF. Glutamine synthetase sequence evolution in the mycobacteria and their use as molecular markers for Actinobacteria speciation. BMC Evol Biol 2009; 9:48. [PMID: 19245690 PMCID: PMC2667176 DOI: 10.1186/1471-2148-9-48] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 02/26/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although the gene encoding for glutamine synthetase (glnA) is essential in several organisms, multiple glnA copies have been identified in bacterial genomes such as those of the phylum Actinobacteria, notably the mycobacterial species. Intriguingly, previous reports have shown that only one copy (glnA1) is essential for growth in M. tuberculosis, while the other copies (glnA2, glnA3 and glnA4) are not. RESULTS In this report it is shown that the glnA1 and glnA2 encoded glutamine synthetase sequences were inherited from an Actinobacteria ancestor, while the glnA4 and glnA3 encoded GS sequences were sequentially acquired during Actinobacteria speciation. The glutamine synthetase sequences encoded by glnA4 and glnA3 are undergoing reductive evolution in the mycobacteria, whilst those encoded by glnA1 and glnA2 are more conserved. CONCLUSION Different selective pressures by the ecological niche that the organisms occupy may influence the sequence evolution of glnA1 and glnA2 and thereby affecting phylogenies based on the protein sequences they encode. The findings in this report may impact the use of similar sequences as molecular markers, as well as shed some light on the evolution of glutamine synthetase in the mycobacteria.
Collapse
Affiliation(s)
- Don Hayward
- DST/NRF Centre for Excellence in Biomedical Tuberculosis Research, US/MRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Health Sciences - Stellenbosch University, South Africa.
| | | | | |
Collapse
|
50
|
Abstract
The subject of this chapter is to describe the methodology for assessing the power of phylogenetic HGT detection methods. Detection power is defined in the framework of hypothesis testing. Rates of false positives and false negatives can be estimated by testing HGT detection methods on HGT-free orthologous sets, and on the same sets with in silico simulated HGT events. The whole process can be divided into three steps: obtaining HGT-free orthologous sets, in silico simulation of HGT events in the same set, and submitting both sets for evaluation by any of the tested methods.Phylogenetic methods of HGT detection can be roughly divided into three types: likelihood-based tests of topologies (Kishino-Hasegawa (KH), Shimodaira-Hasegawa (SH), and Approximately Unbiased (AU) tests), tree distance methods (symmetrical difference of Robinson and Foulds (RF), and Subtree Pruning and Regrafting (SPR) distances), and genome spectral approaches (bipartition and quartet decomposition analysis). Restrictions that are inherent to phylogenetic methods of HGT detection in general and the power and precision of each method are discussed and comparative analyses of different approaches are provided, as well as some examples of assessing the power of phylogenetic HGT detection methods from a case study of orthologous sets from gamma-proteobacteria (Poptsova and Gogarten, BMC Evol Biol 7, 45, 2007) and cyanobacteria (Zhaxybayeva et al., Genome Res 16, 1099-108, 2006).
Collapse
Affiliation(s)
- Maria Poptsova
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| |
Collapse
|