1
|
Innovative Hybrid-Alignment Annotation Method for Bioinformatics Identification and Functional Verification of a Novel Nitric Oxide Synthase in Trichomonas vaginalis. BIOLOGY 2022; 11:biology11081210. [PMID: 36009837 PMCID: PMC9404748 DOI: 10.3390/biology11081210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary Both the annotation and identification of genes in pathogenic parasites remain challenging. As a survival factor, nitric oxide (NO) has been proven to be synthesized in Trichomonas vaginalis (TV). However, nitric oxide synthase (NOS) has not yet been annotated in the TV genome. By aligning whole coding sequences of TV against a thousand sequences of known proteins from other organisms via the Smith–Waterman and Needleman–Wunsch algorithms, we developed a witness-to-suspect strategy to identify incorrectly annotated genes in TV. A novel NOS of TV (TV NOS) with a high witness-to-suspect ratio, which was originally annotated as a hydrogenase in the NCBI database, was successfully identified. We then performed in silico modeling of the protein structure and the molecular docking of all cofactors (NADPH, tetrahydrobiopterin (BH4), heme and flavin adenine dinucleotide (FAD)), cloned the gene, expressed and purified the protein, and ultimately performed mass spectrometry analysis and enzymatic activity assays. We clearly showed that although the predicted structure of TV NOS is not similar to that of NOS proteins of other species, all cofactor-binding motifs can interact with their ligands with high affinities. Most importantly, the purified protein is a functional NOS, as it has a high enzymatic activity for generating NO in vitro. This study provides an innovative approach to identify incorrectly annotated genes. Abstract Both the annotation and identification of genes in pathogenic parasites are still challenging. Although, as a survival factor, nitric oxide (NO) has been proven to be synthesized in Trichomonas vaginalis (TV), nitric oxide synthase (NOS) has not yet been annotated in the TV genome. We developed a witness-to-suspect strategy to identify incorrectly annotated genes in TV via the Smith–Waterman and Needleman–Wunsch algorithms through in-depth and repeated alignment of whole coding sequences of TV against thousands of sequences of known proteins from other organisms. A novel NOS of TV (TV NOS), which was annotated as hydrogenase in the NCBI database, was successfully identified; this TV NOS had a high witness-to-suspect ratio and contained all the NOS cofactor-binding motifs (NADPH, tetrahydrobiopterin (BH4), heme and flavin adenine dinucleotide (FAD) motifs). To confirm this identification, we performed in silico modeling of the protein structure and cofactor docking, cloned the gene, expressed and purified the protein, performed mass spectrometry analysis, and ultimately performed an assay to measure enzymatic activity. Our data showed that although the predicted structure of the TV NOS protein was not similar to the structure of NOSs of other species, all cofactor-binding motifs could interact with their ligands with high affinities. We clearly showed that the purified protein had high enzymatic activity for generating NO in vitro. This study provides an innovative approach to identify incorrectly annotated genes in TV and highlights a novel NOS that might serve as a virulence factor of TV.
Collapse
|
2
|
Schormann N, Campos J, Motamed R, Hayden KL, Gould JR, Green TJ, Senkovich O, Banerjee S, Ulett GC, Chattopadhyay D. Chlamydia trachomatis glyceraldehyde 3-phosphate dehydrogenase: Enzyme kinetics, high-resolution crystal structure, and plasminogen binding. Protein Sci 2020; 29:2446-2458. [PMID: 33058314 DOI: 10.1002/pro.3975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 12/27/2022]
Abstract
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is an evolutionarily conserved essential enzyme in the glycolytic pathway. GAPDH is also involved in a wide spectrum of non-catalytic cellular 'moonlighting' functions. Bacterial surface-associated GAPDHs engage in many host interactions that aid in colonization, pathogenesis, and virulence. We have structurally and functionally characterized the recombinant GAPDH of the obligate intracellular bacteria Chlamydia trachomatis, the leading cause of sexually transmitted bacterial and ocular infections. Contrary to earlier speculations, recent data confirm the presence of glucose-catabolizing enzymes including GAPDH in both stages of the biphasic life cycle of the bacterium. The high-resolution crystal structure described here provides a close-up view of the enzyme's active site and surface topology and reveals two chemically modified cysteine residues. Moreover, we show for the first time that purified C. trachomatis GAPDH binds to human plasminogen and plasmin. Based on the versatility of GAPDH's functions, data presented here emphasize the need for investigating the Chlamydiae GAPDH's involvement in biological functions beyond energy metabolism.
Collapse
Affiliation(s)
- Norbert Schormann
- Department of Biochemistry, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Juan Campos
- Department of Chemistry and Physics, Birmingham-Southern College, Birmingham, Alabama, USA
| | - Rachael Motamed
- Department of Chemistry and Physics, Birmingham-Southern College, Birmingham, Alabama, USA
| | - Katherine L Hayden
- Department of Chemistry and Physics, Birmingham-Southern College, Birmingham, Alabama, USA
| | - Joseph R Gould
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Todd J Green
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Olga Senkovich
- Department of Biochemistry and Molecular Genetics, Midwestern University, Glendale, Arizona, USA
| | - Surajit Banerjee
- Northeastern Collaborative Access Team and Department of Chemistry and Chemical Biology, Cornell University, Argonne, Illinois, USA
| | - Glen C Ulett
- School of Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands, Australia
| | | |
Collapse
|
3
|
N-Terminal Presequence-Independent Import of Phosphofructokinase into Hydrogenosomes of Trichomonas vaginalis. EUKARYOTIC CELL 2015; 14:1264-75. [PMID: 26475173 DOI: 10.1128/ec.00104-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 10/08/2015] [Indexed: 12/27/2022]
Abstract
Mitochondrial evolution entailed the origin of protein import machinery that allows nuclear-encoded proteins to be targeted to the organelle, as well as the origin of cleavable N-terminal targeting sequences (NTS) that allow efficient sorting and import of matrix proteins. In hydrogenosomes and mitosomes, reduced forms of mitochondria with reduced proteomes, NTS-independent targeting of matrix proteins is known. Here, we studied the cellular localization of two glycolytic enzymes in the anaerobic pathogen Trichomonas vaginalis: PPi-dependent phosphofructokinase (TvPPi-PFK), which is the main glycolytic PFK activity of the protist, and ATP-dependent PFK (TvATP-PFK), the function of which is less clear. TvPPi-PFK was detected predominantly in the cytosol, as expected, while all four TvATP-PFK paralogues were imported into T. vaginalis hydrogenosomes, although none of them possesses an NTS. The heterologous expression of TvATP-PFK in Saccharomyces cerevisiae revealed an intrinsic capability of the protein to be recognized and imported into yeast mitochondria, whereas yeast ATP-PFK resides in the cytosol. TvATP-PFK consists of only a catalytic domain, similarly to "short" bacterial enzymes, while ScATP-PFK includes an N-terminal extension, a catalytic domain, and a C-terminal regulatory domain. Expression of the catalytic domain of ScATP-PFK and short Escherichia coli ATP-PFK in T. vaginalis resulted in their partial delivery to hydrogenosomes. These results indicate that TvATP-PFK and the homologous ATP-PFKs possess internal structural targeting information that is recognized by the hydrogenosomal import machinery. From an evolutionary perspective, the predisposition of ancient ATP-PFK to be recognized and imported into hydrogenosomes might be a relict from the early phases of organelle evolution.
Collapse
|
4
|
Evidence for repeated gene duplications in Tritrichomonas foetus supported by EST analysis and comparison with the Trichomonas vaginalis genome. Vet Parasitol 2014; 206:267-76. [DOI: 10.1016/j.vetpar.2014.09.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 09/26/2014] [Accepted: 09/30/2014] [Indexed: 01/01/2023]
|
5
|
Müller M, Mentel M, van Hellemond JJ, Henze K, Woehle C, Gould SB, Yu RY, van der Giezen M, Tielens AGM, Martin WF. Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol Mol Biol Rev 2012; 76:444-95. [PMID: 22688819 PMCID: PMC3372258 DOI: 10.1128/mmbr.05024-11] [Citation(s) in RCA: 526] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Major insights into the phylogenetic distribution, biochemistry, and evolutionary significance of organelles involved in ATP synthesis (energy metabolism) in eukaryotes that thrive in anaerobic environments for all or part of their life cycles have accrued in recent years. All known eukaryotic groups possess an organelle of mitochondrial origin, mapping the origin of mitochondria to the eukaryotic common ancestor, and genome sequence data are rapidly accumulating for eukaryotes that possess anaerobic mitochondria, hydrogenosomes, or mitosomes. Here we review the available biochemical data on the enzymes and pathways that eukaryotes use in anaerobic energy metabolism and summarize the metabolic end products that they generate in their anaerobic habitats, focusing on the biochemical roles that their mitochondria play in anaerobic ATP synthesis. We present metabolic maps of compartmentalized energy metabolism for 16 well-studied species. There are currently no enzymes of core anaerobic energy metabolism that are specific to any of the six eukaryotic supergroup lineages; genes present in one supergroup are also found in at least one other supergroup. The gene distribution across lineages thus reflects the presence of anaerobic energy metabolism in the eukaryote common ancestor and differential loss during the specialization of some lineages to oxic niches, just as oxphos capabilities have been differentially lost in specialization to anoxic niches and the parasitic life-style. Some facultative anaerobes have retained both aerobic and anaerobic pathways. Diversified eukaryotic lineages have retained the same enzymes of anaerobic ATP synthesis, in line with geochemical data indicating low environmental oxygen levels while eukaryotes arose and diversified.
Collapse
Affiliation(s)
| | - Marek Mentel
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Jaap J. van Hellemond
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Katrin Henze
- Institute of Molecular Evolution, University of Düsseldorf, Düsseldorf, Germany
| | - Christian Woehle
- Institute of Molecular Evolution, University of Düsseldorf, Düsseldorf, Germany
| | - Sven B. Gould
- Institute of Molecular Evolution, University of Düsseldorf, Düsseldorf, Germany
| | - Re-Young Yu
- Institute of Molecular Evolution, University of Düsseldorf, Düsseldorf, Germany
| | - Mark van der Giezen
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Aloysius G. M. Tielens
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - William F. Martin
- Institute of Molecular Evolution, University of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
6
|
Ghoshroy S, Robertson DL. MOLECULAR EVOLUTION OF GLUTAMINE SYNTHETASE II AND III IN THE CHROMALVEOLATES(1). JOURNAL OF PHYCOLOGY 2012; 48:768-783. [PMID: 27011094 DOI: 10.1111/j.1529-8817.2012.01169.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Glutamine synthetase (GS) is encoded by three distinct gene families (GSI, GSII, and GSIII) that are broadly distributed among the three domains of life. Previous studies established that GSII and GSIII isoenzymes were expressed in diatoms; however, less is known about the distribution and evolution of the gene families in other chromalveolate lineages. Thus, GSII cDNA sequences were isolated from three cryptophytes (Guillardia theta D. R. A. Hill et Wetherbee, Cryptomonas phaseolus Skuja, and Pyrenomonas helgolandii Santore), and GSIII was sequenced from G. theta. Red algal GSII sequences were obtained from Bangia atropurpurea (Mertens ex Roth) C. Agardh; Compsopogon caeruleus (Balbis ex C. Agardh) Mont.; Flintiella sanguinaria F. D. Ott and Porphyridium aerugineum Geitler; Rhodella violacea (Kornmann) Wehrmeyer and Dixoniella grisea (Geitler) J. L. Scott, S. T. Broadwater, B. D. Saunders, J. P. Thomas et P. W. Gabrielson; and Stylonema alsidii (Zanardini) K. M. Drew. In Bayesian inference and maximum-likelihood (ML) phylogenetic analyses, chromalveolate GSII sequences formed a weakly supported clade that nested among sequences from glaucophytes, red algae, green algae, and plants. Red algal GSII sequences formed two distinct clades. The largest clade contained representatives from the Cyanidiophytina and Rhodophytina and grouped with plants and green algae. The smaller clade (C. caeruleus, Porphyra yezoensis, and S. alsidii) nested within the chromalveolates, although its placement was unresolved. Chromalveolate GSIII sequences formed a well-supported clade in Bayesian and ML phylogenies, and mitochondrial transit peptides were identified in many of the sequences. There was strong support for a stramenopile-haptophyte-cryptophyte GSIII clade in which the cryptophyte sequence diverged from the deepest node. Overall, the evolutionary history of the GS gene families within the algae is complex with evidence for the presence of orthologous and paralogous sequences, ancient and recent gene duplications, gene losses and replacements, and the potential for both endosymbiotic and lateral gene transfers.
Collapse
Affiliation(s)
- Sohini Ghoshroy
- Biology Department, Clark University, 950, Main Street, Worcester, MA 01610, USA
| | - Deborah L Robertson
- Biology Department, Clark University, 950, Main Street, Worcester, MA 01610, USA
| |
Collapse
|
7
|
Complete WO phage sequences reveal their dynamic evolutionary trajectories and putative functional elements required for integration into the Wolbachia genome. Appl Environ Microbiol 2009; 75:5676-86. [PMID: 19592535 DOI: 10.1128/aem.01172-09] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Wolbachia endosymbionts are ubiquitously found in diverse insects including many medical and hygienic pests, causing a variety of reproductive phenotypes, such as cytoplasmic incompatibility, and thereby efficiently spreading in host insect populations. Recently, Wolbachia-mediated approaches to pest control and management have been proposed, but the application of these approaches has been hindered by the lack of genetic transformation techniques for symbiotic bacteria. Here, we report the genome and structure of active bacteriophages from a Wolbachia endosymbiont. From the Wolbachia strain wCauB infecting the moth Ephestia kuehniella two closely related WO prophages, WOcauB2 of 43,016 bp with 47 open reading frames (ORFs) and WOcauB3 of 45,078 bp with 46 ORFs, were characterized. In each of the prophage genomes, an integrase gene and an attachment site core sequence were identified, which are putatively involved in integration and excision of the mobile genetic elements. The 3' region of the prophages encoded genes with sequence motifs related to bacterial virulence and protein-protein interactions, which might represent effector molecules that affect cellular processes and functions of their host bacterium and/or insect. Database searches and phylogenetic analyses revealed that the prophage genes have experienced dynamic evolutionary trajectories. Genes similar to the prophage genes were found across divergent bacterial phyla, highlighting the active and mobile nature of the genetic elements. We suggest that the active WO prophage genomes and their constituent sequence elements would provide a clue to development of a genetic transformation vector for Wolbachia endosymbionts.
Collapse
|
8
|
Glyceraldehyde-3-phosphate dehydrogenase is a surface-associated, fibronectin-binding protein of Trichomonas vaginalis. Infect Immun 2009; 77:2703-11. [PMID: 19380472 DOI: 10.1128/iai.00157-09] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Trichomonas vaginalis colonizes the urogenital tract of humans and causes trichomonosis, the most prevalent nonviral sexually transmitted disease. We have shown an association of T. vaginalis with basement membrane extracellular matrix components, a property which we hypothesize is important for colonization and persistence. In this study, we identify a fibronectin (FN)-binding protein of T. vaginalis. A monoclonal antibody (MAb) from a library of hybridomas that inhibited the binding of T. vaginalis organisms to immobilized FN was identified. The MAb (called ws1) recognized a 39-kDa protein and was used to screen a cDNA expression library of T. vaginalis. A 1,086-bp reactive cDNA clone that encoded a protein of 362 amino acids with identity to glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was obtained. The gapdh gene was cloned, and recombinant GAPDH (rGAPDH) was expressed in Escherichia coli cells. Natural GAPDH and rGAPDH bound to immobilized FN and to plasminogen and collagen but not to laminin. MAb ws1 inhibited binding to FN. GAPDH was detected on the surface of trichomonads and was upregulated in synthesis and surface expression by iron. Higher levels of binding to FN were seen for organisms grown in iron-replete medium than for organisms grown in iron-depleted medium. In addition, decreased synthesis of GAPDH by antisense transfection of T. vaginalis gave lower levels of organisms bound to FN and had no adverse effect on growth kinetics. Finally, GAPDH did not associate with immortalized vaginal epithelial cells (VECs), and neither GAPDH nor MAb ws1 inhibited the adherence of trichomonads to VECs. These results indicate that GAPDH is a surface-associated protein of T. vaginalis with alternative functions.
Collapse
|
9
|
A complex and punctate distribution of three eukaryotic genes derived by lateral gene transfer. BMC Evol Biol 2007; 7:89. [PMID: 17562012 PMCID: PMC1920508 DOI: 10.1186/1471-2148-7-89] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Accepted: 06/11/2007] [Indexed: 11/13/2022] Open
Abstract
Background Lateral gene transfer is increasingly invoked to explain phylogenetic results that conflict with our understanding of organismal relationships. In eukaryotes, the most common observation interpreted in this way is the appearance of a bacterial gene (one that is not clearly derived from the mitochondrion or plastid) in a eukaryotic nuclear genome. Ideally such an observation would involve a single eukaryote or a small group of related eukaryotes encoding a gene from a specific bacterial lineage. Results Here we show that several apparently simple cases of lateral transfer are actually more complex than they originally appeared: in these instances we find that two or more distantly related eukaryotic groups share the same bacterial gene, resulting in a punctate distribution. Specifically, we describe phylogenies of three core carbon metabolic enzymes: transketolase, glyceraldehyde-3-phosphate dehydrogenase and ribulose-5-phosphate-3-epimerase. Phylogenetic trees of each of these enzymes includes a strongly-supported clade consisting of several eukaryotes that are distantly related at the organismal level, but whose enzymes are apparently all derived from the same lateral transfer. With less sampling any one of these examples would appear to be a simple case of bacterium-to-eukaryote lateral transfer; taken together, their evolutionary histories cannot be so simple. The distributions of these genes may represent ancient paralogy events or genes that have been transferred from bacteria to an ancient ancestor of the eukaryotes that retain them. They may alternatively have been transferred laterally from a bacterium to a single eukaryotic lineage and subsequently transferred between distantly related eukaryotes. Conclusion Determining how complex the distribution of a transferred gene is depends on the sampling available. These results show that seemingly simple cases may be revealed to be more complex with greater sampling, suggesting many bacterial genes found in eukaryotic genomes may have a punctate distribution.
Collapse
|
10
|
Stechmann A, Baumgartner M, Silberman JD, Roger AJ. The glycolytic pathway of Trimastix pyriformis is an evolutionary mosaic. BMC Evol Biol 2006; 6:101. [PMID: 17123440 PMCID: PMC1665464 DOI: 10.1186/1471-2148-6-101] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Accepted: 11/23/2006] [Indexed: 11/29/2022] Open
Abstract
Background Glycolysis and subsequent fermentation is the main energy source for many anaerobic organisms. The glycolytic pathway consists of ten enzymatic steps which appear to be universal amongst eukaryotes. However, it has been shown that the origins of these enzymes in specific eukaryote lineages can differ, and sometimes involve lateral gene transfer events. We have conducted an expressed sequence tag (EST) survey of the anaerobic flagellate Trimastix pyriformis to investigate the nature of the evolutionary origins of the glycolytic enzymes in this relatively unstudied organism. Results We have found genes in the Trimastix EST data that encode enzymes potentially catalyzing nine of the ten steps of the glycolytic conversion of glucose to pyruvate. Furthermore, we have found two different enzymes that in principle could catalyze the conversion of phosphoenol pyruvate (PEP) to pyruvate (or the reverse reaction) as part of the last step in glycolysis. Our phylogenetic analyses of all of these enzymes revealed at least four cases where the relationship of the Trimastix genes to homologs from other species is at odds with accepted organismal relationships. Although lateral gene transfer events likely account for these anomalies, with the data at hand we were not able to establish with confidence the bacterial donor lineage that gave rise to the respective Trimastix enzymes. Conclusion A number of the glycolytic enzymes of Trimastix have been transferred laterally from bacteria instead of being inherited from the last common eukaryotic ancestor. Thus, despite widespread conservation of the glycolytic biochemical pathway across eukaryote diversity, in a number of protist lineages the enzymatic components of the pathway have been replaced by lateral gene transfer from disparate evolutionary sources. It remains unclear if these replacements result from selectively advantageous properties of the introduced enzymes or if they are neutral outcomes of a gene transfer 'ratchet' from food or endosymbiotic organisms or a combination of both processes.
Collapse
Affiliation(s)
- Alexandra Stechmann
- Department of Biochemistry and Molecular Biology, Dalhousie University, Sir Charles Tupper Building, Halifax, Canada
| | - Manuela Baumgartner
- Department of Biochemistry and Molecular Biology, Dalhousie University, Sir Charles Tupper Building, Halifax, Canada
- Department für Biologie I, Botanik, Ludwig-Maximilians-Universität München, Menzingerstraße 67, D-80638 München, Germany
| | - Jeffrey D Silberman
- Department of Biochemistry and Molecular Biology, Dalhousie University, Sir Charles Tupper Building, Halifax, Canada
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - Andrew J Roger
- Department of Biochemistry and Molecular Biology, Dalhousie University, Sir Charles Tupper Building, Halifax, Canada
- Canadian Institute for Advanced Research, Evolutionary Biology Program, Dalhousie University, Sir Charles Tupper Building, Halifax, Canada
| |
Collapse
|
11
|
Gerbod D, Sanders E, Moriya S, Noël C, Takasu H, Fast NM, Delgado-Viscogliosi P, Ohkuma M, Kudo T, Capron M, Palmer JD, Keeling PJ, Viscogliosi E. Molecular phylogenies of Parabasalia inferred from four protein genes and comparison with rRNA trees. Mol Phylogenet Evol 2004; 31:572-80. [PMID: 15062795 DOI: 10.1016/j.ympev.2003.09.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2003] [Revised: 09/01/2003] [Indexed: 11/22/2022]
Abstract
The molecular phylogeny of parabasalids has mainly been inferred from small subunit (SSU) rRNA sequences and has conflicted substantially with systematics based on morphological and ultrastructural characters. This raises the important question, how congruent are protein and SSU rRNA trees? New sequences from seven diverse parabasalids (six trichomonads and one hypermastigid) were added to data sets of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), enolase, alpha-tubulin and beta-tubulin and used to construct phylogenetic trees. The GAPDH tree was well resolved and identical in topology to the SSU rRNA tree. This both validates the rRNA tree and suggests that GAPDH should be a valuable tool in further phylogenetic studies of parabasalids. In particular, the GAPDH tree confirmed the polyphyly of Monocercomonadidae and Trichomonadidae and the basal position of Trichonympha agilis among parabasalids. Moreover, GAPDH strengthened the hypothesis of secondary loss of cytoskeletal structures in Monocercomonadidae such as Monocercomonas and Hypotrichomonas. In contrast to GAPDH, the enolase and both tubulin trees are poorly resolved and rather uninformative about parabasalian phylogeny, although two of these trees also identify T. agilis as representing the basal-most lineage of parabasalids. Although all four protein genes show multiple gene duplications (for 3-6 of the seven taxa examined), most duplications appear to be relatively recent (i.e., species-specific) and not a problem for phylogeny reconstruction. Only for enolase are there more ancient duplications that may confound phylogenetic interpretation.
Collapse
Affiliation(s)
- Delphine Gerbod
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Richards TA, Hirt RP, Williams BAP, Embley TM. Horizontal gene transfer and the evolution of parasitic protozoa. Protist 2003; 154:17-32. [PMID: 12812367 DOI: 10.1078/143446103764928468] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Abstract
In this study we have determined gap sequences from nine different spirochetes. Phylogenetic analyses of these sequences in the context of all other available eubacterial and a selection of eukaryotic Gap sequences demonstrated that the eubacterial glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene diversity encompasses at least five highly distinct gene families. Within these gene families, spirochetes show an extreme degree of sequence divergence that is probably the result of several lateral gene transfer events between spirochetes and other eubacterial phyla, and early gene duplications in the eubacterial ancestor. A Gap1 sequence from the syphilis spirochete Treponema pallidum has recently been shown to be closely related to GapC sequences from Euglenozoa. Here we demonstrate that several other spirochetal species are part of this cluster, supporting the conclusion that an interkingdom gene transfer from spirochetes to Euglenozoa must have occurred. Furthermore, we provide evidence that the GAPDH genes present in the protists Parabasalia may also be of spirochetal descent.
Collapse
Affiliation(s)
- R M Figge
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany.
| | | |
Collapse
|
14
|
Martin W, Hoffmeister M, Rotte C, Henze K. An overview of endosymbiotic models for the origins of eukaryotes, their ATP-producing organelles (mitochondria and hydrogenosomes), and their heterotrophic lifestyle. Biol Chem 2001; 382:1521-39. [PMID: 11767942 DOI: 10.1515/bc.2001.187] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The evolutionary processes underlying the differentness of prokaryotic and eukaryotic cells and the origin of the latter's organelles are still poorly understood. For about 100 years, the principle of endosymbiosis has figured into thoughts as to how these processes might have occurred. A number of models that have been discussed in the literature and that are designed to explain this difference are summarized. The evolutionary histories of the enzymes of anaerobic energy metabolism (oxygen-independent ATP synthesis) in the three basic types of heterotrophic eukaryotes those that lack organelles of ATP synthesis, those that possess mitochondria and those that possess hydrogenosomes--play an important role in this issue. Traditional endosymbiotic models generally do not address the origin of the heterotrophic lifestyle and anaerobic energy metabolism in eukaryotes. Rather they take it as a given, a direct inheritance from the host that acquired mitochondria. Traditional models are contrasted to an alternative endosymbiotic model (the hydrogen hypothesis), which addresses the origin of heterotrophy and the origin of compartmentalized energy metabolism in eukaryotes.
Collapse
Affiliation(s)
- W Martin
- Institut für Botanik III, Universität Düsseldorf, Germany
| | | | | | | |
Collapse
|
15
|
Abstract
We have cloned and characterised a gene that encodes a putative pyruvate phosphate dikinase (PPDK) from Trypanosoma cruzi, an enzyme that catalyses the reversible conversion of phosphoenolpyruvate to pyruvate. PPDK is absent in mammalian cells, but has been found in a wide variety of other organisms, including plants and bacteria. In T. cruzi, two genes (PPDK1 and PPDK2) are present in a tandem array localised on a 1 Mbp chromosome. Northern and Western blot analyses indicates that PPDK is expressed as a 100-kDa protein in epimastigote, amastigote and trypomastigote forms. PPDK1 and PPDK2 encode an identical protein of 100.8 kDa with a C-terminal extension ending with the sequence AKL, a signal for glycosomal import. Both T. cruzi and T. brucei enzymes possess a 23-residue insertion, that is absent in other PPDKs. A three-dimensional alignment with the crystal structure of the enzyme from Clostridium symbiosum predicts that this insertion is located on the surface of the nucleotide-binding domain. Phylogenetic studies indicate that bacterial and protist PPDKs cluster as a separate group from those of plants. The evolutionary implications and possible role of this enzyme in T. cruzi is discussed.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Blotting, Northern
- Blotting, Southern
- Blotting, Western
- Catalytic Domain
- Cloning, Molecular
- Gene Expression Regulation, Developmental
- Models, Molecular
- Molecular Sequence Data
- Phylogeny
- Protein Structure, Tertiary
- Pyruvate, Orthophosphate Dikinase/chemistry
- Pyruvate, Orthophosphate Dikinase/genetics
- Pyruvate, Orthophosphate Dikinase/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Alignment
- Trypanosoma cruzi/enzymology
- Trypanosoma cruzi/genetics
- Trypanosoma cruzi/growth & development
Collapse
Affiliation(s)
- R A Maldonado
- Division of Biological Chemistry and Molecular Microbiology, School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee DD1 5EH, UK
| | | |
Collapse
|
16
|
Abstract
The endosymbiotic theory for the origin of mitochondria requires substantial modification. The three identifiable ancestral sources to the proteome of mitochondria are proteins descended from the ancestral alpha-proteobacteria symbiont, proteins with no homology to bacterial orthologs, and diverse proteins with bacterial affinities not derived from alpha-proteobacteria. Random mutations in the form of deletions large and small seem to have eliminated nonessential genes from the endosymbiont-mitochondrial genome lineages. This process, together with the transfer of genes from the endosymbiont-mitochondrial genome to nuclei, has led to a marked reduction in the size of mitochondrial genomes. All proteins of bacterial descent that are encoded by nuclear genes were probably transferred by the same mechanism, involving the disintegration of mitochondria or bacteria by the intracellular membranous vacuoles of cells to release nucleic acid fragments that transform the nuclear genome. This ongoing process has intermittently introduced bacterial genes to nuclear genomes. The genomes of the last common ancestor of all organisms, in particular of mitochondria, encoded cytochrome oxidase homologues. There are no phylogenetic indications either in the mitochondrial proteome or in the nuclear genomes that the initial or subsequent function of the ancestor to the mitochondria was anaerobic. In contrast, there are indications that relatively advanced eukaryotes adapted to anaerobiosis by dismantling their mitochondria and refitting them as hydrogenosomes. Accordingly, a continuous history of aerobic respiration seems to have been the fate of most mitochondrial lineages. The initial phases of this history may have involved aerobic respiration by the symbiont functioning as a scavenger of toxic oxygen. The transition to mitochondria capable of active ATP export to the host cell seems to have required recruitment of eukaryotic ATP transport proteins from the nucleus. The identity of the ancestral host of the alpha-proteobacterial endosymbiont is unclear, but there is no indication that it was an autotroph. There are no indications of a specific alpha-proteobacterial origin to genes for glycolysis. In the absence of data to the contrary, it is assumed that the ancestral host cell was a heterotroph.
Collapse
Affiliation(s)
- C G Kurland
- Department of Molecular Evolution, Evolutionary Biology Centre, University of Uppsala, Uppsala SE 752 36, Lund University, Lund SE 223 62, Sweden.
| | | |
Collapse
|
17
|
Hannaert V, Brinkmann H, Nowitzki U, Lee JA, Albert MA, Sensen CW, Gaasterland T, Müller M, Michels P, Martin W. Enolase from Trypanosoma brucei, from the amitochondriate protist Mastigamoeba balamuthi, and from the chloroplast and cytosol of Euglena gracilis: pieces in the evolutionary puzzle of the eukaryotic glycolytic pathway. Mol Biol Evol 2000; 17:989-1000. [PMID: 10889212 DOI: 10.1093/oxfordjournals.molbev.a026395] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Genomic or cDNA clones for the glycolytic enzyme enolase were isolated from the amitochondriate pelobiont Mastigamoeba balamuthi, from the kinetoplastid Trypanosoma brucei, and from the euglenid Euglena gracilis. Clones for the cytosolic enzyme were found in all three organisms, whereas Euglena was found to also express mRNA for a second isoenzyme that possesses a putative N-terminal plastid-targeting peptide and is probably targeted to the chloroplast. Database searching revealed that Arabidopsis also possesses a second enolase gene that encodes an N-terminal extension and is likely targeted to the chloroplast. A phylogeny of enolase amino acid sequences from 6 archaebacteria, 24 eubacteria, and 32 eukaryotes showed that the Mastigamoeba enolase tended to branch with its homologs from Trypanosoma and from the amitochondriate protist Entamoeba histolytica. The compartment-specific isoenzymes in Euglena arose through a gene duplication independent of that which gave rise to the compartment-specific isoenzymes in Arabidopsis, as evidenced by the finding that the Euglena enolases are more similar to the homolog from the eubacterium Treponema pallidum than they are to homologs from any other organism sampled. In marked contrast to all other glycolytic enzymes studied to date, enolases from all eukaryotes surveyed here (except Euglena) are not markedly more similar to eubacterial than to archaebacterial homologs. An intriguing indel shared by enolase from eukaryotes, from the archaebacterium Methanococcus jannaschii, and from the eubacterium Campylobacter jejuni maps to the surface of the three-dimensional structure of the enzyme and appears to have occurred at the same position in parallel in independent lineages.
Collapse
Affiliation(s)
- V Hannaert
- Research Unit for Tropical Diseases, Christian de Duve Institute of Cellular Pathology, Department of Biochemistry, Université catholique de Louvain, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Morin L. Long branch attraction effects and the status of "basal eukaryotes": phylogeny and structural analysis of the ribosomal RNA gene cluster of the free-living diplomonad Trepomonas agilis. J Eukaryot Microbiol 2000; 47:167-77. [PMID: 10750846 DOI: 10.1111/j.1550-7408.2000.tb00028.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The three taxa emerging at the base of the eukaryotic ribosomal RNA phylogenetic tree (Diplomonadida, Microspora, and Parabasalia) include a wide array of parasitic species. and some free-living organisms that appear to be derived from a parasitic ancestry. The basal position of these taxa, which lack mitochondria, has recently been questioned. I sequenced most of the ribosomal RNA gene cluster of the free-living diplomonad Trepomonas agilis and a secondary structure model was reconstructed for the SSU rRNA. I conducted a RASA matrix analysis to identify, independently from tree reconstruction, putative long branch attraction effects in the data matrix. The results show that each of the basal clades and the euglenozoan clade act, indeed, as long branches and may have been engaged in a process of accelerated rate of evolution. A nucleotide signature analysis was conducted in the conserved regions for positions defining the three great domains of life (Eubacteria, Archea, and Eukaryota). For the three basal taxa, this analysis showed the presence of a significant number of different non-eukaryotic nucleotides. A precise study of the nature and location of these nucleotides led to conclusions supporting the results of the RASA analysis. Altogether, these findings suggest that the basal placement of these taxa in the SSU ribosomal RNA phylogenetic tree is artifactual, and flawed by long branch attraction effects.
Collapse
Affiliation(s)
- L Morin
- Laboratoire de Biologie cellulaire 4, URA CNRS 2227, Centre d'Orsay, Université de Paris-Sud, Orsay, France.
| |
Collapse
|
19
|
|
20
|
Wu G, Fiser A, ter Kuile B, Sali A, Müller M. Convergent evolution of Trichomonas vaginalis lactate dehydrogenase from malate dehydrogenase. Proc Natl Acad Sci U S A 1999; 96:6285-90. [PMID: 10339579 PMCID: PMC26873 DOI: 10.1073/pnas.96.11.6285] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/1999] [Accepted: 03/25/1999] [Indexed: 11/18/2022] Open
Abstract
Lactate dehydrogenase (LDH) is present in the amitochondriate parasitic protist Trichomonas vaginalis and some but not all other trichomonad species. The derived amino acid sequence of T. vaginalis LDH (TvLDH) was found to be more closely related to the cytosolic malate dehydrogenase (MDH) of the same species than to any other LDH. A key difference between the two T. vaginalis sequences was that Arg91 of MDH, known to be important in coordinating the C-4 carboxyl of oxalacetate/malate, was replaced by Leu91 in LDH. The change Leu91Arg by site-directed mutagenesis converted TvLDH into an MDH. The reverse single amino acid change Arg91Leu in TvMDH, however, gave a product with no measurable LDH activity. Phylogenetic reconstructions indicate that TvLDH arose from an MDH relatively recently.
Collapse
Affiliation(s)
- G Wu
- The Rockefeller University, New York, NY 10021, USA.
| | | | | | | | | |
Collapse
|
21
|
Abstract
The serial endosymbiosis theory is a favored model for explaining the origin of mitochondria, a defining event in the evolution of eukaryotic cells. As usually described, this theory posits that mitochondria are the direct descendants of a bacterial endosymbiont that became established at an early stage in a nucleus-containing (but amitochondriate) host cell. Gene sequence data strongly support a monophyletic origin of the mitochondrion from a eubacterial ancestor shared with a subgroup of the alpha-Proteobacteria. However, recent studies of unicellular eukaryotes (protists), some of them little known, have provided insights that challenge the traditional serial endosymbiosis-based view of how the eukaryotic cell and its mitochondrion came to be. These data indicate that the mitochondrion arose in a common ancestor of all extant eukaryotes and raise the possibility that this organelle originated at essentially the same time as the nuclear component of the eukaryotic cell rather than in a separate, subsequent event.
Collapse
Affiliation(s)
- M W Gray
- Department of Biochemistry, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada.
| | | | | |
Collapse
|
22
|
Nowitzki U, Flechner A, Kellermann J, Hasegawa M, Schnarrenberger C, Martin W. Eubacterial origin of nuclear genes for chloroplast and cytosolic glucose-6-phosphate isomerase from spinach: sampling eubacterial gene diversity in eukaryotic chromosomes through symbiosis. Gene 1998; 214:205-13. [PMID: 9651529 DOI: 10.1016/s0378-1119(98)00229-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Higher plants possess two distinct nuclear-encoded glucose-6-phosphate isomerase (GPI) isoenzymes, a cytosolic enzmye of the Embden-Meyerhof pathway and a chloroplast enzyme essential to storage and mobilization of carbohydrate fixed by the Calvin cycle. We have purified spinach chloroplast GPI to homogeneity, determined amino acid sequences from the active enzyme, and cloned cDNAs for chloroplast and cytosolic GPI isoenzymes from spinach. Sequence comparisons reveal three distantly related families of GPI genes that are non-uniformly distributed among contemporary eubacteria and archaebacteria, suggesting that ancient gene diversity existed for this glycolytic enzyme. Spinach chloroplast GPI is much more similar to its homologue from the cyanobacterium Synechocystis PCC6803 than it is to the enzyme from any other source, providing strong evidence that the gene for chloroplast GPI was acquired by the nucleus via endosymbiotic gene transfer from the cyanobacterial antecedants of chloroplasts. Eukaryotic nuclear genes for cytosolic GPI are more similar to eubacterial than to archaebacterial homologues, suggesting that these too were acquired by eukaryotes from eubacteria, probably during the course of the endosymbiotic origin of mitochondria. Chloroplast and cytosolic GPI provide evidence for a eubacterial origin of yet another component of the eukaryotic glycolytic pathway.
Collapse
Affiliation(s)
- U Nowitzki
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstr. 7, D-38023, Braunschweig, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
A new hypothesis for the origin of eukaryotic cells is proposed, based on the comparative biochemistry of energy metabolism. Eukaryotes are suggested to have arisen through symbiotic association of an anaerobic, strictly hydrogen-dependent, strictly autotrophic archaebacterium (the host) with a eubacterium (the symbiont) that was able to respire, but generated molecular hydrogen as a waste product of anaerobic heterotrophic metabolism. The host's dependence upon molecular hydrogen produced by the symbiont is put forward as the selective principle that forged the common ancestor of eukaryotic cells.
Collapse
Affiliation(s)
- W Martin
- Institut für Genetik, Technische Universität Braunschweig, Germany.
| | | |
Collapse
|
24
|
Hafid N, Valverde F, Villalobo E, Elkebbaj MS, Torres A, Soukri A, Serrano A. Glyceraldehyde-3-phosphate dehydrogenase from Tetrahymena pyriformis: enzyme purification and characterization of a gapC gene with primitive eukaryotic features. Comp Biochem Physiol B Biochem Mol Biol 1998; 119:493-503. [PMID: 9734334 DOI: 10.1016/s0305-0491(98)00010-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH, EC.1.2.1.12) was purified to electrophoretic homogeneity from an amicronucleated strain of the ciliate Tetrahymena pyriformis using a three-step procedure. The native enzyme is an homotetramer of 145 kDa exhibiting absolute specificity for NAD. In its catalytic properties it is similar to other glycolytic GAPDHs. Chromatofocusing analysis showed the presence of only one basic GAPDH isoform with an isoelectric point of 8.8. Western blots using a monospecific polyclonal antibody raised against the T. pyriformis GAPDH showed a single 36-kDa band corresponding to the enzyme subunit in the cytosolic protein fraction of this strain and the closely related species, both from the class Oligohymenophorea, Paramecium tetraurelia. No bands were immunodetected in the ciliate Colpoda inflata (class Colpodea) and in the diverse eukaryotes and eubacteria tested. A 0.5-kb DNA fragment which corresponds to an internal region of a gapC gene was generated by polymerase chain reaction using cDNA of T. pyriformis as template. This gene codes for a basic GAPDH protein with eukaryotic-diplomonad signatures and exhibits a codon usage biased in the manner typical for T. pyriformis genes. Southern blots performed both under homologous and heterologous conditions using this amplified cDNA fragment as a probe, indicated that it should be the only gapC gene present in the macronuclear genome of this ciliate, its expression being confirmed by Northern blot analysis. These results are discussed in connection with the peculiar genomic organization of ciliates and in the context of protist evolution.
Collapse
Affiliation(s)
- N Hafid
- Laboratoire de Biochimie, Biologie Cellulaire et Moléculaire, Faculté des Sciences-Ain Chock, Casablanca, Morocco
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Since the late 1970s, determining the phylogenetic relationships among the contemporary domains of life, the Archaea (archaebacteria), Bacteria (eubacteria), and Eucarya (eukaryotes), has been central to the study of early cellular evolution. The two salient issues surrounding the universal tree of life are whether all three domains are monophyletic (i.e., all equivalent in taxanomic rank) and where the root of the universal tree lies. Evaluation of the status of the Archaea has become key to answering these questions. This review considers our cumulative knowledge about the Archaea in relationship to the Bacteria and Eucarya. Particular attention is paid to the recent use of molecular phylogenetic approaches to reconstructing the tree of life. In this regard, the phylogenetic analyses of more than 60 proteins are reviewed and presented in the context of their participation in major biochemical pathways. Although many gene trees are incongruent, the majority do suggest a sisterhood between Archaea and Eucarya. Altering this general pattern of gene evolution are two kinds of potential interdomain gene transferrals. One horizontal gene exchange might have involved the gram-positive Bacteria and the Archaea, while the other might have occurred between proteobacteria and eukaryotes and might have been mediated by endosymbiosis.
Collapse
Affiliation(s)
- J R Brown
- Canadian Institute for Advanced Research, Department of Biochemistry, Dalhousie University, Halifax, Nova Scotia, Canada.
| | | |
Collapse
|
26
|
|
27
|
Rosenthal B, Mai Z, Caplivski D, Ghosh S, de la Vega H, Graf T, Samuelson J. Evidence for the bacterial origin of genes encoding fermentation enzymes of the amitochondriate protozoan parasite Entamoeba histolytica. J Bacteriol 1997; 179:3736-45. [PMID: 9171424 PMCID: PMC179172 DOI: 10.1128/jb.179.11.3736-3745.1997] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Entamoeba histolytica is an amitochondriate protozoan parasite with numerous bacterium-like fermentation enzymes including the pyruvate:ferredoxin oxidoreductase (POR), ferredoxin (FD), and alcohol dehydrogenase E (ADHE). The goal of this study was to determine whether the genes encoding these cytosolic E. histolytica fermentation enzymes might derive from a bacterium by horizontal transfer, as has previously been suggested for E. histolytica genes encoding heat shock protein 60, nicotinamide nucleotide transhydrogenase, and superoxide dismutase. In this study, the E. histolytica por gene and the adhE gene of a second amitochondriate protozoan parasite, Giardia lamblia, were sequenced, and their phylogenetic positions were estimated in relation to POR, ADHE, and FD cloned from eukaryotic and eubacterial organisms. The E. histolytica por gene encodes a 1,620-amino-acid peptide that contained conserved iron-sulfur- and thiamine pyrophosphate-binding sites. The predicted E. histolytica POR showed fewer positional identities to the POR of G. lamblia (34%) than to the POR of the enterobacterium Klebsiella pneumoniae (49%), the cyanobacterium Anabaena sp. (44%), and the protozoan Trichomonas vaginalis (46%), which targets its POR to anaerobic organelles called hydrogenosomes. Maximum-likelihood, neighbor-joining, and parsimony analyses also suggested as less likely E. histolytica POR sharing more recent common ancestry with G. lamblia POR than with POR of bacteria and the T. vaginalis hydrogenosome. The G. lamblia adhE encodes an 888-amino-acid fusion peptide with an aldehyde dehydrogenase at its amino half and an iron-dependent (class 3) ADH at its carboxy half. The predicted G. lamblia ADHE showed extensive positional identities to ADHE of Escherichia coli (49%), Clostridium acetobutylicum (44%), and E. histolytica (43%) and lesser identities to the class 3 ADH of eubacteria and yeast (19 to 36%). Phylogenetic analyses inferred a closer relationship of the E. histolytica ADHE to bacterial ADHE than to the G. lamblia ADHE. The 6-kDa FD of E. histolytica and G. lamblia were most similar to those of the archaebacterium Methanosarcina barkeri and the delta-purple bacterium Desulfovibrio desulfuricans, respectively, while the 12-kDa FD of the T. vaginalis hydrogenosome was most similar to the 12-kDa FD of gamma-purple bacterium Pseudomonas putida. E. histolytica genes (and probably G. lamblia genes) encoding fermentation enzymes therefore likely derive from bacteria by horizontal transfer, although it is not clear from which bacteria these amebic genes derive. These are the first nonorganellar fermentation enzymes of eukaryotes implicated to have derived from bacteria.
Collapse
Affiliation(s)
- B Rosenthal
- Department of Tropical Public Health, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Gebbia JA, Backenson PB, Coleman JL, Anda P, Benach JL. Glycolytic enzyme operon of Borrelia burgdorferi: characterization and evolutionary implications. Gene X 1997; 188:221-8. [PMID: 9133595 DOI: 10.1016/s0378-1119(96)00811-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The genes encoding three enzymes of the glycolytic pathway have been identified and sequenced completely in Borrelia burgdorferi sensu stricto and partially in B. hermsii. They are clustered on the chromosome into an operon with a single putative promoter and are arranged downstream of this promoter in the following order: gapdh (glyceraldehyde-3-phosphate dehydrogenase), pgk (phosphoglycerate kinase), and tpi (triosephosphate isomerase). gapdh and pgk are separated by 19 bp of intergenic sequence and pgk and tpi are separated by only 1 bp. Each of the three genes contains a putative RBS 6-7 bp upstream of each respective translational (ATG) start codon. The deduced protein encoded by gapdh consists of 335 amino acids (aa) with a predicted MW of 36,400, that of pgk is 393 aa (MW of 42,156) and that of tpi is 290 aa (MW of 27,683). The aa sequences of each of the three enzymes share 58.4% (GAPDH), 52.8% (PGK) and 46.1% (TPI) identity with respective enzymes from other prokaryotic organisms. Phylogenetic analyses based on these universal and conserved proteins support the hypothesis that spirochetes are an ancient and distinct eubacterial phylum.
Collapse
Affiliation(s)
- J A Gebbia
- State of New York Department of Health, State University of New York at Stony Brook, 11794, USA
| | | | | | | | | |
Collapse
|
29
|
Yamamoto A, Hashimoto T, Asaga E, Hasegawa M, Goto N. Phylogenetic position of the mitochondrion-lacking protozoan Trichomonas tenax, based on amino acid sequences of elongation factors 1alpha and 2. J Mol Evol 1997; 44:98-105. [PMID: 9010141 DOI: 10.1007/pl00006127] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Major parts of amino-acid-coding regions of elongation factor (EF)-1alpha and EF-2 in Trichomonas tenax were amplified by PCR from total genomic DNA and the products were cloned into a plasmid vector, pGEM-T. The three clones from each of the products of the EF-1alpha and EF-2 were isolated and sequenced. The insert DNAs of the clones containing EF-1alpha coding regions were each 1,185 bp long with the same nucleotide sequence and contained 53.1% of G + C nucleotides. Those of the clones containing EF-2 coding regions had two different sequences; one was 2,283 bp long and the other was 2,286 bp long, and their G + C contents were 52.5 and 52.9%, respectively. The copy numbers of the EF-1alpha and EF-2 gene per chromosome were estimated as four and two, respectively. The deduced amino acid sequences obtained by the conceptual translation were 395 residues from EF-1alpha and 761 and 762 residues from the EF-2s. The sequences were aligned with the other eukaryotic and archaebacterial EF-1alphas and EF-2s, respectively. The phylogenetic position of T. tenax was inferred by the maximum likelihood (ML) method using the EF-1alpha and EF-2 data sets. The EF-1alpha analysis suggested that three mitochondrion-lacking protozoa, Glugea plecoglossi, Giardia lamblia, and T. tenax, respectively, diverge in this order in the very early phase of eukaryotic evolution. The EF-2 analysis also supported the divergence of T. tenax to be immediately next to G. lamblia.
Collapse
Affiliation(s)
- A Yamamoto
- Department of Oral Microbiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142, Japan.
| | | | | | | | | |
Collapse
|
30
|
Roger AJ, Smith MW, Doolittle RF, Doolittle WF. Evidence for the Heterolobosea from phylogenetic analysis of genes encoding glyceraldehyde-3-phosphate dehydrogenase. J Eukaryot Microbiol 1996; 43:475-85. [PMID: 8976605 DOI: 10.1111/j.1550-7408.1996.tb04507.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The phylogenetic relationships between major slime mould groups and the identification of their unicellular relatives has been a subject of controversy for many years. Traditionally, it has been assumed that two slime mould groups, the acrasids and the dictyostelids were related by virtue of their cellular slime mould habit; a view still endorsed by at least one current classification scheme. However, a decade ago, on the basis of detailed ultrastructural resemblances it was proposed that acrasids of the family Acrasidae were not relatives of other slime moulds but instead related to a group of mostly free-living unicellular amoebae, the Schizopyrenida. The class Heterolobosea was created to contain these organisms and has since figured in many discussions of protist evolution. We sought to test the validity of Heterolobosea by characterizing homologs of the highly conserved glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from an acrasid, Acrasis rosea; a dictyostelid, Dictyostelium discoideum; and the schizopyrenid Naegleria andersoni. Phylogenetic analysis of these and other GAPDH sequences, using maximum parsimony, neighbour-joining distance and maximum likelihood methods strongly supports the Heterolobosea hypothesis and discredits the concept of a cellular slime mould grouping. Moreover, all of our analyses place Dictyostelium discoideum as a relatively recently originating lineage, most closely related to the Metazoa, similar to other recently published phylogenies of protein-coding genes. However, GAPDH phylogenies do not show robust branching orders for most of the relationships between major groups. We propose that several of the incongruencies observed between GAPDH and other molecular phylogenies are artifacts resulting from substitutional saturation of this enzyme.
Collapse
Affiliation(s)
- A J Roger
- Department of Biochemistry, Dalhousie University, Halifax, Nova Scotia, Canada.
| | | | | | | |
Collapse
|
31
|
Lactate dehydrogenase from the protozoan parasite, Trichomonas vaginalis. Comp Biochem Physiol B Biochem Mol Biol 1996. [DOI: 10.1016/s0305-0491(96)00164-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
32
|
Abstract
▪ Abstract With the discovery of the eukaryote nucleus, all living organisms were neatly divided into prokaryotes, which lacked a nucleus, and eukaryotes, which possessed it. As data derived directly from the genome became available, it was clear that prokaryotes were comprised of two groups, Eubacteria and Archaebacteria. These were subsequently renamed at the new taxonomic level of Domain as Bacteria and Archaea, with the eukaryotes named as the Eucarya Domain. The interrelationships of the three Domains are still subject to discussion and evaluation, as is their monophyly. Further data, drawn from various protein sequences, suggest conflicting schemes, and resolution may not be straightforward. Additionally, Bacteria and Archaea as well as Eucarya are largely based on organisms already in culture. Investigation of the potentially enormous quantity of uncultured organisms in nature is likely to have as broad-ranging implications as the exploration of new protein sequences.
Collapse
Affiliation(s)
- David M. Williams
- The Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom
| | - T. Martin Embley
- The Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom
| |
Collapse
|
33
|
Bagnara AS, Tucker VE, Minotto L, Howes ER, Ko GA, Edwards MR, Dawes IW. Molecular characterisation of adenosylhomocysteinase from Trichomonas vaginalis. Mol Biochem Parasitol 1996; 81:1-11. [PMID: 8892301 DOI: 10.1016/0166-6851(96)02683-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The enzyme S-adenosylhomocysteine hydrolase (SAHH) has been identified as a potential target for chemotherapy in protozoan parasites including Trichomonas vaginalis. To investigate this area of trichomonad metabolism in more detail, we have isolated and characterised a gene which encodes this activity from the WAA38 strain of this parasite. The gene was isolated by probing a Bg/II genomic mini-library with a fragment of the gene generated by thermal cycling using degenerate oligonucleotide primers. A 5.9-kb Bg/II clone was isolated and has been partially sequenced to reveal a 1458-bp open reading frame which encodes a 486-residue polypeptide (computed molecular mass of 53.4 kDa). The deduced amino acid sequence showed a high degree of sequence similarity to the hydrolases from other species, but was most similar to the enzyme from photosynthetic organisms. The trichomonal sahh gene also contains two "insertion sequences', one of which appears to be unique to this parasite while the second has previously been found only in photosynthetic organisms and in Plasmodium falciparum. Characterisation of the sahh mRNA from T. vaginalis confirmed that both of these insertion sequences (encoding 9 and 37 amino acid residues, respectively) are expressed in the protein product. The sahh mRNA is similar to those characterised from other protozoa in having a short, 12-bp untranslated 5'-leader sequence but the leader sequence does not conform well with the consensus sequence of the other mRNAs. Finally, Southern blots and sequence differences between genomic and cDNA clones indicate that there are multiple copies of the sahh gene in T. vaginalis.
Collapse
Affiliation(s)
- A S Bagnara
- School of Biochemistry and Molecular Genetics, University of New South Wales, Sydney, Australia.
| | | | | | | | | | | | | |
Collapse
|
34
|
Rozario C, Morin L, Roger AJ, Smith MW, Müller M. Primary structure and phylogenetic relationships of glyceraldehyde-3-phosphate dehydrogenase genes of free-living and parasitic diplomonad flagellates. J Eukaryot Microbiol 1996; 43:330-40. [PMID: 8768438 DOI: 10.1111/j.1550-7408.1996.tb03997.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Complete nucleotide sequences have been established for two genes (gap1 and gap2) coding for glyceraldehyde-3-phosphate dehydrogenase (GAPDH, EC 1.2.1.12) homologs in the diplomonad Giardia lamblia. In addition, almost complete sequences of the GAPDH open reading frames were obtained from PCR products for two free-living diplomonad species, Trepomonas agillis and Hexamita inflata, and a parasite of Atlantic salmon, an as yet unnamed species with morphological affinities to Spironucleus. Giardia lamblia gap1 and the genes from the three other diplomonad species show high similarity to each other and to other glycolytic GAPDH genes. All amino-acyl residues known to be highly conserved in this enzyme are also conserved in these sequences. Giardia lamblia gap2 gene is more divergent and its putative translation reveals the presence of a cysteine and serine-rich insertion resembling a metal binding finger. This motif has not yet been noted in other GAPDH molecules. All sequences contain an S-loop signature with characteristics close to those of eukaryotes. In phylogenetic reconstructions based on the derived amino acid sequences with neighbor-joining, parsimony and maximum-likelihood methods the four typical GAPDH sequences of diplomonads cluster into a single clade. Within this clade, G. lambia gap1 shares a common ancestor with the rest of the genes. The latter are more closely related to each other, indicating an early separation of the lineage leading to the genus Giardia from the lineage encompassing the morphologically less differentiated genera, Trepomonas, Hexamita and that of the unnamed species. This result is discordant with the orthogonal evolution of diplomonads suggested on the basis of comparative morphology. In neighbor-joining reconstructions G. lamblia gap2 occupies a variable position, due to its great divergence. In parsimony and maximum likelihood analysis however, it shares a most recent common ancestor with the typical G. lamblia gap1 gene, suggesting that it diverged after the separation of the Giardia lineage. The position of the diplomonad clade in broader phylogenetic reconstructions is firmly within the typical cytosolic glycolytic representatives of GAPDH of eukaryotes.
Collapse
Affiliation(s)
- C Rozario
- Rockefeller University, New York, New York 10021-6399, USA
| | | | | | | | | |
Collapse
|
35
|
Markos A, Morris A, Rozario C, Müller M. Primary structure of a cytosolic malate dehydrogenase of the amitochondriate eukaryote, Trichomonas vaginalis. FEMS Microbiol Lett 1996; 135:259-64. [PMID: 8595866 DOI: 10.1111/j.1574-6968.1996.tb07998.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The nucleotide sequence of a gene coding for a 37 kDa subunit of a cytosolic malate dehydrogenase of Trichomonas vaginalis was established. The sequence of a gDNA clone and a cDNA clone, which lacked seven amino-terminal codons, were identical, indicating an absence of introns from the gene. Cell fractionation combined with sequencing of peptide fragments of the purified enzyme showed that the gene codes for an expressed cytosolic enzyme. The derived amino acid sequence was closely related to cytosolic malate dehydrogenases from animals and plants and from the eubacteria Thermus aquaticus and Mycobacterium leprae and was more distant from the enzyme of mitochondria and from Escherichia coli and certain other eubacteria. In phylogenetic reconstructions this enzyme shared a most recent common ancestor with other cytosolic enzymes.
Collapse
Affiliation(s)
- A Markos
- Rockefeller University, New York, NY 10021, USA
| | | | | | | |
Collapse
|
36
|
Anda P, Gebbia JA, Backenson PB, Coleman JL, Benach JL. A glyceraldehyde-3-phosphate dehydrogenase homolog in Borrelia burgdorferi and Borrelia hermsii. Infect Immun 1996; 64:262-8. [PMID: 8557349 PMCID: PMC173754 DOI: 10.1128/iai.64.1.262-268.1996] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A polyreactive monoclonal antibody recognized a 38.5-kDa polypeptide with amino-terminal sequence identity to conserved regions of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in Borrelia burgdorferi, the Lyme disease agent, and Borrelia hermsii, an agent of American relapsing fever. This monoclonal antibody also recognized GAPDH from other pathogenic spirochetes and other prokaryotes and eukaryotes as well. GAPDH activity was detected in sonicates of both B. burgdorferi and B. hermsii but not in live, intact organisms, indicating the possibility of a subsurface localization for the Borrelia GAPDH activity. Degenerate primers constructed from highly conserved regions of gapdh of other prokaryotes successfully amplified this gene homolog in both B. burgdorferi and B. hermsii. Nuclei acid and deduced amino acid sequence analysis of the 838-bp probes for each borrelia indicated 93.9% identity between B. burgdorferi and B. hermsii at the amino acid level. Amino acid identities of B. burgdorferi and B. hermsii with Bacillus stearothermophilus were 59.2% and 58.8% respectively. Southern hybridization studies indicated that the gene encoding GAPDH is located on the chromosome of each borrella. In other bacterial species, GAPDH has other functions in addition to its traditional enzymatic role in the glycolytic pathway. GAPDH may play a similar role in borrelias.
Collapse
Affiliation(s)
- P Anda
- Centro Nacional de Microbiologia, Virologia e Immunologia Sanitarias, Instituto de Salud Carlos III, Madrid, Spain
| | | | | | | | | |
Collapse
|
37
|
Henze K, Badr A, Wettern M, Cerff R, Martin W. A nuclear gene of eubacterial origin in Euglena gracilis reflects cryptic endosymbioses during protist evolution. Proc Natl Acad Sci U S A 1995; 92:9122-6. [PMID: 7568085 PMCID: PMC40936 DOI: 10.1073/pnas.92.20.9122] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Genes for glycolytic and Calvin-cycle glyceraldehyde-3-phosphate dehydrogenase (GAPDH) of higher eukaryotes derive from ancient gene duplications which occurred in eubacterial genomes; both were transferred to the nucleus during the course of endosymbiosis. We have cloned cDNAs encoding chloroplast and cytosolic GAPDH from the early-branching photosynthetic protist Euglena gracilis and have determined the structure of its nuclear gene for cytosolic GAPDH. The gene contains four introns which possess unusual secondary structures, do not obey the GT-AG rule, and are flanked by 2- to 3-bp direct repeats. A gene phylogeny for these sequences in the context of eubacterial homologues indicates that euglenozoa, like higher eukaryotes, have obtained their GAPDH genes from eubacteria via endosymbiotic (organelle-to-nucleus) gene transfer. The data further suggest that the early-branching protists Giardia lamblia and Entamoeba histolytica--which lack mitochondria--and portions of the trypanosome lineage have acquired GAPDH genes from eubacterial donors which did not ultimately give rise to contemporary membrane-bound organelles. Evidence that "cryptic" (possibly ephemeral) endosymbioses during evolution may have entailed successful gene transfer is preserved in protist nuclear gene sequences.
Collapse
Affiliation(s)
- K Henze
- Institut für Genetik, Technische Universität Braunschweig, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
38
|
Zhou YH, Ragan MA. The nuclear gene and cDNAs encoding cytosolic glyceraldehyde-3-phosphate dehydrogenase from the marine red alga Gracilaria verrucosa: cloning, characterization and phylogenetic analysis. Curr Genet 1995; 28:324-32. [PMID: 8590478 DOI: 10.1007/bf00326430] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have cloned and sequenced the single-copy nuclear gene (GapC) encoding the complete 335-amino acid cytosolic glyceraldehyde-3-phosphate dehydrogenase (GAPC) from the red alga Gracilaria verrucosa. The proline residue which contributes to the specificity of NAD+ binding in other GAPC-like proteins is present. Putative regulatory regions, including GC-rich regions, a GATA element, and 11-base T- and T/G-clusters, but excluding TATA- and CCAAT-boxes, were identified upstream. Two types of GapC cDNAs differing in polyadenylation site were characterized. An 80-bp phase-two spliceosomal intron was identified in a novel position interrupting the highly conserved cofactor-coding region I. The G. verrucosa GAPC was easily aligned with other known GAPC-type sequences. Inferred phylogenetic trees place red algae among the eukaryote crown taxa, although with modest bootstrap support and without stable resolution among related GAPC lineages.
Collapse
Affiliation(s)
- Y H Zhou
- Institute for Marine Biosciences, National Research Council of Canada, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
39
|
Primary structure and eubacterial relationships of the pyruvate:Ferredoxin oxidoreductase of the amitochondriate eukaryoteTrichomonas vaginalis. J Mol Evol 1995. [DOI: 10.1007/bf01215186] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
40
|
|
41
|
Wiemer EA, Hannaert V, van den IJssel PR, Van Roy J, Opperdoes FR, Michels PA. Molecular analysis of glyceraldehyde-3-phosphate dehydrogenase in Trypanoplasma borelli: an evolutionary scenario of subcellular compartmentation in kinetoplastida. J Mol Evol 1995; 40:443-54. [PMID: 7769620 DOI: 10.1007/bf00164030] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In Trypanoplasma borelli, a representative of the Bodonina within the Kinetoplastida, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity was detected in both the cytosol and glycosomes. This situation is similar to that previously found in Trypanosomatidae, belonging to a different Kinetoplastida suborder. In Trypanosomatidae different isoenzymes, only distantly related, are responsible for the activity in the two cell compartments. In contrast, immunoblot analysis indicated that the GAPDH activity in cytosol and glycosomes of T. borelli should be attributed to identical or at least very similar proteins related to the glycosomal GAPDH of Trypanosomatidae. Moreover, only genes related to the glycosomal GAPDH genes of Trypanosomatidae could be detected. All attempts to identify a gene related to the one coding for the trypanosomatid cytosolic GAPDH remained unsuccessful. Two tandemly arranged genes were found which are 95% identical. The two encoded polypeptides differ in 17 residues. Their sequences are 72-77% identical to the glycosomal GAPDH of the other Kinetoplastida and share with them some characteristic features: an excess of positively charged residues, specific insertions, and a small carboxy-terminal extension containing the sequence -AKL. This tripeptide conforms to the consensus signal for targeting of proteins to glycosomes. One of the two gene copies has undergone some mutations at positions coding for highly conserved residues of the active site and the NAD(+)-binding domain of GAPDH. Modeling of the protein's three-dimensional structure suggested that several of the substitutions compensate each other, retaining the functional coenzyme-binding capacity, although this binding may be less tight. The presented analysis of GAPDH in T. borelli gives further support to the assertion that one isoenzyme, the cytosolic one, was acquired by horizontal gene transfer during the evolution of the Kinetoplastida, in the lineage leading to the suborder Trypanosomatina (Trypanosoma, Leishmania), after the divergence from the Bodonina (Trypanoplasma). Furthermore, the data clearly suggest that the original GAPDH of the Kinetoplastida has been compartmentalized during evolution.
Collapse
Affiliation(s)
- E A Wiemer
- International Institute of Cellular and Molecular Pathology, Research Unit for Tropical Diseases, Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
42
|
Kolibachuk D, Baumann P. Buchnera aphidicola (aphid-endosymbiont) glyceraldehyde-3-phosphate dehydrogenase: molecular cloning and sequence analysis. Curr Microbiol 1995; 30:133-6. [PMID: 7765846 DOI: 10.1007/bf00296197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Buchnera aphidicola is an endosymbiont of the aphid Schizaphis graminum. A 3.9-kb B. aphidicola DNA fragment was sequenced and found to contain two open reading frames (ORFs). The deduced amino acid sequence of one of the ORFs had an 85% identity to Escherichia coli glyceraldehyde-3-phosphate dehydrogenase (Gap). Both of these proteins have a higher similarity to eukaryotic than to prokaryotic Gaps. The second ORF could not be readily identified. The sequence of the putative product indicated that it was a member of the family of ATP-binding, membrane-associated proteins. The highest amino acid identity (36%) was with E. coli FtsE, a protein involved in cell division.
Collapse
Affiliation(s)
- D Kolibachuk
- Microbiology Section, University of California, Davis 95616-8665
| | | |
Collapse
|
43
|
ter Kuile BH, Müller M. Maltose utilization by extracellular hydrolysis followed by glucose transport in Trichomonas vaginalis. Parasitology 1995; 110 ( Pt 1):37-44. [PMID: 7845710 DOI: 10.1017/s0031182000081026] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The amitochondriate parasitic protist Trichomonas vaginalis can utilize either glucose or maltose as carbon and energy source. The mechanisms of maltose utilization were explored with uptake experiments using radio-isotope labelled maltose in combination with the silicone-oil centrifugation technique and enzymatic assays measuring maltose hydrolysis. The uptake of maltose label became saturated after 2-3 h. The uptake of maltose as a function of the external maltose concentration was linear at low concentrations with no further increase at higher levels, kinetics characteristic of reactions obeying Michaelis-Menten kinetics preceded by a diffusion-limited step. Increased viscosity of the medium resulted in decreased maltose uptake, indicating an extracellular location of the diffusion-limited step. Most of the cellular alpha-glucosidase activity of T. vaginalis was detected on the cell surface, suggesting that maltose is hydrolysed to glucose outside the cell. Glucose interfered more with maltose uptake, and maltose less with glucose uptake, than would be expected if 1 mol of maltose were the equivalent of 2 mol of glucose. This pattern of interaction indicated that the interference occurs before the common metabolic pathway and even before the transport step, supporting the idea of extracellular maltose hydrolysis. We conclude that maltose is hydrolysed to glucose in the boundary layer of the cell, a process akin to membrane digestion in vertebrate enterocytes and on the teguments of helminths. The glucose formed is then transported by the glucose carrier of the organism.
Collapse
|
44
|
Länge S, Rozario C, Müller M. Primary structure of the hydrogenosomal adenylate kinase of Trichomonas vaginalis and its phylogenetic relationships. Mol Biochem Parasitol 1994; 66:297-308. [PMID: 7808479 DOI: 10.1016/0166-6851(94)90156-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Hydrogenosomal adenylate kinase of the amitochondriate protist, Trichomonas vaginalis, has been purified and the sequence of its 39 amino-terminal residues established. Based on this sequence and a conserved internal region of the enzyme, a probe was obtained by DNA polymerase chain reaction and used to isolate a genomic DNA clone containing the gene of this enzyme. This gene exists probably as a single copy in T. vaginalis and is not interrupted by introns. The open reading frame obtained codes for a large type adenylate kinase with a mature molecular mass of 24.5 kDa. The T. vaginalis enzyme is homologous with adenylate kinases of other eukaryotes and eubacteria. Strongly conserved parts and residues of the molecule are conserved also in this enzyme. Phylogenetic trees obtained with various methods placed the T. vaginalis adenylate kinase close to the point where the different subfamilies of this enzyme branch from each other, indicating that the T. vaginalis enzyme has no close relationship to any of these subfamilies and that it separated early from other adenylate kinases. The conceptual translation predicts the existence of an amino-terminal nonapeptide absent from the protein purified from hydrogenosomes, similar to the processed amino-terminal extensions of other hydrogenosomal proteins. These extensions have been considered as putative targeting and import signals.
Collapse
Affiliation(s)
- S Länge
- Rockefeller University, New York, NY 10021
| | | | | |
Collapse
|