1
|
Glycoproteins Involved in Sea Urchin Temporary Adhesion. Mar Drugs 2023; 21:md21030145. [PMID: 36976195 PMCID: PMC10057474 DOI: 10.3390/md21030145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/10/2023] [Accepted: 02/18/2023] [Indexed: 03/03/2023] Open
Abstract
Biomedical adhesives, despite having been used increasingly in recent years, still face a major technological challenge: strong adhesion in wet environments. In this context, biological adhesives secreted by marine invertebrates have appealing characteristics to incorporate into new underwater biomimetic adhesives: water resistance, nontoxicity and biodegradability. Little is still known about temporary adhesion. Recently, a transcriptomic differential analysis of sea urchin Paracentrotus lividus tube feet pinpointed 16 adhesive/cohesive protein candidates. In addition, it has been demonstrated that the adhesive secreted by this species is composed of high molecular weight proteins associated with N-Acetylglucosamine in a specific chitobiose arrangement. As a follow-up, we aimed to investigate which of these adhesive/cohesive protein candidates were glycosylated through lectin pulldowns, protein identification by mass spectroscopy and in silico characterization. We demonstrate that at least five of the previously identified protein adhesive/cohesive candidates are glycoproteins. We also report the involvement of a third Nectin variant, the first adhesion-related protein to be identified in P. lividus. By providing a deeper characterization of these adhesive/cohesive glycoproteins, this work advances our understanding of the key features that should be replicated in future sea urchin-inspired bioadhesives.
Collapse
|
2
|
Kiyozumi D, Yaguchi S, Yaguchi J, Yamazaki A, Sekiguchi K. Human disease-associated extracellular matrix orthologs ECM3 and QBRICK regulate primary mesenchymal cell migration in sea urchin embryos. Exp Anim 2021; 70:378-386. [PMID: 33828019 PMCID: PMC8390315 DOI: 10.1538/expanim.21-0001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/11/2021] [Indexed: 10/31/2022] Open
Abstract
Sea urchin embryos have been one of model organisms to investigate cellular behaviors because of their simple cell composition and transparent body. They also give us an opportunity to investigate molecular functions of human proteins of interest that are conserved in sea urchin. Here we report that human disease-associated extracellular matrix orthologues ECM3 and QBRICK are necessary for mesenchymal cell migration during sea urchin embryogenesis. Immunofluorescence has visualized the colocalization of QBRICK and ECM3 on both apical and basal surface of ectoderm. On the basal surface, QBRICK and ECM3 constitute together a mesh-like fibrillar structure along the blastocoel wall. When the expression of ECM3 was knocked down by antisense-morpholino oligonucleotides, the ECM3-QBRICK fibrillar structure completely disappeared. When QBRICK was knocked down, the ECM3 was still present, but the basally localized fibers became fragmented. The ingression and migration of primary mesenchymal cells were not critically affected, but their migration at later stages was severely affected in both knock-down embryos. As a consequence of impaired primary mesenchymal cell migration, improper spicule formation was observed. These results indicate that ECM3 and QBRICK are components of extracellular matrix, which play important role in primary mesenchymal cell migration, and that sea urchin is a useful experimental animal model to investigate human disease-associated extracellular matrix proteins.
Collapse
Affiliation(s)
- Daiji Kiyozumi
- Laboratory of Extracellular Matrix Biochemistry, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shunsuke Yaguchi
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka 415-0025, Japan
- PRESTO, JST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Junko Yaguchi
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka 415-0025, Japan
| | - Atsuko Yamazaki
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka 415-0025, Japan
| | - Kiyotoshi Sekiguchi
- Laboratory of Extracellular Matrix Biochemistry, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
3
|
Misevic G, Checiu I, Popescu O. Glyconectin Cell Adhesion Epitope, β-d-Glc pNAc3S-(1→3)-α-l-Fuc p, Is Involved in Blastulation of Lytechinus pictus Sea Urchin Embryos. Molecules 2021; 26:4012. [PMID: 34209220 PMCID: PMC8271808 DOI: 10.3390/molecules26134012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/20/2021] [Accepted: 06/24/2021] [Indexed: 12/05/2022] Open
Abstract
Glycans, as the most peripheral cell surface components, are the primary candidates to mediate the initial steps of cell recognition and adhesion via glycan-glycan binding. This molecular mechanism was quantitatively demonstrated by biochemical and biophysical measurements at the cellular and molecular level for the glyconectin 1 β-d-GlcpNAc3S-(1→3)-α-l-Fucp glycan structure (GN1). The use of adhesion blocking monoclonal antibody Block 2 that specifically recognize this epitope showed that, besides Porifera, human colon carcinoma also express this structure in the apical glycocalyx. Here we report that Block 2 selectively immune-precipitate a Mr 580 × 103 (g580) acidic non-glycosaminoglycan glycan from the total protein-free glycans of Lytechinus pictus sea urchin hatched blastula embryos. Immuno-fluorescence confocal light microscopy and immunogold electron microscopy localized the GN1 structure in the apical lamina glycocalyx attachments of ectodermal cells microvilli, and in the Golgi complex. Biochemical and immune-chemical analyses showed that the g580 glycan is carrying about 200 copies of the GN1 epitope. This highly polyvalent g580 glycan is one of the major components of the glycocalyx structure, maximally expressed at hatched blastula and gastrula. The involvement of g580 GN1 epitope in hatched blastula cell adhesion was demonstrated by: (1) enhancement of cell aggregation by g580 and sponge g200 glycans, (2) inhibition of cell reaggregation by Block 2, (3) dissociation of microvilli from the apical lamina matrix by the loss of its gel-like structure resulting in a change of the blastula embryonal form and consequent inhibition of gastrulation at saturating concentration of Block 2, and (4) aggregation of beads coated with the immune-purified g580 protein-free glycan. These results, together with the previous atomic force microscopy measurements of GN1 binding strength, indicated that this highly polyvalent and calcium ion dependent glycan-glycan binding can provide the force of 40 nanonewtons per single ectodermal cell association of microvilli with the apical lamina, and conservation of glycocalyx gel-like structure. This force can hold the weight of 160,000 cells in sea water, thus it is sufficient to establish, maintain and preserve blastula form after hatching, and prior to the complete formation of further stabilizing basal lamina.
Collapse
Affiliation(s)
- Gradimir Misevic
- Research and Development, Gimmune GmbH, Baarerstrasse 12, 6302 Zug, Switzerland
- LIBO Medicine Biotechnology Co., Ltd., 78 Dongsheng West Road, Jiangyin 214400, China
| | - Iacob Checiu
- Gynatal, Assisted Reproduction Center, Str. Protopop George Dragomir 1, 300229 Timisoara, Romania
| | - Octavian Popescu
- Institute for Interdisciplinary Research in Bio-Nano-Sciences, Molecular Biology Center, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania
- Institute of Biology Bucharest, Romanian Academy, 296 Splaiul Independenței, 060031 Bucharest, Romania
| |
Collapse
|
4
|
Davey PA, Power AM, Santos R, Bertemes P, Ladurner P, Palmowski P, Clarke J, Flammang P, Lengerer B, Hennebert E, Rothbächer U, Pjeta R, Wunderer J, Zurovec M, Aldred N. Omics-based molecular analyses of adhesion by aquatic invertebrates. Biol Rev Camb Philos Soc 2021; 96:1051-1075. [PMID: 33594824 DOI: 10.1111/brv.12691] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/15/2022]
Abstract
Many aquatic invertebrates are associated with surfaces, using adhesives to attach to the substratum for locomotion, prey capture, reproduction, building or defence. Their intriguing and sophisticated biological glues have been the focus of study for decades. In all but a couple of specific taxa, however, the precise mechanisms by which the bioadhesives stick to surfaces underwater and (in many cases) harden have proved to be elusive. Since the bulk components are known to be based on proteins in most organisms, the opportunities provided by advancing 'omics technologies have revolutionised bioadhesion research. Time-consuming isolation and analysis of single molecules has been either replaced or augmented by the generation of massive data sets that describe the organism's translated genes and proteins. While these new approaches have provided resources and opportunities that have enabled physiological insights and taxonomic comparisons that were not previously possible, they do not provide the complete picture and continued multi-disciplinarity is essential. This review covers the various ways in which 'omics have contributed to our understanding of adhesion by aquatic invertebrates, with new data to illustrate key points. The associated challenges are highlighted and priorities are suggested for future research.
Collapse
Affiliation(s)
- Peter A Davey
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K
| | - Anne Marie Power
- Ryan Institute, School of Natural Sciences, National University of Ireland Galway, Room 226, Galway, H91 TK33, Ireland
| | - Romana Santos
- Departamento de Biologia Animal, Faculdade de Ciências, Centro de Ciências do Mar e do Ambiente (MARE), Universidade de Lisboa, Lisbon, 1749-016, Portugal
| | - Philip Bertemes
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Peter Ladurner
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Pawel Palmowski
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K
| | - Jessica Clarke
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K
| | - Patrick Flammang
- Biology of Marine Organisms and Biomimetics Unit, Research Institute for Biosciences, University of Mons, Place du Parc 23, Mons, 7000, Belgium
| | - Birgit Lengerer
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Elise Hennebert
- Laboratory of Cell Biology, Research Institute for Biosciences, University of Mons, Place du Parc 23, Mons, 7000, Belgium
| | - Ute Rothbächer
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Robert Pjeta
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Julia Wunderer
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Michal Zurovec
- Biology Centre of the Czech Academy of Sciences and Faculty of Sciences, University of South Bohemia, České Budějovice, 370 05, Czech Republic
| | - Nick Aldred
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, U.K
| |
Collapse
|
5
|
Marques-Santos LF, Grassi G, Bergami E, Faleri C, Balbi T, Salis A, Damonte G, Canesi L, Corsi I. Cationic polystyrene nanoparticle and the sea urchin immune system: biocorona formation, cell toxicity, and multixenobiotic resistance phenotype. Nanotoxicology 2018; 12:847-867. [DOI: 10.1080/17435390.2018.1482378] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- L. F. Marques-Santos
- Department of Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil
| | - G. Grassi
- Department of Physical, Earth and Environmental Sciences-DSFTA, University of Siena, Siena, Italy
| | - E. Bergami
- Department of Physical, Earth and Environmental Sciences-DSFTA, University of Siena, Siena, Italy
| | - C. Faleri
- Department of Earth, Environmental and Life Sciences-DISTAV, University of Genoa, Genoa, Italy
| | - T. Balbi
- Department of Life Sciences-DSV, University of Siena, Siena, Italy
| | - A. Salis
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - G. Damonte
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - L. Canesi
- Department of Life Sciences-DSV, University of Siena, Siena, Italy
| | - I. Corsi
- Department of Physical, Earth and Environmental Sciences-DSFTA, University of Siena, Siena, Italy
| |
Collapse
|
6
|
Toubarro D, Gouveia A, Ribeiro RM, Simões N, da Costa G, Cordeiro C, Santos R. Cloning, Characterization, and Expression Levels of the Nectin Gene from the Tube Feet of the Sea Urchin Paracentrotus Lividus. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2016; 18:372-383. [PMID: 27194026 DOI: 10.1007/s10126-016-9698-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 02/10/2016] [Indexed: 06/05/2023]
Abstract
Marine bioadhesives perform in ways that manmade products simply cannot match, especially in wet environments. Despite their technological potential, bioadhesive molecular mechanisms are still largely understudied, and sea urchin adhesion is no exception. These animals inhabit wave-swept shores, relying on specialized adhesive organs, tube feet, composed by an adhesive disc and a motile stem. The disc encloses a duo-gland adhesive system, producing adhesive and deadhesive secretions for strong reversible substratum attachment. The disclosure of sea urchin Paracentrotus lividus tube foot disc proteome led to the identification of a secreted adhesion protein, Nectin, never before reported in adult adhesive organs but, that given its adhesive function in eggs/embryos, was pointed out as a putative substratum adhesive protein in adults. To further understand Nectin involvement in sea urchin adhesion, Nectin cDNA was amplified for the first time from P. lividus adhesive organs, showing that not only the known Nectin mRNA, called Nectin-1 (GenBank AJ578435), is expressed in the adults tube feet but also a new mRNA sequence, called Nectin-2 (GenBank KT351732), differing in 15 missense nucleotide substitutions. Nectin genomic DNA was also obtained for the first time, indicating that both Nectin-1 and Nectin-2 derive from a single gene. In addition, expression analysis showed that both Nectins are overexpressed in tube feet discs, its expression being significantly higher in tube feet discs from sea urchins just after collection from the field relative to sea urchin from aquarium. These data further advocate for Nectin involvement in sea urchin reversible adhesion, suggesting that its expression might be regulated according to the hydrodynamic conditions.
Collapse
Affiliation(s)
- Duarte Toubarro
- Centro de Biotecnologia dos Açores, Departamento de Biologia, Universidade dos Açores, 9501-801, Ponta Delgada, Açores, Portugal
- Structural and Cellular Microbiology Unit, Instituto de Tecnologia Química e Biológica, 2780-157, Oeiras, Portugal
| | - Analuce Gouveia
- Centro de Biotecnologia dos Açores, Departamento de Biologia, Universidade dos Açores, 9501-801, Ponta Delgada, Açores, Portugal
| | - Raquel Mesquita Ribeiro
- Centro de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Nélson Simões
- Centro de Biotecnologia dos Açores, Departamento de Biologia, Universidade dos Açores, 9501-801, Ponta Delgada, Açores, Portugal
| | - Gonçalo da Costa
- Centro de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
- Laboratório de FTICR e Espectrometria de Massa Estrutural, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Carlos Cordeiro
- Centro de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
- Laboratório de FTICR e Espectrometria de Massa Estrutural, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Romana Santos
- Centro de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.
- MARE-Centro de Ciências do Mar e do Ambiente, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.
| |
Collapse
|
7
|
Lebesgue N, da Costa G, Ribeiro RM, Ribeiro-Silva C, Martins GG, Matranga V, Scholten A, Cordeiro C, Heck AJR, Santos R. Deciphering the molecular mechanisms underlying sea urchin reversible adhesion: A quantitative proteomics approach. J Proteomics 2016; 138:61-71. [PMID: 26926440 DOI: 10.1016/j.jprot.2016.02.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/22/2016] [Accepted: 02/23/2016] [Indexed: 01/24/2023]
Abstract
UNLABELLED Marine bioadhesives have unmatched performances in wet environments, being an inspiration for biomedical applications. In sea urchins specialized adhesive organs, tube feet, mediate reversible adhesion, being composed by a disc, producing adhesive and de-adhesive secretions, and a motile stem. After tube foot detachment, the secreted adhesive remains bound to the substratum as a footprint. Sea urchin adhesive is composed by proteins and sugars, but so far only one protein, Nectin, was shown to be over-expressed as a transcript in tube feet discs, suggesting its involvement in sea urchin adhesion. Here we use high-resolution quantitative mass-spectrometry to perform the first study combining the analysis of the differential proteome of an adhesive organ, with the proteome of its secreted adhesive. This strategy allowed us to identify 163 highly over-expressed disc proteins, specifically involved in sea urchin reversible adhesion; to find that 70% of the secreted adhesive components fall within five protein groups, involved in exocytosis and microbial protection; and to provide evidences that Nectin is not only highly expressed in tube feet discs but is an actual component of the adhesive. These results give an unprecedented insight into the molecular mechanisms underlying sea urchin adhesion, and opening new doors to develop wet-reliable, reversible, and ecological biomimetic adhesives. SIGNIFICANCE Sea urchins attach strongly but in a reversible manner to substratum, being a valuable source of inspiration for industrial and biomedical applications. Yet, the molecular mechanisms governing reversible adhesion are still poorly studied delaying the engineering of biomimetic adhesives. We used the latest mass spectrometry techniques to analyze the differential proteome of an adhesive organ and the proteome of its secreted adhesive, allowing us to uncover the key players in sea urchin reversible adhesion. We demonstrate, that Nectin, a protein previously pointed out as potentially involved in sea urchin adhesion, is not only highly expressed in tube feet discs, but is a genuine component of the secreted adhesive.
Collapse
Affiliation(s)
- Nicolas Lebesgue
- Netherlands Proteomics Center, Padualaan 8, 3584, CH, Utrecht, Netherlands; Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584, CH, Utrecht, Netherlands
| | - Gonçalo da Costa
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Campo Grande, 1749-016, Lisboa, Portugal; Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal; Laboratório de FTICR e espectrometria de massa estrutural, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Raquel Mesquita Ribeiro
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Campo Grande, 1749-016, Lisboa, Portugal; Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Cristina Ribeiro-Silva
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Campo Grande, 1749-016, Lisboa, Portugal; Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Gabriel G Martins
- Instituto Gulbenkian de Ciência, R. da Quinta Grande 6, 2780-156 Oeiras, Portugal; Centro de Ecologia, Evolução e Alterações Ambientais, Faculdade de Ciências da Universidade de Lisboa, Campo Grande 1749-016, Lisboa, Portugal
| | - Valeria Matranga
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare, 'Alberto Monroy', Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Arjen Scholten
- Netherlands Proteomics Center, Padualaan 8, 3584, CH, Utrecht, Netherlands; Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584, CH, Utrecht, Netherlands
| | - Carlos Cordeiro
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Campo Grande, 1749-016, Lisboa, Portugal; Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal; Laboratório de FTICR e espectrometria de massa estrutural, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Albert J R Heck
- Netherlands Proteomics Center, Padualaan 8, 3584, CH, Utrecht, Netherlands; Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584, CH, Utrecht, Netherlands
| | - Romana Santos
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Campo Grande, 1749-016, Lisboa, Portugal; MARE - Centro de Ciências do Mar e do Ambiente, Faculdade de Ciências da Universidade de Lisboa, Campo Grande 1749-016, Lisboa, Portugal.
| |
Collapse
|
8
|
Katow H. Mechanisms of the epithelial-to-mesenchymal transition in sea urchin embryos. Tissue Barriers 2015; 3:e1059004. [PMID: 26716069 PMCID: PMC4681286 DOI: 10.1080/21688370.2015.1059004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 05/25/2015] [Accepted: 05/29/2015] [Indexed: 12/30/2022] Open
Abstract
Sea urchin mesenchyme is composed of the large micromere-derived spiculogenetic primary mesenchyme cells (PMC), veg2-tier macromere-derived non-spiculogenetic mesenchyme cells, the small micromere-derived germ cells, and the macro- and mesomere-derived neuronal mesenchyme cells. They are formed through the epithelial-to-mesenchymal transition (EMT) and possess multipotency, except PMCs that solely differentiate larval spicules. The process of EMT is associated with modification of epithelial cell surface property that includes loss of affinity to the apical and basal extracellular matrices, inter-epithelial cell adherens junctions and epithelial cell surface-specific proteins. These cell surface structures and molecules are endocytosed during EMT and utilized as initiators of cytoplasmic signaling pathways that often initiate protein phosphorylation to activate the gene regulatory networks. Acquisition of cell motility after EMT in these mesenchyme cells is associated with the expression of proteins such as Lefty, Snail and Seawi. Structural simplicity and genomic database of this model will further promote detailed EMT research.
Collapse
Affiliation(s)
- Hideki Katow
- Research Center for Marine Biology; Tohoku University; Asamushi, Aomori, Japan
| |
Collapse
|
9
|
Mapping sea urchins tube feet proteome — A unique hydraulic mechano-sensory adhesive organ. J Proteomics 2013; 79:100-13. [DOI: 10.1016/j.jprot.2012.12.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 11/10/2012] [Accepted: 12/02/2012] [Indexed: 11/22/2022]
|
10
|
Echinoderms as Blueprints for Biocalcification: Regulation of Skeletogenic Genes and Matrices. MOLECULAR BIOMINERALIZATION 2011; 52:225-48. [DOI: 10.1007/978-3-642-21230-7_8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
11
|
Phylogenetic analysis and homology modelling of Paracentrotus lividus nectin. Mol Divers 2009; 14:653-65. [DOI: 10.1007/s11030-009-9203-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Accepted: 10/20/2009] [Indexed: 01/21/2023]
|
12
|
Alliegro MC, Alliegro MA. Echinonectin is a Del-1-like molecule with regulated expression in sea urchin embryos. Gene Expr Patterns 2007; 7:651-6. [PMID: 17482526 DOI: 10.1016/j.modgep.2007.03.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Revised: 03/09/2007] [Accepted: 03/26/2007] [Indexed: 11/24/2022]
Abstract
Echinonectin (EN) is a dimeric galactosyl-binding protein found in sea urchin eggs and embryos. It had been postulated in earlier studies that EN is secreted into the hyaline layer, a stratified matrix deposited on the apical surface of cells, and serves as an attachment substrate for cells of the blastoderm. However, the dynamics of EN expression have rendered past observations difficult to interpret on this point and others. Radioiodination experiments in this study indicate that the bulk of EN is, at any one time, maintained in its vesicular compartment beneath the plasma membrane, but that a portion of the protein is secreted onto the cell surface during early development. The primary structure of EN was determined. The protein consists of a series of coagulation factor 5/8 repeats and discoidin-like lectin domains, and bears similarity to the secreted proteins DEL-1 and lactadherin from angiogenic endothelial cells. In situ hybridization analysis indicates that EN mRNA levels are regulated to coincide with periods of reduced motility in embryonic cells, supporting the postulate that the protein is involved in cell anchoring.
Collapse
Affiliation(s)
- Mark C Alliegro
- Department of Cell Biology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.
| | | |
Collapse
|
13
|
Zito F, Costa C, Sciarrino S, Cavalcante C, Poma V, Matranga V. Cell adhesion and communication: a lesson from echinoderm embryos for the exploitation of new therapeutic tools. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2005; 39:7-44. [PMID: 17152692 DOI: 10.1007/3-540-27683-1_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In this chapter, we summarise fundamental findings concerning echinoderms as well as research interests on this phylum for biomedical and evolutionary studies. We discuss how current knowledge of echinoderm biology, in particular of the sea urchin system, can shed light on the understanding of important biological phenomena and in dissecting them at the molecular level. The general principles of sea urchin embryo development are summarised, mainly focusing on cell communication and interactions, with particular attention to the cell-extracellular matrix and cell-cell adhesion molecules and related proteins. Our purpose is not to review all the work done over the years in the field of cellular interaction in echinoderms. On the contrary, we will rather focus on a few arguments in an effort to re-examine some ideas and concepts, with the aim of promoting discussion in this rapidly growing field and opening new routes for research on innovative therapeutic tools.
Collapse
Affiliation(s)
- F Zito
- Istituto di Biomedicina e Immunologia Molecolare (IBIM) Alberto Monroy, Consiglio Nazionale delle Ricerche, Via U. La Malfa 153, 90146 Palermo, Italy.
| | | | | | | | | | | |
Collapse
|
14
|
Kato KH, Abe T, Nakashima S, Matranga V, Zito F, Yokota Y. 'Nectosome': a novel cytoplasmic vesicle containing nectin in the egg of the sea urchin, Temnopleurus hardwickii. Dev Growth Differ 2004; 46:239-47. [PMID: 15206955 DOI: 10.1111/j.1440-169x.2004.00741.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Localization of an extracellular matrix protein, Th-nectin, in the eggs and embryos of the sea urchin Temnopleurus hardwickii was examined by both immunofluorescence and immunoelectron microscopy. The protein is associated with a tubular structure packaged in rod-shaped vesicles that were designated as 'nectosomes'. In unfertilized eggs, nectosomes are distributed uniformly throughout the cytoplasm, but after fertilization, they gradually translocate to the cortical zone where they are arranged perpendicular to the plasma membrane. The migration of the nectosomes was strongly inhibited by cytochalasin B, which suggested that microfilaments play an important role in this process. Immunocytochemical and immunoblotting analyses both ascertained that nectin is secreted into the hyaline layer. Some nectosomes remain in the apical cytoplasm of dermal cells until the gastrula stage. Ultrastructural examination revealed that the accumulation of nectosomes in the oocyte cytoplasm begins quite early in oogenesis, concomitant with the accumulation of cortical vesicles.
Collapse
Affiliation(s)
- Koichi H Kato
- Department of Biology, Graduate School of Natural Sciences, Nagoya City University, Mizuho-ku, Nagoya 467-8501, Japan.
| | | | | | | | | | | |
Collapse
|
15
|
Kiyomoto M, Zito F, Sciarrino S, Matranga V. Commitment and response to inductive signals of primary mesenchyme cells of the sea urchin embryo. Dev Growth Differ 2004; 46:107-14. [PMID: 15008859 DOI: 10.1111/j.1440-169x.2004.00730.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In the sea urchin embryo, primary mesenchyme cells (PMC) are committed to produce the larval skeleton, although their behavior and skeleton production are influenced by signals from the embryonic environment. Results from our recent studies showed that perturbation of skeleton development, by interfering with ectoderm-extracellular matrix (ECM) interactions, is linked to a reduction in the gene expression of a transforming growth factor (TGF)-beta growth factor, Pl-univin, suggesting a reduction in the blastocoelic amounts of the protein and its putative involvement in signaling events. In the present study, we examined PMC competence to respond to environmental signals in a validated skeleton perturbation model in Paracentrotus lividus. We found that injection of blastocoelic fluid (BcF), obtained from normal embryos, into the blastocoelic cavity of skeleton-defective embryos rescues skeleton development. In addition, PMC from skeleton-defective embryos transplanted into normal or PMC-less blastula embryos are able to position in correct regions of the blastocoel and to engage spicule elongation and patterning. Taken together, these results demonstrate that PMC commitment to direct skeletogenesis is maintained in skeleton perturbed embryos and confirm the role played by inductive signals in regulating skeleton growth and shape.
Collapse
Affiliation(s)
- Masato Kiyomoto
- Tateyama Marine Laboratory, Ochanomizu University, Kou-yatsu 11, Tateyama, Chiba 294-0301, Japan.
| | | | | | | |
Collapse
|
16
|
Zito F, Costa C, Sciarrino S, Poma V, Russo R, Angerer LM, Matranga V. Expression of univin, a TGF-β growth factor, requires ectoderm–ECM interaction and promotes skeletal growth in the sea urchin embryo. Dev Biol 2003; 264:217-27. [PMID: 14623243 DOI: 10.1016/j.ydbio.2003.07.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pl-nectin is an ECM protein located on the apical surface of ectoderm cells of Paracentrotus lividus sea urchin embryo. Inhibition of ECM-ectoderm cell interaction by the addition of McAb to Pl-nectin to the culture causes a dramatic impairment of skeletogenesis, offering a good model for the study of factor(s) involved in skeleton elongation and patterning. We showed that skeleton deficiency was not due to a reduction in the number of PMCs ingressing the blastocoel, but it was correlated with a reduction in the number of Pl-SM30-expressing PMCs. Here, we provide evidence on the involvement of growth factor(s) in skeleton morphogenesis. Skeleton-defective embryos showed a strong reduction in the levels of expression of Pl-univin, a growth factor of the TGF-beta superfamily, which was correlated with an equivalent strong reduction in the levels of Pl-SM30. In contrast, expression levels of Pl-BMP5-7 remained low and constant in both skeleton-defective and normal embryos. Microinjection of horse serum in the blastocoelic cavity of embryos cultured in the presence of the antibody rescued skeleton development. Finally, we found that misexpression of univin is also sufficient to rescue defects in skeleton elongation and SM30 expression caused by McAb to Pl-nectin, suggesting a key role for univin or closely related factor in sea urchin skeleton morphogenesis.
Collapse
Affiliation(s)
- Francesca Zito
- Istituto di Biomedicina e Immunologia Molecolare, Sezione Biologia dello Sviluppo, Consiglio Nazionale delle Ricerche, Palermo, Italy
| | | | | | | | | | | | | |
Collapse
|
17
|
Tomita K, Yamasu K, Suyemitsu T. Role of syndecan in the elongation of postoral arms in sea urchin larvae. Dev Growth Differ 2002; 44:45-53. [PMID: 11869291 DOI: 10.1046/j.1440-169x.2002.00617.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ac-SYN is the core protein of a cell surface proteoglycan of the sea urchin Anthocidaris crassispina. To examine the functions of Ac-SYN, embryos were cultured in the presence of affinity-purified antibody against Ac-SYN. At the late pluteus stage, severe inhibition of elongation of the postoral arms was seen in treated embryos compared with control embryos. Blastocoeleic microinjection of the antibody did not affect morphogenesis. The relationship between the number of cells in the postoral arms and the length of the postoral rods was investigated in normal embryos. This showed that postoral arm elongation has two phases: the first phase accompanies the increase in cell numbers while the second does not. The syndecan antibody inhibited the increase in cell numbers in the postoral arms. Furthermore, in the treated embryos, cell numbers continued to increase normally until 31 h post fertilization (hpf), while cell division stopped after 31 hpf. These results suggest that Ac-SYN participates in postoral arm formation via cell division in sea urchin embryos.
Collapse
Affiliation(s)
- Kazuo Tomita
- Department of Regulation Biology, Faculty of Science, Saitama University, Saitama, Saitama 338-8570, Japan
| | | | | |
Collapse
|
18
|
Zito F, Nakano E, Sciarrino S, Matranga V. Regulative specification of ectoderm in skeleton disrupted sea urchin embryos treated with monoclonal antibody to Pl-nectin. Dev Growth Differ 2000; 42:499-506. [PMID: 11041491 DOI: 10.1046/j.1440-169x.2000.00531.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pl-nectin is a glycoprotein first discovered in the extracellular matrix (ECM) of Paracentrotus lividus sea urchin embryo, apically located on ectoderm and endoderm cells. The molecule has been described as functioning as an adhesive substrate for embryonic cells and its contact to ectoderm cells is essential for correct skeletogenesis. The present study was undertaken to elucidate the biochemical characteristics of Pl-nectin and to extend knowledge on its in vivo biological function. Here it is shown that the binding of mesenchyme blastula cells to Pl-nectin-coated substrates was calcium dependent, and reached its optimum at 10 mM Ca2+. Perturbation studies using monoclonal antibody (McAb) to Pl-nectin, which prevent ectoderm cell-Pl-nectin contact, show that dorsoventral axis formation and ectoderm differentiation were retarded. At later stages, embryos recovered and, even if growth and patterning of the skeleton was greatly affected, the establishment of dorsoventral asymmetry was reached. Similarly, the expression of specific ectoderm and endoderm territorial markers was achieved, although occurring with some delay. Endoderm differentiation and patterning was not obviously affected. These results suggest that both endoderm and ectoderm cells have regulative capacities and differentiation of territories is restored after a lag period. On the contrary, failure of inductive differentiation of the skeleton cannot be rescued, even though the ectoderm has recovered.
Collapse
Affiliation(s)
- F Zito
- Istituto di Biologia dello Sviluppo del Consiglio Nazionale delle Ricerche, Palermo, Italy
| | | | | | | |
Collapse
|
19
|
Tesoro V, Zito F, Yokota Y, Nakano E, Sciarrino S, Matranga V. A protein of the basal lamina of the sea urchin embryo. Dev Growth Differ 1998; 40:527-35. [PMID: 9783478 DOI: 10.1046/j.1440-169x.1998.t01-3-00007.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The purification, biochemical characterization and functional features of a novel extracellular matrix protein are described. This protein is a component of the basal lamina found in embryos from the sea urchin species Paracentrotus lividus and Hemicentrotus pulcherrimus. The protein has been named Pl-200K or Hp-200K, respectively, because of the species from which it was isolated and its apparent molecular weight in SDS-PAGE under reducing conditions. It has been purified from unfertilized eggs where it is found packed within cytoplasmic granules, and has different binding affinities to type I collagen and heparin, as assessed by affinity chromatography columns. By indirect immunofluorescence experiments it was shown that, upon fertilization, the protein becomes extracellular, polarized at the basal surface of ectoderm cells, and on the surface of primary mesenchyme cells at the blastula and gastrula stages. The protein serves as an adhesive substrate, as shown by an in vitro binding assay where cells dissociated from blastula embryos were settled on 200K protein-coated substrates. To examine the involvement of the protein in morphogenesis of sea urchin embryo, early blastula embryos were microinjected with anti-200K Fab fragments and further development was followed. When control embryos reached the pluteus stage, microinjected embryos showed severe abnormalities in arms and skeleton elongation and patterning. On the basis of current results, it was proposed that 200K protein is involved in the regulation of sea urchin embryo skeletogenesis.
Collapse
Affiliation(s)
- V Tesoro
- Istituto di Biologia dello Sviluppo del Consiglio Nazionale delle Ricerche, Palermo, Italy
| | | | | | | | | | | |
Collapse
|
20
|
Burke RD, Lail M, Nakajima Y. The apical lamina and its role in cell adhesion in sea urchin embryos. CELL ADHESION AND COMMUNICATION 1998; 5:97-108. [PMID: 9638331 DOI: 10.3109/15419069809040284] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The hyaline layer (HL) is an extracellular matrix surrounding sea urchin embryos which has been implicated in a cell adhesion and morphogenesis. The apical lamina (AL) is a fibrous meshwork that remains after removal of hyalin from the HL and the fibropellins (FP) are glycoproteins thought to be the principal components of the AL. Using anti-FP antibodies (AL-1 and AL-2) we report immunoprecipitations and affinity purifications yield a high molecular weight complex comprised of the FP glycoproteins. The three components form a complex, stabilized by disulphide cross-linking and have stochiometric ratios of 2 FPIa molecules to 1 each of FPIb and FPIII. Pulse chase experiments indicate all 3 FP's are synthesized throughout development with peaks in synthesis during cleavage and a sustained peak beginning at hatching. Using immunogold and immunoperoxidase localization, the FP localize to a fibrillar complex forming the innermost layer of the HL. In cell adhesion experiments, cells adhere to affinity purified FP in a temperature, time and concentration dependent manner. Cell adhesion to Fp is about 70% of that seen when hyalin is used as a substrate. Pretreating with AL-1 and AL-2 reduces in vitro cell adhesion by about 65%. We conclude FP's form a fibrillar complex, which is synthesized throughout early development and functions, with other components of the HL, as a substrate for cell adhesion.
Collapse
Affiliation(s)
- R D Burke
- Dept. of Biology, University of Victoria, B.C. Canada.
| | | | | |
Collapse
|
21
|
Biochemical and immunological relationships among fibronectin-like proteins from different sea urchin species. ACTA ACUST UNITED AC 1995; 204:413-417. [DOI: 10.1007/bf00360848] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/1994] [Accepted: 01/25/1995] [Indexed: 11/26/2022]
|
22
|
|