1
|
Fu R, Ceballos-Picot I, Torres RJ, Larovere LE, Yamada Y, Nguyen KV, Hegde M, Visser JE, Schretlen DJ, Nyhan WL, Puig JG, O'Neill PJ, Jinnah HA. Genotype-phenotype correlations in neurogenetics: Lesch-Nyhan disease as a model disorder. ACTA ACUST UNITED AC 2013; 137:1282-303. [PMID: 23975452 DOI: 10.1093/brain/awt202] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Establishing meaningful relationships between genetic variations and clinical disease is a fundamental goal for all human genetic disorders. However, these genotype-phenotype correlations remain incompletely characterized and sometimes conflicting for many diseases. Lesch-Nyhan disease is an X-linked recessive disorder that is caused by a wide variety of mutations in the HPRT1 gene. The gene encodes hypoxanthine-guanine phosphoribosyl transferase, an enzyme involved in purine metabolism. The fine structure of enzyme has been established by crystallography studies, and its function can be measured with very precise biochemical assays. This rich knowledge of genetic alterations in the gene and their functional effect on its protein product provides a powerful model for exploring factors that influence genotype-phenotype correlations. The present study summarizes 615 known genetic mutations, their influence on the gene product, and their relationship to the clinical phenotype. In general, the results are compatible with the concept that the overall severity of the disease depends on how mutations ultimately influence enzyme activity. However, careful evaluation of exceptions to this concept point to several additional genetic and non-genetic factors that influence genotype-phenotype correlations. These factors are not unique to Lesch-Nyhan disease, and are relevant to most other genetic diseases. The disease therefore serves as a valuable model for understanding the challenges associated with establishing genotype-phenotype correlations for other disorders.
Collapse
Affiliation(s)
- Rong Fu
- 1 Departments of Neurology, Human Genetics and Paediatrics; Emory University, Atlanta GA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Russo D, Fronza G, Ottaggio L, Monti P, Inga A, Iyer P, Gold B, Menichini P. High frequency of genomic deletions induced by Me-lex, a sequence selective N3-adenine methylating agent, at the Hprt locus in Chinese hamster ovary cells. Mutat Res 2009; 671:58-66. [PMID: 19729030 DOI: 10.1016/j.mrfmmm.2009.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 07/17/2009] [Accepted: 08/26/2009] [Indexed: 01/21/2023]
Abstract
We have investigated the mutagenicity induced at the Hprt locus in Chinese hamster ovary (CHO) cells treated with increasing concentrations of Me-lex, a minor groove selective methylating agent that efficiently generates more than 90-95% of 3-MeA DNA adducts. Me-lex treatment was cytotoxic but weakly mutagenic, resulting in up to 7-fold induction above background in the Hprt mutation frequency. The molecular nature of 43 Hprt mutations induced by Me-lex was determined by sequence analysis of the Hprt cDNA and genomic analysis of the gene locus. Base pair substitutions represented about 25% of Me-lex induced mutations. The mutation spectrum revealed a high percentage of genomic deletions (51%) comprising single/multiple exon(s) and even the loss of the complete locus. When the distribution of mutations among different classes was considered, the difference between the spontaneous and Me-lex induced CHO spectra was statistically significant (p<0.012), indicating that the sites where mutations occurred were Me-lex specific. Based upon these results we hypothesize that a large proportion of mutations may result from the processing of 3-MeA, the main adduct induced by Me-lex, within A/T rich sequences in non-coding regions of the Hprt gene. The processing of these lesions by DNA polymerases could result in recombination and genomic deletions, thus representing a severe threat for genome integrity.
Collapse
Affiliation(s)
- Debora Russo
- Molecular Mutagenesis and DNA Repair Unit, Department of Epidemiology and Prevention, National Cancer Research Institute (IST), L.go R. Benzi, 10, 16132 Genova, Italy
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Chen JM, Chuzhanova N, Stenson PD, Férec C, Cooper DN. Meta-analysis of gross insertions causing human genetic disease: novel mutational mechanisms and the role of replication slippage. Hum Mutat 2006; 25:207-21. [PMID: 15643617 DOI: 10.1002/humu.20133] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although gross insertions (>20 bp) comprise <1% of disease-causing mutations, they nevertheless represent an important category of pathological lesion. In an attempt to study these insertions in a systematic way, 158 gross insertions ranging in size between 21 bp and approximately 10 kb were identified using the Human Gene Mutation Database (www.hgmd.org). A careful meta-analytical study revealed extensive diversity in terms of the nature of the inserted DNA sequence and has provided new insights into the underlying mutational mechanisms. Some 70% of gross insertions were found to represent sequence duplications of different types (tandem, partial tandem, or complex). Although most of the tandem duplications were explicable by simple replication slippage, the three complex duplications appear to result from multiple slippage events. Some 11% of gross insertions were attributable to nonpolyglutamine repeat expansions (including octapeptide repeat expansions in the prion protein gene [PRNP] and polyalanine tract expansions) and evidence is presented to support the contention that these mutations are also caused by replication slippage rather than by unequal crossing over. Some 17% of gross insertions, all >or=276 bp in length, were found to be due to LINE-1 (L1) retrotransposition involving different types of element (L1 trans-driven Alu, L1 direct, and L1 trans-driven SVA). A second example of pathological mitochondrial-nuclear sequence transfer was identified in the USH1C gene but appears to arise via a novel mechanism, trans-replication slippage. Finally, evidence for another novel mechanism of human genetic disease, involving the possible capture of DNA oligonucleotides, is presented in the context of a 26-bp insertion into the ERCC6 gene.
Collapse
Affiliation(s)
- Jian-Min Chen
- INSERM (Institut National de la Santé et de la Recherche Médicale) U613-Génétique Moléculaire et Génétique Epidémiologique, Université de Bretagne Occidentale, Centre Hospitalier Universitaire, Brest, France.
| | | | | | | | | |
Collapse
|
4
|
Dewannieux M, Heidmann T. LINEs, SINEs and processed pseudogenes: parasitic strategies for genome modeling. Cytogenet Genome Res 2005; 110:35-48. [PMID: 16093656 DOI: 10.1159/000084936] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2004] [Accepted: 04/22/2004] [Indexed: 11/19/2022] Open
Abstract
Two major classes of retrotransposons have invaded eukaryotic genomes: the LTR retrotransposons closely resembling the proviral integrated form of infectious retroviruses, and the non-LTR retrotransposons including the widespread, autonomous LINE elements. Here, we review the modeling effects of the latter class of elements, which are the most active in humans, and whose enzymatic machinery is subverted to generate a large series of "secondary" retroelements. These include the processed pseudogenes, naturally present in all eukaryotic genomes possessing non-LTR retroelements, and the very successful SINE elements such as the human Alu sequences which have evolved refined parasitic strategies to efficiently bypass the original "protectionist" cis-preference of LINEs for their own retrotransposition.
Collapse
Affiliation(s)
- M Dewannieux
- Unité des Rétrovirus Endogènes et Eléments Rétroïdes des Eucaryotes Supérieurs, UMR 8122 CNRS, Institut Gustave Roussy, Villejuif, France
| | | |
Collapse
|
5
|
Jinnah HA, Harris JC, Nyhan WL, O'Neill JP. The spectrum of mutations causing HPRT deficiency: an update. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2005; 23:1153-60. [PMID: 15571220 DOI: 10.1081/ncn-200027400] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Mutations in the gene encoding hypoxanthine-guanine phosphoribosyltransferase (HPRT) cause Lesch-Nyhan disease, which is characterized by hyperuricemia, severe motor disability, and self-injurious behavior. Mutations in the same gene also cause less severe clinical phenotypes with only some portions of the full syndrome. A large database of 271 mutations associated with both full and partial clinical phenotypes was recently compiled. Since the original database was assembled, 31 additional mutations have been identified, bringing the new total to 302. The results demonstrate a very heterogeneous collection of mutations for both LND and its partial syndromes. The differences between LND and the partial phenotypes cannot be explained by differences in the locations of mutations, but the partial phenotypes are more likely to have mutations predicted to allow some residual enzyme function. The reasons for some apparent exceptions to this proposal are addressed.
Collapse
Affiliation(s)
- H A Jinnah
- Department of Neurology, Johns Hopkins Hospital, Baltimore, Maryland 21287, USA
| | | | | | | |
Collapse
|
6
|
Williams M, Rainville IR, Nicklas JA. Use of inverse PCR to amplify and sequence breakpoints of HPRT deletion and translocation mutations. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2002; 39:22-32. [PMID: 11813293 DOI: 10.1002/em.10040] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Deletion and translocation mutations have been shown to play a significant role in the genesis of many cancers. The hprt gene located at Xq26 is a frequently used marker gene in human mutational studies. In an attempt to better understand potential mutational mechanisms involved in deletions and translocations, inverse PCR (IPCR) methods to amplify and sequence the breakpoints of hprt mutants classified as translocations and large deletions were developed. IPCR involves the digestion of DNA with a restriction enzyme, circularization of the fragments produced, and PCR amplification around the circle with primers oriented in a direction opposite to that of conventional PCR. The use of this technique allows amplification into an unknown region, in this case through the hprt breakpoint into the unknown joined sequence. Through the use of this procedure, two translocation, one inversion, and two external deletion hprt breakpoint sequences were isolated and sequenced. The isolated IPCR products range in size from 0.4 to 1.8 kb, and were amplified from circles ranging in size from 0.6 to 7.7 kb. We have shown that inverse PCR is useful to sequence translocation and large deletion mutant breakpoints in the hprt gene.
Collapse
Affiliation(s)
- M Williams
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan, USA
| | | | | |
Collapse
|
7
|
Mizunuma M, Fujimori S, Ogino H, Ueno T, Inoue H, Kamatani N. A recurrent large Alu-mediated deletion in the hypoxanthine phosphoribosyltransferase (HPRT1) gene associated with Lesch-Nyhan syndrome. Hum Mutat 2001; 18:435-43. [PMID: 11668636 DOI: 10.1002/humu.1214] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We identified the identical large genomic deletion in the hypoxanthine phosphoribosyltransferase (HPRT1) gene in two Japanese patients with Lesch-Nyhan (LN) syndrome. This deletion spanned from an Alu sequence in the promoter region to another Alu-sequence in intron 1, a length of 2,969 base pairs including exon 1. In order to ask whether this deletion was a recurrent mutation, we developed a simple alternative method to determine the separate origin of the HPRT1 mutation of the patients as assessed with an apparent mtDNA polymorphism. Considering that an LN syndrome-causing mutation is not transmitted from patient to offspring as LN syndrome is a fatal disease in childhood and that mtDNA is maternally inherited, HPRT1 mutations and mtDNA would be co-transmitted from carrier mother to offspring since both appeared in females. Two bases were different in the hypervariable region I of the mtDNA between the two patients, indicating the separate origin of their mtDNA over at least several thousand years as calculated based on the molecular evolution rate in this region. We thus conclude that the identical deletion found in HPRT1 of the two patients was derived from recurrent events of genomic recombination. Given that the same Alu-mediated deletion of HPRT1 has not been reported among somatic mutations at the same locus, this region of the HPRT1 gene flanked by Alu-sequences is likely a mutational hot spot in the germline but not in somatic cells. In addition, we also report novel LN-syndrome-conferring mutations in intron 6 (IVS6+1G --> C) and intron 8 (IVS7-9T --> G) that resulted in exclusions of exon 6 and exon 8, respectively.
Collapse
Affiliation(s)
- M Mizunuma
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
8
|
Martinez J, Dugaiczyk LJ, Zielinski R, Dugaiczyk A. Human genetic disorders, a phylogenetic perspective. J Mol Biol 2001; 308:587-96. [PMID: 11350162 DOI: 10.1006/jmbi.2001.4755] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
When viewed from the perspective of time, human genetic disorders give new insights into their etiology and evolution. Here, we have correlated a specific set of Alu repetitive DNA elements, known to be the basis of certain genetic defects, with their phylogenetic roots in primate evolution. From a differential distribution of Alu repeats among primate species, we identify the phylogenetic roots of three human genetic diseases involving the LPL, ApoB, and HPRT genes. The different phylogenetic age of these genetic disorders could explain the different susceptibility of various primate species to genetic diseases. Our results show that LPL deficiency is the oldest and should affect humans, apes, and monkeys. ApoB deficiency should affect humans and great apes, while a disorder in the HPRT gene (leading to the Lesch-Nyhan syndrome) is unique to human, chimpanzee, and gorilla. Similar results can be obtained for cancer. We submit that de novo transpositions of Alu elements, and saltatory appearances of Alu-mediated genetic disorders, represent singularities, places where behavior changes suddenly. Alus' propensity to spread, not only increased the regulatory and developmental complexity of the primate genome, it also increased its instability and susceptibility to genetic defects and cancer. The dynamic spread not only provided markers of primate phylogeny, it must have actively shaped the course of that phylogeny.
Collapse
Affiliation(s)
- J Martinez
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
| | | | | | | |
Collapse
|
9
|
Brooks EM, Branda RF, Nicklas JA, O'Neill JP. Molecular description of three macro-deletions and an Alu-Alu recombination-mediated duplication in the HPRT gene in four patients with Lesch-Nyhan disease. Mutat Res 2001; 476:43-54. [PMID: 11336982 DOI: 10.1016/s0027-5107(01)00065-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mutations in the HPRT gene cause a spectrum of diseases that ranges from hyperuricemia alone to hyperuricemia with profound neurological and behavioral dysfunction. The extreme phenotype is termed Lesch-Nyhan syndrome. In 271 cases in which the germinal HPRT mutation has been characterized, 218 different mutations have been found. Of these, 34 (13%) are large- (macro-) deletions of one exon or greater and four (2%) are partial gene duplications. The deletion breakpoint junctions have been defined for only three of the 34 macro-deletions. The molecular basis of two of the four duplications has been defined. We report here the breakpoint junctions for three new deletion mutations, encompassing exons 4-8 (20033bp), exons 4 and 5 (13307bp) and exons 5 and 6 (9454bp), respectively. The deletion breakpoints were defined by a combination of long polymerase chain reaction (PCR) amplifications, and conventional PCR and DNA sequencing. All three deletions are the result of non-homologous recombinations. A fourth mutation, a duplication of exons 2 and 3, is the result of an Alu-mediated homologous recombination between identical 19bp sequences in introns 3 and 1. In toto, two of three germinal HPRT duplication mutations appear to have been caused by Alu-mediated homologous recombination, while only one of six deletion mutations appears to have resulted from this type of recombination mechanism. The other five deletion mutations resulted from non-homologous recombination. With this admittedly limited number of characterized macro-mutations, Alu-mediated unequal homologous recombinations account for at least 8% (3 of 38) of the macro-alterations and 1% (3 of 271) of the total HPRT germinal mutations.
Collapse
Affiliation(s)
- E M Brooks
- Genetics Laboratory, University of Vermont, 32 N. Prospect Street, Burlington, VT 05401, USA
| | | | | | | |
Collapse
|
10
|
Jinnah HA, De Gregorio L, Harris JC, Nyhan WL, O'Neill JP. The spectrum of inherited mutations causing HPRT deficiency: 75 new cases and a review of 196 previously reported cases. Mutat Res 2000; 463:309-26. [PMID: 11018746 DOI: 10.1016/s1383-5742(00)00052-1] [Citation(s) in RCA: 201] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In humans, mutations in the gene encoding the purine salvage enzyme hypoxanthine-guanine phosphoribosyltransferase (HPRT) are associated with a spectrum of disease that ranges from hyperuricemia alone to hyperuricemia with profound neurological and behavioral dysfunction. Previous attempts to correlate different types or locations of mutations with different elements of the disease phenotype have been limited by the relatively small numbers of available cases. The current article describes the molecular genetic basis for 75 new cases of HPRT deficiency, reviews 196 previously reported cases, and summarizes four main conclusions that may be derived from the entire database of 271 mutations. First, the mutations associated with human disease appear dispersed throughout the hprt gene, with some sites appearing to represent relative mutational hot spots. Second, genotype-phenotype correlations provide no indication that specific disease features associate with specific mutation locations. Third, cases with less severe clinical manifestations typically have mutations that are predicted to permit some degree of residual enzyme function. Fourth, the nature of the mutation provides only a rough guide for predicting phenotypic severity. Though mutation analysis does not provide precise information for predicting disease severity, it continues to provide a valuable tool for genetic counseling in terms of confirmation of diagnoses, for identifying potential carriers, and for prenatal diagnosis.
Collapse
Affiliation(s)
- H A Jinnah
- Department of Neurology, Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA.
| | | | | | | | | |
Collapse
|
11
|
Abstract
Alu elements have amplified in primate genomes through a RNA-dependent mechanism, termed retroposition, and have reached a copy number in excess of 500,000 copies per human genome. These elements have been proposed to have a number of functions in the human genome, and have certainly had a major impact on genomic architecture. Alu elements continue to amplify at a rate of about one insertion every 200 new births. We have found 16 examples of diseases caused by the insertion of Alu elements, suggesting that they may contribute to about 0.1% of human genetic disorders by this mechanism. The large number of Alu elements within primate genomes also provides abundant opportunities for unequal homologous recombination events. These events often occur intrachromosomally, resulting in deletion or duplication of exons in a gene, but they also can occur interchromosomally, causing more complex chromosomal abnormalities. We have found 33 cases of germ-line genetic diseases and 16 cases of cancer caused by unequal homologous recombination between Alu repeats. We estimate that this mode of mutagenesis accounts for another 0.3% of human genetic diseases. Between these different mechanisms, Alu elements have not only contributed a great deal to the evolution of the genome but also continue to contribute to a significant portion of human genetic diseases.
Collapse
Affiliation(s)
- P L Deininger
- Department of Environmental Health Sciences, Tulane University Medical Center, 1430 Tulane Avenue, New Orleans, Louisiana, 70112, USA.
| | | |
Collapse
|
12
|
Alberto FL, Figueiredo MS, Zago MA, Araújo AG, Dos-Santos JE. The Lebanese mutation as an important cause of familial hypercholesterolemia in Brazil. Braz J Med Biol Res 1999; 32:739-45. [PMID: 10412552 DOI: 10.1590/s0100-879x1999000600009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Familial hypercholesterolemia (FH) is a common autosomal disorder that affects about one in 500 individuals in most Western populations and is caused by a defect in the low-density-lipoprotein receptor (LDLr) gene. In this report we determined the molecular basis of FH in 59 patients from 31 unrelated Brazilian families. All patients were screened for the Lebanese mutation, gross abnormalities of the LDLr gene, and the point mutation in the codon 3500 of the apolipoprotein B-100 gene. None of the 59 patients presented the apoB-3500 mutation, suggesting that familial defective ApoB-100 (FDB) is not a major cause of inherited hypercholesterolemia in Brazil. A novel 4-kb deletion in the LDLr gene, spanning from intron 12 to intron 14, was characterized in one family. Both 5' and 3' breakpoint regions were located within Alu repetitive sequences, which are probably involved in the crossing over that generated this rearrangement. The Lebanese mutation was detected in 9 of the 31 families, always associated with Arab ancestry. Two different LDLr gene haplotypes were demonstrated in association with the Lebanese mutation. Our results suggest the importance of the Lebanese mutation as a cause of FH in Brazil and by analogy the same feature may be expected in other countries with a large Arab population, such as North American and Western European countries.
Collapse
Affiliation(s)
- F L Alberto
- Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Brasil
| | | | | | | | | |
Collapse
|
13
|
Urnovitz HB, Tuite JJ, Higashida JM, Murphy WH. RNAs in the sera of Persian Gulf War veterans have segments homologous to chromosome 22q11.2. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 1999; 6:330-5. [PMID: 10225831 PMCID: PMC103718 DOI: 10.1128/cdli.6.3.330-335.1999] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Reverse transcriptase PCR (RT-PCR) was used for polyribonucleotide assays with sera from deployed Persian Gulf War veterans with the Gulf War Syndrome and a cohort of nonmilitary controls. Sera from veterans contained polyribonucleotides (amplicons) that were obtained by RT-PCR and that ranged in size from 200 to ca. 2,000 bp. Sera from controls did not contain amplicons larger than 450 bp. DNA sequences were derived from two amplicons unique to veterans. These amplicons, which were 414 and 759 nucleotides, were unrelated to each other or to any sequence in gene bank databases. The amplicons contained short segments that were homologous to regions of chromosome 22q11.2, an antigen-responsive hot spot for genetic rearrangements. Many of these short amplicon segments occurred near, between, or in chromosome 22q11.2 Alu sequences. These results suggest that genetic alterations in the 22q11.2 region, possibly induced by exposures to environmental genotoxins during the Persian Gulf War, may have played a role in the pathogenesis of the Gulf War Syndrome. However, the data did not exclude the possibility that other chromosomes also may have been involved. Nonetheless, the detection of polyribonucleotides such as those reported here may have application to the laboratory diagnosis of chronic diseases that have a multifactorial etiology.
Collapse
Affiliation(s)
- H B Urnovitz
- Chronic Illness Research Foundation, Berkeley, California, USA.
| | | | | | | |
Collapse
|
14
|
O'Neill JP, Rogan PK, Cariello N, Nicklas JA. Mutations that alter RNA splicing of the human HPRT gene: a review of the spectrum. Mutat Res 1998; 411:179-214. [PMID: 9804951 DOI: 10.1016/s1383-5742(98)00013-1] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The human HPRT gene contains spans approximately 42,000 base pairs in genomic DNA, has a mRNA of approximately 900 bases and a protein coding sequence of 657 bases (initiation codon AUG to termination codon UAA). This coding sequence is distributed into 9 exons ranging from 18 (exon 5) to 184 (exon 3) base pairs. Intron sizes range from 170 (intron 7) to 13,075 (intron 1) base pairs. In a database of human HPRT mutations, 277 of 2224 (12.5%) mutations result in alterations in splicing of the mRNA as analyzed by both reverse transcriptase mediated production of a cDNA followed by PCR amplification and cDNA sequencing and by genomic DNA PCR amplification and sequencing. Mutations have been found in all eight 5' (donor) and 3' (acceptor) splice sequences. Mutations in the 5' splice sequences of introns 1 and 5 result in intron inclusion in the cDNA due to the use of cryptic donor splice sequences within the introns; mutations in the other six 5' sites result in simple exon exclusion. Mutations in the 3' splice sequences of introns 1, 3, 7 and 8 result in partial exon exclusion due to the use of cryptic acceptor splice sequences within the exons; mutations in the other four 3' sites result in simple exon exclusion. A base substitution in exon 3 (209G-->T) creates a new 5' (donor) splice site which results in the exclusion of 110 bases of exon 3 from the cDNA. Two base substitutions in intron 8 (IVS8-16G-->A and IVS8-3T-->G) result in the inclusion of intron 8 sequences in the cDNA due to the creation of new 3' (acceptor) splice sites. Base substitution within exons 1, 3, 4, 6 and 8 also result in splice alterations in cDNA. Those in exons 1 and 6 are at the 3' end of the exon and may directly affect splicing. Those within exons 3 and 4 may be the result of the creation of nonsense codons, while those in exon 8 cannot be explained by this mechanism. Lastly, many mutations that affect splicing of the HPRT mRNA have pleiotropic effects in that multiple cDNA products are found.
Collapse
Affiliation(s)
- J P O'Neill
- University of Vermont Genetics Laboratory, 32 North Prospect Street, Burlington, VT 05401, USA.
| | | | | | | |
Collapse
|
15
|
Lupski JR. Genomic disorders: structural features of the genome can lead to DNA rearrangements and human disease traits. Trends Genet 1998; 14:417-22. [PMID: 9820031 DOI: 10.1016/s0168-9525(98)01555-8] [Citation(s) in RCA: 598] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Molecular medicine began with Pauling's seminal work, which recognized sickle-cell anemia as a molecular disease, and with Ingram's demonstration of a specific chemical difference between the hemoglobins of normal and sickled human red blood cells. During the four decades that followed, investigations have focused on the gene--how mutations specifically alter DNA and how these changes affect the structure and expression of encoded proteins. Recently, however, the advances of the human genome project and the completion of total genome sequences for yeast and many bacterial species, have enabled investigators to view genetic information in the context of the entire genome. As a result, we recognize that the mechanisms for some genetic diseases are best understood at a genomic level. The evolution of the mammalian genome has resulted in the duplication of genes, gene segments and repeat gene clusters. This genome architecture provides substrates for homologous recombination between nonsyntenic regions of chromosomes. Such events can result in DNA rearrangements that cause disease.
Collapse
Affiliation(s)
- J R Lupski
- Department of Molecular and Human Genetics, Texas Children's Hospital, Baylor College of Medicine, Houston 77030, USA.
| |
Collapse
|
16
|
Helleday T, Arnaudeau C, Jenssen D. A partial hprt gene duplication generated by non-homologous recombination in V79 Chinese hamster cells is eliminated by homologous recombination. J Mol Biol 1998; 279:687-94. [PMID: 9642052 DOI: 10.1006/jmbi.1998.1809] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Here, the sequence in the hprt gene of the duplication mutant SPD8 originating from V79 Chinese hamster cells was determined. The duplication arose after non-homologous recombination between exon 6 and intron 7, resulting in an extra copy of the 3' portion of exon 6, of exon 7 and of flanking intron regions. Only a duplication of exon 7 is present in the mRNA, since the duplicated exon 6 lacks its 5' splice site and is removed during RNA processing. The findings in this study suggest that the non-homologous recombination mechanism which occurred here may have been initiated by endonucleases, rather than by a spontaneous double strand break. Subsequently, 14 spontaneous SPD8 revertants with a functional hprt gene were isolated and characterized using PCR and sequencing. The data revealed that although the SPD8 cell line arose by non-homologous recombination, it reverts spontaneously by homologous recombination. Interestingly, the downstream copy of exon 7 was restored by this process. This was indicated by the presence of a specific mutation, a T-to-G transversion, close to the breakpoint, a characteristic unique to the SPD8 clone. Our results suggest that the spontaneous reversion of this cell line by homologous recombination may involve an exchange, rather than a conversion mechanism.
Collapse
Affiliation(s)
- T Helleday
- Department of Genetic and Cellular Toxicology, Wallenberg Laboratory, Stockholm University, Stockholm, S-106 91, Sweden
| | | | | |
Collapse
|
17
|
Abstract
Duplicated genes and repetitive sequences are distributed throughout the genomes of complex organisms. The homology between related sequences can promote nonallelic (ectopic) recombination, including gene conversion and reciprocal exchange. Resolution of these events can result in translocations, deletions, or other harmful rearrangements. In yeast, ectopic recombination between sequences on nonhomologous chromosomes occurs at high frequency. Because the mammalian genome is replete with duplicated sequences and repetitive elements, high levels of ectopic exchange would cause aneuploidy and genome instability. To understand the factors regulating ectopic recombination in mice, we evaluated the effects of homology length on gene conversion between unlinked sequences in the male germline. Previously, we found high levels of gene conversion between lacZ transgenes containing 2557 bp of homology. We report here that genetic background can play a major role in ectopic recombination; frequency of gene conversion was reduced by more than an order of magnitude by transferring the transgenes from a CF1 strain background to C57BL/6J. Additionally, conversion rates decreased as the homology length decreased. Sequences sharing 1214 bp of sequence identity underwent ectopic conversion less frequently than a pair sharing 2557 bp of identity, while 624 bp was insufficient to catalyze gene conversion at significant levels. These results suggest that the germline recombination machinery in mammals has evolved in a way that prevents high levels of ectopic recombination between smaller classes of repetitive sequences, such as the Alu family. Additionally, genomic location appeared to influence the availability of sequences for ectopic recombination.
Collapse
Affiliation(s)
- D M Cooper
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA
| | | | | |
Collapse
|
18
|
Carrozzo R, Rossi E, Christian SL, Kittikamron K, Livieri C, Corrias A, Pucci L, Fois A, Simi P, Bosio L, Beccaria L, Zuffardi O, Ledbetter DH. Inter- and intrachromosomal rearrangements are both involved in the origin of 15q11-q13 deletions in Prader-Willi syndrome. Am J Hum Genet 1997; 61:228-31. [PMID: 9246004 PMCID: PMC1715856 DOI: 10.1086/513907] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
19
|
Renwick PJ, Birley AJ, Hultén MA. Study of Alu sequences at the hypoxanthine phosphoribosyltransferase (hprt) encoding region of man. Gene 1997; 184:155-62. [PMID: 9031622 DOI: 10.1016/s0378-1119(96)00588-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The hypoxanthine phosphoribosyltransferase (hprt) encoding region of man is considered rich in Alu sequences: with 49 sequences present within 57 kilobases. Subfamily classification of the Alu sequences and identification of flanking direct repeats has been carried out to detect past rearrangements associated with their insertion into the region. Members of the Alu-J and three Alu-S subfamilies are present, along with the existence of free left arm sequences. Using available data, a comparison is made of the Alu subfamilies present at different gene regions. The heterogeneity in the number of each subfamily present at different genes shows that no one particular subfamily attained saturation in the genome. Several adjacent insertions of Alu sequences are seen at the hprt region. Furthermore two novel sequences are described, there is an incident where one Alu sequence has inserted into the middle poly(A) tract of an existing sequence at the hprt region; while another result from an Alu/Alu cross-over event elsewhere in the genome, before insertion into the hprt region. Once inserted, the Alu sequences are rarely subject to loss or rearrangement.
Collapse
Affiliation(s)
- P J Renwick
- Regional Genetic Laboratory Service, Birmingham Heartlands Hospital NHS Trust, Birmingham, UK
| | | | | |
Collapse
|
20
|
Meydan D, Lambert B, Hellgren D. Frequency and cell specificity of T-cell receptor interlocus recombination in human cells. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 1997; 30:245-253. [PMID: 9366901 DOI: 10.1002/(sici)1098-2280(1997)30:3<245::aid-em1>3.0.co;2-k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Immunoglobulin and T-cell receptor (TCR) genes are assembled by a site-specific rearrangement known as V(D)J [variable-(diversity)-joining] recombination. These rearrangements occur normally in pre-B- and pre-T-cells using signal sequences adjacent to coding exons for immunoglobulin and TCR genes, respectively. However, aberrant recombination may result in the generation of hybrid TCR genes by joining of TCR-beta with TCR-gamma specific sequences. Such hybrid TCR genes occur at a low frequency in peripheral blood lymphocytes (PBL) of healthy individuals, and can be detected by PCR amplification. We have determined the in vivo frequency of hybrid V gamma-J beta 1 TCR (hybrid TCR) genes in lymphocyte DNA from 12 healthy individuals. The average frequency was found to be 5.83 in 0.75 x 10(6) PBL, with a threefold difference between the highest and lowest individual value. The presence of similar TCR gene rearrangements in individual samples suggests that T-cells with a hybrid TCR gene are capable of clonal expansion in vivo. The individual hybrid TCR gene frequency remained relatively constant during 72 hours of in vitro cultivation. In long-term culture, the frequency gradually decreased, and after 28 days no hybrid TCR genes were detectable in lymphocyte DNA. These results show that T-cells with a hybrid TCR gene are able to respond to mitogen stimulation in vitro, and may have a proliferative disadvantage or are selected against during prolonged in vitro cultivation. No hybrid TCR genes were detected in ten proliferating T-cell clones, indicating that the rate of hybrid TCR gene formation is < 2.0 x 10(-8) per cell per cell division. No hybrid TCR genes were detected in DNA from B-lymphocytes, sperm, granulocytes, fibroblasts, keratinocytes, and three B-lymphoblastoid ataxia telangiectasia cell lines. In agreement with previous reports, the frequency of hybrid TCR genes in peripheral blood DNA from two ataxia telangiectasia patients was found to be more than 15-fold higher than in lymphocytes from normal individuals. These data show that formation of hybrid TCR genes is restricted to T-cells in vivo, and occurs at a very low frequency, if at all, in proliferating T-cells in vitro, and with an increased frequency in patients with ataxia telangiectasia.
Collapse
Affiliation(s)
- D Meydan
- Karolinska Institute, Department of Biosciences, Huddinge, Sweden
| | | | | |
Collapse
|
21
|
Darè E, Zhang LH, Jenssen D. Characterization of mutants involving partial exon duplications in the hprt gene of Chinese hamster V79 cells. SOMATIC CELL AND MOLECULAR GENETICS 1996; 22:201-10. [PMID: 8914605 DOI: 10.1007/bf02369910] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Sequencing of hprt cDNA revealed that three spontaneous mutants in V79 Chinese hamster cells exhibit tandem duplications of exon(s), i.e., either exons 2 and 3 or exon 7. Sequences of different sizes (4.5-8 Kb) were found to be duplicated and inserted in tandem into the hprt gene. These mutants demonstrated spontaneous reversion frequencies which were about 40-fold higher than those observed with other types of spontaneous mutants, but on the same order of magnitude as spontaneous reversions in Sp5, a mutant with a duplication insertion involving exon 2 in this gene. These data suggest that all of the duplications found have the same genetic instability, regardless of the type, size or position of the duplicated fragment. The coding sequence of the hprt cDNA and the restriction pattern of the revertants were virtually identical to the wild-type, indicating restoration of a functional hprt gene by precise deletion of the duplicated fragment.
Collapse
Affiliation(s)
- E Darè
- Department of Molecular Medicine, Karolinska Hospital, Stockholm, Sweden.
| | | | | |
Collapse
|
22
|
|
23
|
Rainville IR, Albertini RJ, Nicklas JA. Breakpoints and junctional regions of intragenic deletions in the HPRT gene in human T-Cells. SOMATIC CELL AND MOLECULAR GENETICS 1995; 21:309-26. [PMID: 8619128 DOI: 10.1007/bf02257466] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
DNA sequences of the deletion breakpoints of 24 human T-lymphocyte hprt gene mutations are reported. These independent deletions ranged in size from 18 to 15655 base pairs. Seven of the 21 in vivo mutations arose in normal adults, three in normal children, eight in radioimmunotherapy patients and three in platinum chemotherapy patients. One in vitro mutation was isolated after 93cGy radon exposure and two after 300cGy gamma radiation. The breakpoints were found to be non-random and a cluster of small deletions in exon 6 is reported. Ten of the mutations had 2-5bp direct repeats at the breakpoints. There was no excess of "deletion-associated" motifs over that expected by chance. Some breakpoints do occur at consensus topoisomerase II cleavage sites and the centromeric end of a Donehower sequence occurs exactly at a telomeric breakpoint. Three mutants had breakpoints at hairpins expected by the model of Glickman and Ripley.
Collapse
Affiliation(s)
- I R Rainville
- VCC Genetics Laboratory, University of Vermont, Burlington, Vermont 05401, USA
| | | | | |
Collapse
|
24
|
Renwick PJ, Birley AJ, McKeown CM, Hultén M. Southern analysis reveals a large deletion at the hypoxanthine phosphoribosyltransferase locus in a patient with Lesch-Nyhan syndrome. Clin Genet 1995; 48:80-4. [PMID: 7586656 DOI: 10.1111/j.1399-0004.1995.tb04060.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Whole genomic hprt clones were used in Southern analysis to screen the integrity of the hprt gene in a family that includes a patient with HPRT enzyme deficiency causal to Lesch-Nyhan syndrome. A 5 kb DNA sequence deletion was found to have its endpoints in the first and third introns. The probes identified the carrier status of female family members, aided by an RFLP carried by the mother's normal X-chromosome.
Collapse
Affiliation(s)
- P J Renwick
- Regional Genetic Laboratory Service, East Birmingham NHS Hospital Trust, UK
| | | | | | | |
Collapse
|
25
|
Abstract
The T-cell cloning assay detecting mutations at the hypoxanthine-guanine phosphoribosyl transferase (hprt) locus provides a well developed system for studying human somatic gene mutation. The hprt mutational spectrum comprises missense, nonsense and splice mutations, as well as large structural alterations including deletions, duplications and insertions. Only few of the hprt deletions, which represent 10-15% of background in vivo mutations in T-cells of adults, have been characterized in detail at the genomic level, and the mechanisms involved in the majority of hprt structural alterations remain unknown. Illegitimate activity of V(D)J recombinase resulting in deletion of hprt exons 2 + 3 has been shown to account for 40% of the hprt mutations in T-lymphocytes of human newborns and a few percent of the mutations in adults. In this report, novel recombinational mechanisms were identified by characterization of two T-cell mutants. One mutant derived from a healthy adult was found to have a 3.2-kb genomic insertion in the first intron of the hprt gene, and a 369-bp T-cell receptort (TCR) alpha gene sequence between exons 1 and 2 of its hprt cDNA. This mutation provides unique and direct evidence for illegitimate recombination between the TCR gene and the hprt gene in human T-lymphocytes in vivo. Moreover, the mutation identifies a novel cDNA sequence for the TCR alpha chain variable region. Another hprt- mutant, obtained from a T-cell culture treated with acetaldehyde, showed that splice mutation can be caused by a large deletion detectable on Southern blot. This 3.4-kb deletion involved both intron 1 and exon 2 sequences and was flanked by 5-bp direct repeats. The utilization of a novel cryptic acceptor site in intron 1, located far upstream from the lost consensus splice site, resulted in a partial inclusion of the intron 1 sequence in the hprt cDNA.
Collapse
Affiliation(s)
- S M Hou
- Karolinska Institute, Environmental Medicine Unit, CNT/NOVUM, Huddinge, Sweden
| |
Collapse
|