1
|
Yang R, Yang X. Differential modulation by AMPA of signals from red- and green-sensitive cones in carp retinal luminosity-type horizontal cells. SCIENCE IN CHINA. SERIES C, LIFE SCIENCES 2008; 44:373-82. [PMID: 18726418 DOI: 10.1007/bf02879604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2000] [Indexed: 10/22/2022]
Abstract
Intracellular recordings were made from luminosity-type horizontal cells (LHCs) in the isolated superfused carp retina and the effect of AMPA (alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid), a glutamate receptor agonist, on these cells was studied. AMPA suppressed the responses of LHCs driven by red-sensitive (R-) cones whereas it potentiated the responses driven by green-sensitive (G-) cones. The AMPA effect could be completely blocked by GYKI 53655, a specific AMPA receptor antagonist, indicating the exclusive involvement of AMPA-preferring receptors. The AMPA effect persisted in the presence of picrotoxin (PTX) or dihydrokainic acid (DHK), suggesting that the feedback from LHCs onto cones and glutamate transporters on cones may not be involved. It is suggested that there may exist different AMPA receptor subtypes with distinct characteristics on LHCs, which mediate signal transfer from R-and G-cones to LHCs, respectively.
Collapse
Affiliation(s)
- R Yang
- Chinese Academy of Sciences and Institute of Neurobiology, Fudan University, China
| | | |
Collapse
|
2
|
Joselevitch C, Klooster J, Kamermans M. Localization of metabotropic glutamate receptors in the outer plexiform layer of the goldfish retina. Cell Tissue Res 2007; 330:389-403. [PMID: 17906878 PMCID: PMC2071963 DOI: 10.1007/s00441-007-0496-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Accepted: 08/08/2007] [Indexed: 01/21/2023]
Abstract
We studied the localization of metabotropic glutamate receptors (mGluRs) in the goldfish outer plexiform layer by light-and electron-microscopical immunohistochemistry. The mGluR1alpha antibody labeled putative ON-type bipolar cell dendrites and horizontal cell processes in both rod spherules and cone triads. Immunolabeling for mGluR2/3 was absent in the rod synaptic complex but was found at horizontal cell dendrites directly opposing the cone synaptic ribbon. The mGluR5 antibody labeled Müller cell processes wrapping rod terminals and horizontal cell somata. The mGluR7 antibody labeled mainly horizontal cell dendrites invaginating rods and cones and some putative bipolar cell dendrites in the cone synaptic complex. The finding of abundant expression of various mGluRs in bipolar and horizontal cell dendrites suggests multiple sites of glutamatergic modulation in the outer retina.
Collapse
Affiliation(s)
- Christina Joselevitch
- Retinal Signal Processing, The Netherlands Institute for Neuroscience (KNAW), Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| | - Jan Klooster
- Retinal Signal Processing, The Netherlands Institute for Neuroscience (KNAW), Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| | - Maarten Kamermans
- Retinal Signal Processing, The Netherlands Institute for Neuroscience (KNAW), Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| |
Collapse
|
3
|
De Aguiar MJL, Ventura DF, da Silva Filho M, de Souza JM, Maciel R, Lee BB. Response of carp (Cyprinus carpio) horizontal cells to heterochromatic flicker photometry. Vis Neurosci 2006; 23:437-40. [PMID: 16961977 DOI: 10.1017/s0952523806233273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Accepted: 01/21/2005] [Indexed: 11/06/2022]
Abstract
The objective of the present work was to determine the interaction of cone inputs in the response of horizontal cells using heterochromatic flicker photometry (HFP). Intracellular electrophysiological recordings were made in horizontal cells of isolated retinae of carp maintained in physiological solution, with the receptor side up. Sharp glass microelectrodes filled with 3 M KCl solution with resistances between 100 and 120 M Omega were used. Stimuli comprised six cycles of two 6-Hz sinusoidal light waves in counterphase adjusted for the same number of quanta: a green light (550 nm) from a monochromator with a Xenon lamp and an LED red light (628 nm). The stimulation program consisted of 10 steps with the 550-nm wave at constant amplitude, while the 628-nm wave varied in increments of 10% up to 100%, followed by another 10 steps with the 628-nm wave at constant amplitude while the 550-nm wave varied in increments of 10% up to 100%. We recorded responses from four different horizontal cell classes: H1 (monophasic, broadband, n = 37), H2 (biphasic, red-green color-opponent, n = 13), and H3 (biphasic, blue-yellow color-opponent, n = 2) cone horizontal cells; and RH (monophasic, broadband, n = 3) rod horizontal cells. H1 and RH horizontal cells showed a similar cancellation point at a heterochromatic mixture consistent with mixed inputs from 630- and 550-nm cones. No cancellation point was found for the H2 cell class. Fish H1 cells add cone inputs and signal "luminance" in light levels appropriate for cone stimulation. The same occurs with RH cells, which also signal "luminance," but in light levels appropriate for rod work. For both cell classes there is an HFP cancellation point occurring at a combination of 628-nm and 550-nm lights in opposing phase that leads to the cancellation of the cell's response. No cancellation was found for H2 and H3 cells, which are the chromatically opponent horizontal cells in lower vertebrates.
Collapse
|
4
|
Sekaran S, Cunningham J, Neal MJ, Hartell NA, Djamgoz MBA. Nitric oxide release is induced by dopamine during illumination of the carp retina: serial neurochemical control of light adaptation. Eur J Neurosci 2005; 21:2199-208. [PMID: 15869516 DOI: 10.1111/j.1460-9568.2005.04051.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Several lines of indirect evidence have suggested that nitric oxide may play an important role during light adaptation of the vertebrate retina. We aimed to verify directly the effect of light on nitric oxide release in the isolated carp retina and to investigate the relationship between nitric oxide and dopamine, an established neuromodulator of retinal light adaptation. Using a biochemical nitric oxide assay, we found that steady or flicker light stimulation enhanced retinal nitric oxide production from a basal level. The metabotropic glutamate receptor agonist L-amino-4-phosphonobutyric acid, inhibited the light adaptation-induced nitric oxide production suggesting that the underlying cellular pathway involved centre-depolarizing bipolar cell activity. Application of exogenous dopamine to retinas in the dark significantly enhanced the basal production of nitric oxide and importantly, inhibition of endogenous dopaminergic activity completely suppressed the light-evoked nitric oxide release. The effect of dopamine was mediated through the D1 receptor subtype. Imaging of the nitric oxide-sensitive fluorescent indicator 4,5-diaminofluorescein di-acetate in retinal slices revealed that activation of D1 receptors resulted in nitric oxide production from two main spatial sources corresponding to the photoreceptor inner segment region and the inner nuclear layer. The results taken together would suggest that during the progression of retinal light adaptation there is a switch from dopaminergic to nitrergic control, probably to induce further neuromodulatory effects at higher levels of illumination and to enable more efficient spreading of the light adaptive signal.
Collapse
Affiliation(s)
- S Sekaran
- Department of Visual Neuroscience, Faculty of Medicine, Imperial College London, Charing Cross Campus, W6 8RF, UK.
| | | | | | | | | |
Collapse
|
5
|
Yang XL. Characterization of receptors for glutamate and GABA in retinal neurons. Prog Neurobiol 2004; 73:127-50. [PMID: 15201037 DOI: 10.1016/j.pneurobio.2004.04.002] [Citation(s) in RCA: 179] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2003] [Accepted: 04/12/2004] [Indexed: 11/16/2022]
Abstract
Glutamate and gamma-aminobutyric acid (GABA) are major excitatory and inhibitory neurotransmitters in the vertebrate retina, "a genuine neural center" (Ramón y Cajal, 1964, Recollections of My Life, C.E. Horne (Translater) MIT Press, Cambridge, MA). Photoreceptors, generating visual signals, and bipolar cells, mediating signal transfer from photoreceptors to ganglion cells, both release glutamate, which induces and/or changes the activity of the post-synaptic neurons (horizontal and bipolar cells for photoreceptors; amacrine and ganglion cells for bipolar cells). Horizontal and amacrine cells, which mediate lateral interaction in the outer and inner retina respectively, use GABA as a principal neurotransmitter. In recent years, glutamate receptors and GABA receptors in the retina have been extensively studied, using multi-disciplinary approaches. In this article some important advances in this field are reviewed, with special reference to retinal information processing. Photoreceptors possess metabotropic glutamate receptors and several subtypes of GABA receptors. Most horizontal cells express AMPA receptors, which may be predominantly assembled from flop slice variants. In addition, these cells also express GABAA and GABAC receptors. Signal transfer from photoreceptors to bipolar cells is rather complicated. Whereas AMPA/KA receptors mediate transmission for OFF type bipolar cells, several subtypes of glutamate receptors, both ionotropic and metabotropic, are involved in the generation of light responses of ON type bipolar cells. GABAA and GABAC receptors with distinct kinetics are differentially expressed on dendrites and axon terminals of both ON and OFF bipolar cells, mediating inhibition from horizontal cells and amacrine cells. Amacrine cells possess ionotropic glutamate receptors, whereas ganglion cells express both ionotropic and metabotropic glutamate receptors. GABAA receptors exist in amacrine and ganglion cells. Physiological data further suggest that GABAC receptors may be involved in the activity of these neurons. Moreover, responses of these retinal third order neurons are modulated by GABAB receptors, and in ganglion cells there exist several subtypes of GABAB receptors. A variety of glutamate receptor and GABA receptor subtypes found in the retina perform distinct functions, thus providing a wide range of neural integration and versatility of synaptic transmission. Perspectives in this research field are presented.
Collapse
Affiliation(s)
- Xiong-Li Yang
- Institute of Neurobiology, Fudan University, 220 Handan Road, Shanghai 200433, China.
| |
Collapse
|
6
|
Hirasawa H, Shiells R, Yamada M. A metabotropic glutamate receptor regulates transmitter release from cone presynaptic terminals in carp retinal slices. J Gen Physiol 2002; 119:55-68. [PMID: 11773238 PMCID: PMC2233855 DOI: 10.1085/jgp.119.1.55] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The role of group III metabotropic glutamate receptors (mGluRs) in photoreceptor-H1 horizontal cell (HC) synaptic transmission was investigated by analyzing the rate of occurrence and amplitude of spontaneous excitatory postsynaptic currents (sEPSCs) in H1 HCs uncoupled by dopamine in carp retinal slices. Red light steps or the application of 100 microM cobalt reduced the sEPSC rate without affecting their peak amplitude, which is consistent with hyperpolarization or the suppression of Ca(2+) entry into cone synaptic terminals reducing vesicular transmitter release. Conversely, postsynaptic blockade of H1 HC AMPA receptors by 500 nM CNQX reduced the amplitude of sEPSCs without affecting their rate. This analysis of sEPSCs represents a novel methodology for distinguishing between presynaptic and postsynaptic sites of action. The selective agonist for group III mGluRs, l-2-amino-4-phosphonobutyrate (L-APB or L-AP4; 20 microM), reduced the sEPSC rate with a slight reduction in amplitude, which is consistent with a presynaptic action on cone synaptic terminals to reduce transmitter release. During L-APB application, recovery of sEPSC rate occurred with 500 microM (s)-2-methyl-2-amino-4-phosphonobutyrate (MAP4), a selective antagonist of group III mGluR, and with 200 microM 4-aminopyridine (4-AP), a blocker of voltage-dependent potassium channels. Whole-cell recordings from cones in the retinal slice showed no effect of L-APB on voltage-activated Ca(2+) conductance. These results suggest that the activation of group III mGluRs suppresses transmitter release from cone presynaptic terminals via a 4-AP-sensitive pathway. Negative feedback, operating via mGluR autoreceptors, may limit excessive glutamate release from cone synaptic terminals.
Collapse
Affiliation(s)
- Hajime Hirasawa
- Supermolecular Division, Electrotechnical Laboratory, Tsukuba, Ibaraki 305-8568, Japan
- Institute of Biological Science, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Richard Shiells
- Biophysics Unit, Physiology Department, University College London, London WC1E 6BT, United Kingdom
| | - Masahiro Yamada
- Supermolecular Division, Electrotechnical Laboratory, Tsukuba, Ibaraki 305-8568, Japan
- Institute of Biological Science, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
7
|
Xu H, Yang X. GABA enhances short wavelength-sensitive cone input and reduces red cone input to carp L-type horizontal cells. Brain Res Bull 2000; 51:493-7. [PMID: 10758339 DOI: 10.1016/s0361-9230(99)00272-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Light responses of cone-driven horizontal cells were recorded intracellularly in the isolated superfused carp retina and the effects of gamma-aminobutyric acid (GABA) on signals from red-sensitive (R-) and short-wavelength-sensitive (S-) cones (green cones and/or blue cones) were studied. In the presence of a bright red (694 nm) background light, which substantially suppressed signal from R-cones, the responses of L-type horizontal cells (L-HCs) to 532-nm flashes, predominantly driven by the S-cone input, were potentiated by application of GABA. In contrast, the responses of these cells to 694-nm flashes driven by the R-cone input, were suppressed, when signal from S-cones was suppressed by a bright 532-nm background light. Both the effects could be reversed by co-application of bicuculline, suggesting the involvement of GABA(A) receptors. It was unlikely that the potentiation by GABA of the S-cone driven responses of the L-HCs was mediated by actions of GABA on the cone photoreceptors. The dual action of GABA persisted in the dopamine-depleted retina, indicating no involvement of the dopaminergic interplexiform cells. We speculate that this dual action may be partially due to differential modulation by GABA of different postsynaptic mechanisms respectively mediating signal transfer from R-cones and S-cones to L-HCs.
Collapse
Affiliation(s)
- H Xu
- Shanghai Institute of Physiology and Key Laboratory of Neurobiology, Chinese Academy of Sciences, China
| | | |
Collapse
|
8
|
Yamada M, Fraser SP, Furukawa T, Hirasawa H, Katano K, Djamgoz M, Yasui S. Effects of nitric oxide, light adaptation and APB on spectral characteristics of H1 horizontal cells in carp retina. Neurosci Res 1999; 35:309-19. [PMID: 10617322 DOI: 10.1016/s0168-0102(99)00094-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The spectral characteristics of cone-driven horizontal cells of H1 subtype (H1 HCs) receiving main synaptic input from red-sensitive cones were studied in light- and dark-adapted retinae of carp. The spectral sensitivity profile of H1 HCs in dark-adapted retinae was practically the same as the absorption spectrum of red-sensitive cones. Light-adaptation decreased the sensitivity preferentially in the short-wavelength (blue/green) region, resulting in a relative enhancement of the 617 nm peak. Application of nitric oxide (NO) donors, sodium nitroprusside (SNP) and S-nitrosoglutathione (SNOG or GSNO), or dopamine to dark-adapted retinae decreased the sensitivity preferentially in blue/green region, an effect similar to that of light-adaptation. Application of haemoglobin (Hb, an NO scavenger) or 2-amino-4-phosphonobutyrate (APB, a metabotropic glutamate receptor agonist), to light-adapted retinae increased the sensitivity preferentially in the blue/green region, an effect similar to dark-adaptation. The photoresponses of H1 HCs were univariant in dark-adapted retinae as well as Hb-treated light-adapted retinae. In light-adapted retinae with normal Ringer, however, the univariance did not hold. These results suggested that the photoresponses of H1 HCs to short-wavelength stimuli contain a depolarising (sign-reversing) component, which can be activated by light-adaptation or application of NO and dopamine, and inactivated by dark-adaptation or deprivation of NO or application of APB.
Collapse
Affiliation(s)
- M Yamada
- Supermolecular Division, Electrotechnical Laboratory, Tsukuba, Ibaraki, Japan.
| | | | | | | | | | | | | |
Collapse
|
9
|
Gafka AC, Vogel KS, Linn CL. Evidence of metabotropic glutamate receptor subtypes found on catfish horizontal and bipolar retinal neurons. Neuroscience 1999; 90:1403-14. [PMID: 10338307 DOI: 10.1016/s0306-4522(98)00512-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have used electrophysiological, pharmacological and immunological techniques to determine which classes of metabotropic glutamate receptors exist on cone horizontal cells in the catfish retina. Patch-clamp recordings in acutely dissociated cone horizontal cells provide evidence that group I and III metabotropic glutamate receptors exist, and are linked to modulation of a voltage-gated calcium current. Group II metabotropic glutamate receptor agonists did not affect the calcium current. Immunocytochemical techniques were used to study the localization of metabotropic glutamate receptor subtypes found in the catfish retina. Antibodies raised against group I (metabotropic glutamate receptor 1alpha, metabotropic glutamate receptor 5), group II (metabotropic glutamate receptor 2/3) and group III (metabotropic glutamate receptor 6) metabotropic glutamate receptor subtypes were used to label acutely dissociated horizontal, bipolar and Müller cells. Results from immunostaining provide evidence that cone horizontal cells express group I (metabotropic glutamate receptor 1alpha, metabotropic glutamate receptor 5) and group III (metabotropic glutamate receptor 6), but not group II (metabotropic glutamate receptor 2/3) receptor subtypes, consistent with our electrophysiological results. Cone horizontal cells exposed to anti-metabotropic glutamate receptor 1alpha, 5 or 6 antibodies all demonstrated diffuse overall staining, with patches of dark immunostaining found on both dendritic processes and cell somata. In catfish bipolar cells, all four of the anti-metabotropic glutamate receptor antibodies stained the processes and cell bodies of bipolar cells homogeneously. There was no evidence for a group of bipolar cells that did not stain with the antimetabotropic glutamate receptor antibodies, although the densest immunostaining occurred when bipolar cells were incubated with the anti-metabotropic glutamate receptor 6 antibody. Müller cells did not show immunostaining against any anti-metabotropic glutamate receptor antibody. Our non-immune controls confirmed that immunostaining was specific for the antigen, and immunoblots were performed to demonstrate the specificity of the antibodies in catfish retina. These results support the hypothesis that group I and III metabotropic glutamate receptor subtypes are found on catfish horizontal cells, and group I, II and III metabotropic glutamate receptor subtypes are expressed on catfish bipolar cells. The metabotropic glutamate receptors on catfish cone horizontal cells act to modulate the voltage-gated sustained calcium current found on these cells.
Collapse
Affiliation(s)
- A C Gafka
- Department of Cell Biology and Anatomy, Louisiana State University Medical Center, New Orleans 70112, USA
| | | | | |
Collapse
|
10
|
Djamgoz MB, Petruv R, Yasui S, Furukawa T, Yamada M. Modulation of chromatic difference in receptive field size of H1 horizontal cells in carp retina: dopamine- and APB-sensitive mechanisms. Neurosci Res 1998; 30:13-24. [PMID: 9572576 DOI: 10.1016/s0168-0102(97)00107-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chromatic aspects of receptive field size in the H1 horizontal cell syncytium of the carp retina were investigated using spectral photostimuli (blue or red) presented in the form of either a pair of a small spot and annulus, or a narrow moving slit. In the light-adapted retina, the receptive field for the blue stimulus was found to be significantly smaller than that for the red, i.e. there was a chromatic difference in the receptive field size. During the course of dark adaptation, the overall receptive field size increased, but the chromatic difference decreased. Immediately after adaptation to bright light, the receptive field sizes were reduced significantly, but the chromatic difference increased, mainly due to a greater reduction in the receptive field for the blue stimulus. Application of dopamine (5 microM) to a dark-adapted retina gradually decreased the receptive field size for both colours, but the chromatic difference became larger, again due to a greater reduction in the receptive field size for the blue stimulus. 2-Amino-4-phosphonobutyrate (APB) applied to light-adapted retinae at a working concentration of 1 mM, greatly expanded the receptive field size and suppressed the chromatic difference due to the effect being greater for the receptive field for the blue stimulus. The effect of APB was slow and cumulative. On the other hand, intracellular injection of cGMP or dibutyryl-cGMP increased the chromatic difference in the receptive field size. It is suggested (i) that the chromatic difference in the receptive field size could be due to a cGMP-coupled, conductance-decreasing receptor mechanism activated by APB; and (ii) that the mechanism is associated with short-wavelength sensitive cone input to the H1 cells and operates in the light-adapted state of the retina.
Collapse
Affiliation(s)
- M B Djamgoz
- Department of Biology, Imperial College of Science, Technology and Medicine, London, UK.
| | | | | | | | | |
Collapse
|
11
|
Furukawa T, Yamada M, Petruv R, Djamgoz MB, Yasui S. Nitric oxide, 2-amino-4-phosphonobutyric acid and light/dark adaptation modulate short-wavelength-sensitive synaptic transmission to retinal horizontal cells. Neurosci Res 1997; 27:65-74. [PMID: 9089700 DOI: 10.1016/s0168-0102(96)01133-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Light-induced changes in the input resistance (Rin) of external, luminosity (i.e. H1) type horizontal cell (HC) perikarya were studied by the bridge-balance method in light-adapted and dark-adapted retinae of carp. Changes in input resistance (delta Rin) induced by short-(460 nm) and long-wavelength (674 nm) flashes, adjusted in intensity to elicit equal-amplitude membrane voltage responses (equal-voltage condition), were measured. In light-adapted retinae, long-wavelength stimuli increased Rin consistently; in contrast, the increase was much less with short-wavelength stimuli. This equal-voltage chromatic delta Rin difference was lost in dark-adapted retinae whereby the delta Rin (an increase) became the same for short- and long-wavelengths. The chromatic delta Rin difference could be recovered by light adaptation or application of sodium nitroprusside to the dark-adapted retinae. Conversely, the equal-voltage chromatic delta Rin difference was eliminated by injection of NG-monomethyl-L-arginine into H1HCs of the light-adapted retinae or by treating the retinae with 2-amino-4-phosphonobutyrate (APB). These results suggest that H1HCs of the carp retina possess distinct postsynaptic mechanisms which mediate short- and long-wavelength signal transmission. Furthermore, it appears that the short-wavelength-sensitive pathway is active only during the light-adapted state of the retina. Taken together, therefore, the short-wavelength transmission to H1HCs probably operates on an APB-sensitive glutamate receptor, with nitric oxide as a light-adaptive messenger.
Collapse
Affiliation(s)
- T Furukawa
- Neurosystems Laboratories, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
12
|
Djamgoz MB, Fitzgerald EM, Yamada M. Spectral plasticity of H1 horizontal cells in carp retina: independent modulation by dopamine and light-adaptation. Eur J Neurosci 1996; 8:1571-9. [PMID: 8921249 DOI: 10.1111/j.1460-9568.1996.tb01302.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
It was shown previously that the spectral sensitivity of luminosity/H1-type horizontal cells (HCs) in carp retinae reflects the absorption spectrum of red-sensitive cones for long wavelengths but can appear highly variable and "truncated' in the short-wavelength region of the spectrum. We have found that light-adaptation sharpened the red-sensitive spectral peak and decreased the blue/red response amplitude ratio (B/R ratio), mainly by decreasing the response to short-wavelength stimuli. The adaptation effect was more pronounced for red background light than for blue. During dark adaptation, the B/R ratio increased steadily. Exogenous dopamine (DA; 5 microM) changed the spectral response profile in a similar way to light-adaptation. However, the effect of light-adaptation in reducing the B/R ratio was still seen in retinae bathed in 5 microM DA. This effect of background adaptation was also recorded in retinae bathed in 37 microM haloperidol, as well as in retinae pretreated with 6-hydroxydopamine (i.e. DA-depleted). The results suggest that (i) short-wavelength-sensitive cones play a dynamic role in determining the spectral response profile of H1 HCs and (ii) spectral response characteristics are modulated independently by exogenous DA and an unknown endogenous neuromodulator which is activated by light-adaptation.
Collapse
Affiliation(s)
- M B Djamgoz
- Department of Biology, Imperial College of Science, Technology and Medicine, London, UK
| | | | | |
Collapse
|
13
|
Fröhlich E, Negishi K, Wagner HJ. The occurrence of dopaminergic interplexiform cells correlates with the presence of cones in the retinae of fish. Vis Neurosci 1995; 12:359-69. [PMID: 7786856 DOI: 10.1017/s0952523800008038] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Using light-microscopic immunocytochemistry against tyrosine hydroxylase, we have investigated the morphology of dopaminergic cells in 23 species of fishes representing various systematic classes and subclasses and which live in very different habitats. We have, for the first time, observed teleosts with dopaminergic amacrine cells. Thus, in both bony and cartilaginous fishes, dopaminergic cells are differentiated as interplexiform and amacrine cells. The differentiation of dopaminergic cells into amacrine or interplexiform cells in fishes correlates with the absence or presence of cones. In pure-rod retinae, they occur as amacrine cells, and in mixed rod/cone retinae, they occur as interplexiform cells. We conclude therefore that the differentiation of retinal dopaminergic cells in fish does not depend on the evolutionary or systematic classification of a given species. Rather, it is correlated with the occurrence of rods and/or cones, and thus linked more closely to the habitat. We argue that, in fish, the presence of cones and cone-specific horizontal cells may be responsible for inducing dopaminergic cells to differentiate as interplexiform cells. Possible functions of dopamine in all-rod retinae, which may not require adaptation, may include neuromodulation in the inner plexiform layer for the sensitization of the rod pathway, the shaping of biological rhythms, and the control of eye growth.
Collapse
Affiliation(s)
- E Fröhlich
- Anatomisches Institut der Eberhard-Karls-Universität, Tübingen, Germany
| | | | | |
Collapse
|
14
|
Moon C, Fraser SP, Barrett P, Morgan PJ, Djamgoz MB. Functional expression of 2-amino-4-phosphonobutyrate (APB) receptors in Xenopus laevis oocytes by injection of poly(A)+ RNA from quail brain. FEBS Lett 1994; 348:99-101. [PMID: 7517896 DOI: 10.1016/0014-5793(94)00589-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The glutamate analogue 2-amino-4-phosphonobutyrate (APB) is known to activate a subtype of metabotropic glutamate receptor in the central nervous system, including the retina. In the present study, APB receptors were studied using the Xenopus oocyte expression system. No endogenous APB sensitivity was detected in control oocytes. In contrast, microinjection of mRNA, extracted from quail brain, into Xenopus oocytes resulted in the functional expression of APB receptors after 3-5 days incubation. Application of 50 microM-1 mM APB to injected oocytes voltage clamped at a holding potential of -60 mV produced a sustained outward current which was associated with a significant decrease in membrane conductance; the reversal potential was around -11 mV. The response to APB was dose-dependent and non-desensitizing. This is the first demonstration of the expression of a conductance-decreasing receptor mechanism in Xenopus oocytes.
Collapse
Affiliation(s)
- C Moon
- Imperial College of Science, Technology and Medicine, Department of Biology, London, UK
| | | | | | | | | |
Collapse
|
15
|
Abstract
Because the glutamate analog 2-amino-4-phosphonobutyric acid (APB) alters synaptic transmission at the outer plexiform layer in goldfish we asked whether intraocular injection of ABP would alter the spectral sensitivity of the retina. The spectral sensitivity of the ON and OFF components of the optic nerve response (ONR) in goldfish was measured in the presence and absence of APB, under four chromatic adaptation condition. APB decreased absolute sensitivity and altered spectral sensitivity for both ON and OFF responses under each adaptation condition. The spectral sensitivity of the OFF response was altered most at short wavelengths, in a manner consistent with a change in the balance of additive cone inputs. For the ON response, the effects of APB were consistent with a change in spectral antagonism, particularly between M- and L-cones. These results suggest that the activity in the retinal cone pathways in goldfish can be influenced by a mechanism incorporating an APB-sensitive receptor, and that this receptor may be intimately involved with setting the balance of cone inputs to spectrally-opponent neurons.
Collapse
Affiliation(s)
- P J Demarco
- Department of Psychology and Vision Research Center, Vanderbilt University, Nashville, TN 37240
| | | |
Collapse
|
16
|
Yamada M, Shigematsu Y, Umetani Y, Saito T. Dopamine decreases receptive field size of rod-driven horizontal cells in carp retina. Vision Res 1992; 32:1801-7. [PMID: 1337637 DOI: 10.1016/0042-6989(92)90041-g] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Receptive field size of rod-driven horizontal cells (HCs) in the carp retina was measured by the spread of responses to the slit of light stimulus with changing the distance from the recording electrode and it was found to decay with a single exponential function. By perfusing 10 microM dopamine (DA) the length constant of rod-driven HCs was reduced to half and the response amplitude in the centre increased approximately two-fold, and the input resistance was markedly increased. This suggests that DA as a neuromodulator released from interplexiform cells could decouple the rod-driven HCs which had no direct synaptic contact with the interplexiform cells.
Collapse
Affiliation(s)
- M Yamada
- Molecular and Cellular Neuroscience Section, Electrotechnical Laboratory, Ibaraki, Japan
| | | | | | | |
Collapse
|
17
|
Abstract
Dopamine (DA) has satisfied many of the criteria for being a major neurochemical in vertebrate retinae. It is synthesized in amacrine and/or interplexiform cells (depending on species) and released upon membrane depolarization in a calcium-dependent way. Strong evidence suggests that it is normally released within the retina during light adaptation, although flickering and not so much steady light stimuli have been found to be most effective in inducing endogenous dopamine release. DA action is not restricted to those neurones which appear to be in "direct" contact with pre-synaptic dopaminergic terminals. Neurones that are several microns away from such terminals can also be affected, presumably by short diffusion of the chemical. DA thus affects the activity of many cell types in the retina. In photoreceptors, it induces retinomotor movements, but inhibits disc shedding acting via D2 receptors, without significantly altering their electrophysiological responses. DA has two main effects upon horizontal cells: it uncouples their gap junctions and, independently, enhances the efficacy of their photoreceptor inputs, both effects involving D1 receptors. In the amphibian retina, where horizontal cells receive mixed rod and cone inputs, DA alters their balance in favour of the cone input, thus mimicking light adaptation. Light-evoked DA release also appears to be responsible for potentiating the horizontal cell-->cone negative feed-back pathway responsible for generation of multi-phasic, chromatic S-potentials. However, there is little information concerning action of DA upon bipolar and amacrine cells. DA effects upon ganglion cells have been investigated in mammalian (cat and rabbit) retinae. The results suggest that there are both synaptic and non-synaptic D1 and D2 receptors on all physiological types of ganglion cell tested. Although the available data cannot readily be integrated, the balance of evidence suggests that dopaminergic neurones are involved in the light/dark adaptation process in the mammalian retina. Studies of the DA system in vertebrate retinae have contributed greatly to our understanding of its role in vision as well as DA neurobiology generally in the central nervous system. For example, the effect of DA in uncoupling horizontal cells is one of the earliest demonstrations of the uncoupling of electrotonic junctions by a neurally released chemical. The many other, diverse actions of DA in the retina reviewed here are also likely to become model modes of neurochemical action in the nervous system.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- M B Djamgoz
- Imperial College of Science, Technology and Medicine, Department of Biology, London, U.K
| | | |
Collapse
|
18
|
Djamgoz MB, Usai C, Vallerga S. An interplexiform cell in the goldfish retina: light-evoked response pattern and intracellular staining with horseradish peroxidase. Cell Tissue Res 1991; 264:111-6. [PMID: 1711416 DOI: 10.1007/bf00305728] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The light-evoked response pattern and morphology of one interplexiform cell were studied in the goldfish retina by intracellular recording and staining. The membrane potential of the cell spontaneously oscillated in the dark. In response to a brief light stimulus, the membrane potential initially gave a slow transient depolarization. During maintained light, the oscillations showed a tendency to be suppressed; the response of the cell to the offset of the stimulus was not so prominent. The perikaryon of the interplexiform cell was positioned at the proximal boundary of the inner nuclear layer. The cell had two broad layers of dendrites; one was diffuse in the inner plexiform layer, the other was more sparse in the outer plexiform layer. The morphological and electrophysiological characteristics of the cell are discussed in relation to dopaminergic interplexiform cells and the light-evoked release pattern of dopamine in the teleost retina.
Collapse
Affiliation(s)
- M B Djamgoz
- Department of Biology, Imperial College of Science, Technology and Medicine, London, UK
| | | | | |
Collapse
|