1
|
Nehela Y, Killiny N. Not Just a Cycle: Three gab Genes Enable the Non-Cyclic Flux Toward Succinate via GABA Shunt in ' Candidatus Liberibacter asiaticus'-Infected Citrus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:200-214. [PMID: 34775834 DOI: 10.1094/mpmi-09-21-0241-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Although the mitochondria retain all required enzymes for an intact tricarboxylic acid (TCA) cycle, plants might shift the cyclic flux from the TCA cycle to an alternative noncyclic pathway via γ-aminobutyric acid (GABA) shunt under specific physiological conditions. We hypothesize that several genes may ease this noncyclic flux and contribute to the citrus response to the phytopathogenic bacterium 'Candidatus Liberibacter asiaticus', the causal agent of Huanglongbing in citrus. To test this hypothesis, we used multiomics techniques (metabolomics, fluxomics, and transcriptomics) to investigate the potential roles of putative gab homologies from Valencia sweet orange (Citrus sinensis). Our findings showed that 'Ca. L. asiaticus' significantly increased the endogenous GABA and succinate content but decreased ketoglutarate in infected citrus plants. Citrus genome harbors three putative gab genes, including amino-acid permease (also known as GABA permease; CsgabP), GABA transaminase (CsgabT), and succinate-semialdehyde dehydrogenase (also known as GABA dehydrogenase; CsgabD). The transcript levels of CsgabP, CsgabT, and CsgabD were upregulated in citrus leaves upon the infection with 'Ca. L. asiaticus' and after the exogenous application of GABA or deuterium-labeled GABA isotope (GABA-D6). Moreover, our finding showed that exogenously applied GABA is quickly converted to succinate and fed into the TCA cycle. Likewise, the fluxomics study showed that GABA-D6 is rapidly metabolized to succinate-D4. Our work proved that GABA shunt and three predicated gab genes from citrus, support the upstream noncyclic flux toward succinate rather than an intact TCA cycle and contribute to citrus defense responses to 'Ca. L. asiaticus'.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Yasser Nehela
- Department of Plant Pathology, Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd., Lake Alfred, FL 33850, U.S.A
- Department of Agricultural Botany, Faculty of Agriculture, Tanta University, Tanta, Egypt
| | - Nabil Killiny
- Department of Plant Pathology, Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd., Lake Alfred, FL 33850, U.S.A
| |
Collapse
|
2
|
Song Z, Lu Y, Liu X, Wei C, Oladipo A, Fan B. Evaluation of Pantoea eucalypti FBS135 for pine (Pinus massoniana) growth promotion and its genome analysis. J Appl Microbiol 2020; 129:958-970. [PMID: 32329126 DOI: 10.1111/jam.14673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 12/15/2022]
Abstract
AIMS Pinus massoniana is one of the most widely distributed forest plants in China. In this study, we isolated a bacterial endophyte (designated FBS135) from apical buds and needles of P. massoniana. Investigations were performed to understand the effects of the strain on pine growth, its genomic features and the functions of the plasmids it carries. METHODS AND RESULTS Based on its morphological features and 16S rRNA sequence, strain FBS135 was primarily identified as Pantoea eucalypti. We found that FBS135 not only promoted the growth of P. massoniana seedlings, but also significantly increased the survival rate of pine seedlings. The whole genome of FBS135 was sequenced, which revealed that the bacterium carries one chromosome and four plasmids. Its chromosome is 4 023 751 bp in size and contains dozens of genes involved in plant symbiosis. Curing one of the four plasmids, pPant1, resulted in a decrease in the size of the FBS135 colonies and the loss of the ability to synthesize yellow pigment, indicating that this plasmid may be very important for FBS135. CONCLUSIONS Pantoea eucalypti FBS135 has a genomic basis to be implicated in plant-associated lifestyle and was established to have the capability to promote pine growth. SIGNIFICANCE AND IMPACT OF THE STUDY To the best of our knowledge, this is the first report that such a bacterial species, P. eucalypti, was isolated from pine trees and evidenced to have pine beneficial activities. Our results elucidate the ecological effects of endophytes on forest plants as well as endophyte-plant interaction mechanisms.
Collapse
Affiliation(s)
- Z Song
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Y Lu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - X Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - C Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - A Oladipo
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - B Fan
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
3
|
Herr CQ, Macomber L, Kalliri E, Hausinger RP. Glutarate L-2-hydroxylase (CsiD/GlaH) is an archetype Fe(II)/2-oxoglutarate-dependent dioxygenase. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 117:63-90. [PMID: 31564307 DOI: 10.1016/bs.apcsb.2019.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The Escherichia coli gene initially named ygaT is located adjacent to lhgO, encoding L-2-hydroxyglutarate oxidase/dehydrogenase, and the gabDTP gene cluster, utilized for γ-aminobutyric acid (GABA) metabolism. Because this gene is transcribed specifically during periods of carbon starvation, it was renamed csiD for carbon starvation induced. The CsiD protein was structurally characterized and shown to possess a double-stranded ß-helix fold, characteristic of a large family of non-heme Fe(II)- and 2-oxoglutarate (2OG)-dependent oxygenases. Consistent with a role in producing the substrate for LhgO, CsiD was shown to be a glutarate L-2-hydroxylase. We review the kinetic and structural properties of glutarate L-2-hydroxylase from E. coli and other species, and we propose a catalytic mechanism for this archetype 2OG-dependent hydroxylase. Glutarate can be derived from l-lysine within the cell, with the gabDT genes exhibiting expanded reactivities beyond those known for GABA metabolism. The complete CsiD-containing pathway provides a means for the cell to obtain energy from the metabolism of l-lysine during periods of carbon starvation. To reflect the role of this protein in the cell, a renaming of csiD to glaH has been proposed.
Collapse
Affiliation(s)
- Caitlyn Q Herr
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Lee Macomber
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Efthalia Kalliri
- Department of Chemistry, Michigan State University, East Lansing, MI, United States
| | - Robert P Hausinger
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States; Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
4
|
Enhanced biosynthesis of γ-aminobutyric acid (GABA) in Escherichia coli by pathway engineering. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2018.10.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
5
|
Sharma VK, Bayles DO, Alt DP, Looft T, Brunelle BW, Stasko JA. Disruption of rcsB by a duplicated sequence in a curli-producing Escherichia coli O157:H7 results in differential gene expression in relation to biofilm formation, stress responses and metabolism. BMC Microbiol 2017; 17:56. [PMID: 28274217 PMCID: PMC5343319 DOI: 10.1186/s12866-017-0966-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 02/28/2017] [Indexed: 12/29/2022] Open
Abstract
Background Escherichia coli O157:H7 (O157) strain 86–24, linked to a 1986 disease outbreak, displays curli- and biofilm-negative phenotypes that are correlated with the lack of Congo red (CR) binding and formation of white colonies (CR−) on a CR-containing medium. However, on a CR medium this strain produces red isolates (CR+) capable of producing curli fimbriae and biofilms. Results To identify genes controlling differential expression of curli fimbriae and biofilm formation, the RNA-Seq profile of a CR+ isolate was compared to the CR− parental isolate. Of the 242 genes expressed differentially in the CR+ isolate, 201 genes encoded proteins of known functions while the remaining 41 encoded hypothetical proteins. Among the genes with known functions, 149 were down- and 52 were up-regulated. Some of the upregulated genes were linked to biofilm formation through biosynthesis of curli fimbriae and flagella. The genes encoding transcriptional regulators, such as CsgD, QseB, YkgK, YdeH, Bdm, CspD, BssR and FlhDC, which modulate biofilm formation, were significantly altered in their expression. Several genes of the envelope stress (cpxP), heat shock (rpoH, htpX, degP), oxidative stress (ahpC, katE), nutrient limitation stress (phoB-phoR and pst) response pathways, and amino acid metabolism were downregulated in the CR+ isolate. Many genes mediating acid resistance and colanic acid biosynthesis, which influence biofilm formation directly or indirectly, were also down-regulated. Comparative genomics of CR+ and CR− isolates revealed the presence of a short duplicated sequence in the rcsB gene of the CR+ isolate. The alignment of the amino acid sequences of RcsB of the two isolates showed truncation of RcsB in the CR+ isolate at the insertion site of the duplicated sequence. Complementation of CR+ isolate with rcsB of the CR− parent restored parental phenotypes to the CR+ isolate. Conclusions The results of this study indicate that RcsB is a global regulator affecting bacterial survival in growth-restrictive environments through upregulation of genes promoting biofilm formation while downregulating certain metabolic functions. Understanding whether rcsB inactivation enhances persistence and survival of O157 in carrier animals and the environment would be important in developing strategies for controlling this bacterial pathogen in these niches.
Collapse
Affiliation(s)
- V K Sharma
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, ARS-USDA, P. O. Box 70, 1920 Dayton Avenue, Ames, IA, 50010, USA.
| | - D O Bayles
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, ARS-USDA, Ames, IA, 50010, USA
| | - D P Alt
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, ARS-USDA, Ames, IA, 50010, USA
| | - T Looft
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, ARS-USDA, P. O. Box 70, 1920 Dayton Avenue, Ames, IA, 50010, USA
| | - B W Brunelle
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, ARS-USDA, P. O. Box 70, 1920 Dayton Avenue, Ames, IA, 50010, USA
| | - J A Stasko
- Microscopy Services Unit, National Animal Disease Center, ARS-USDA, Ames, IA, 50010, USA
| |
Collapse
|
6
|
Abstract
This review considers the pathways for the degradation of amino acids and a few related compounds (agmatine, putrescine, ornithine, and aminobutyrate), along with their functions and regulation. Nitrogen limitation and an acidic environment are two physiological cues that regulate expression of several amino acid catabolic genes. The review considers Escherichia coli, Salmonella enterica serovar Typhimurium, and Klebsiella species. The latter is included because the pathways in Klebsiella species have often been thoroughly characterized and also because of interesting differences in pathway regulation. These organisms can essentially degrade all the protein amino acids, except for the three branched-chain amino acids. E. coli, Salmonella enterica serovar Typhimurium, and Klebsiella aerogenes can assimilate nitrogen from D- and L-alanine, arginine, asparagine, aspartate, glutamate, glutamine, glycine, proline, and D- and L-serine. There are species differences in the utilization of agmatine, citrulline, cysteine, histidine, the aromatic amino acids, and polyamines (putrescine and spermidine). Regardless of the pathway of glutamate synthesis, nitrogen source catabolism must generate ammonia for glutamine synthesis. Loss of glutamate synthase (glutamineoxoglutarate amidotransferase, or GOGAT) prevents utilization of many organic nitrogen sources. Mutations that create or increase a requirement for ammonia also prevent utilization of most organic nitrogen sources.
Collapse
|
7
|
YgaE regulates out membrane proteins in Salmonella enterica serovar Typhi under hyperosmotic stress. ScientificWorldJournal 2014; 2014:374276. [PMID: 24592164 PMCID: PMC3921978 DOI: 10.1155/2014/374276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 10/30/2013] [Indexed: 11/27/2022] Open
Abstract
Salmonella enterica serovar Typhi (S. Typhi) is a human-specific pathogen that causes typhoid fever. In this study, we constructed ΔygaE mutant and a microarray was performed to investigate the role of ygaE in regulation of gene expression changes in response to hyperosmotic stress in S. Typhi. qRT-PCR was performed to validate the microarray results. Our data indicated that ygaE was the repressor of gab operon in S. Typhi as in Escherichia coli (E. coli), though the sequence of ygaE is totally different from gabC (formerly ygaE) in E. coli. OmpF, OmpC, and OmpA are the most abundant out membrane proteins in S. Typhi. Here we report that YgaE is a repressor of both OmpF and OmpC at the early stage of hyperosmotic stress. Two-dimensional electrophoresis was applied to analyze proteomics of total proteins in wild-type strain and ΔygaE strain and we found that YgaE represses the expression of OmpA at the late stage of hyperosmotic stress. Altogether, our results implied that YgaE regulates out membrane proteins in a time-dependent manner under hyperosmotic stress in S. Typhi.
Collapse
|
8
|
Gurusamy R, Natarajan S. Current status on biochemistry and molecular biology of microbial degradation of nicotine. ScientificWorldJournal 2013; 2013:125385. [PMID: 24470788 PMCID: PMC3891541 DOI: 10.1155/2013/125385] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Accepted: 10/14/2013] [Indexed: 11/30/2022] Open
Abstract
Bioremediation is one of the most promising methods to clean up polluted environments using highly efficient potent microbes. Microbes with specific enzymes and biochemical pathways are capable of degrading the tobacco alkaloids including highly toxic heterocyclic compound, nicotine. After the metabolic conversion, these nicotinophilic microbes use nicotine as the sole carbon, nitrogen, and energy source for their growth. Various nicotine degradation pathways such as demethylation pathway in fungi, pyridine pathway in Gram-positive bacteria, pyrrolidine pathway, and variant of pyridine and pyrrolidine pathways in Gram-negative bacteria have been reported. In this review, we discussed the nicotine-degrading pathways of microbes and their enzymes and biotechnological applications of nicotine intermediate metabolites.
Collapse
Affiliation(s)
- Raman Gurusamy
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Sakthivel Natarajan
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| |
Collapse
|
9
|
A five-gene cluster involved in utilization of taurine-nitrogen and excretion of sulfoacetaldehyde by Acinetobacter radioresistens SH164. Arch Microbiol 2012; 194:857-63. [DOI: 10.1007/s00203-012-0806-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 01/23/2012] [Accepted: 03/15/2012] [Indexed: 11/26/2022]
|
10
|
Identification and characterization of γ-aminobutyric acid uptake system GabPCg (NCgl0464) in Corynebacterium glutamicum. Appl Environ Microbiol 2012; 78:2596-601. [PMID: 22307305 DOI: 10.1128/aem.07406-11] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Corynebacterium glutamicum is widely used for industrial production of various amino acids and vitamins, and there is growing interest in engineering this bacterium for more commercial bioproducts such as γ-aminobutyric acid (GABA). In this study, a C. glutamicum GABA-specific transporter (GabP(Cg)) encoded by ncgl0464 was identified and characterized. GabP(Cg) plays a major role in GABA uptake and is essential to C. glutamicum growing on GABA. GABA uptake by GabP(Cg) was weakly competed by l-Asn and l-Gln and stimulated by sodium ion (Na(+)). The K(m) and V(max) values were determined to be 41.1 ± 4.5 μM and 36.8 ± 2.6 nmol min(-1) (mg dry weight [DW])(-1), respectively, at pH 6.5 and 34.2 ± 1.1 μM and 67.3 ± 1.0 nmol min(-1) (mg DW)(-1), respectively, at pH 7.5. GabP(Cg) has 29% amino acid sequence identity to a previously and functionally identified aromatic amino acid transporter (TyrP) of Escherichia coli but low identities to the currently known GABA transporters (17% and 15% to E. coli GabP and Bacillus subtilis GabP, respectively). The mutant RES167 Δncgl0464/pGXKZ9 with the GabP(Cg) deletion showed 12.5% higher productivity of GABA than RES167/pGXKZ9. It is concluded that GabP(Cg) represents a new type of GABA transporter and is potentially important for engineering GABA-producing C. glutamicum strains.
Collapse
|
11
|
Kim KJ, Pearl PL, Jensen K, Snead OC, Malaspina P, Jakobs C, Gibson KM. Succinic semialdehyde dehydrogenase: biochemical-molecular-clinical disease mechanisms, redox regulation, and functional significance. Antioxid Redox Signal 2011; 15:691-718. [PMID: 20973619 PMCID: PMC3125545 DOI: 10.1089/ars.2010.3470] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Succinic semialdehyde dehydrogenase (SSADH; aldehyde dehydrogenase 5a1, ALDH5A1; E.C. 1.2.1.24; OMIM 610045, 271980) deficiency is a rare heritable disorder that disrupts the metabolism of the inhibitory neurotransmitter 4-aminobutyric acid (GABA). Identified in conjunction with increased urinary excretion of the GABA analog gamma-hydroxybutyric acid (GHB), numerous patients have been identified worldwide and the autosomal-recessive disorder has been modeled in mice. The phenotype is one of nonprogressive neurological dysfunction in which seizures may be prominently displayed. The murine model is a reasonable phenocopy of the human disorder, yet the severity of the seizure disorder in the mouse exceeds that observed in SSADH-deficient patients. Abnormalities in GABAergic and GHBergic neurotransmission, documented in patients and mice, form a component of disease pathophysiology, although numerous other disturbances (metabolite accumulations, myelin abnormalities, oxidant stress, neurosteroid depletion, altered bioenergetics, etc.) are also likely to be involved in developing the disease phenotype. Most recently, the demonstration of a redox control system in the SSADH protein active site has provided new insights into the regulation of SSADH by the cellular oxidation/reduction potential. The current review summarizes some 30 years of research on this protein and disease, addressing pathological mechanisms in human and mouse at the protein, metabolic, molecular, and whole-animal level.
Collapse
Affiliation(s)
- Kyung-Jin Kim
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Phillip L. Pearl
- Department of Neurology, Children's National Medical Center, Washington, District of Columbia
| | - Kimmo Jensen
- Synaptic Physiology Laboratory, Department of Physiology and Biophysics, Aarhus University, Aarhus, Denmark
- Center for Psychiatric Research, Aarhus University Hospital, Risskov, Denmark
| | - O. Carter Snead
- Department of Neurology, Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | | | - Cornelis Jakobs
- Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
| | - K. Michael Gibson
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan
| |
Collapse
|
12
|
Langendorf CG, Key TLG, Fenalti G, Kan WT, Buckle AM, Caradoc-Davies T, Tuck KL, Law RHP, Whisstock JC. The X-ray crystal structure of Escherichia coli succinic semialdehyde dehydrogenase; structural insights into NADP+/enzyme interactions. PLoS One 2010; 5:e9280. [PMID: 20174634 PMCID: PMC2823781 DOI: 10.1371/journal.pone.0009280] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 01/23/2010] [Indexed: 01/14/2023] Open
Abstract
Background In mammals succinic semialdehyde dehydrogenase (SSADH) plays an essential role in the metabolism of the inhibitory neurotransmitter γ-aminobutyric acid (GABA) to succinic acid (SA). Deficiency of SSADH in humans results in elevated levels of GABA and γ-Hydroxybutyric acid (GHB), which leads to psychomotor retardation, muscular hypotonia, non-progressive ataxia and seizures. In Escherichia coli, two genetically distinct forms of SSADHs had been described that are essential for preventing accumulation of toxic levels of succinic semialdehyde (SSA) in cells. Methodology/Principal Findings Here we structurally characterise SSADH encoded by the E coli gabD gene by X-ray crystallographic studies and compare these data with the structure of human SSADH. In the E. coli SSADH structure, electron density for the complete NADP+ cofactor in the binding sites is clearly evident; these data in particular revealing how the nicotinamide ring of the cofactor is positioned in each active site. Conclusions/Significance Our structural data suggest that a deletion of three amino acids in E. coli SSADH permits this enzyme to use NADP+, whereas in contrast the human enzyme utilises NAD+. Furthermore, the structure of E. coli SSADH gives additional insight into human mutations that result in disease.
Collapse
Affiliation(s)
- Christopher G. Langendorf
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - Trevor L. G. Key
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, Victoria, Australia
- School of Chemistry, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - Gustavo Fenalti
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, Victoria, Australia
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Wan-Ting Kan
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, Victoria, Australia
- ARC Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Clayton, Melbourne, Victoria, Australia
| | - Ashley M. Buckle
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | | | - Kellie L. Tuck
- School of Chemistry, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - Ruby H. P. Law
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, Victoria, Australia
- ARC Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Clayton, Melbourne, Victoria, Australia
- * E-mail: (RHPL); (JCW)
| | - James C. Whisstock
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, Victoria, Australia
- ARC Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Clayton, Melbourne, Victoria, Australia
- * E-mail: (RHPL); (JCW)
| |
Collapse
|
13
|
Structure and regulation of the gab gene cluster, involved in the gamma-aminobutyric acid shunt, are controlled by a sigma54 factor in Bacillus thuringiensis. J Bacteriol 2010; 192:346-55. [PMID: 19854901 DOI: 10.1128/jb.01038-09] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The structure and regulation of the gab gene cluster, involved in gamma-aminobutyric acid (GABA) shunt, were studied by characterizing gabT and gabD genes cloned from Bacillus thuringiensis. Deletions of the gabT and gabD genes in B. thuringiensis strain HD-73 did not affect the growth of mutant strains in rich culture media, but the growth of a gabT deletion mutant strain was reduced in basic media (containing 0.2% GABA). Genome analysis indicates that the structure of the gab gene cluster in B. thuringiensis HD-73 is different from that in Escherichia coli and Bacillus subtilis but is common in strains of the Bacillus cereus group. This suggests that the gene cluster involved in GABA shunt is specific to the B. cereus group. Based on reverse transcription-PCR and transcriptional fusion analysis, we confirmed that the gabT and gabD genes belong to different transcriptional units, while the gabD and gabR genes form an operon. We also demonstrated that the gabR gene plays a positive regulatory role in gabD and gabT expression. The GabR protein may be a sigma(54)-dependent transcriptional activator, according to a conserved domain search in the NCBI database, and it is highly conserved in the B. cereus group. The -24/-12 consensus sequence of a promoter upstream from gabT suggests that the promoter can be recognized by a sigma(54) factor. Further analysis of the genetic complementation studies also suggests that the expression of the gabT gene is controlled by a sigma(54) factor. Thus, the expression of the gab cluster is regulated by a sigma(54) factor by way of the transcription activator GabR.
Collapse
|
14
|
Crystal structure of non-redox regulated SSADH from Escherichia coli. Biochem Biophys Res Commun 2010; 392:106-11. [DOI: 10.1016/j.bbrc.2010.01.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2010] [Accepted: 01/05/2010] [Indexed: 02/06/2023]
|
15
|
Homotaurine metabolized to 3-sulfopropanoate in Cupriavidus necator H16: enzymes and genes in a patchwork pathway. J Bacteriol 2009; 191:6052-8. [PMID: 19648235 DOI: 10.1128/jb.00678-09] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Homotaurine (3-aminopropanesulfonate), a natural product and an analogue of GABA (4-aminobutyrate), was found to be a sole source of nitrogen for Cupriavidus necator (Ralstonia eutropha) H16, whose genome sequence is known. Homotaurine nitrogen was assimilated into cell material, and the quantitative fate of the organosulfonate was sulfopropanoate, which was recovered in the growth medium. The first scalar reaction was shown to be inducible homotaurine:2-oxoglutarate aminotransferase, which released 3-sulfopropanal from homotaurine. This aminotransferase was purified to homogeneity and characterized. Peptide mass fingerprinting yielded locus tag H16_B0981, which was annotated gabT, for GABA transaminase (EC 2.6.1.19). Inducible, NAD(P)(+)-coupled 3-sulfopropanal dehydrogenase, which yielded 3-sulfopropanoate from 3-sulfopropanal, was also purified and characterized. Peptide mass fingerprinting yielded locus tag H16_B0982, which was annotated gabD1, for succinate-semialdehyde dehydrogenase (EC 1.2.1.16). GabT and GabD1 were each induced during growth with GABA, and cotranscription of gabTD was observed. In other organisms, regulator GabC or GabR is encoded contiguous with gabTD: candidate GabR' was found in strain H16 and in many other organisms. An orthologue of the GABA permease (GabP), established in Escherichia coli, is present at H16_B1890, and it was transcribed constitutively. We presume that GabR'PTD are responsible for the inducible metabolism of homotaurine to intracellular 3-sulfopropanoate. The nature of the exporter of this highly charged compound was unclear until we realized from the sodium dodecyl sulfate-polyacrylamide gel electrophoresis data that sulfoacetaldehyde acetyltransferase (EC 2.3.3.15; H16_B1872) was strongly induced during growth with homotaurine and inferred that the sulfite exporter encoded at the end of the gene cluster (H16_B1874) has a broad substrate range that includes 3-sulfopropanoate.
Collapse
|
16
|
Saturation transfer difference NMR studies on substrates and inhibitors of succinic semialdehyde dehydrogenases. Biochem Biophys Res Commun 2008; 372:400-6. [PMID: 18474219 DOI: 10.1016/j.bbrc.2008.04.183] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Accepted: 04/29/2008] [Indexed: 11/23/2022]
Abstract
Saturation transfer difference (STD) NMR experiments on Escherichia coli and Drosophila melanogaster succinic semialdehyde dehydrogenase (SSADH, EC1.2.1.24) suggest that only the aldehyde forms and not the gem-diol forms of the specific substrate succinic semialdehyde (SSA), of selected aldehyde substrates, and of the inhibitor 3-tolualdehyde bind to these enzymes. Site-directed mutagenesis of the active site cysteine311 to alanine in D. melanogaster SSADH leads to an inactive product binding both SSA aldehyde and gem-diol. Thus, the residue cysteine311 is crucial for their discrimination. STD experiments on SSADH and NAD(+)/NADP(+) indicate differential affinity in agreement with the respective cosubstrate properties. Epitope mapping by STD points to a strong interaction of the NAD(+)/NADP(+) adenine H2 proton with SSADH. Adenine H8, nicotinamide H2, H4, and H6 also show STD signals. Saturation transfer to the ribose moieties is limited to the anomeric protons of E. coli SSADH suggesting that the NAD(+)/NADP(+) adenine and nicotinamide, but not the ribose moieties are important for the binding of the coenzymes.
Collapse
|
17
|
Schweiger P, Volland S, Deppenmeier U. Overproduction and characterization of two distinct aldehyde-oxidizing enzymes from Gluconobacter oxydans 621H. J Mol Microbiol Biotechnol 2007; 13:147-55. [PMID: 17693722 DOI: 10.1159/000103606] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The Gluconobacter oxydans 621H genome contains two genes (gox1122 and gox0499) that encode putative cytosolic NAD(P)-dependent aldehyde dehydrogenases. Each gene was expressed in Escherichia coli, and the recombinant enzymes were purified and characterized. The native protein Gox1122 exhibited an apparent molecular mass of 50.1 kDa, and the subunit mass was 50.5 kDa, indicating a monomeric structure of the native enzyme. The preferred substrates were acetaldehyde and NADP. The enzyme also oxidized other short-chained aliphatic and aromatic aldehydes at lower rates. Recombinant protein Gox0499 was composed of a single subunit and had an apparent molecular mass of 49.5 kDa. The substrate spectrum of Gox0499 was broad with a preference for long-chained aliphatic and aromatic aldehydes. Highest activities were obtained using dodecanal and NAD as substrates. RT real-time PCR showed that genes gox0499 and gox1122 were expressed at an elevated level (about 3-fold) when the cells were exposed to ethanol and dodecanal in comparison to control cells.
Collapse
Affiliation(s)
- Paul Schweiger
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | | | | |
Collapse
|
18
|
Abstract
New enzymes of nicotine catabolism instrumental in the detoxification of the tobacco alkaloid by Arthrobacter nicotinovorans pAO1 have been identified and characterized. Nicotine breakdown leads to the formation of nicotine blue from the hydroxylated pyridine ring and of gamma-N-methylaminobutyrate (CH(3)-4-aminobutyrate) from the pyrrolidine ring of the molecule. Surprisingly, two alternative pathways for the final steps in the catabolism of CH(3)-4-aminobutyrate could be identified. CH(3)-4-aminobutyrate may be demethylated to gamma-N-aminobutyrate by the recently identified gamma-N-methylaminobutyrate oxidase. In an alternative pathway, an amine oxidase with noncovalently bound FAD and of novel substrate specificity removed methylamine from CH(3)-4-aminobutyrate with the formation of succinic semialdehyde. Succinic semialdehyde was converted to succinate by a NADP(+)-dependent succinic semialdehyde dehydrogenase. Succinate may enter the citric acid cycle completing the catabolism of the pyrrolidine moiety of nicotine. Expression of the genes of these enzymes was dependent on the presence of nicotine in the growth medium. Thus, two enzymes of the nicotine regulon, gamma-N-methylaminobutyrate oxidase and amine oxidase share the same substrate. The K(m) of 2.5 mM and k(cat) of 1230 s(-1) for amine oxidase vs. K(m) of 140 microM and k(cat) of 800 s(-1) for gamma-N-methylaminobutyrate oxidase, determined in vitro with the purified recombinant enzymes, may suggest that demethylation predominates over deamination of CH(3)-4-aminobutyrate. However, bacteria grown on [(14)C]nicotine secreted [(14)C]methylamine into the medium, indicating that the pathway to succinate is active in vivo.
Collapse
Affiliation(s)
- Calin-Bogdan Chiribau
- Institute of Biochemistry and Molecular Biology, Alberts-Ludwig University of Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
19
|
Joloba ML, Clemmer KM, Sledjeski DD, Rather PN. Activation of the gab operon in an RpoS-dependent manner by mutations that truncate the inner core of lipopolysaccharide in Escherichia coli. J Bacteriol 2005; 186:8542-6. [PMID: 15576807 PMCID: PMC532415 DOI: 10.1128/jb.186.24.8542-8546.2004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gab operon (gabDTPC) in Escherichia coli functions in the conversion of gamma-aminobutyrate to succinate. One component of gab operon regulation involves the RpoS sigma factor, which mediates activation at high cell density. Transposon mutagenesis was used to identify new genes that regulate gab operon expression in rich media. A Tn5tmp insertion in the hldD (formerly rfaD) gene increased gabT::lacZ expression 12-fold. The hldD gene product, an ADP-L-glycerol-D-mannoheptose-6-epimerase, catalyzes the conversion of ADP-D-glycerol-D-mannoheptose to ADP-L-glycerol-D-mannoheptose, a precursor for the synthesis of inner-core lipopolysaccharide (LPS). Defined mutations in hldE, required for heptose synthesis, and waaF, required for the addition of the second heptose to the inner core, also resulted in high-level gabT::lacZ expression. The hldD, hldE, and waaF mutants exhibited a mucoid colony phenotype due to production of a colanic acid capsule. However, in the hldD::cat background, the high-level expression of gabT::lacZ was independent of the regulatory components for colanic acid synthesis (rcsA, rcsB, and rcsC) and also independent of manC (cpsB), a structural gene for colanic acid synthesis. Activation of gabT::lacZ in the hldD::cat background was dependent on the RpoS sigma factor. The hldD::cat mutation resulted in a sixfold increase in the levels of a translational RpoS-LacZ fusion and had a marginal effect on a transcriptional fusion. This study reveals a stress-induced pathway, mediated by loss of the LPS inner core, that increases RpoS translation and gab operon expression in E. coli.
Collapse
Affiliation(s)
- Moses L Joloba
- Department of Microbiology and Immunology, Emory University School of Medicine, 3001 Rollins Research Center, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
20
|
Vijayakumar SRV, Kirchhof MG, Patten CL, Schellhorn HE. RpoS-regulated genes of Escherichia coli identified by random lacZ fusion mutagenesis. J Bacteriol 2005; 186:8499-507. [PMID: 15576800 PMCID: PMC532425 DOI: 10.1128/jb.186.24.8499-8507.2004] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
RpoS is a conserved alternative sigma factor that regulates the expression of many stress response genes in Escherichia coli. The RpoS regulon is large but has not yet been completely characterized. In this study, we report the identification of over 100 RpoS-dependent fusions in a genetic screen based on the differential expression of an operon-lacZ fusion bank in rpoS mutant and wild-type backgrounds. Forty-eight independent gene fusions were identified, including several in well-characterized RpoS-regulated genes, such as osmY, katE, and otsA. Many of the other fusions mapped to genes of unknown function or to genes that were not previously known to be under RpoS control. Based on the homology to other known bacterial genes, some of the RpoS-regulated genes of unknown functions are likely important in nutrient scavenging.
Collapse
|
21
|
Metzner M, Germer J, Hengge R. Multiple stress signal integration in the regulation of the complex sigma S-dependent csiD-ygaF-gabDTP operon in Escherichia coli. Mol Microbiol 2004; 51:799-811. [PMID: 14731280 DOI: 10.1046/j.1365-2958.2003.03867.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The csiD-ygaF-gabDTP region in the Escherichia coli genome represents a cluster of sigma S-controlled genes. Here, we investigated promoter structures, sigma factor dependencies, potential co-regulation and environmental regulatory patterns for all of these genes. We find that this region constitutes a complex operon with expression being controlled by three differentially regulated promoters: (i) csiDp, which affects the expression of all five genes, is cAMP-CRP/sigma S-dependent and activated exclusively upon carbon starvation and stationary phase; (ii) gabDp1, which is sigma S-dependent and exhibits multiple stress induction like sigma S itself; and (iii) gabDp2[previously suggested by Schneider, B.L., Ruback, S., Kiupakis, A.K., Kasbarian, H., Pybus, C., and Reitzer, L. (2002) J. Bacteriol. 184: 6976-6986], which appears to be Nac/sigma 70-controlled and to respond to poor nitrogen sources. In addition, we identify a novel repressor, CsiR, which modulates csiDp activity in a temporal manner during early stationary phase. Finally, we propose a physiological role for sigma S-controlled GabT/D-mediated gamma-aminobutyrate (GABA) catabolism and glutamate accumulation in general stress adaptation. This physiological role is reflected by the activation of the operon-internal gabDp1 promoter under the different conditions that also induce sigma S, which include shifts to acidic pH or high osmolarity as well as starvation or stationary phase.
Collapse
Affiliation(s)
- Martin Metzner
- Institut für Biologie, Mikrobiologie, Freie Universität Berlin, 14195 Berlin, Germany
| | | | | |
Collapse
|
22
|
King SC, Brown-Istvan L. Use of the transport specificity ratio and cysteine-scanning mutagenesis to detect multiple substrate specificity determinants in the consensus amphipathic region of the Escherichia coli GABA (gamma-aminobutyric acid) transporter encoded by gabP. Biochem J 2003; 376:633-44. [PMID: 12956624 PMCID: PMC1223805 DOI: 10.1042/bj20030594] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2003] [Revised: 08/14/2003] [Accepted: 09/04/2003] [Indexed: 01/23/2023]
Abstract
The Escherichia coli GABA (gamma-aminobutyric acid) permease, GabP, and other members of the APC (amine/polyamine/choline) transporter superfamily share a CAR (consensus amphipathic region) that probably contributes to solute translocation. If true, then the CAR should contain structural features that act as determinants of substrate specificity ( k (cat)/ K (m)). In order to address this question, we have developed a novel, expression-independent TSR (transport specificity ratio) analysis, and applied it to a series of 69 cysteine-scanning (single-cysteine) variants. The results indicate that GabP has multiple specificity determinants (i.e. residues at which an amino acid substitution substantially perturbs the TSR). Specificity determinants were found: (i) on a hydrophobic surface of the CAR (from Leu-267 to Ala-285), (ii) on a hydrophilic surface of the CAR (from Ser-299 to Arg-318), and (iii) in a cytoplasmic loop (His-233) between transmembrane segments 6 and 7. Overall, these observations show that (i) structural features within the CAR have a role in substrate discrimination (as might be anticipated for a transport conduit) and, interestingly, (ii) the substrate discrimination task is shared among specificity determinants that appear too widely dispersed across the GabP molecule to be in simultaneous contact with the substrates. We conclude that GabP exhibits behaviour consistent with a broadly applicable specificity delocalization principle, which is demonstrated to follow naturally from the classical notion that translocation occurs synchronously with conformational transitions that change the chemical potential of the bound ligand [Tanford (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 2882-2884].
Collapse
Affiliation(s)
- Steven C King
- Department of Integrative Biosciences, Oregon Health & Science University, Portland, OR 97239-3097, USA.
| | | |
Collapse
|
23
|
Joloba ML, Rather PN. Mutations indeoBanddeoCalter an extracellular signaling pathway required for activation of thegaboperon inEscherichia coli. FEMS Microbiol Lett 2003; 228:151-7. [PMID: 14612251 DOI: 10.1016/s0378-1097(03)00754-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In Escherichia coli, a lacZ fusion to the gabT gene is activated by the accumulation of two self-produced extracellular signals, indole and a second unidentified signal (signal-2). Extracellular indole contributes approximately 25% of this activation and signal-2 is responsible for the majority of activation. Using an E. coli strain unable to produce indole and containing a gabT::lacZ fusion, a genetic approach was used to search for genes involved in the production of signal-2. A spontaneous E. coli mutant, MJ1, exhibited significantly less signal-2 activity based on the ability of spent culture supernatants from this mutant to activate the gabT::lacZ fusion. Genetic analysis of MJ1 revealed that it contained two mutations, one in thyA and a second unknown mutation, designated spl1 (signal production locus) that led to loss of signal-2 production. The spl1 second-site mutation arises at high frequency in a thyA- background because it suppresses the loss of viability. This study demonstrates that mutations in deoB and deoC were capable of suppressing the loss of viability in thyA mutants and concomitantly resulted in loss of signal-2 activity in conditioned medium. Interestingly, both deoB and deoC mutations in an otherwise wild-type background resulted in higher levels of gabT::lacZ expression in cells at low density. It is hypothesized that deoB and deoC mutations result in an enhanced rate of signal-2 uptake and thus deplete signal-2 from the external medium.
Collapse
Affiliation(s)
- Moses L Joloba
- Department of Pathology, Case Western Reserve University School of Medicine and Research Service, Cleveland, OH 44106, USA
| | | |
Collapse
|
24
|
Schneider BL, Ruback S, Kiupakis AK, Kasbarian H, Pybus C, Reitzer L. The Escherichia coli gabDTPC operon: specific gamma-aminobutyrate catabolism and nonspecific induction. J Bacteriol 2002; 184:6976-86. [PMID: 12446648 PMCID: PMC135471 DOI: 10.1128/jb.184.24.6976-6986.2002] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nitrogen limitation induces the nitrogen-regulated (Ntr) response, which includes proteins that assimilate ammonia and scavenge nitrogen. Nitrogen limitation also induces catabolic pathways that degrade four metabolically related compounds: putrescine, arginine, ornithine, and gamma-aminobutyrate (GABA). We analyzed the structure, function, and regulation of the gab operon, whose products degrade GABA, a proposed intermediate in putrescine catabolism. We showed that the gabDTPC gene cluster constitutes an operon based partially on coregulation of GabT and GabD activities and the polarity of an insertion in gabT on gabC. A DeltagabDT mutant grew normally on all of the nitrogen sources tested except GABA. The unexpected growth with putrescine resulted from specific induction of gab-independent enzymes. Nac was required for gab transcription in vivo and in vitro. Ntr induction did not require GABA, but various nitrogen sources did not induce enzyme activity equally. A gabC (formerly ygaE) mutant grew faster with GABA and had elevated levels of gab operon products, which suggests that GabC is a repressor. GabC is proposed to reduce nitrogen source-specific modulation of expression. Unlike a wild-type strain, a gabC mutant utilized GABA as a carbon source and such growth required sigma(S). Previous studies showing sigma(S)-dependent gab expression in stationary phase involved gabC mutants, which suggests that such expression does not occur in wild-type strains. The seemingly narrow catabolic function of the gab operon is contrasted with the nonspecific (nitrogen source-independent) induction. We propose that the gab operon and the Ntr response itself contribute to putrescine and polyamine homeostasis.
Collapse
Affiliation(s)
- Barbara L Schneider
- Department of Molecular and Cell Biology, The University of Texas at Dallas, Richardson 75083-0688, USA
| | | | | | | | | | | |
Collapse
|
25
|
Hosie AHF, Allaway D, Galloway CS, Dunsby HA, Poole PS. Rhizobium leguminosarum has a second general amino acid permease with unusually broad substrate specificity and high similarity to branched-chain amino acid transporters (Bra/LIV) of the ABC family. J Bacteriol 2002; 184:4071-80. [PMID: 12107123 PMCID: PMC135202 DOI: 10.1128/jb.184.15.4071-4080.2002] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Amino acid uptake by Rhizobium leguminosarum is dominated by two ABC transporters, the general amino acid permease (Aap) and the branched-chain amino acid permease (Bra(Rl)). Characterization of the solute specificity of Bra(Rl) shows it to be the second general amino acid permease of R. leguminosarum. Although Bra(Rl) has high sequence identity to members of the family of hydrophobic amino acid transporters (HAAT), it transports a broad range of solutes, including acidic and basic polar amino acids (L-glutamate, L-arginine, and L-histidine), in addition to neutral amino acids (L-alanine and L-leucine). While amino and carboxyl groups are required for transport, solutes do not have to be alpha-amino acids. Consistent with this, Bra(Rl) is the first ABC transporter to be shown to transport gamma-aminobutyric acid (GABA). All previously identified bacterial GABA transporters are secondary carriers of the amino acid-polyamine-organocation (APC) superfamily. Also, transport by Bra(Rl) does not appear to be stereospecific as D amino acids cause significant inhibition of uptake of L-glutamate and L-leucine. Unlike all other solutes tested, L-alanine uptake is not dependent on solute binding protein BraC(Rl). Therefore, a second, unidentified solute binding protein may interact with the BraDEFG(Rl) membrane complex during L-alanine uptake. Overall, the data indicate that Bra(Rl) is a general amino acid permease of the HAAT family. Furthermore, Bra(Rl) has the broadest solute specificity of any characterized bacterial amino acid transporter.
Collapse
Affiliation(s)
- A H F Hosie
- School of Animal and Microbial Sciences, University of Reading, Reading RG6 6AJ, United Kingdom
| | | | | | | | | |
Collapse
|
26
|
Belitsky BR, Sonenshein AL. GabR, a member of a novel protein family, regulates the utilization of gamma-aminobutyrate in Bacillus subtilis. Mol Microbiol 2002; 45:569-83. [PMID: 12123465 DOI: 10.1046/j.1365-2958.2002.03036.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Bacillus subtilis ycnG (gabT) and ycnH (gabD) genes were shown to encode gamma-aminobutyrate (GABA) aminotransferase and succinic semi-aldehyde dehydrogenase, respectively, and to form a GABA-inducible operon. Null mutations in gabT, gabD or the divergently transcribed ycnF (gabR) gene blocked the utilization of GABA as sole nitrogen source. GabR proved to be a transcriptional activator of the gabTD operon and a negative autoregulator. The target of GabR action was localized to an 87 bp region that includes both gabR and gabT promoters. GabR is a member of a novel but widespread family of chimeric bacterial proteins that have apparent DNA-binding and aminotransferase domains. Mutations in conserved residues of the putative aminotransferase domain abolished GabR function as a transcriptional activator, but did not affect its activity as a negative autoregulator.
Collapse
Affiliation(s)
- Boris R Belitsky
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA 02111, USA.
| | | |
Collapse
|
27
|
Regenberg B, Kielland-Brandt MC. Amino acid residues important for substrate specificity of the amino acid permeases Can1p and Gnp1p in Saccharomyces cerevisiae. Yeast 2001; 18:1429-40. [PMID: 11746604 DOI: 10.1002/yea.792] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Deletion of the general amino acid permease gene GAP1 abolishes uptake of L-citrulline in Saccharomyces cerevisiae, resulting in the inability to grow on L-citrulline as sole nitrogen source. Selection for suppressor mutants that restored growth on L-citrulline led to isolation of 21 mutations in the arginine permease gene CAN1. One similar mutation was found in the glutamine-asparagine permease gene GNP1. L-[(14)C]citrulline uptake measurements confirmed that suppressor mutations in CAN1 conferred uptake of this amino acid, while none of the mutant permeases had lost the ability to transport L-[(14)C]arginine. Substrate specificity seemed to remain narrow in most cases, and broad substrate specificity was only observed in the cases where mutations affect two proline residues (P148 and P313) that are both conserved in the amino acid-polyamine-choline (APC) transporter superfamily. We found mutations affecting six predicted domains (helices III and X, and loops 1, 2, 6 and 7) of the permeases. Helix III and loop 7 are candidates for domains in direct contact with thetransported amino acid. Helix III was affected in both CAN1 (Y173H, Y173D) and GNP1 (W239C) mutants and has previously been found to be important for substrate preference in other members of the family. Furthermore, the mutations affecting loop 7 (residue T354, S355, Y356) are close to a glutamate side chain (E367) potentially interacting with the positively charged substrate, a notion supported by conservation of the side chain in permeases for cationic substrates.
Collapse
Affiliation(s)
- B Regenberg
- Department of Physiology, Carlsberg Laboratory, Gamle Carlsberg Vej 10, DK-2500 Copenhagen Valby, Denmark
| | | |
Collapse
|
28
|
Li XD, Villa A, Gownley C, Kim MJ, Song J, Auer M, Wang DN. Monomeric state and ligand binding of recombinant GABA transporter from Escherichia coli. FEBS Lett 2001; 494:165-9. [PMID: 11311234 DOI: 10.1016/s0014-5793(01)02334-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The gamma-aminobutyric acid (GABA) transporter from Escherichia coli was homologously overexpressed and purified to homogeneity with a yield of 1.0 mg per liter culture. The purification procedure consists of a cobalt affinity column, proteolytic cleavage of His- and myc-tags, and size-exclusion chromatography. The purified transporter exists as a monomer in FOS-Choline 12 detergent, with a Stokes radius of 45 A for the protein-detergent complex. In detergent solution the protein binds substrates, as indicated by tryptophan fluorescence quenching. Its dissociation constants (K(d)) for GABA, muscimol and nipecotic acid are 13.8, 13.3 and 27.9 microM, respectively. This protein preparation provides ideal starting materials for future biochemical, biophysical and structural studies of the GABA transporter.
Collapse
Affiliation(s)
- X D Li
- Skirball Institute of Biomolecular Medicine, New York University Medical Center, 540 First Avenue, New York, NY 10016, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Zimmer DP, Soupene E, Lee HL, Wendisch VF, Khodursky AB, Peter BJ, Bender RA, Kustu S. Nitrogen regulatory protein C-controlled genes of Escherichia coli: scavenging as a defense against nitrogen limitation. Proc Natl Acad Sci U S A 2000; 97:14674-9. [PMID: 11121068 PMCID: PMC18977 DOI: 10.1073/pnas.97.26.14674] [Citation(s) in RCA: 282] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nitrogen regulatory protein C (NtrC) of enteric bacteria activates transcription of genes/operons whose products minimize the slowing of growth under nitrogen-limiting conditions. To reveal the NtrC regulon of Escherichia coli we compared mRNA levels in a mutant strain that overexpresses NtrC-activated genes [glnL(Up)] to those in a strain with an ntrC (glnG) null allele by using DNA microarrays. Both strains could be grown under conditions of nitrogen excess. Thus, we could avoid differences in gene expression caused by slow growth or nitrogen limitation per se. Rearranging the spot images from microarrays in genome order allowed us to detect all of the operons known to be under NtrC control and facilitated detection of a number of new ones. Many of these operons encode transport systems for nitrogen-containing compounds, including compounds recycled during cell-wall synthesis, and hence scavenging appears to be a primary response to nitrogen limitation. In all, approximately 2% of the E. coli genome appears to be under NtrC control, although transcription of some operons depends on the nitrogen assimilation control protein, which serves as an adapter between NtrC and final sigma(70)-dependent promoters.
Collapse
Affiliation(s)
- D P Zimmer
- Departments of Plant and Microbial Biology and Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Barloy-Hubler F, Capela D, Barnett MJ, Kalman S, Federspiel NA, Long SR, Galibert F. High-resolution physical map of the Sinorhizobium meliloti 1021 pSyma megaplasmid. J Bacteriol 2000; 182:1185-9. [PMID: 10648551 PMCID: PMC94401 DOI: 10.1128/jb.182.4.1185-1189.2000] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To facilitate sequencing of the Sinorhizobium meliloti 1021 pSyma megaplasmid, a high-resolution map was constructed by ordering 113 overlapping bacterial artificial chromosome clones with 192 markers. The 157 anonymous sequence tagged site markers (81,072 bases) reveal hypothetical functions encoded by the replicon.
Collapse
Affiliation(s)
- F Barloy-Hubler
- Laboratoire de Recombinaisons Génétiques UPR41-CNRS, Faculté de Médecine, F-35043 Rennes Cedex, France
| | | | | | | | | | | | | |
Collapse
|
31
|
Lütke-Eversloh T, Steinbüchel A. Biochemical and molecular characterization of a succinate semialdehyde dehydrogenase involved in the catabolism of 4-hydroxybutyric acid in Ralstonia eutropha. FEMS Microbiol Lett 1999; 181:63-71. [PMID: 10564790 DOI: 10.1111/j.1574-6968.1999.tb08827.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
A succinate semialdehyde dehydrogenase gene (gabD) was identified to be disrupted in a transposon-induced mutant of Ralstonia eutropha exhibiting the phenotype 4-hydroxybutyric acid-leaky. The native gabD gene was cloned by colony hybridization using a homologous gabD-specific DNA probe. DNA sequencing revealed an 1452-bp open reading frame, and the deduced amino acid sequence showed strong similarities to NADP(+)-dependent succinate semialdehyde dehydrogenases from Escherichia coli, Rhizobium sp., Homo sapiens and Rattus norvegicus. The gabD gene was heterologously expressed in a recombinant E. coli strain harboring plasmid pSK::EE6.8. Similar to the molecular organization of the gab cluster in E. coli, additional genes encoding enzymes for the degradation of gamma-aminobutyrate are closely related to gabD in R. eutropha. Enzymatic studies indicated the existence of a second NAD(+)-dependent succinate semialdehyde dehydrogenase in R. eutropha.
Collapse
Affiliation(s)
- T Lütke-Eversloh
- Institut für Mikrobiologie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 3, D-48149, Münster, Germany
| | | |
Collapse
|
32
|
Breitkreuz KE, Shelp BJ, Fischer WN, Schwacke R, Rentsch D. Identification and characterization of GABA, proline and quaternary ammonium compound transporters from Arabidopsis thaliana. FEBS Lett 1999; 450:280-4. [PMID: 10359089 DOI: 10.1016/s0014-5793(99)00516-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Arabidopsis thaliana grows efficiently on GABA as the sole nitrogen source, thereby providing evidence for the existence of GABA transporters in plants. Heterologous complementation of a GABA uptake-deficient yeast mutant identified two previously known plant amino acid transporters, AAP3 and ProT2, as GABA transporters with Michaelis constants of 12.9 +/- 1.7 and 1.7 +/- 0.3 mM at pH 4, respectively. The simultaneous transport of [1-14C]GABA and [2,3-3H]proline by ProT2 as a function of pH, provided evidence that the zwitterionic state of GABA is an important parameter in substrate recognition. ProT2-mediated [1-14C]GABA transport was inhibited by proline and quaternary ammonium compounds.
Collapse
Affiliation(s)
- K E Breitkreuz
- Plant Physiology, ZMBP-Zentrum für Molekularbiologie der Pflanzen, University of Tübingen, Germany
| | | | | | | | | |
Collapse
|
33
|
Hu LA, King SC. Identification of the amine-polyamine-choline transporter superfamily 'consensus amphipathic region' as the target for inactivation of the Escherichia coli GABA transporter GabP by thiol modification reagents. Role of Cys-300 in restoring thiol sensitivity to Gabp lacking Cys. Biochem J 1999; 339 ( Pt 3):649-55. [PMID: 10215604 PMCID: PMC1220201 DOI: 10.1042/bj3390649] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Escherichia coli gamma-aminobutyric acid transporter GabP (gab permease) contains a functionally significant cysteine residue (Cys-300) within its consensus amphipathic region (CAR), a putative channel-forming structure that extends out of transmembrane helix 8 and into the adjoining cytoplasmic loop 8-9 of transporters from the amine-polyamine-choline (APC) superfamily. Here we show that of the five cysteine residues (positions 158, 251, 291, 300 and 443) in the E. coli GabP, Cys-300 is the one that renders the transport activity sensitive to inhibition by thiol modification reagents: whereas substituting Ala for Cys-300 mimics the inhibitory effect of thiol modification, substituting Ala at position 158, 251, 291 or 443 preserves robust transport activity and confers no resistance to thiol inactivation; and whereas the robustly active Cys-300 single-Cys mutant is fully sensitive to thiol modification, other single-Cys mutants (Cys at 158, 251, 291 or 443) exhibit kinetically compromised transport activities that resist further chemical inactivation by thiol reagents. The present study reveals additionally that Cys-300 exhibits (1) sensitivity to hydrophobic thiol reagents, (2) general resistance to bulky (fluorescein 5-maleimide) and/or charged {2-sulphonatoethyl methanethiosulphonate or [2-(trimethylammonium)ethyl] methanethiosulphonate} thiol reagents and (3) a peculiar sensitivity to p-chloromercuribenzenesulphonate (PCMBS). The accessibility of PCMBS to Cys-300 (located midway through the lipid bilayer) might be related to the structural similarity that it shares with guvacine (1, 2,3,6-tetrahydro-3-pyridinecarboxylic acid), a transported GabP substrate. These structural requirements for thiol sensitivity provide the first chemical evidence consistent with channel-like access to the polar surface of the CAR, a physical configuration that might provide a basis for understanding how this region impacts the function of APC transporters generally [Closs, Lyons, Kelly and Cunningham (1993) J. Biol. Chem. 268, 20796-20800] and the gab permease particularly [Hu and King (1998) Biochem. J. 300, 771-776].
Collapse
Affiliation(s)
- L A Hu
- Department of Physiology and Biophysics, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0641, USA
| | | |
Collapse
|
34
|
Hutchings H, Stahmann KP, Roels S, Espeso EA, Timberlake WE, Arst HN, Tilburn J. The multiply-regulated gabA gene encoding the GABA permease of Aspergillus nidulans: a score of exons. Mol Microbiol 1999; 32:557-68. [PMID: 10320578 DOI: 10.1046/j.1365-2958.1999.01371.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We describe the cloning, sequence and expression of gabA, encoding the gamma-amino-n-butyrate (GABA) permease of the fungus Aspergillus nidulans. Sequence changes were determined for three up-promoter (gabI ) and six gabA loss-of-function mutations. The predicted protein contains 517 residues and shows 30.3% overall identity with a putative GABA permease of Arabidopsis thaliana, 29.6% identity with the yeast choline transporter and 23.4% identity with the yeast UGA4 GABA permease. Structural predictions favour 11-12 transmembrane domains. Comparison of the genomic and cDNA sequences shows the presence of 19 introns, an unusually large number of introns for, we believe, any fungal gene. In agreement with the wealth of genetic data available, transcript level analyses demonstrate that gabA is subject to carbon catabolite and nitrogen metabolite repression, omega-amino acid induction and regulation in response to ambient pH (being acid-expressed). In agreement with this, we report consensus binding sites 5' to the coding region, six each for CreA and AREA and one for PacC, the transcription factors mediating carbon catabolite and nitrogen metabolite repression and response to ambient pH respectively.
Collapse
Affiliation(s)
- H Hutchings
- Department of Infectious Diseases, Imperial College School of Medicine at Hammersmith Hospital, Ducane Road, London W12 ONN, UK
| | | | | | | | | | | | | |
Collapse
|
35
|
Baca-DeLancey RR, South MM, Ding X, Rather PN. Escherichia coli genes regulated by cell-to-cell signaling. Proc Natl Acad Sci U S A 1999; 96:4610-4. [PMID: 10200310 PMCID: PMC16380 DOI: 10.1073/pnas.96.8.4610] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Utilizing the bicistronic reporter transposon mini-Tn5 lacZ-tet/1, we have identified lacZ fusions to four Escherichia coli genes/operons that are strongly activated by the accumulation of self-produced extracellular signals. These fusions were designated cma9, cma48, cma113, and cma114 for conditioned medium activated. Each of the cma fusions was expressed in a growth phase-dependent manner, and the presence of conditioned medium from a stationary phase E. coli culture resulted in the premature activation of these fusions in cells at early to mid-logarithmic phase. The cma48 and cma114 fusions were dependent on RpoS for growth phase expression and response to extracellular factors. The extracellular factors that activated the cma9, cma48, and cma114 fusions were produced in both rich complex and defined minimal media. The cma fusions were shown to be within the cysK (cma9), astD (cma48), tnaB (cma113), and gabT (cma114) genes. These genes function in the uptake, synthesis, or degradation of amino acids that yield pyruvate and succinate.
Collapse
Affiliation(s)
- R R Baca-DeLancey
- Department of Medicine, Case Western Reserve University School of Medicine and Research Service, Department of Veterans Affairs, Cleveland, OH 44106, USA
| | | | | | | |
Collapse
|
36
|
Ogawa W, Kim YM, Mizushima T, Tsuchiya T. Cloning and expression of the gene for the Na+-coupled serine transporter from Escherichia coli and characteristics of the transporter. J Bacteriol 1998; 180:6749-52. [PMID: 9852024 PMCID: PMC107783 DOI: 10.1128/jb.180.24.6749-6752.1998] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We cloned a gene (sstT) for the Na+/serine symporter from the chromosome of Escherichia coli by using a low-copy-number vector and sequenced it. According to the deduced amino acid sequence, the transporter (SstT) consists of 414 amino acid residues. Hydropathy analysis suggested that the SstT protein possesses 9, instead of 12, hydrophobic domains.
Collapse
Affiliation(s)
- W Ogawa
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Okayama University, Tsushima, Okayama 700-8530, Japan
| | | | | | | |
Collapse
|
37
|
Schellhorn HE, Audia JP, Wei LI, Chang L. Identification of conserved, RpoS-dependent stationary-phase genes of Escherichia coli. J Bacteriol 1998; 180:6283-91. [PMID: 9829938 PMCID: PMC107714 DOI: 10.1128/jb.180.23.6283-6291.1998] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During entry into stationary phase, many free-living, gram-negative bacteria express genes that impart cellular resistance to environmental stresses, such as oxidative stress and osmotic stress. Many genes that are required for stationary-phase adaptation are controlled by RpoS, a conserved alternative sigma factor, whose expression is, in turn, controlled by many factors. To better understand the numbers and types of genes dependent upon RpoS, we employed a genetic screen to isolate more than 100 independent RpoS-dependent gene fusions from a bank of several thousand mutants harboring random, independent promoter-lacZ operon fusion mutations. Dependence on RpoS varied from 2-fold to over 100-fold. The expression of all fusion mutations was normal in an rpoS/rpoS+ merodiploid (rpoS background transformed with an rpoS-containing plasmid). Surprisingly, the expression of many RpoS-dependent genes was growth phase dependent, albeit at lower levels, even in an rpoS background, suggesting that other growth-phase-dependent regulatory mechanisms, in addition to RpoS, may control postexponential gene expression. These results are consistent with the idea that many growth-phase-regulated functions in Escherichia coli do not require RpoS for expression. The identities of the 10 most highly RpoS-dependent fusions identified in this study were determined by DNA sequence analysis. Three of the mutations mapped to otsA, katE, ecnB, and osmY-genes that have been previously shown by others to be highly RpoS dependent. The six remaining highly-RpoS-dependent fusion mutations were located in other genes, namely, gabP, yhiUV, o371, o381, f186, and o215.
Collapse
Affiliation(s)
- H E Schellhorn
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada.
| | | | | | | |
Collapse
|
38
|
Hu LA, King SC. Membrane topology of the Escherichia coli gamma-aminobutyrate transporter: implications on the topography and mechanism of prokaryotic and eukaryotic transporters from the APC superfamily. Biochem J 1998; 336 ( Pt 1):69-76. [PMID: 9806886 PMCID: PMC1219843 DOI: 10.1042/bj3360069] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Escherichia coli gamma-aminobutyric acid permease (GabP) is a plasma membrane protein from the amine-polyamine-choline (APC) superfamily. On the basis of hydropathy analysis, transporters from this family are thought to contain 12, 13 or 14 transmembrane domains. We have experimentally analysed the topography of GabP by using the cytoplasmically active LacZ (beta-galactosidase) and the periplasmically active PhoA (alkaline phosphatase) as complementary topological sensors. The enzymic activities of 32 GabP-LacZ hybrids and 43 GabP-PhoA hybrids provide mutually reinforcing lines of evidence that the E. coli GabP contains 12 transmembrane segments that traverse the membrane in a zig-zag fashion with both N- and C-termini facing the cytoplasm. Interestingly, the resulting model predicts that the functionally important 'consensus amphipathic region' (CAR) [Hu and King (1998) Biochem. J. 330, 771-776] is at least partly membrane-embedded in many amino acid transporters from bacteria and fungi, in contrast with the apparent situation in mouse cationic amino acid transporters (MCATs), in which this kinetically significant region is thought to be fully cytoplasmic [Sophianopoulou and Diallinas (1995) FEMS Microbiol. Rev. 16, 53-75]. To the extent that conserved domains serve similar functions, the resolution of this topological disparity stands to have family-wide implications on the mechanistic role of the CAR. The consensus transmembrane structure derived from this analysis of GabP provides a foundation for predicting the topological disposition of the CAR and other functionally important domains that are conserved throughout the APC transporter superfamily.
Collapse
Affiliation(s)
- L A Hu
- Department of Physiology and Biophysics, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-0641, USA
| | | |
Collapse
|
39
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|
40
|
Achterholt S, Priefert H, Steinbüchel A. Purification and characterization of the coniferyl aldehyde dehydrogenase from Pseudomonas sp. Strain HR199 and molecular characterization of the gene. J Bacteriol 1998; 180:4387-91. [PMID: 9721273 PMCID: PMC107445 DOI: 10.1128/jb.180.17.4387-4391.1998] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/1998] [Accepted: 06/07/1998] [Indexed: 11/20/2022] Open
Abstract
The coniferyl aldehyde dehydrogenase (CALDH) of Pseudomonas sp. strain HR199 (DSM7063), which catalyzes the NAD+-dependent oxidation of coniferyl aldehyde to ferulic acid and which is induced during growth with eugenol as the carbon source, was purified and characterized. The native protein exhibited an apparent molecular mass of 86,000 +/- 5,000 Da, and the subunit mass was 49.5 +/- 2.5 kDa, indicating an alpha2 structure of the native enzyme. The optimal oxidation of coniferyl aldehyde to ferulic acid was obtained at a pH of 8.8 and a temperature of 26 degreesC. The Km values for coniferyl aldehyde and NAD+ were about 7 to 12 microM and 334 microM, respectively. The enzyme also accepted other aromatic aldehydes as substrates, whereas aliphatic aldehydes were not accepted. The NH2-terminal amino acid sequence of CALDH was determined in order to clone the encoding gene (calB). The corresponding nucleotide sequence was localized on a 9.4-kbp EcoRI fragment (E94), which was subcloned from a Pseudomonas sp. strain HR199 genomic library in the cosmid pVK100. The partial sequencing of this fragment revealed an open reading frame of 1,446 bp encoding a protein with a relative molecular weight of 51,822. The deduced amino acid sequence, which is reported for the first time for a structural gene of a CALDH, exhibited up to 38.5% amino acid identity (60% similarity) to NAD+-dependent aldehyde dehydrogenases from different sources.
Collapse
Affiliation(s)
- S Achterholt
- Institut für Mikrobiologie, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany
| | | | | |
Collapse
|
41
|
Hu LA, King SC. Functional sensitivity of polar surfaces on transmembrane helix 8 and cytoplasmic loop 8-9 of the Escherichia coli GABA (4-aminobutyrate) transporter encoded by gabP: mutagenic analysis of a consensus amphipathic region found in transporters from bacteria to mammals. Biochem J 1998; 330 ( Pt 2):771-6. [PMID: 9480889 PMCID: PMC1219204 DOI: 10.1042/bj3300771] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The gab permease (GabP) catalyses transport of GABA (4-aminobutyrate) into Escherichia coli. Although GabP can recognize and transport many GABA analogues that exhibit activity at GABAergic synapses in the nervous system, the protein domains responsible for these transport and ligand recognition properties have not been studied. Here we report that an amphipathic domain extending through putative transmembrane helix 8 and into the adjoining cytoplasmic region (loop 8-9) contains a critical 20 residue zone within which mutagenesis of polar amino acids has a deleterious effect on [3H]GABA transport activity. This functionally important amphipathic domain is found to be highly conserved in the many APC family transporters that are homologous to GabP. And even though members of the GAT family of GABA transporters from the animal nervous system are not homologous to GabP, an analogous amphipathic structure is found in their loop 8-9 region. These results and observations suggest: (1) that the consensus amphipathic region (CAR) in the putative helix 8 and loop 8-9 region of GabP has functional significance, and (2) that nature has repeatedly used this CAR in transporters from bacteria to mammals.
Collapse
Affiliation(s)
- L A Hu
- Department of Physiology and Biophysics, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0641, USA
| | | |
Collapse
|
42
|
Pearce DA, Page MD, Norris HAC, Tomlinson EJ, Ferguson SJ. Identification of the contiguous Paracoccus denitrificans ccmF and ccmH genes: disruption of ccmF, encoding a putative transporter, results in formation of an unstable apocytochrome c and deficiency in siderophore production. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 2):467-477. [PMID: 9493384 DOI: 10.1099/00221287-144-2-467] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Apocytochrome C550 was detected in the periplasm of a new mutant of Paracoccus denitrificans, HN48, that is pleiotropically lacking c-type cytochromes, produces reduced levels of siderophores and carries a Tn5 insertion in the ccmF gene for which sequence data, along with that for the contiguous ccmH, are reported. A counterpart to the ccmF gene was found in an archaebacterium but could not be located in the yeast genome, whereas mitochondrial haem lyases in the latter were not present in an archaeobacterial or in eubacterial genomes. A topological analysis for CcmF is presented which indicates at least eleven transmembrane helices, suggesting a role as a transporter; evidence against the substrate being haem is presented but sequence similarity with Escherichia coli gamma-aminobutyric acid transporter was identified. Analysis by pulse-chase methodology has shown that, in this and another cytochrome-c-deficient mutant, the apo form of P. denitrificans cytochrome C550 is much less stable than the holo form, directly demonstrating the presence of a periplasmic degradation system in P. denitrificans that removes non-functional proteins. A variety of phenotypes are observed for P. denitrificans mutated in different ccm genes, thus indicating that the stability of the ccm gene products does not require assembly of a complex of all the Ccm proteins.
Collapse
Affiliation(s)
- David A Pearce
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - M Dudley Page
- The Oxford Centre for Molecular Sciences, New Chemistry Building, South Parks Road, Oxford, OX1 3QT, UK
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Hilary A C Norris
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Esther J Tomlinson
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Stuart J Ferguson
- The Oxford Centre for Molecular Sciences, New Chemistry Building, South Parks Road, Oxford, OX1 3QT, UK
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
43
|
Abstract
The sequence (2,700 bp) between the aldH and pspF genes of Escherichia coli was determined. The pspF gene encodes a sigma54 transcriptional activator of the phage shock protein (psp) operon (pspA to pspE). Downstream of the pspF transcribed region are two open reading frames (ORFs), ordL and goaG, convergently oriented with respect to pspF. These two ORFs, together with the adjacent aldH gene, may constitute a novel operon (aldH-ordL-goaG). The goaG-pspF intergenic region contains a complex extragenic mosaic element, RIB. The structure of this RIB element, which belongs to the BIME-1 family, is Y(REP1) > 16 < Z1(REP2), where Y and Z1 are palindromic units and the central 16 bases contain an L motif with an ihf consensus sequence. DNA fragments containing the L motif of the psp RIB element effectively bind integration host factor (IHF), while the Y palindromic unit (REP1) of the same RIB element binds DNA gyrase weakly. Computer prediction of the pspF mRNA secondary structure suggested that the transcribed stem-loop structures formed by the 3'-flanking region of the pspF transcript containing the RIB element can stabilize and protect pspF mRNA. Analysis of pspF steady-state mRNA levels showed that transcripts with an intact RIB element are much more abundant than those truncated at the 3' end by deletion of either the entire RIB element or a single Z1 sequence (REP2). Thus, the pspF 3'-flanking region containing the RIB element has an important role in the stabilization of the pspF transcript.
Collapse
Affiliation(s)
- G Jovanovic
- Laboratory of Genetics, Rockefeller University, New York 10021, USA
| | | |
Collapse
|
44
|
Priefert H, Rabenhorst J, Steinbüchel A. Molecular characterization of genes of Pseudomonas sp. strain HR199 involved in bioconversion of vanillin to protocatechuate. J Bacteriol 1997; 179:2595-607. [PMID: 9098058 PMCID: PMC179009 DOI: 10.1128/jb.179.8.2595-2607.1997] [Citation(s) in RCA: 134] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The gene loci vdh, vanA, and vanB, which are involved in the bioconversion of vanillin to protocatechuate by Pseudomonas sp. strain HR199 (DSM 7063), were identified as the structural genes of a novel vanillin dehydrogenase (vdh) and the two subunits of a vanillate demethylase (vanA and vanB), respectively. These genes were localized on an EcoRI fragment (E230), which was cloned from a Pseudomonas sp. strain HR199 genomic library in the cosmid pVK100. The vdh gene was identified on a subfragment (HE35) of E230, and the vanA and vanB genes were localized on a different subfragment (H110) of E230. The nucleotide sequences of fragment HE35 and part of fragment H110 were determined, revealing open reading frames of 1062, 951, and 1446 bp, representing vanA, vanB, and vdh, respectively. The vdh gene was organized in one operon together with a fourth open reading frame (ORF2), of 735 bp, which was located upstream of vdh. The deduced amino acid sequences of vanA and vanB exhibited 78.8 and 62.1% amino acid identity, respectively, to the corresponding gene products from Pseudomonas sp. strain ATCC 19151 (F. Brunel and J. Davison, J. Bacteriol. 170:4924-4930, 1988). The deduced amino acid sequence of the vdh gene exhibited up to 35.3% amino acid identity to aldehyde dehydrogenases from different sources. The deduced amino acid sequence of ORF2 exhibited up to 28.4% amino acid identity to those of enoyl coenzyme A hydratases. Escherichia coli strains harboring fragment E230 cloned in pBluescript SK- converted vanillin to protocatechuate via vanillate, indicating the functional expression of vdh, vanA, and vanB in E. coli. High expression of vdh in E. coli was achieved with HE35 cloned in pBluescript SK-. The resulting recombinant strains converted vanillin to vanillate at a rate of up to 0.3 micromol per min per ml of culture. Transfer of vanA, vanB, and vdh to Alcaligenes eutrophus and to different Pseudomonas strains, which were unable to utilize vanillin or vanillate as carbon sources, respectively, conferred the ability to grow on these substrates to these bacteria.
Collapse
Affiliation(s)
- H Priefert
- Institut für Mikrobiologie der Westfälischen Wilhelms-Universitat Münster, Germany
| | | | | |
Collapse
|
45
|
Brechtel CE, Hu L, King SC. Substrate specificity of the Escherichia coli 4-aminobutyrate carrier encoded by gabP. Uptake and counterflow of structurally diverse molecules. J Biol Chem 1996; 271:783-8. [PMID: 8557687 DOI: 10.1074/jbc.271.2.783] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Transport of 4-aminobutyrate into Escherichia coli is catalyzed by gab permease (GabP). Although published studies show that GabP is relatively specific, recognizing the common alpha-amino acids with low affinity, recent work from this laboratory indicates that a number of synthetic compounds are high affinity transport inhibitors (50% inhibition at 5-100 microM). Here we present evidence that many of these structurally heterogeneous compounds not only inhibit transport but also function as alternative GabP substrates (i.e. a set of observations inconsistent with the idea that the core of the GabP transport channel exhibits rigid structural specificity for the native substrate, 4-aminobutyrate.
Collapse
Affiliation(s)
- C E Brechtel
- Department of Physiology and Biophysics, University of Texas Medical Branch, Galveston 77555-0641, USA
| | | | | |
Collapse
|
46
|
King SC, Fleming SR, Brechtel C. Pyridine carboxylic acids as inhibitors and substrates of the Escherichia coli gab permease encoded by gabP. J Bacteriol 1995; 177:5381-2. [PMID: 7665533 PMCID: PMC177340 DOI: 10.1128/jb.177.18.5381-5382.1995] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Although considered selective for its natural substrate, 4-aminobutyrate, gab permease was inhibited by 1,2,3,6-tetrahydro-3-pyridinecarboxylate and 1,2,3,6-tetrahydro-4-pyridinecarboxylate. The former is a transported substrate, since its preloading into metabolically poisoned cells stimulated transient accumulation of 4-aminobutyrate via counterflow.
Collapse
Affiliation(s)
- S C King
- Department of Physiology and Biophysics, University of Texas Medical Branch, Galveston 77555-0641, USA
| | | | | |
Collapse
|
47
|
King SC, Fleming SR, Brechtel CE. Ligand recognition properties of the Escherichia coli 4-aminobutyrate transporter encoded by gabP. Specificity of Gab permease for heterocyclic inhibitors. J Biol Chem 1995; 270:19893-7. [PMID: 7650003 DOI: 10.1074/jbc.270.34.19893] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
4-aminobutyrate metabolism in Escherichia coli begins with transport across the cytoplasmic membrane via the GabP, which is encoded by gabP. Although GabP is specific and exhibits poor affinity for many cellular constituents such as the alpha-amino acids, the range of compounds recognized with high affinity has yet to be investigated. In order to address this gap in knowledge, we developed a gabP-negative host strain, which permits evaluation of test compounds for inhibitory effects on cloned GabP (expression inducible by isopropyl-1-thio-beta-D-galactopyranoside). Using this inducible expression system, three structurally distinct categories of high affinity transport inhibitor were identified. The structural dissimilarity of these inhibitors significantly alters our view of ligand recognition by GabP. Any complete model must now account for the observation that inhibition of 4-aminobutyrate transport can be mediated either (i) by open chain analogs of 4-aminobutyrate, (ii) by cyclic amino acid analogs, or (iii) by planar heterocyclic compounds lacking a carboxyl group. Such results do not support a previously sustainable view of GabP that features a restrictive ligand recognition domain, unable to accommodate structures that differ very much from the native substrate, 4-aminobutyrate.
Collapse
Affiliation(s)
- S C King
- Department of Physiology and Biophysics, University of Texas Medical Branch, Galveston 77555-0641, USA
| | | | | |
Collapse
|
48
|
Stroeher VL, Boothe JG, Good AG. Molecular cloning and expression of a turgor-responsive gene in Brassica napus. PLANT MOLECULAR BIOLOGY 1995; 27:541-551. [PMID: 7894018 DOI: 10.1007/bf00019320] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
During droughting plants activate a number of genes involved in adaptation to water stress. We have isolated one such gene, btg-26, from Brassica napus. Expression of btg-26 is induced in leaf tissue within 72 h of withholding water. At 81% relative water content (RWC), when the plant is just beginning to show signs of wilting, expression is already increased six-fold over levels found in leaf tissue from fully hydrated plants. btg-26 expression reaches a maximum eleven-fold induction at 63% RWC, then transcript levels decrease as RWC continues to drop. btg-26 is also activated in plants exposed to high salinity, low temperature, heat shock and the plant hormone abscisic acid. Analysis of the deduced amino acid sequence revealed similarity to the dehydrogenase family of enzymes. These results suggest that btg-26 encodes a protein whose function may be required early during general osmotic stress in some unknown adaptive metabolic pathway.
Collapse
Affiliation(s)
- V L Stroeher
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
49
|
Chambliss KL, Caudle DL, Hinson DD, Moomaw CR, Slaughter CA, Jakobs C, Gibson KM. Molecular cloning of the mature NAD(+)-dependent succinic semialdehyde dehydrogenase from rat and human. cDNA isolation, evolutionary homology, and tissue expression. J Biol Chem 1995; 270:461-7. [PMID: 7814412 DOI: 10.1074/jbc.270.1.461] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Three rat brain cDNA clones approximately 3500, 1465, and 1135 base pairs in length encoding succinic semialdehyde dehydrogenase (SSADH; EC 1.2.1.24) were isolated from two cDNA libraries using a polymerase chain reaction derived probe. Restriction mapping and DNA sequencing revealed that the 3.5-kilobase clone contained an 84-base pair (28 amino acid) insert in the coding region. Composite clones encoding mature SSADH predicted proteins with 488 amino acids (M(r) = 52,188) when including the insert and 460 amino acids (M(r) = 48,854) without the insert. The cDNA clones were confirmed by expression of enzyme activity in bacteria and protein sequence data obtained from sequencing purified rat brain SSADH. Two human liver SSADH cDNA clones of 1091 and 899 base pairs were also isolated. Human and rat SSADH share 83 and 91% identity in nucleotide and protein sequence, respectively. Northern blot analysis revealed two differentially expressed SSADH transcripts of approximately 2.0 and 6.0 kilobases in both rat and human tissues. Human genomic Southern blots indicate that the two SSADH transcripts are encoded by a greater than 20-kilobase single copy gene. Mammalian SSADH contains significant homology to bacterial NADP(+)-succinic semialdehyde dehydrogenase (EC 1.2.1.16) and conserved regions of general aldehyde dehydrogenases (EC 1.2.1.3), suggesting it is a member of the aldehyde dehydrogenase superfamily of proteins.
Collapse
Affiliation(s)
- K L Chambliss
- Metabolic Disease Center, Baylor Research Institute, Dallas, Texas 75226
| | | | | | | | | | | | | |
Collapse
|