1
|
Heneghan PG, Salzberg LI, Ó Cinnéide E, Dewald JA, Weinberg CE, Wolfe KH. Ancient origin and high diversity of zymocin-like killer toxins in the budding yeast subphylum. Proc Natl Acad Sci U S A 2025; 122:e2419860122. [PMID: 39928860 PMCID: PMC11848437 DOI: 10.1073/pnas.2419860122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/06/2024] [Indexed: 02/12/2025] Open
Abstract
Zymocin is a well-characterized killer toxin secreted by some strains of the yeast Kluyveromyces lactis. It acts by cleaving a specific tRNA in sensitive recipient cells. Zymocin is encoded by a killer plasmid or virus-like element (VLE), which is a linear DNA molecule located in the cytosol. We hypothesized that a tRNA-cleaving toxin similar to zymocin may have caused the three parallel changes to the nuclear genetic code that occurred during yeast evolution, in which the codon CUG became translated as Ser or Ala instead of Leu. However, zymocin-like toxins are rare - both among species, and among strains within a species -and only four toxins of this type have previously been discovered. Here, we identified 45 zymocin-like toxin genes in Saccharomycotina, the budding yeast subphylum, using a bioinformatics strategy, and verified that many of them are toxic to Saccharomyces cerevisiae when expressed. Some of the toxin genes are located on cytosolic VLEs, whereas others are on VLE-derived DNA integrated into the nuclear genome. The toxins are extraordinarily diverse in sequence and show evidence of positive selection. Toxin genes were found in five taxonomic orders of budding yeasts, including two of the three orders that reassigned CUG codons, indicating that VLEs have been parasites of yeast species for at least 300 My and that their existence predates the genetic code changes.
Collapse
Affiliation(s)
- Padraic G. Heneghan
- Conway Institute, School of Medicine, University College Dublin, Dublin4, Ireland
| | - Letal I. Salzberg
- Conway Institute, School of Medicine, University College Dublin, Dublin4, Ireland
| | - Eoin Ó Cinnéide
- Conway Institute, School of Medicine, University College Dublin, Dublin4, Ireland
| | - Jan A. Dewald
- Department of Life Sciences, Institute for Biochemistry, Leipzig University, Leipzig04103, Germany
| | - Christina E. Weinberg
- Department of Life Sciences, Institute for Biochemistry, Leipzig University, Leipzig04103, Germany
| | - Kenneth H. Wolfe
- Conway Institute, School of Medicine, University College Dublin, Dublin4, Ireland
| |
Collapse
|
2
|
New Cytoplasmic Virus-Like Elements (VLEs) in the Yeast Debaryomyces hansenii. Toxins (Basel) 2021; 13:toxins13090615. [PMID: 34564619 PMCID: PMC8472843 DOI: 10.3390/toxins13090615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 11/25/2022] Open
Abstract
Yeasts can have additional genetic information in the form of cytoplasmic linear dsDNA molecules called virus-like elements (VLEs). Some of them encode killer toxins. The aim of this work was to investigate the prevalence of such elements in D. hansenii killer yeast deposited in culture collections as well as in strains freshly isolated from blue cheeses. Possible benefits to the host from harboring such VLEs were analyzed. VLEs occurred frequently among fresh D. hansenii isolates (15/60 strains), as opposed to strains obtained from culture collections (0/75 strains). Eight new different systems were identified: four composed of two elements and four of three elements. Full sequences of three new VLE systems obtained by NGS revealed extremely high conservation among the largest molecules in these systems except for one ORF, probably encoding a protein resembling immunity determinant to killer toxins of VLE origin in other yeast species. ORFs that could be potentially involved in killer activity due to similarity to genes encoding proteins with domains of chitin-binding/digesting and deoxyribonuclease NucA/NucB activity, could be distinguished in smaller molecules. However, the discovered VLEs were not involved in the biocontrol of Yarrowia lipolytica and Penicillium roqueforti present in blue cheeses.
Collapse
|
3
|
Immunity factors for two related tRNAGln targeting killer toxins distinguish cognate and non-cognate toxic subunits. Curr Genet 2014; 60:213-22. [DOI: 10.1007/s00294-014-0426-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 03/24/2014] [Accepted: 03/27/2014] [Indexed: 10/25/2022]
|
4
|
Satwika D, Klassen R, Meinhardt F. Anticodon nuclease encoding virus-like elements in yeast. Appl Microbiol Biotechnol 2012; 96:345-56. [PMID: 22899498 DOI: 10.1007/s00253-012-4349-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 07/31/2012] [Accepted: 08/01/2012] [Indexed: 11/29/2022]
Abstract
A variety of yeast species are known to host systems of cytoplasmic linear dsDNA molecules that establish replication and transcription independent of the nucleus via self-encoded enzymes that are phylogenetically related to those encoded by true infective viruses. Such yeast virus-like elements (VLE) fall into two categories: autonomous VLEs encode all the essential functions for their inheritance, and additional, dependent VLEs, which may encode a toxin-antitoxin system, generally referred to as killer toxin and immunity. In the two cases studied in depth, killer toxin action relies on chitin binding and hydrophobic domains, together allowing a separate toxic subunit to sneak into the target cell. Mechanistically, the latter sabotages codon-anticodon interaction by endonucleolytic cleavage of specific tRNAs 3' of the wobble nucleotide. This primary action provokes a number of downstream effects, including DNA damage accumulation, which contribute to the cell-killing efficiency and highlight the importance of proper transcript decoding capacity for other cellular processes than translation itself. Since wobble uridine modifications are crucial for efficient anticodon nuclease (ACNase) action of yeast killer toxins, the latter are valuable tools for the characterization of a surprisingly complex network regulating the addition of wobble base modifications in tRNA.
Collapse
Affiliation(s)
- Dhira Satwika
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstr. 3, 48149, Münster, Germany
| | | | | |
Collapse
|
5
|
Satwika D, Klassen R, Meinhardt F. Repeated capture of a cytoplasmic linear plasmid by the host nucleus in Debaryomyces hansenii. Yeast 2012; 29:145-54. [PMID: 22434608 DOI: 10.1002/yea.2893] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 02/08/2012] [Indexed: 11/07/2022] Open
Abstract
Debaryomyces hansenii is a halotolerant yeast species that has been shown to carry various nuclear genes of plasmid or viral origin (NUPAVs). However, a recent ancestor of such NUPAVs has not been identified. Here we determined for the first time the molecular structure of an entire cytoplasmic linear plasmid, pDH1A, indigenous to this species. The element is related to non-autonomous killer plasmids from Kluyveromyces lactis and Pichia acaciae and carries a B-type DNA polymerase as well as remnants of a killer toxin system, a secreted chitin-binding protein. Other essential toxin subunits or an immunity function, however, appear to be lost, while two additional small open reading frames are present. Transcripts for all four genes located on pDH1A could be verified by RT-PCR. Interestingly, all genes from pDH1A could be identified as ancestors of NUPAVs located at different chromosomes within the nucleus of D. hansenii, suggesting repeated nuclear capture of fragments originating from pDH1A.
Collapse
Affiliation(s)
- Dhira Satwika
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Germany
| | | | | |
Collapse
|
6
|
Jeske S, Meinhardt F, Klassen R. Extranuclear Inheritance: Virus-Like DNA-Elements in Yeast. ACTA ACUST UNITED AC 2007. [DOI: 10.1007/978-3-540-36832-8_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
7
|
Jeske S, Meinhardt F. Autonomous cytoplasmic linear plasmid pPac1-1 of Pichia acaciae: molecular structure and expression studies. Yeast 2006; 23:479-86. [PMID: 16652393 DOI: 10.1002/yea.1367] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The genome organization of the linear DNA-element pPac1-1 from Pichia acaciae was determined. It turned out to be the smallest autonomous cytoplasmic yeast plasmid known so far, consisting of only 12 646 bp, carrying the shortest terminal inverted repeats yet found (138 bp). As for other cytoplasmic linear yeast plasmids, it is characterized by a strikingly high A + T content (75.35%). Ten putative genes (open reading frames, ORFs) reside on the element, leaving only 2.9% of the sequence outside a coding region. Highest similarities of the predicted proteins were obtained for proteins encoded by the three hitherto known autonomous cytoplasmic linear yeast plasmids. Amino acid sequences correspond to predicted polypeptides encoded by ORFs 2-11 of the linear plasmids pGKL2 of Kluyveromyces lactis, pSKL of Saccharomyces kluyveri and pPE1B of Pichia etchellsii. As for the latter, ORF1 existing on the two other plasmids is lacking on pPac1-1. Consistent with cytoplasmic localization, a cytoplasmic promoter termed upstream conserved sequence (UCS) is located in front of each reading frame. RT-PCR transcript analyses for ORFs 8, 9 and 11 proved expression of such genes but functions could not be attributed. The genome organization of pPac1-1 and other autonomous linear elements was found to be almost congruent, irrespective of the accompanying smaller elements, which may or may not encode their own element-specific DNA polymerases.
Collapse
Affiliation(s)
- Stefanie Jeske
- Westfälische, Wilhelms-Universität Münster, Institut für Molekulare Mikrobiologie und Biotechnologie, Corrensstrasse 3, D-48149 Münster, Germany
| | | |
Collapse
|
8
|
Jeske S, Tiggemann M, Meinhardt F. Yeast autonomous linear plasmid pGKL2: ORF9 is an actively transcribed essential gene with multiple transcription start points. FEMS Microbiol Lett 2006; 255:321-7. [PMID: 16448513 DOI: 10.1111/j.1574-6968.2005.00082.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
A pair of linear plasmids, pGKL1 (8.9 kb) and pGKL2 (13.4 kb), resides in the cytoplasm of Kluyveromyces lactis killer strains. The smaller element, actually conferring the killer phenotype, strictly depends on the larger autonomous pGKL2. Here, we have examined the previously uncharacterized pGKL2 open reading frame (ORF)9 (1.34 kb). Northern analysis of a killer plasmid carrying Saccharomyces cerevisiae strain applying an ORF9-specific probe revealed a single transcript closely matching the size of the ORF9 coding region. Multiple transcriptional start points, determined by primer extension analysis, are located 16 nt downstream of a conserved sequence element regarded as the cytoplasmic promoter. In vivo disruption of pGKL2/ORF9 using the cytoplasmically expressible marker-gene LEU2* resulted in the establishment of a three-plasmid system composed of the native cytoplasmic elements pGKL1/2 and a hybrid of the latter, which only remained stable under selective conditions. The native pGKL2, however, did not segregate during prolonged subcultivations, proving an essential function of ORF9 for plasmid maintenance.
Collapse
Affiliation(s)
- Stefanie Jeske
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | | | | |
Collapse
|
9
|
Cheng CH, Liu SM, Chow TY, Hsiao YY, Wang DP, Huang JJ, Chen HH. Analysis of the complete genome sequence of the Hz-1 virus suggests that it is related to members of the Baculoviridae. J Virol 2002; 76:9024-34. [PMID: 12186886 PMCID: PMC136428 DOI: 10.1128/jvi.76.18.9024-9034.2002] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2002] [Accepted: 06/06/2002] [Indexed: 11/20/2022] Open
Abstract
We report the complete sequence of a large rod-shaped DNA virus, called the Hz-1 virus. This virus persistently infects the Heliothis zea cell lines. The Hz-1 virus has a double-stranded circular DNA genome of 228,089 bp encoding 154 open reading frames (ORFs) and also expresses a persistence-associated transcript 1, PAT1. The G+C content of the Hz-1 virus genome is 41.8%, with a gene density of one gene per 1.47 kb. Sequence analysis revealed that a 9.6-kb region at 43.6 to 47.8 map units harbors five cellular genes encoding proteins with homology to dUTP pyrophosphatase, matrix metalloproteinase, deoxynucleoside kinase, glycine hydroxymethyltransferase, and ribonucleotide reductase large subunit. Other cellular homologs were also detected dispersed in the viral genome. Several baculovirus homologs were detected in the Hz-1 virus genome. These include PxOrf-70, PxOrf-29, AcOrf-81, AcOrf-96, AcOrf-22, VLF-1, RNA polymerase LEF-8 (orf50), and two structural proteins, p74 and p91. The Hz-1 virus p74 homolog shows high structural conservation with a double transmembrane domain at its C terminus. Phylogenetic analysis of the p74 revealed that the Hz-1 virus is evolutionarily distant from the baculoviruses. Another distinctive feature of the Hz-1 virus genome is a gene that is involved in insect development. However, the remainder of the ORFs (81%) encoded proteins that bear no homology to any known proteins. In conclusion, the sequence differences between the Hz-1 virus and the baculoviruses outnumber the similarities and suggest that the Hz-1 virus may form a new family of viruses distantly related to the Baculoviridae:
Collapse
Affiliation(s)
- Chia-Hsiung Cheng
- Institute of Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | | | | | | | | | | | | |
Collapse
|
10
|
Klassen R, Jablonowski D, Schaffrath R, Meinhardt F. Genome organization of the linear Pichia etchellsii plasmid pPE1A: evidence for expression of an extracellular chitin-binding protein homologous to the alpha-subunit of the Kluyveromyces lactis killer toxin. Plasmid 2002; 47:224-33. [PMID: 12151238 DOI: 10.1016/s0147-619x(02)00014-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Pichia etchellsii CBS2011 (synonym Debaryomyces etchellsii) is a non-killer yeast harbouring two cryptic linear cytoplasmic DNA-elements, pPE1A (6.7 kb) and pPE1B (12.8 kb). Cloning and complete sequencing of pPE1A revealed a 6749-bp element with a remarkably high A+T content of 77.6%. The termini of pPE1A were found to consist of inversely orientated identical nucleotide repetitions of 178bp, to which proteins are linked at the 5'-ends. It is only the second small, non-autonomous cytoplasmic yeast linear plasmid for which the complete nucleotide sequence is known. Five open reading frames (ORFs) were identified preceded by upstream conserved sequence motifs (UCS) characteristic for cytoplasmic promoters and perfectly matching the UCS consensus (ATNTGA). As none of the putative genes encodes a DNA-polymerase, pPE1A is the first yeast linear plasmid known that does not possess its own element-specific replication machinery. No function could be attributed to ORF1, 3, 4, and 5; the predicted ORF2 gene product is similar to chitin-binding proteins and chitinases, highest homologies were found to the precursor of the alpha- and beta-subunits of the secreted Kluyveromyces lactis zymocin. Consistently, the Orf2p could be isolated from the culture fluid by chitin-Sepharose affinity chromatography and characterized by immuno-probing with an antibody specific for the K. lactis killer toxin alpha-subunit. Production of the protein was found to be plasmid-dependent. The sequence of pPE1A has been submitted to the EMBL data library, Accession No. AJ409097.
Collapse
Affiliation(s)
- Roland Klassen
- Institut für Mikrobiologie, Westfälische Wilhelms-Universität Münster, Corrensstr. 3, D-48149, Münster, Germany
| | | | | | | |
Collapse
|
11
|
Klassen R, Tontsidou L, Larsen M, Meinhardt F. Genome organization of the linear cytoplasmic element pPE1B from Pichia etchellsii. Yeast 2001; 18:953-61. [PMID: 11447601 DOI: 10.1002/yea.751] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The linear cytoplasmic element pPE1B from Pichia etchellsii CBS2011 (synonym Debaryomyces etchellsii) was totally sequenced. It consists of 12835 bp and has a remarkable high A+T content of 77.3%. The termini of pPE1B were found to consist of inversely orientated identical nucleotide repetitions 161 base pairs long, to which proteins are probably covalently linked at the 5' ends. Ten putative genes (open reading frames, ORFs) were identified, covering 96.5% of the total sequence. The predicted polypeptides correspond to proteins encoded by ORFs 2-11 of the linear plasmids pGKL2 of Kluyveromyces lactis and pSKL of Saccharomyces kluyveri. ORF1, existing on both latter elements, is lacking on pPE1B. An upstream conserved sequence motif (UCS) is located at the expected distance from the start codon of each of the 10 ORFs. As the arbitrarily chosen UCS6 was able to drive expression of a reporter gene in the heterologous pGKL-encoded killer system of K. lactis, extranuclear promoter function is probable. The almost congruent genome organization of pPE1B and other autonomous linear yeast plasmids sequenced so far, i.e. pGKL2 and pSKL, suggests a common, presumably viral, ancestor.
Collapse
Affiliation(s)
- R Klassen
- Institut für Mikrobiologie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 3, D-48149 Münster, Germany
| | | | | | | |
Collapse
|
12
|
Tiggemann M, Jeske S, Larsen M, Meinhardt F. Kluyveromyces lactis cytoplasmic plasmid pGKL2: heterologous expression of Orf3p and proof of guanylyltransferase and mRNA-triphosphatase activities. Yeast 2001; 18:815-25. [PMID: 11427964 DOI: 10.1002/yea.728] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The predicted ORF3 polypeptide (Orf3p) of the linear genetic element pGKL2 from Kluyveromyces lactis was expressed in Bacillus megaterium as a fusion protein with a His(6X)-tag at the C-terminus for isolation by Ni-affinity chromatography. This is the first time that a yeast cytoplasmic gene product has been expressed heterologously as a functional protein in a bacterial system. The purified protein was found to display both RNA 5'-triphosphatase and guanylyltransferase activities. When the lysine residue present at position 177 of the protein within the sequence motif (KXDG), highly conserved in capping enzymes and other nucleotidyl transferases, was substituted by alanine, the guanylyltransferase activity was lost, thereby proving an important role for the transfer of GMP from GTP to the 5'-diphosphate end of the mRNA. Our in vitro data provides the first direct evidence that the polypeptide encoded by ORF3 of the cytoplasmic yeast plasmid pGKL2 functions as a plasmid-specific capping enzyme. Since genes equivalent to ORF3 of pGKL2 have been identified in all autonomous cytoplasmic yeast DNA elements investigated so far, our findings are of general significance for these widely distributed yeast extranuclear genetic elements.
Collapse
Affiliation(s)
- M Tiggemann
- Institut für Mikrobiologie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 3, 48149 Münster, Germany
| | | | | | | |
Collapse
|
13
|
Extranuclear Inheritance: Cytoplasmic Linear Double-Stranded DNA Killer Elements of the Dairy Yeast Kluyveromyces lactis. ACTA ACUST UNITED AC 2001. [DOI: 10.1007/978-3-642-56849-7_4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
14
|
Neuvéglise C, Bon E, Lépingle A, Wincker P, Artiguenave F, Gaillardin C, Casarégola S. Genomic exploration of the hemiascomycetous yeasts: 9. Saccharomyces kluyveri. FEBS Lett 2000; 487:56-60. [PMID: 11152884 DOI: 10.1016/s0014-5793(00)02280-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The genome of Saccharomyces kluyveri was explored through 2528 random sequence tags with an average length of 981 bp. The complete nuclear ribosomal DNA unit was found to be 8656 bp in length. Sequences homologous to retroelements of the gypsy and copia types were identified as well as numerous solo long terminal repeats. We identified at least 1406 genes homologous to Saccharomyces cerevisiae open reading frames, with on average 58.1% and 72.4% amino acid identity and similarity, respectively. In addition, by comparison with completely sequenced genomes and the SwissProt database, we found 27 novel S. kluyveri genes. Most of these genes belong to pathways or have functions absent from S. cerevisiae, such as the catabolic pathway of purines or pyrimidines, melibiose fermentation, sorbitol utilization, or degradation of pollutants. The sequences are deposited in EMBL under the accession numbers AL404849-AL407376.
Collapse
Affiliation(s)
- C Neuvéglise
- Collection de Levures d'Intérêt Biotechnologie, Laboratoire de Génétique Moléculaire et Cellulaire, INRA UMR216, CNRS URA1925, INA-PG, Thiverval-Grignon, France.
| | | | | | | | | | | | | |
Collapse
|
15
|
Use of gene shuffles to study the cytoplasmic transcription system operating on Kluyveromyces lactis linear DNA plasmids. Enzyme Microb Technol 2000; 26:664-670. [PMID: 10862871 DOI: 10.1016/s0141-0229(00)00157-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A modified double selection approach for manipulation of the cytoplasmic plasmids k1 and k2 from dairy yeast Kluyveromyces lactis has been exploited to investigate promoter and gene function. Using TRP1-mediated integration of a LEU2 gene fusion, we have shown that expression of the selection marker is strictly dependent on the k2 promoter UCS5. Also, k2ORF6, the gene encoding the RNA polymerase specific for UCS recognition, is functional when shuffled between the plasmids. Once transplaced onto k1 by means of gene shuffling, the hybrid ORF6 complemented an orf6 deletion created on plasmid k2 eventually yielding yeast strains that contained only two recombinant plasmids: a k2 derivative (rk2/6) with a k2orf6::TRP1 gene deletion, and a k1 derivative (rk1/6) carrying the transplaced ORF6 allele along with the LEU2 marker. This interchangeability of both UCS promoter activity and gene function between k2 and k1 supports the concept of an autonomous transcription system that operates on these nonconventional yeast plasmids.
Collapse
|
16
|
Schaffrath R, Meinhardt F, Meacock PA. Genetic manipulation of Kluyveromyces lactis linear DNA plasmids: gene targeting and plasmid shuffles. FEMS Microbiol Lett 1999; 178:201-10. [PMID: 10499269 DOI: 10.1111/j.1574-6968.1999.tb08678.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Genetic manipulation of yeast linear DNA plasmids, particularly of k1 and k2 from the non-conventional dairy yeast Kluyveromyces lactis, has been advanced by the recent establishment of DNA transformation-mediated one-step gene disruption and allele replacement techniques. These methods provide the basis for a strategy for the functional analysis of plasmid genes and DNA elements. By use of double selection regimens, these single-gene procedures have been extended to effect disruption of individual genes on plasmid k2 and transplacement of a functional copy onto plasmid k1, resulting in the production of yeast strains with an altered plasmid composition. This cytoplasmic gene shuffle system facilitates the introduction of specifically modified alleles into k1 or k2 in order to study the function, expression (from UCS promoters) and regulation of cytoplasmic linear plasmid genes. Additionally, identification, characterization and localization of plasmid gene products of interest are made possible by shuffling GFP-, epitope- or affinity purification-tagged alleles between k2 and k1. The gene shuffle approach can also be used for vector development and heterologous protein expression in order to exploit the biotechnical potential of the K. lactis k1/k2 system in yeast cell factory research.
Collapse
Affiliation(s)
- R Schaffrath
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| | | | | |
Collapse
|
17
|
Takeda M, Hiraishi H, Takesako T, Tanase S, Gunge N. The terminal protein of the linear DNA plasmid pGKL2 shares an N-terminal domain of the plasmid-encoded DNA polymerase. Yeast 1998. [DOI: 10.1002/(sici)1097-0061(19960315)12:3<241::aid-yea907>3.0.co;2-j] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
18
|
Larsen M, Gunge N, Meinhardt F. Kluyveromyces lactis killer plasmid pGKL2: evidence for a viral-like capping enzyme encoded by ORF3. Plasmid 1998; 40:243-6. [PMID: 9806862 DOI: 10.1006/plas.1998.1367] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ORF3 of the cytoplasmic linear plasmid pGKL2 was disrupted in vivo by integration of a selectable marker. Long-term cultivation of transformants carrying hybrid plasmids with a disrupted ORF3 under selective pressure did not deprive strains of the native counterpart, thereby proving its essentiality for pGKL2 replication and maintenance. The predicted ORF3 polypeptide was found to contain conserved motifs acquainted with mRNA-capping enzymes in the required order, just as in cytoplasmic viruses; new conserved motifs were also identified.
Collapse
Affiliation(s)
- M Larsen
- Institut für Mikrobiologie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 3, Münster, 48149, Germany
| | | | | |
Collapse
|
19
|
Fukuda K, Maebuchi M, Takata H, Gunge N. The linear plasmid pDHL1 from Debaryomyces hansenii encodes a protein highly homologous to the pGKL1-plasmid DNA polymerase. Yeast 1997; 13:613-20. [PMID: 9200811 DOI: 10.1002/(sici)1097-0061(19970615)13:7<613::aid-yea116>3.0.co;2-b] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Both the linear plasmids, pDHL1 (8.4 kb) and pDHL2 (9.2 kb), of Debaryomyces hansenii TK require the presence of a third linear plasmid pDHL3 (15.0 kb) in the same host cell for their replication. A 3.5 kb Bam HI-PstI fragment of pDHL1 strongly hybridized by Southern analysis to the 3.5 kb NcoI-AccI fragment of pDHL2, suggesting the importance of this conserved region in the replication of the two smaller pDHL plasmids. The 4.2 kb pDHL1 fragment containing the above hybridized region was cloned and sequenced. The results showed that the cloned pDHL1 fragment encodes a protein of 1000 amino acid residues, having a strong similarity to the DNA polymerase coded for by ORF1 of the killer plasmid pGKL1 from Kluyveromyces lactis. The catalytic and proof-reading exonuclease domains as well as terminal protein motif were well conserved as in DNA polymerases of pGKL1 and other yeast linear plasmids. Analysis of the cloned fragment further showed that pDHL1 encodes a protein partly similar to the alpha subunit of the K. lactis killer toxin, although killer activity was not known in the DHL system. Analysis of the 5' non-coding region of the two above pDHL1-ORFs reveal the presence of the upstream conserved sequence similar to that found upstream of pGKL1-ORFs. The possible hairpin loop structure was also found just in front of the ATG start codon of the pDHL1-ORFs like pGKL1-ORFs. Thus the cytoplasmic pDHL plasmids were suggested to possess a gene expression system comparable to that of K. lactis plasmids.
Collapse
Affiliation(s)
- K Fukuda
- Kumamoto Institute of Technology, Japan
| | | | | | | |
Collapse
|
20
|
Pozueta-Romero J, Houlné G, Schantz R. Nonautonomous inverted repeat Alien transposable elements are associated with genes of both monocotyledonous and dicotyledonous plants. Gene 1996; 171:147-53. [PMID: 8666265 DOI: 10.1016/0378-1119(96)00007-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Alien are highly repeated plant transposable elements characterized by their small size (approx. 400 bp), high A + T content, target site specificity, potential to form stable secondary structures and possession of a conserved 28-bp terminal inverted repeat (TIR). Besides the TIR, they contain subterminal inverted repeat motifs (SIRM), as well as the 5'-CATGCAT domain which has been reported to be a cis-acting regulatory element of gene expression in some plant species. Although they were first identified in the intron of the bell pepper (Capsicum annuum) Sn-2 gene and in the promoter region of the potato starch phosphorylase-encoding gene, Alien arranged in tandem are present in the promoter of patatin class-II genes. PCR on the bell pepper genomic DNA using the Alien TIR consensus sequence as primer yielded DNA fragments of nearly 400 bp. These fragments have characteristics of transposable elements and contain numerous motifs reminiscent of Alien elements. Importantly, PCR on genomic DNA extracts from various monocotyledonous and dicotyledonous plants using the TIR consensus sequence as primer and subsequent hybridization with different Alien probes revealed that these elements are ubiquitously present and highly repeated in the genomes of higher plants.
Collapse
Affiliation(s)
- J Pozueta-Romero
- Institut de Biologie Moléculaire des Plantes, Université Louis Pasteur, Strasbourg, France
| | | | | |
Collapse
|
21
|
Takeda M, Hiraishi H, Takesako T, Tanase S, Gunge N. The terminal protein of the linear DNA plasmid pGKL2 shares an N-terminal domain of the plasmid-encoded DNA polymerase. Yeast 1996; 12:241-6. [PMID: 8904336 DOI: 10.1002/(sici)1097-0061(19960315)12:3%3c241::aid-yea907%3e3.0.co;2-j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The 36K protein attached at the 5' end of the linear DNA plasmid pGKL2 from the yeast Kluyveromyces lactis was first purified and characterized. The terminal protein was purified from cells (1 kg wet weight) by ammonium sulphate precipitation and two rounds of centrifugation to equilibrium in CsCl gradients. The pGKL2 was present only in the post-microsomal supernatant. Approximately 10 mg of the purified pGKL2 was recovered and digested with DNase I. The terminal protein (final ca. 0 center dot 8 mg) was homogeneous by electrophoresis and we determined the N-terminal amino acid sequence up to ten residues, showing that it existed in the cryptic N-terminal domain of pGKL2-ORF2 (DNA polymerase) sequence.
Collapse
Affiliation(s)
- M Takeda
- Department of Applied Microbial Technology, Kumamoto Institute of Technology, Japan
| | | | | | | | | |
Collapse
|
22
|
Schaffrath R, Meinhardt F, Meacock PA. Yeast killer plasmid pGKL2: molecular analysis of UCS5, a cytoplasmic promoter element essential for ORF5 gene function. MOLECULAR & GENERAL GENETICS : MGG 1996; 250:286-94. [PMID: 8602143 DOI: 10.1007/bf02174386] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A k2/k1 plasmid gene shuffle system has been used to investigate linear plasmid promoter function in Kluyveromyces lactis. By transplacing various ORF5 deletion constructs from the larger plasmid k2 onto k1, and analysing trans-complementation of an ORF5(0) deletion on k2, a 40 bp k2 fragment, including the UCS motif of ORF5 (UCS5), has been identified as a cis-acting promoter element essential for ORF5 gene function. Qualitative and quantitative transcript analyses of a UCS5-ScLEU2 fusion gene using Northern blot analysis and phosphor image technology revealed a plasmid-dependent LEU2 transcript distinct in size (1.55 kb) and regulation from its nuclear counterpart (1.35 kb): cytoplasmic, UCS5-driven expression of the marker gene was non-repressible by leucine and reduced five- to eight-fold compared to fully derepressed nuclear K1LEU2 mRNA levels. Thus, the killer plasmids k2 and k1 appear to express low levels of transcript overall, when relative gene copy numbers (one for the nuclear allele versus 50-100 copies for the plasmid-borne LEU2 gene) are taken into account.
Collapse
Affiliation(s)
- R Schaffrath
- Department of Genetics, University of Leicester, Leicester, UK
| | | | | |
Collapse
|
23
|
Pozueta-Romero J, Klein M, Houlné G, Schantz ML, Meyer B, Schantz R. Characterization of a family of genes encoding a fruit-specific wound-stimulated protein of bell pepper (Capsicum annuum): identification of a new family of transposable elements. PLANT MOLECULAR BIOLOGY 1995; 28:1011-25. [PMID: 7548820 DOI: 10.1007/bf00032663] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Using a fruit-specific cDNA as a probe we isolated and sequenced the two corresponding homologous genes (Sn-1 and Sn-2) of the bell pepper (Capsicum annuum) genome. Both genes have a single intron and numerous unusual long inverted repeat sequences. The introns share 87% homology and Sn-2 contains one 450 bp additional sequence with structural features of a transposable element, which is highly repetitive in the bell pepper genome. Surprisingly, analysis in data banks showed that genes encoding the potato starch phosphorylase (EC 2.4.1.1) and patatin contain a similar element, named Alien, in their 5'-upstream region. Alien elements are characterized by a conserved 28 bp terminal inverted repeat (TIR), small size, high AT content, potential to form stable DNA secondary structures and they have probably been inserted in TA target sites. Interestingly, the TIR of the Alien elements shares high homology with sequences existing in the TIR of extrachromosomal linear pSKL DNA plasmid of Saccharomyces kluyveri. Northern blot analyses detected Sn-1 transcripts principally in the red fruit whereas no Sn-2 transcripts were detected in neither of the samples monitored. Western blot analyses detected a 16.8 kDa Sn protein principally in the ripe red fruit and wounded areas of green unripe fruit. A comparison of the deduced amino acid sequence of Sn-1 with protein sequences in data banks revealed a significant homology with proteins likely involved in the plant's disease resistance response. Analyses at the subcellular level showed that Sn-1 is localized in the membrane of vacuoles.
Collapse
Affiliation(s)
- J Pozueta-Romero
- Institut de Biologie Moléculaire des Plantes, Université Louis Pasteur, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
24
|
Schaffrath R, Meacock PA. Kluyveromyces lactis killer plasmid pGKL2: molecular analysis of an essential gene, ORF5. Yeast 1995; 11:615-28. [PMID: 7483835 DOI: 10.1002/yea.320110703] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The ORF5 of Kluyveromyces lactis killer plasmid pGKL2 (k2) is capable of encoding a small neutral protein of 18 kDa of as yet unassigned function. Although this ORF is located between two larger ORFs, 4 and 6, which it overlaps, RNA analysis showed that it is transcribed monocistronically. One-step gene disruption of ORF5, via in vivo homologous recombination between native plasmid k2 and a transfer vector employing the Saccharomyces cerevisiae LEU2 gene fused to the k2 UCS5 element, yielded Leu+ transformants at high frequencies. The transformants were found to carry a new recombinant form of k2 with ORF5 replaced by the LEU2 marker, termed rk2, in addition to the wild-type plasmids k1 and k2. Northern analysis detected a plasmid-dependent LEU2 transcript distinct in size and regulation from its nuclear counterpart. Recombinant plasmid, rk2, was unable to displace native k2 during Leu+ selective growth; however rk2 was displaced by k2 during non-selective growth. Thus, ORF5 appears to be an essential gene for plasmid integrity and/or maintenance. The ORF5 product was detected by over-expression of an epitope-tagged allele in the baculovirus system. Western analysis using a monoclonal antibody specific for the epitope tag identified a protein band with apparent molecular weight of 20 kDa, corresponding in size to the predicted product.
Collapse
Affiliation(s)
- R Schaffrath
- Department of Genetics, University of Leicester, U.K
| | | |
Collapse
|
25
|
Hermanns J, Asseburg A, Osiewacz HD. Evidence for giant linear plasmids in the ascomycete Podospora anserina. Curr Genet 1995; 27:379-86. [PMID: 7614562 DOI: 10.1007/bf00352108] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In the extrachromosomal mutant AL2 of the ascomycete Podospora anserina longevity is correlated with the presence of the linear mitochondrial plasmid pAL2-1. In addition to this autonomous genetic element, two types of closely related pAL2-1-homologous molecules were detected in the high-molecular-weight mitochondrial DNA (mtDNA). One of these molecules is of linear and the other of circular structure. Both molecules contain pAL2-1 sequences which appear to be integrated at the same site in the mtDNA. Sequence analysis of a DNA fragment cloned from one of these molecules revealed that it contains an almost full-length copy of pAL2-1. At the site of plasmid integration a 15-nucleotide AT-spacer and long inverted mtDNA sequences were identified. Finally, two giant linear plasmid-like DNAs of about 50 kbp and 70 kbp were detected in pulsed-field gels of mutant AL2. These molecules are composed of mtDNA and pAL2-1-specific sequences and may result from the integration of mtDNA sequences into linear plasmid pAL2-1.
Collapse
Affiliation(s)
- J Hermanns
- Department of Molecular Biology of the Aging Processes, German Cancer Research Center, Heidelberg
| | | | | |
Collapse
|
26
|
Bolen PL, Eastman EM, Cihak PL, Hayman GT. Isolation and sequence analysis of a gene from the linear DNA plasmid pPacl-2 of Pichia acaciae that shows similarity to a killer toxin gene of Kluyveromyces lactis. Yeast 1994; 10:403-14. [PMID: 8017110 DOI: 10.1002/yea.320100314] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The toxin-encoding linear plasmid systems found in Pichia acaciae and Kluyveromyces lactis yeasts appear to be quite similar, both in function and structural organization. By Southern hybridization, a linear plasmid of P. acaciae, pPacl-2, was found to hybridize to the second open reading frame (ORF2) of K. lactis plasmid pGKL1, known to encode the alpha and beta subunits of the K. lactis toxin. A 1.7 kbp segment of pPacl-2 DNA was cloned, sequenced and shown to contain four regions of strong homology to four similarly oriented regions of K. lactis ORF2. This 1.7 kbp fragment also contained an ORF of 1473 bp that could encode a protein of approximately 55.8 kDa. Like the alpha subunit gene of K. lactis ORF2, a very hydrophobic region occurs at the N-terminus, perhaps representing a signal sequence for transport out of the cell. Unlike K. lactis ORF2, however, the encoded polypeptide is much smaller and lacks a recognizable domain common to chitinases. The structure of a toxin that includes the translation product of this P. acaciae ORF would likely be quite different from that of the K. lactis toxin. Analysis of the upstream region of the P. acaciae ORF revealed an upstream conserved sequence identical to that found before ORFs 8 and 9 of pGKL2. A possible hairpin loop structure, as has been described for each of the four K. lactis pGKL1 ORFs, was found just upstream of the presumed start codon. The similarity of the promoter-like elements found in the linear plasmid genes of these diverse yeasts reinforces the idea of the existence of a unique, but highly conserved, expression system for these novel plasmids. The sequence has been deposited in the GenBank data library under Accession Number U02596.
Collapse
Affiliation(s)
- P L Bolen
- National Center for Agricultural Utilization Research, US Department of Agriculture, Peoria, IL 61604
| | | | | | | |
Collapse
|
27
|
Yáñez RJ, Rodríguez JM, Boursnell M, Rodríguez JF, Viñuela E. Two putative African swine fever virus helicases similar to yeast 'DEAH' pre-mRNA processing proteins and vaccinia virus ATPases D11L and D6R. Gene 1993; 134:161-74. [PMID: 8262374 DOI: 10.1016/0378-1119(93)90090-p] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Two open reading frames (ORFs) of African swine fever virus (ASFV) encoding putative helicases have been sequenced. The two genes, termed D1133L and B962L, are located in the central region of the viral genome, but are separated by about 40 kb of DNA. Both genes are expressed late during ASFV infection of Vero cells, after replication of viral DNA has begun. Contiguous to D1133L, three other ORFs (D129L, D79L and D339L), encoding putative proteins of unknown function, have been sequenced. Proteins D1133L and B962L contain the amino acid motifs that characterize helicases of superfamily II. D1133L is most similar to a group of putative helicases which includes two proteins of vaccinia virus (D11L and D6R) involved in transcription of the viral genome, their homologues in other poxviruses, the protein encoded by ORF 4 of the yeast plasmids, pGKL2 and pSKL, and the previously identified ASFV protein, Q706L. B962L resembles a group of RNA-helicase-like proteins which includes three proteins of Saccharomyces cerevisiae involved in pre-mRNA splicing (PRP2, PRP16 and PRP22), Drosophila melanogaster KURZ and MLE, and vaccinia virus 18R.
Collapse
Affiliation(s)
- R J Yáñez
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma, Madrid, Spain
| | | | | | | | | |
Collapse
|
28
|
Gunge N, Fukuda K, Morikawa S, Murakami K, Takeda M, Miwa A. Osmophilic linear plasmids from the salt-tolerant yeast Debaryomyces hansenii. Curr Genet 1993; 23:443-9. [PMID: 8391396 DOI: 10.1007/bf00312632] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Three novel linear plasmids, pDHL1 (8.4 kb), pDHL2 (9.2 kb) and pDHL3 (15.0 kb), were discovered in the halophilic (salt-tolerant) yeast Debaryomyces hansenii. Exonuclease treatment indicated that all three plasmids were blocked at their 5' ends, presumably, by analogy with most other eukaryotic linear plasmids which involved protein attachment. The Debaryomyces plasmids were entirely cured simply by growing cells in normal culture medium, but were stably maintained in culture medium containing salts, sorbitol or glycerol at suitable concentrations. This suggested that the pDHL plasmids required an osmotic pressure for stable replication and maintenance. The Debaryomyces yeast secreted a killer toxin against various yeasts species. Toxin activity was demonstrated only in the presence of salts such as NaCl or KCl, but this killer phenotype was not associated with the pDHL plasmids. Analysis of the plasmid-curing pattern suggested that pDHL3 may play a key role in the replication of the Debaryomyces plasmids. Southern hybridization showed that an extensive homology exists between specific regions of pDHL1 and pDHL2, whereas pDHL3 is unique.
Collapse
Affiliation(s)
- N Gunge
- Kumamoto Institute of Technology, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Braithwaite DK, Ito J. Compilation, alignment, and phylogenetic relationships of DNA polymerases. Nucleic Acids Res 1993; 21:787-802. [PMID: 8451181 PMCID: PMC309208 DOI: 10.1093/nar/21.4.787] [Citation(s) in RCA: 466] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- D K Braithwaite
- Department of Microbiology and Immunology, College of Medicine, Arizona Health Sciences Center, Tucson 85724
| | | |
Collapse
|
30
|
Abstract
Linear plasmids are genetic elements commonly found in yeast, filamentous fungi, and higher plants. In contrast to all other plasmids they possess terminal inverted repeats and terminal bound proteins and encode their own DNA and RNA polymerases. Here we present alignments of conserved amino acid sequences of both the DNA and RNA polymerases encoded by those linear plasmids for which DNA sequence data are available. Additionally these sequences are compared to a number of polymerases encoded by related viral and cellular entities. Phylogenetic trees have been established for both types of polymerases. These trees appear to exhibit very similar subgroupings, proving the accuracy of the method employed.
Collapse
Affiliation(s)
- F Kempken
- Ruhr-Universität Bochum, Lehrstuhl für Allgemeine Botanik, FRG
| | | | | |
Collapse
|
31
|
Hermanns J, Osiewacz HD. The linear mitochondrial plasmid pAL2-1 of a long-lived Podospora anserina mutant is an invertron encoding a DNA and RNA polymerase. Curr Genet 1992; 22:491-500. [PMID: 1473181 DOI: 10.1007/bf00326415] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The molecular characterization of an additional DNA species (pAL2-1) which was identified previously in a long-lived extrachromosomal mutant (AL2) of Podospora anserina revealed that this element is a mitochondrial linear plasmid. pAL2-1 is absent from the corresponding wild-type strain, has a size of 8395 bp and contains perfect long terminal inverted repeats (TIRs) of 975 bp. Exonuclease digestion experiments indicated that proteins are covalently bound at the 5' termini of the plasmid. Two long, non-overlapping open reading frames, ORF1 (3,594 bp) and ORF2 (2847 bp), have been identified, which are located on opposite strands and potentially encode a DNA and an RNA polymerase, respectively. The ORF1-encoded polypeptide contains three conserved regions which may be responsible for a 3'-5' exonuclease activity and the typical consensus sequences for DNA polymerases of the D type. In addition, an amino-acid sequence motif (YSRLRT), recently shown to be conserved in terminal proteins from various bacteriophages, has been identified in the amino-terminal part of the putative protein. According to these properties, this first linear plasmid identified in P. anserina shares all characteristics with invertrons, a group of linear mobile genetic elements.
Collapse
Affiliation(s)
- J Hermanns
- Deutsches Krebsforschungszentrum, Forschungsschwerpunkt: Angewandte Tumorvirologie, Abteilung: Molekularbiologie der Alterungsprozesse, Heidelberg, Federal Republic of Germany
| | | |
Collapse
|
32
|
Blasco MA, Esteban JA, Méndez J, Blanco L, Salas M. Structural and functional studies on phi 29 DNA polymerase. Chromosoma 1992; 102:S32-8. [PMID: 1291240 DOI: 10.1007/bf02451783] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The Bacillus subtilis phage phi 29 DNA polymerase, involved in protein-primed viral DNA replication, contains several amino acid consensus sequences common to other eukaryotic-type DNA polymerases. Using site-directed mutagenesis, we have studied the functional significance of a C-terminal conserved region, represented by the Lys-X-Tyr ("K-Y") motif. Single point mutants have been constructed and the corresponding proteins have been overproduced and characterized. Measurements of the activity of the mutant proteins indicated that the invariant Lys and Tyr residues play a critical role in DNA polymerization. Interestingly, substitution of the invariant Lys either by Arg or Thr, produced enzymes with an increased or a largely reduced, respectively, capability to use a protein as primer, an intrinsic property of TP-priming DNA polymerases. On the other hand, the viral protein p6, which stimulates initiation of phi 29 DNA replication by formation of a nucleoprotein complex at both DNA replication origins, increased (about 5-fold) the insertion fidelity of phi 29 DNA polymerase during the formation of the TP-dAMP initiation complex. We propose a model in which the special strategy to maintain the integrity of the phi 29 DNA ends, by means of a "sliding-back" mechanism, could also contribute to increase the fidelity of phi 29 DNA replication.
Collapse
Affiliation(s)
- M A Blasco
- Centro de Biología Molecular (CSIC-UAM), Universidad Autónoma, Madrid, Spain
| | | | | | | | | |
Collapse
|
33
|
Court DA, Bertrand H. Genetic organization and structural features of maranhar, a senescence-inducing linear mitochondrial plasmid of Neurospora crassa. Curr Genet 1992; 22:385-97. [PMID: 1423726 DOI: 10.1007/bf00352440] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The nucleotide sequence of maranhar, a senescence-inducing linear mitochondrial plasmid of Neurospora crassa, was determined. The termini of the 7-kb plasmid are 349-bp inverted repeats (TIRs). Each DNA strand contains a long open reading frame (ORF) which begins within the TIR and extends toward the centre of the plasmid. ORF-1 codes for a single-subunit RNA polymerase that is not closely related to that encoded by another Neurospora plasmid, kalilo. The ORF-2 product may be a B-type DNA polymerase resembling those encoded by terminal protein-linked linear genetic elements, including linear mitochondrial plasmids and linear bacteriophages. A separate coding sequence for the terminal protein could not be identified; however, the DNA polymerase of maranhar has an amino-terminal extension with features that are also present in the terminal proteins of linear bacteriophages. The N-terminal extensions of the DNA polymerases of other linear mitochondrial plasmids contain similar features, suggesting that the terminal proteins of linear plasmids may be comprised, at least in part, of these cryptic domains. The terminal protein-DNA bond of maranhar is resistant to mild alkaline hydrolysis, indicating that it might involve a tyrosine or a lysine residue. Although maranhar and the senescence-inducing kalilo plasmid of N. intermedia are structurally similar, and integrate into mitochondrial DNA by a mechanism thus far unique to these two plasmids, they are not closely related to each other and they do not have any nucleotide sequence features, or ORFs, that distinguish them clearly from mitochondrial plasmids which are not associated with senescence and most of which are apparently non-integrative.
Collapse
Affiliation(s)
- D A Court
- Department of Microbiology, University of Guelph, Ontario, Canada
| | | |
Collapse
|
34
|
Rohe M, Schründer J, Tudzynski P, Meinhardt F. Phylogenetic relationships of linear, protein-primed replicating genomes. Curr Genet 1992; 21:173-6. [PMID: 1568258 DOI: 10.1007/bf00318478] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Relative phylogenetic distances were estimated for those linear plasmids for which sequencing data were available by comparing the amino-acid sequences of the putative DNA- and RNA-polymerases, and phylogenetic trees were calculated. The relationships obtained accord well with those indicated by other structural characteristics of these genetic elements. It is obvious that linear plasmids constitute a separate group of genetic traits when compared with those of the adenoviruses. However, an overall relationship to these viruses is evident. Among the linear plasmids at least two main groups can be recognized, namely the cytoplasmically and the mitochondrially localized elements.
Collapse
Affiliation(s)
- M Rohe
- Westfälische Wilhelms-Universität, Institut für Mikrobiologie, Münster, Federal Republic of Germany
| | | | | | | |
Collapse
|
35
|
McNeel DG, Tamanoi F. Terminal region recognition factor 1, a DNA-binding protein recognizing the inverted terminal repeats of the pGKl linear DNA plasmids. Proc Natl Acad Sci U S A 1991; 88:11398-402. [PMID: 1763054 PMCID: PMC53142 DOI: 10.1073/pnas.88.24.11398] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The yeast linear DNA plasmids pGKl1 and pGKl2 contain inverted terminal repeats (ITRs) and terminal proteins covalently bound to the 5' termini of each plasmid. The presence of these features suggests a protein-primed mechanism of DNA replication, similar to that exemplified by mammalian adenovirus and phi 29 phage of Bacillus subtilis. In this paper, we report the identification of an activity in cytoplasmic extracts of yeast harboring the pGKl plasmids that recognizes the termini of both pGKl1 and pGKl2. We call this activity TRF1, for terminal region recognition factor 1. Deletion analyses and DNase I protection experiments demonstrate that the activity recognizes base pairs 107-183 within the ITR of pGKl1, and base pairs 126-179 within the ITR of pGKl2. The presence of T-tracts within these two regions, but otherwise dissimilar nucleotide sequences, suggests that TRF1 recognizes a common structural feature within the ITRs of the two plasmids. TRF1 has been partially purified from yeast cytoplasmic extracts and Southwestern analysis indicates that the apparent molecular mass of the protein is 16 kDa. By expressing three open reading frames from pGKl2 in Escherichia coli, we found that open reading frame 10 (ORF10) of pGKl2 encodes TRF1. The sequence of the ORF10 gene product indicates that TRF1 is a highly basic protein of small molecular mass. Comparison of TRF1 with other DNA-binding proteins known to recognize the terminal regions of linear DNAs, such as NFI and NFIII involved in adenovirus DNA replication, and phi 29 p6, involved in phi 29 DNA replication, indicates that TRF1 has a different mode of binding.
Collapse
Affiliation(s)
- D G McNeel
- Department of Biochemistry and Molecular Biology, University of Chicago, IL 60637
| | | |
Collapse
|
36
|
Rohe M, Schrage K, Meinhardt F. The linear plasmid pMC3-2 from Morchella conica is structurally related to adenoviruses. Curr Genet 1991; 20:527-33. [PMID: 1782679 DOI: 10.1007/bf00334782] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
pMC3-2, one of two linear plasmids localised in the mitochondria of the ascomycete Morchella conica, was completely sequenced. It is 6044 bp in size, contains terminal inverted repeats of 713 and 710 bp length and two open reading frames, ORF1 and ORF2, spanning 2706 bp and 918 bp, respectively. ORF1 probably encodes a viral B-type DNA-polymerase. Concerning ORF2, no homology to any other published protein- or DNA-sequence could be detected. According to the structure of DNA-polymerases, linear plasmids can be grouped into two classes reflecting their localisation either in the cytoplasm or within the mitochondria. In general, the structure of plasmid pMC3-2, as well as of other linear plasmids from filamentous fungi, indicates a close relationship of these genetic elements to adenoviruses.
Collapse
Affiliation(s)
- M Rohe
- Institut für Mikrobiologie, Westfälische Wilhelms-Universität, Münster, Federal Republic of Germany
| | | | | |
Collapse
|