1
|
Lo HY, Martínez-Lavanchy PM, Goris T, Heider J, Boll M, Kaster AK, Müller JA. IncP-type plasmids carrying genes for antibiotic resistance or for aromatic compound degradation are prevalent in sequenced Aromatoleum and Thauera strains. Environ Microbiol 2022; 24:6411-6425. [PMID: 36306376 DOI: 10.1111/1462-2920.16262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 10/25/2022] [Indexed: 01/12/2023]
Abstract
Self-transferable plasmids of the incompatibility group P-1 (IncP-1) are considered important carriers of genes for antibiotic resistance and other adaptive functions. In the laboratory, these plasmids have a broad host range; however, little is known about their in situ host profile. In this study, we discovered that Thauera aromatica K172T , a facultative denitrifying microorganism capable of degrading various aromatic compounds, contains a plasmid highly similar to the IncP-1 ε archetype pKJK5. The plasmid harbours multiple antibiotic resistance genes and is maintained in strain K172T for at least 1000 generations without selection pressure from antibiotics. In a subsequent search, we found additional nine IncP-type plasmids in a total of 40 sequenced genomes of the closely related genera Aromatoleum and Thauera. Six of these plasmids form a novel IncP-1 subgroup designated θ, four of which carry genes for anaerobic or aerobic degradation of aromatic compounds. Pentanucleotide sequence analyses (k-mer profiling) indicated that Aromatoleum spp. and Thauera spp. are among the most suitable hosts for the θ plasmids. Our results highlight the importance of IncP-1 plasmids for the genetic adaptation of these common facultative denitrifying bacteria and provide novel insights into the in situ host profile of these plasmids.
Collapse
Affiliation(s)
- Hao-Yu Lo
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.,Institute for Biological Interfaces (IBG-5), Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Paula M Martínez-Lavanchy
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Tobias Goris
- Department of Molecular Toxicology, Intestinal Microbiology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Germany
| | - Johann Heider
- Department of Biology, Philipps-Universität Marburg, Germany
| | - Matthias Boll
- Institute of Biology II, Albert-Ludwigs-Universität Freiburg, Germany
| | - Anne-Kristin Kaster
- Institute for Biological Interfaces (IBG-5), Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Jochen A Müller
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.,Institute for Biological Interfaces (IBG-5), Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
2
|
Srain BM, Pantoja-Gutiérrez S. Microbial production of toluene in oxygen minimum zone waters in the Humboldt Current System off Chile. Sci Rep 2022; 12:10669. [PMID: 35739129 PMCID: PMC9226047 DOI: 10.1038/s41598-022-14103-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/01/2022] [Indexed: 11/30/2022] Open
Abstract
Expansion of oxygen minimum zones in the world's oceans is likely to enhance the production of anaerobic metabolites by marine microorganisms. Here we show that toluene is present throughout the year in shelf waters of the upwelling ecosystem off Concepción (36° S), Chile, and it is a product of microbial anaerobic metabolism. The intra-annual variability in toluene concentrations is consistent with seasonal variability in the strengths of suboxic equatorial and oxygenated subantarctic water masses. Laboratory incubations of oxygen minimum zone water showed microbial production of toluene in the absence of O2. Toluene concentrations were elevated (up to 96 nM) in deeper O2-depleted waters and followed a seasonal pattern in oceanographic conditions. There is evidence to hypothesize that microbial production of toluene could be a homeostatic biochemical mechanism to thrive in the more acidic oxygen minimum zone waters. On the other hand, evidence indicates that microbial anaerobic degradation of toluene may be a source of NO2- by partial denitrification, as shown for aquifer sediments. Since toluene production was not detected in incubations under aerobic conditions, we hypothesize that oxygen minimum zone waters export toluene to surrounding oxygenated waters. Expansion of hypoxia in the ocean will certainly enhance the production and export of anaerobic metabolites by marine microorganisms.
Collapse
Affiliation(s)
- Benjamín M Srain
- Departamento de Oceanografía and Centro de Investigación Oceanográfica COPAS Sur-Austral, Universidad de Concepción, Concepción, Chile.
- Programa de Estudios Ecosistémicos del Golfo de Arauco (PREGA), Universidad de Concepción, Concepción, Chile.
| | - Silvio Pantoja-Gutiérrez
- Departamento de Oceanografía and Centro de Investigación Oceanográfica COPAS Sur-Austral, Universidad de Concepción, Concepción, Chile.
- Centro de Investigación Oceanográfica COPAS Coastal, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
3
|
Banerjee S, Bedics A, Harkai P, Kriszt B, Alpula N, Táncsics A. Evaluating the aerobic xylene-degrading potential of the intrinsic microbial community of a legacy BTEX-contaminated aquifer by enrichment culturing coupled with multi-omics analysis: uncovering the role of Hydrogenophaga strains in xylene degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:28431-28445. [PMID: 34989990 PMCID: PMC8993774 DOI: 10.1007/s11356-021-18300-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
To develop effective bioremediation strategies, it is always important to explore autochthonous microbial community diversity using substrate-specific enrichment. The primary objective of this present study was to reveal the diversity of aerobic xylene-degrading bacteria at a legacy BTEX-contaminated site where xylene is the predominant contaminant, as well as to identify potential indigenous strains that could effectively degrade xylenes, in order to better understand the underlying facts about xylene degradation using a multi-omics approach. Henceforward, parallel aerobic microcosms were set up using different xylene isomers as the sole carbon source to investigate evolved bacterial communities using both culture-dependent and independent methods. Research outcome showed that the autochthonous community of this legacy BTEX-contaminated site has the capability to remove all of the xylene isomers from the environment aerobically employing different bacterial groups for different xylene isomers. Interestingly, polyphasic analysis of the enrichments disclose that the community composition of the o-xylene-degrading enrichment community was utterly distinct from that of the m- and p-xylene-degrading enrichments. Although in each of the enrichments Pseudomonas and Acidovorax were the dominant genera, in the case of o-xylene-degrading enrichment Rhodococcus was the main player. Among the isolates, two Hydogenophaga strains, belonging to the same genomic species, were obtained from p-xylene-degrading enrichment, substantially able to degrade aromatic hydrocarbons including xylene isomers aerobically. Comparative whole-genome analysis of the strains revealed different genomic adaptations to aromatic hydrocarbon degradation, providing an explanation on their different xylene isomer-degrading abilities.
Collapse
Affiliation(s)
- Sinchan Banerjee
- Department of Molecular Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Anna Bedics
- Department of Molecular Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Péter Harkai
- Department of Environmental Safety, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Balázs Kriszt
- Department of Environmental Safety, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Nagaraju Alpula
- Department of Molecular Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
- Department of Biotechnology, Microbial Biotechnology Research Unit, Kakatiya University, Warangal, India
| | - András Táncsics
- Department of Molecular Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary.
| |
Collapse
|
4
|
Han K, Hong U, Park S, Kwon S, Kim Y. In situ field method for evaluating biodegradation potential of BTEX by indigenous heterotrophic denitrifying microorganisms in a BTEX-contaminated fractured-rock aquifer. ENVIRONMENTAL TECHNOLOGY 2021; 42:1326-1335. [PMID: 31524076 DOI: 10.1080/09593330.2019.1668482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 09/10/2019] [Indexed: 06/10/2023]
Abstract
Generally different anaerobic degradation potentials for benzene, toluene, ethylbenzene and xylene isomers (BTEX) has been reported due to site specific conditions, such as the indigenous microbial population, electron acceptors (EA) available and concentrations of each BTEX compound. It was of interest to estimate relative biodegradation potential of each BTEX compound during enhanced anaerobic bioremediation of a BTEX-contaminated aquifer. In this study, an in situ method for assessing the degradation potentials of each BTEX compound present as a mixture under NO3-injecting conditions by performing a series of single-well push-pull tests and well-to-well tests (WWTs) was developed. During the 1st and 2nd WWTs, biological heterotrophic dissimilative NO3- denitrification was confirmed by simultaneous detection of both NO2- and N2O and significant production of CO2 during the NO3- degradation. The biodegradation fractions of NO3- injected during the 1st and 2nd WWTs were 1.7% and 5.0%, respectively, with 7.18 and 8.85 mmol N/L/day of in situ zero-order denitrification rate coefficients. The concentrations of benzene, ethylbenzene, and xylenes measured were similar to values calculated when considering only dilution, but the measured concentrations of toluene were significantly lower than the values calculated were. These results indicate that in situ method presented in the study successfully evaluate anaerobic biodegradation potential of individual BTEX compounds by indigenous heterotrophic denitrifying microorganisms.
Collapse
Affiliation(s)
- Kyungjin Han
- Department of Environmental Engineering, Korea University, Sejong, Republic of Korea
| | - Uijeon Hong
- Department of Environmental Engineering, Korea University, Sejong, Republic of Korea
- KE Tech Incorporated, Daejeon, Republic of Korea
| | - Sunhwa Park
- National Institute of Environmental Research, Incheon, Republic of Korea
| | - Sooyoul Kwon
- Department of Environmental Health, Korea National Open University, Seoul, Republic of Korea
| | - Young Kim
- Department of Environmental Engineering, Korea University, Sejong, Republic of Korea
| |
Collapse
|
5
|
Rabus R, Wöhlbrand L, Thies D, Meyer M, Reinhold-Hurek B, Kämpfer P. Aromatoleum gen. nov., a novel genus accommodating the phylogenetic lineage including Azoarcus evansii and related species, and proposal of Aromatoleum aromaticum sp. nov., Aromatoleum petrolei sp. nov., Aromatoleum bremense sp. nov., Aromatoleum toluolicum sp. nov. and Aromatoleum diolicum sp. nov. Int J Syst Evol Microbiol 2019; 69:982-997. [DOI: 10.1099/ijsem.0.003244] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Comparative 16S rRNA gene sequence analysis and major physiological differences indicate two distinct sublineages within the genus
Azoarcus
: the
Azoarcus evansii
lineage, comprising
Azoarcus
evansii
(type strain KB740T=DSM 6898T=CIP 109473T=NBRC 107771T),
Azoarcus
buckelii
(type strain U120T=DSM 14744T=LMG 26916T),
Azoarcus
anaerobius
(type strain LuFRes1T=DSM 12081T=LMG 30943T),
Azoarcus
tolulyticus
(type strain Tol-4T=ATCC 51758T=CIP 109470T),
Azoarcus
toluvorans
(type strain Td21T=ATCC 700604T=DSM 15124T) and
Azoarcus
toluclasticus
(type strain MF63T=ATCC 700605T), and the
Azoarcus indigens
lineage, comprising
Azoarcus
indigens
(type strain VB32T=ATCC 51398T=LMG 9092T),
Azoarcus communis
(type strain SWub3T=ATCC 51397T=LMG 9095T) and
Azoarcus
olearius
(type strain DQS-4T=BCRC 80407T=KCTC 23918T=LMG 26893T).
Az. evansii
lineage members have remarkable anaerobic degradation capacities encompassing a multitude of alkylbenzenes, aromatic compounds and monoterpenes, often involving novel biochemical reactions. In contrast,
Az. indigens
lineage members are diazotrophic endophytes lacking these catabolic capacities. It is proposed that species of the
Az. evansii
lineage should be classified in a novel genus, Aromatoleum gen. nov. Finally, based on the literature and new growth, DNA–DNA hybridization and proteomic data, the following five new species are proposed: Aromatoleum aromaticum sp. nov. (type strain EbN1T=DSM 19018T=LMG 30748T and strain pCyN1=DSM 19016=LMG 31004), Aromatoleum petrolei sp. nov. (type strain ToN1T=DSM 19019T=LMG 30746T), Aromatoleumbremense sp. nov. (type strain PbN1T=DSM 19017T=LMG 31005T), Aromatoleum toluolicum sp. nov. (type strain TT=DSM 19020T=LMG 30751T) and Aromatoleum diolicum sp. nov. (type strain 22LinT=DSM 15408T=LMG 30750T).
Collapse
Affiliation(s)
- Ralf Rabus
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Carl-von-Ossietzky Str. 9-11, D-26111 Oldenburg, Germany
| | - Lars Wöhlbrand
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Carl-von-Ossietzky Str. 9-11, D-26111 Oldenburg, Germany
| | - Daniela Thies
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, D-28359 Bremen, Germany
| | - Markus Meyer
- Bruker Daltonik GmbH, Fahrenheitstr. 4, D-28359 Bremen, Germany
| | - Barbara Reinhold-Hurek
- Laboratory for General Microbiology, University Bremen, PO Box 330440, D-28334 Bremen, Germany
| | - Peter Kämpfer
- Department for Applied Microbiology, Justus Liebig University, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| |
Collapse
|
6
|
Moe WM, Reynolds SJ, Griffin MA, McReynolds JB. Bioremediation Strategies Aimed at Stimulating Chlorinated Solvent Dehalogenation Can Lead to Microbially-Mediated Toluene Biogenesis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:9311-9319. [PMID: 30044084 DOI: 10.1021/acs.est.8b02081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In situ bioremediation practices that include subsurface addition of fermentable electron donors to stimulate reductive dechlorination by anaerobic bacteria have become widely employed to combat chlorinated solvent contamination in groundwater. At a contaminated site located near Baton Rouge, Louisiana (USA), toluene was transiently observed in groundwater at concentrations that sometimes far exceeded the US drinking water maximum contaminant level (MCL) of 1 mg/L after a fermentable substrate (agricultural feed grade cane molasses) was injected into the subsurface with the intent of providing electron donors for reductive dechlorination. Here, we present data that demonstrate that indigenous microorganisms can biologically produce toluene by converting phenylacetic acid, phenylalanine, phenyllactate, and phenylpyruvate to toluene. When grown in defined medium with phenylacetic acid at concentrations ≤350 mg/L, the molar ratio between toluene accumulated and phenylacetic acid supplied was highly correlated ( R2 ≥ 0.96) with a toluene yield exceeding 0.9:1. Experiments conducted using 13C labeled compounds (phenylacetic acid-2-13C and l-phenylalanine-3-13C) resulted in production of toluene-α-13C, confirming that toluene was synthesized from these precursors by two independently developed enrichment cultures. Results presented here suggest that monitoring of aromatic hydrocarbons is warranted during enhanced bioremediation activities where electron donors are introduced to stimulate anaerobic biotransformation of chlorinated solvents.
Collapse
Affiliation(s)
- William M Moe
- Department of Civil and Environmental Engineering , Louisiana State University , 3255 Patrick F. Taylor Hall , Baton Rouge , Louisiana 70803 , United States
| | - Samuel J Reynolds
- Department of Civil and Environmental Engineering , Louisiana State University , 3255 Patrick F. Taylor Hall , Baton Rouge , Louisiana 70803 , United States
| | - M Aaron Griffin
- Department of Civil and Environmental Engineering , Louisiana State University , 3255 Patrick F. Taylor Hall , Baton Rouge , Louisiana 70803 , United States
| | | |
Collapse
|
7
|
Keller AH, Kleinsteuber S, Vogt C. Anaerobic Benzene Mineralization by Nitrate-Reducing and Sulfate-Reducing Microbial Consortia Enriched From the Same Site: Comparison of Community Composition and Degradation Characteristics. MICROBIAL ECOLOGY 2018; 75:941-953. [PMID: 29124312 DOI: 10.1007/s00248-017-1100-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 10/26/2017] [Indexed: 05/22/2023]
Abstract
Benzene mineralization under nitrate-reducing conditions was successfully established in an on-site reactor continuously fed with nitrate and sulfidic, benzene-containing groundwater extracted from a contaminated aquifer. Filling material from the reactor columns was used to set up anoxic enrichment cultures in mineral medium with benzene as electron donor and sole organic carbon source and nitrate as electron acceptor. Benzene degradation characteristics and community composition under nitrate-reducing conditions were monitored and compared to those of a well-investigated benzene-mineralizing consortium enriched from the same column system under sulfate-reducing conditions. The nitrate-reducing cultures degraded benzene at a rate of 10.1 ± 1.7 μM d-1, accompanied by simultaneous reduction of nitrate to nitrite. The previously studied sulfate-reducing culture degraded benzene at similar rates. Carbon and hydrogen stable isotope enrichment factors determined for nitrate-dependent benzene degradation differed significantly from those of the sulfate-reducing culture (ΛH/C nitrate = 12 ± 3 compared to ΛH/C sulfate = 28 ± 3), indicating different benzene activation mechanisms under the two conditions. The nitrate-reducing community was mainly composed of Betaproteobacteria, Ignavibacteria, and Anaerolineae. Azoarcus and a phylotype related to clone Dok59 (Rhodocyclaceae) were the dominant genera, indicating an involvement in nitrate-dependent benzene degradation. The primary benzene degrader of the sulfate-reducing consortium, a phylotype belonging to the Peptococcaceae, was absent in the nitrate-reducing consortium.
Collapse
Affiliation(s)
- Andreas H Keller
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318, Leipzig, Germany
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Sabine Kleinsteuber
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Carsten Vogt
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318, Leipzig, Germany.
| |
Collapse
|
8
|
Yoshikawa M, Zhang M, Toyota K. Biodegradation of Volatile Organic Compounds and Their Effects on Biodegradability under Co-Existing Conditions. Microbes Environ 2017; 32:188-200. [PMID: 28904262 PMCID: PMC5606688 DOI: 10.1264/jsme2.me16188] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Volatile organic compounds (VOCs) are major pollutants that are found in contaminated sites, particularly in developed countries such as Japan. Various microorganisms that degrade individual VOCs have been reported, and genomic information related to their phylogenetic classification and VOC-degrading enzymes is available. However, the biodegradation of multiple VOCs remains a challenging issue. Practical sites, such as chemical factories, research facilities, and illegal dumping sites, are often contaminated with multiple VOCs. In order to investigate the potential of biodegrading multiple VOCs, we initially reviewed the biodegradation of individual VOCs. VOCs include chlorinated ethenes (tetrachloroethene, trichloroethene, dichloroethene, and vinyl chloride), BTEX (benzene, toluene, ethylbenzene, and xylene), and chlorinated methanes (carbon tetrachloride, chloroform, and dichloromethane). We also summarized essential information on the biodegradation of each kind of VOC under aerobic and anaerobic conditions, together with the microorganisms that are involved in VOC-degrading pathways. Interactions among multiple VOCs were then discussed based on concrete examples. Under conditions in which multiple VOCs co-exist, the biodegradation of a VOC may be constrained, enhanced, and/or unaffected by other compounds. Co-metabolism may enhance the degradation of other VOCs. In contrast, constraints are imposed by the toxicity of co-existing VOCs and their by-products, catabolite repression, or competition between VOC-degrading enzymes. This review provides fundamental, but systematic information for designing strategies for the bioremediation of multiple VOCs, as well as information on the role of key microorganisms that degrade VOCs.
Collapse
Affiliation(s)
- Miho Yoshikawa
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST).,Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology
| | - Ming Zhang
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Koki Toyota
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology
| |
Collapse
|
9
|
Draft Genome Sequence of Magnetospirillum sp. Strain 15-1, a Denitrifying Toluene Degrader Isolated from a Planted Fixed-Bed Reactor. GENOME ANNOUNCEMENTS 2017; 5:5/32/e00764-17. [PMID: 28798176 PMCID: PMC5552985 DOI: 10.1128/genomea.00764-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Here, we report the draft genome sequence of Magnetospirillum sp. 15-1. This strain was isolated from a planted fixed-bed reactor based on its ability to degrade toluene under anaerobic conditions. The genome assembly consists of 5.4 Mb in 28 contigs and 5,095 coding sequences containing the genes involved in anaerobic toluene degradation.
Collapse
|
10
|
Ranchou‐Peyruse M, Gasc C, Guignard M, Aüllo T, Dequidt D, Peyret P, Ranchou‐Peyruse A. The sequence capture by hybridization: a new approach for revealing the potential of mono-aromatic hydrocarbons bioattenuation in a deep oligotrophic aquifer. Microb Biotechnol 2017; 10:469-479. [PMID: 27766749 PMCID: PMC5328808 DOI: 10.1111/1751-7915.12426] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/15/2016] [Accepted: 09/18/2016] [Indexed: 01/04/2023] Open
Abstract
The formation water of a deep aquifer (853 m of depth) used for geological storage of natural gas was sampled to assess the mono-aromatic hydrocarbons attenuation potential of the indigenous microbiota. The study of bacterial diversity suggests that Firmicutes and, in particular, sulphate-reducing bacteria (Peptococcaceae) predominate in this microbial community. The capacity of the microbial community to biodegrade toluene and m- and p-xylenes was demonstrated using a culture-based approach after several hundred days of incubation. In order to reveal the potential for biodegradation of these compounds within a shorter time frame, an innovative approach named the solution hybrid selection method, which combines sequence capture by hybridization and next-generation sequencing, was applied to the same original water sample. The bssA and bssA-like genes were investigated as they are considered good biomarkers for the potential of toluene and xylene biodegradation. Unlike a PCR approach which failed to detect these genes directly from formation water, this innovative strategy demonstrated the presence of the bssA and bssA-like genes in this oligotrophic ecosystem, probably harboured by Peptococcaceae. The sequence capture by hybridization shows significant potential to reveal the presence of genes of functional interest which have low-level representation in the biosphere.
Collapse
Affiliation(s)
- Magali Ranchou‐Peyruse
- Université de Pau et des Pays de l'AdourEquipe Environnement et Microbiologie, IPREM‐CNRS 5254F‐64013PauFrance
| | - Cyrielle Gasc
- Université d'AuvergneEA 4678 CIDAM63001Clermont‐FerrandFrance
| | - Marion Guignard
- Université de Pau et des Pays de l'AdourEquipe Environnement et Microbiologie, IPREM‐CNRS 5254F‐64013PauFrance
| | - Thomas Aüllo
- TIGF – Transport et Infrastructures Gaz France40 Avenue de l'Europe, CS2052264000PauFrance
| | - David Dequidt
- STORENGY – Geosciences DepartmentBois‐ColombesFrance
| | - Pierre Peyret
- Université d'AuvergneEA 4678 CIDAM63001Clermont‐FerrandFrance
| | - Anthony Ranchou‐Peyruse
- Université de Pau et des Pays de l'AdourEquipe Environnement et Microbiologie, IPREM‐CNRS 5254F‐64013PauFrance
| |
Collapse
|
11
|
Andrade MVF, Sakamoto IK, Corbi JJ, Silva EL, Varesche MBA. Effects of hydraulic retention time, co-substrate and nitrogen source on laundry wastewater anionic surfactant degradation in fluidized bed reactors. BIORESOURCE TECHNOLOGY 2017; 224:246-254. [PMID: 27847235 DOI: 10.1016/j.biortech.2016.11.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 10/31/2016] [Accepted: 11/01/2016] [Indexed: 05/12/2023]
Abstract
The aim of this study was to evaluate the influence of hydraulic retention time (HRT) on linear alkylbenzene sulfonate (LAS) removal in fluidized bed reactors (FBRs). FBR1 (HRT of 8h) and FBR2 (HRT of 12h) were fed laundry wastewater with 18.6±4.1 to 27.1±5.6mg/L of LAS in the following conditions: ethanol and nitrate addition (Phases I, II and III), nitrate (Phase IV), ethanol (Phase V) and laundry wastewater (Phase VI). LAS removal was 93±12% (FBR1) and 99±2% (FBR2). In FBR1, nitrate influenced significantly on LAS removal (99±3% - Phase IV) compared to the phase without nitrate (90±15% - Phase V). In FBR1 the absence of ethanol was more favourable for LAS removal (99±3% - Phase IV) compared to ethanol addition (87±16% - Phase II). In FBR2, 99±2% LAS removal was found up to 436days. By microbial characterization were identified bacteria as Acinetobacter, Dechloromonas, Pseudomonas and Zoogloea.
Collapse
Affiliation(s)
- Marcus Vinicius Freire Andrade
- Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo, Trabalhador São-carlense Avenue 400, 13566-590 São Carlos, SP, Brazil
| | - Isabel Kimiko Sakamoto
- Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo, Trabalhador São-carlense Avenue 400, 13566-590 São Carlos, SP, Brazil
| | - Juliano José Corbi
- Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo, Trabalhador São-carlense Avenue 400, 13566-590 São Carlos, SP, Brazil
| | - Edson Luiz Silva
- Department of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luiz, Km 235, SP 310, 13565-905 São Carlos, SP, Brazil
| | - Maria Bernadete Amâncio Varesche
- Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo, Trabalhador São-carlense Avenue 400, 13566-590 São Carlos, SP, Brazil.
| |
Collapse
|
12
|
Heider J, Szaleniec M, Martins BM, Seyhan D, Buckel W, Golding BT. Structure and Function of Benzylsuccinate Synthase and Related Fumarate-Adding Glycyl Radical Enzymes. J Mol Microbiol Biotechnol 2016; 26:29-44. [PMID: 26959246 DOI: 10.1159/000441656] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The pathway of anaerobic toluene degradation is initiated by a remarkable radical-type enantiospecific addition of the chemically inert methyl group to the double bond of a fumarate cosubstrate to yield (R)-benzylsuccinate as the first intermediate, as catalyzed by the glycyl radical enzyme benzylsuccinate synthase. In recent years, it has become clear that benzylsuccinate synthase is the prototype enzyme of a much larger family of fumarate-adding enzymes, which play important roles in the anaerobic metabolism of further aromatic and even aliphatic hydrocarbons. We present an overview on the biochemical properties of benzylsuccinate synthase, as well as its recently solved structure, and present the results of an initial structure-based modeling study on the reaction mechanism. Moreover, we compare the structure of benzylsuccinate synthase with those predicted for different clades of fumarate-adding enzymes, in particular the paralogous enzymes converting p-cresol, 2-methylnaphthalene or n-alkanes.
Collapse
Affiliation(s)
- Johann Heider
- Laboratory of Microbial Biochemistry, LOEWE Center for Synthetic Microbiology, Philipps University Marburg, Marburg, Germany
| | | | | | | | | | | |
Collapse
|
13
|
Rabus R, Boll M, Heider J, Meckenstock RU, Buckel W, Einsle O, Ermler U, Golding BT, Gunsalus RP, Kroneck PMH, Krüger M, Lueders T, Martins BM, Musat F, Richnow HH, Schink B, Seifert J, Szaleniec M, Treude T, Ullmann GM, Vogt C, von Bergen M, Wilkes H. Anaerobic Microbial Degradation of Hydrocarbons: From Enzymatic Reactions to the Environment. J Mol Microbiol Biotechnol 2016; 26:5-28. [PMID: 26960061 DOI: 10.1159/000443997] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Hydrocarbons are abundant in anoxic environments and pose biochemical challenges to their anaerobic degradation by microorganisms. Within the framework of the Priority Program 1319, investigations funded by the Deutsche Forschungsgemeinschaft on the anaerobic microbial degradation of hydrocarbons ranged from isolation and enrichment of hitherto unknown hydrocarbon-degrading anaerobic microorganisms, discovery of novel reactions, detailed studies of enzyme mechanisms and structures to process-oriented in situ studies. Selected highlights from this program are collected in this synopsis, with more detailed information provided by theme-focused reviews of the special topic issue on 'Anaerobic biodegradation of hydrocarbons' [this issue, pp. 1-244]. The interdisciplinary character of the program, involving microbiologists, biochemists, organic chemists and environmental scientists, is best exemplified by the studies on alkyl-/arylalkylsuccinate synthases. Here, research topics ranged from in-depth mechanistic studies of archetypical toluene-activating benzylsuccinate synthase, substrate-specific phylogenetic clustering of alkyl-/arylalkylsuccinate synthases (toluene plus xylenes, p-cymene, p-cresol, 2-methylnaphthalene, n-alkanes), stereochemical and co-metabolic insights into n-alkane-activating (methylalkyl)succinate synthases to the discovery of bacterial groups previously unknown to possess alkyl-/arylalkylsuccinate synthases by means of functional gene markers and in situ field studies enabled by state-of-the-art stable isotope probing and fractionation approaches. Other topics are Mo-cofactor-dependent dehydrogenases performing O2-independent hydroxylation of hydrocarbons and alkyl side chains (ethylbenzene, p-cymene, cholesterol, n-hexadecane), degradation of p-alkylated benzoates and toluenes, glycyl radical-bearing 4-hydroxyphenylacetate decarboxylase, novel types of carboxylation reactions (for acetophenone, acetone, and potentially also benzene and naphthalene), W-cofactor-containing enzymes for reductive dearomatization of benzoyl-CoA (class II benzoyl-CoA reductase) in obligate anaerobes and addition of water to acetylene, fermentative formation of cyclohexanecarboxylate from benzoate, and methanogenic degradation of hydrocarbons.
Collapse
Affiliation(s)
- Ralf Rabus
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Stasik S, Wick LY, Wendt-Potthoff K. Anaerobic BTEX degradation in oil sands tailings ponds: Impact of labile organic carbon and sulfate-reducing bacteria. CHEMOSPHERE 2015; 138:133-139. [PMID: 26066083 DOI: 10.1016/j.chemosphere.2015.05.068] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 05/18/2015] [Accepted: 05/24/2015] [Indexed: 06/04/2023]
Abstract
The extraction of bitumen from oil sands in Alberta (Canada) produces volumes of tailings that are pumped into large anaerobic settling-basins. Beside bitumen, tailings comprise fractions of benzene, toluene, ethylbenzene and xylenes (BTEX) that derive from the application of industrial solvents. Due to their toxicity and volatility, BTEX pose a strong concern for gas- and water-phase environments in the vicinity of the ponds. The examination of two pond profiles showed that concentrations of indigenous BTEX decreased with depth, pointing at BTEX transformation in situ. With depth, the relative contribution of ethylbenzene and xylenes to total BTEX significantly decreased, while benzene increased relatively from 44% to 69%, indicating preferential hydrocarbon degradation. To predict BTEX turnover and residence time, we determined BTEX degradation rates in tailings of different depths in a 180-days microcosm study. In addition, we evaluated the impact of labile organic substrates (e.g. acetate) generally considered to stimulate hydrocarbon degradation and the contribution of sulfate-reducing bacteria (SRB) to BTEX turnover. In all depths, BTEX concentrations significantly decreased due to microbial activity, with degradation rates ranging between 4 and 9 μg kg(-1) d(-1). BTEX biodegradation decreased linearly in correlation with initial concentrations, suggesting a concentration-dependent BTEX transformation. SRB were not significantly involved in BTEX consumption, indicating the importance of methanogenic degradation. BTEX removal decreased to 70-90% in presence of organic substrates presumptively due to an accumulation of acetate that lowered BTEX turnover due to product inhibition. In those assays SRB slightly stimulated BTEX transformation by reducing inhibitory acetate levels.
Collapse
Affiliation(s)
- Sebastian Stasik
- Department of Lake Research, UFZ - Helmholtz Centre for Environmental Research, Brückstraße 3a, 39114 Magdeburg, Germany.
| | - Lukas Y Wick
- Department of Environmental Microbiology, UFZ - Helmholtz Centre for Environmental Research, Permoserstraße 15, 04318 Leipzig, Germany
| | - Katrin Wendt-Potthoff
- Department of Lake Research, UFZ - Helmholtz Centre for Environmental Research, Brückstraße 3a, 39114 Magdeburg, Germany
| |
Collapse
|
15
|
Jarling R, Kühner S, Basílio Janke E, Gruner A, Drozdowska M, Golding BT, Rabus R, Wilkes H. Versatile transformations of hydrocarbons in anaerobic bacteria: substrate ranges and regio- and stereo-chemistry of activation reactions. Front Microbiol 2015; 6:880. [PMID: 26441848 PMCID: PMC4561516 DOI: 10.3389/fmicb.2015.00880] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 08/10/2015] [Indexed: 12/31/2022] Open
Abstract
Anaerobic metabolism of hydrocarbons proceeds either via addition to fumarate or by hydroxylation in various microorganisms, e.g., sulfate-reducing or denitrifying bacteria, which are specialized in utilizing n-alkanes or alkylbenzenes as growth substrates. General pathways for carbon assimilation and energy gain have been elucidated for a limited number of possible substrates. In this work the metabolic activity of 11 bacterial strains during anaerobic growth with crude oil was investigated and compared with the metabolite patterns appearing during anaerobic growth with more than 40 different hydrocarbons supplied as binary mixtures. We show that the range of co-metabolically formed alkyl- and arylalkyl-succinates is much broader in n-alkane than in alkylbenzene utilizers. The structures and stereochemistry of these products are resolved. Furthermore, we demonstrate that anaerobic hydroxylation of alkylbenzenes does not only occur in denitrifiers but also in sulfate reducers. We propose that these processes play a role in detoxification under conditions of solvent stress. The thermophilic sulfate-reducing strain TD3 is shown to produce n-alkylsuccinates, which are suggested not to derive from terminal activation of n-alkanes, but rather to represent intermediates of a metabolic pathway short-cutting fumarate regeneration by reverse action of succinate synthase. The outcomes of this study provide a basis for geochemically tracing such processes in natural habitats and contribute to an improved understanding of microbial activity in hydrocarbon-rich anoxic environments.
Collapse
Affiliation(s)
- René Jarling
- Organic Geochemistry, Chemistry of the Earth, Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences Potsdam, Germany
| | - Simon Kühner
- Department of Microbiology, Max Planck Institute for Marine Microbiology Bremen, Germany
| | - Eline Basílio Janke
- Organic Geochemistry, Chemistry of the Earth, Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences Potsdam, Germany
| | - Andrea Gruner
- Organic Geochemistry, Chemistry of the Earth, Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences Potsdam, Germany
| | - Marta Drozdowska
- School of Chemistry, Newcastle University Newcastle upon Tyne, UK
| | | | - Ralf Rabus
- Department of Microbiology, Max Planck Institute for Marine Microbiology Bremen, Germany ; General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University Oldenburg, Germany
| | - Heinz Wilkes
- Organic Geochemistry, Chemistry of the Earth, Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences Potsdam, Germany ; Organic Geochemistry, Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University Oldenburg, Germany
| |
Collapse
|
16
|
Muñoz R, Souza TSO, Glittmann L, Pérez R, Quijano G. Biological anoxic treatment of O₂-free VOC emissions from the petrochemical industry: a proof of concept study. JOURNAL OF HAZARDOUS MATERIALS 2013; 260:442-450. [PMID: 23811365 DOI: 10.1016/j.jhazmat.2013.05.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Revised: 04/19/2013] [Accepted: 05/25/2013] [Indexed: 06/02/2023]
Abstract
An innovative biofiltration technology based on anoxic biodegradation was proposed in this work for the treatment of inert VOC-laden emissions from the petrochemical industry. Anoxic biofiltration does not require conventional O2 supply to mineralize VOCs, which increases process safety and allows for the reuse of the residual gas for inertization purposes in plant. The potential of this technology was evaluated in a biotrickling filter using toluene as a model VOC at loads of 3, 5, 12 and 34 g m(-3)h(-1) (corresponding to empty bed residence times of 16, 8, 4 and 1.3 min) with a maximum elimination capacity of ∼3 g m(-3)h(-1). However, significant differences in the nature and number of metabolites accumulated at each toluene load tested were observed, o- and p-cresol being detected only at 34 g m(-3)h(-1), while benzyl alcohol, benzaldehyde and phenol were detected at lower loads. A complete toluene removal was maintained after increasing the inlet toluene concentration from 0.5 to 1 g m(-3) (which entailed a loading rate increase from 3 to 6 g m(-3)h(-1)), indicating that the system was limited by mass transfer rather than by biological activity. A high bacterial diversity was observed, the predominant phyla being Actinobacteria and Proteobacteria.
Collapse
Affiliation(s)
- Raúl Muñoz
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr Mergelina s/n, 47011 Valladolid, Spain
| | | | | | | | | |
Collapse
|
17
|
Evidence for benzylsuccinate synthase subtypes obtained by using stable isotope tools. J Bacteriol 2013; 195:4660-7. [PMID: 23935041 DOI: 10.1128/jb.00477-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We studied the benzylsuccinate synthase (Bss) reaction mechanism with respect to the hydrogen-carbon bond cleavage at the methyl group of toluene by using different stable isotope tools. Λ values (slopes of linear regression curves for carbon and hydrogen discrimination) for two-dimensional compound-specific stable isotope analysis (2D-CSIA) of toluene activation by Bss-containing cell extracts (in vitro studies) were found to be similar to previously reported data from analogous experiments with whole cells (in vivo studies), proving that Λ values generated by whole cells are caused by Bss catalysis. The Bss enzymes of facultative anaerobic bacteria produced smaller Λ values than those of obligate anaerobes. In addition, a partial exchange of a single deuterium atom in benzylsuccinate with hydrogen was observed in experiments with deuterium-labeled toluene. In this study, the Bss enzymes of the tested facultative anaerobes showed 3- to 8-fold higher exchange probabilities than those for the enzymes of the tested obligate anaerobic bacteria. The phylogeny of the Bss variants, determined by sequence analyses of BssA, the gene product corresponding to the α subunit of Bss, correlated with the observed differences in Λ values and hydrogen exchange probabilities. In conclusion, our results suggest subtle differences in the reaction mechanisms of Bss isoenzymes of facultative and obligate anaerobes and show that the putative isoenzymes can be differentiated by 2D-CSIA.
Collapse
|
18
|
Alain K, Harder J, Widdel F, Zengler K. Anaerobic utilization of toluene by marine alpha- and gammaproteobacteria reducing nitrate. MICROBIOLOGY-SGM 2012; 158:2946-2957. [PMID: 23038808 DOI: 10.1099/mic.0.061598-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Aromatic hydrocarbons are among the main constituents of crude oil and represent a major fraction of biogenic hydrocarbons. Anthropogenic influences as well as biological production lead to exposure and accumulation of these toxic chemicals in the water column and sediment of marine environments. The ability to degrade these compounds in situ has been demonstrated for oxygen- and sulphate-respiring marine micro-organisms. However, if and to what extent nitrate-reducing bacteria contribute to the degradation of hydrocarbons in the marine environment and if these organisms are similar to their well-studied freshwater counterparts has not been investigated thoroughly. Here we determine the potential of marine prokaryotes from different sediments of the Atlantic Ocean and Mediterranean Sea to couple nitrate reduction to the oxidation of aromatic hydrocarbons. Nitrate-dependent oxidation of toluene as an electron donor in anoxic enrichment cultures was elucidated by analyses of nitrate, nitrite and dinitrogen gas, accompanied by cell proliferation. The metabolically active members of the enriched communities were identified by RT-PCR of their 16S rRNA genes and subsequently quantified by fluorescence in situ hybridization. In all cases, toluene-grown communities were dominated by members of the Gammaproteobacteria, followed in some enrichments by metabolically active alphaproteobacteria as well as members of the Bacteroidetes. From these enrichments, two novel denitrifying toluene-degrading strains belonging to the Gammaproteobacteria were isolated. Two additional toluene-degrading denitrifying strains were isolated from sediments from the Black Sea and the North Sea. These isolates belonged to the Alphaproteobacteria and Gammaproteobacteria. Serial dilutions series with marine sediments indicated that up to 2.2×10(4) cells cm(-3) were able to degrade hydrocarbons with nitrate as the electron acceptor. These results demonstrated the hitherto unrecognized capacity of alpha- and gammaproteobacteria in marine sediments to oxidize toluene using nitrate.
Collapse
Affiliation(s)
- Karine Alain
- Ifremer, UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LMEE), Technopôle Pointe du diable, F-29280 Plouzané, France.,Université de Bretagne Occidentale (UBO, UEB), Institut Universitaire Européen de la Mer (IUEM) - UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LMEE), Place Nicolas Copernic, F-29280 Plouzané, France.,NRS, IUEM - UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LMEE), Place Nicolas Copernic, F-29280 Plouzané, France
| | - Jens Harder
- Department of Microbiology, Max Planck Institute for Marine Microbiology, Celsiusstr. 1, D-28359 Bremen, Germany
| | - Friedrich Widdel
- Department of Microbiology, Max Planck Institute for Marine Microbiology, Celsiusstr. 1, D-28359 Bremen, Germany
| | - Karsten Zengler
- University of California, San Diego, Department of Bioengineering, 9500 Gilman Drive, La Jolla, CA 92093-0412, USA
| |
Collapse
|
19
|
Bozinovski D, Herrmann S, Richnow HH, Bergen M, Seifert J, Vogt C. Functional analysis of an anaerobic m-xylene-degrading enrichment culture using protein-based stable isotope probing. FEMS Microbiol Ecol 2012; 81:134-44. [DOI: 10.1111/j.1574-6941.2012.01334.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 02/08/2012] [Accepted: 02/09/2012] [Indexed: 11/30/2022] Open
Affiliation(s)
- Dragana Bozinovski
- Department of Proteomics; UFZ - Helmholtz Centre for Environmental Research; Leipzig; Germany
| | | | - Hans-Hermann Richnow
- Department of Isotope Biogeochemistry; UFZ - Helmholtz Centre for Environmental Research; Leipzig; Germany
| | | | - Jana Seifert
- Department of Proteomics; UFZ - Helmholtz Centre for Environmental Research; Leipzig; Germany
| | - Carsten Vogt
- Department of Isotope Biogeochemistry; UFZ - Helmholtz Centre for Environmental Research; Leipzig; Germany
| |
Collapse
|
20
|
Rabus R, Jarling R, Lahme S, Kühner S, Heider J, Widdel F, Wilkes H. Co-metabolic conversion of toluene in anaerobic n-alkane-degrading bacteria. Environ Microbiol 2011; 13:2576-86. [PMID: 21880102 DOI: 10.1111/j.1462-2920.2011.02529.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Diverse microorganisms have been described to degrade petroleum hydrocarbons anaerobically. Strains able to utilize n-alkanes do not grow with aromatic hydrocarbons, whereas strains able to utilize aromatic hydrocarbons do not grow with n-alkanes. To investigate this specificity in more detail, three anaerobic n-alkane degraders (two denitrifying, one sulfate-reducing) and eight anaerobic alkylbenzene degraders (five denitrifying, three sulfate-reducing) were incubated with mixtures of n-alkanes and toluene. Whereas the toluene degradationers formed only the characteristic toluene-derived benzylsuccinate and benzoate, but no n-alkane-derived metabolites, the n-alkane degraders formed toluene-derived benzylsuccinate, 4-phenylbutanoate, phenylacetate and benzoate besides the regular n-alkane-derived (1-methylalkyl)succinates and methyl-branched alkanoates. The co-metabolic conversion of toluene by anaerobic n-alkane degraders to the level of benzoate obviously follows the anaerobic n-alkane degradation pathway with C-skeleton rearrangement and decarboxylation rather than the β-oxidation pathway of anaerobic toluene metabolism. Hence, petroleum-derived aromatic metabolites detectable in anoxic environments may not be exclusively formed by genuine alkylbenzene degraders. In addition, the hitherto largely unexplored fate of fumarate hydrogen during the activation reactions was examined with (2,3-(2) H(2) )fumarate as co-substrate. Deuterium was completely exchanged with hydrogen at the substituted carbon atom (C-2) of the succinate adducts of n-alkanes, whereas it is retained in toluene-derived benzylsuccinate, regardless of the type of enzyme catalysing the fumarate addition reaction.
Collapse
Affiliation(s)
- Ralf Rabus
- Universität Oldenburg, Carl-von-Ossietzky Straße 9-11, 26111 Oldenburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
21
|
Cupples AM. The use of nucleic acid based stable isotope probing to identify the microorganisms responsible for anaerobic benzene and toluene biodegradation. J Microbiol Methods 2011; 85:83-91. [DOI: 10.1016/j.mimet.2011.02.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 02/18/2011] [Accepted: 02/18/2011] [Indexed: 11/26/2022]
|
22
|
Haner A, Hohener P, Zeyer J. Degradation of Trimethylbenzene Isomers by an Enrichment Culture under N(inf2)O-Reducing Conditions. Appl Environ Microbiol 2010; 63:1171-4. [PMID: 16535546 PMCID: PMC1389140 DOI: 10.1128/aem.63.3.1171-1174.1997] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A microbial culture enriched from a diesel fuel-contaminated aquifer was able to grow on 1,3,5-trimethylbenzene (1,3,5-TMB) and 1,2,4-TMB under N(inf2)O-reducing conditions, but it did not degrade 1,2,3-TMB. The oxidation of 1,3,5-TMB to CO(inf2) was coupled to the production of biomass and the reduction of N(inf2)O. N(inf2)O was used to avoid toxic effects caused by NO(inf2)(sup-) accumulation during growth with NO(inf3)(sup-) as the electron acceptor. In addition to 1,3,5-TMB and 1,2,4-TMB, the culture degraded toluene, m-xylene, p-xylene, 3-ethyltoluene, and 4-ethyltoluene.
Collapse
|
23
|
Rabus R, Widdel F. Utilization of Alkylbenzenes during Anaerobic Growth of Pure Cultures of Denitrifying Bacteria on Crude Oil. Appl Environ Microbiol 2010; 62:1238-41. [PMID: 16535290 PMCID: PMC1388828 DOI: 10.1128/aem.62.4.1238-1241.1996] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Four pure cultures of denitrifying bacteria, which had previously been isolated on defined alkylbenzenes, were capable of anaerobic growth with crude oil as the only source of organic substrates. Chemical analyses after growth revealed that the known growth substrates toluene, ethylbenzene, and m-xylene were selectively consumed from the oil. o-Xylene and p-xylene, which as pure compounds did not support growth, were consumed to a lesser extent.
Collapse
|
24
|
Rotaru AE, Probian C, Wilkes H, Harder J. Highly enrichedBetaproteobacteria growing anaerobically withp-xylene and nitrate. FEMS Microbiol Ecol 2010; 71:460-8. [DOI: 10.1111/j.1574-6941.2009.00814.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
25
|
Herrmann S, Vogt C, Fischer A, Kuppardt A, Richnow HH. Characterization of anaerobic xylene biodegradation by two-dimensional isotope fractionation analysis. ENVIRONMENTAL MICROBIOLOGY REPORTS 2009; 1:535-544. [PMID: 23765932 DOI: 10.1111/j.1758-2229.2009.00076.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We determined stable carbon and hydrogen isotope fractionation factors for anaerobic degradation of xylene isomers by several pure and mixed cultures. All cultures initiated xylene degradation by the addition of fumarate to a methyl moiety, as is known from the literature or verified by the presence of methylbenzylsuccinates as metabolic intermediates. Additionally, the A subunit of benzylsuccinate synthase (bssA) was identified in the majority of the cultures by bssA-targeted primers. Xylene degradation was always coupled to a significant carbon and hydrogen isotope fractionation. The values of the apparent kinetic isotope effect (AKIE) for carbon and hydrogen indicate that the cleavage of a carbon-hydrogen bond is an isotope-sensitive step during fumarate addition to xylene isomers. The slopes of the linear regression for hydrogen (Δδ(2) H) versus carbon (Δδ(13) C) discrimination (Λ = Δδ(2) H/Δδ(13) C ≈ εHbulk /εCbulk ) ranged from 12 ± 4 to 29 ± 5 and were comparable to Λ values previously determined for anaerobic toluene degradation. The results suggest that combined carbon and hydrogen isotope fractionation analyses can be used to monitor anaerobic xylene degradation at contaminated sites.
Collapse
Affiliation(s)
- Steffi Herrmann
- Departments of Isotope Biogeochemistry and Environmental Microbiology, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany. Isodetect - Company for Isotope Monitoring, Leipzig, Munich, Germany
| | | | | | | | | |
Collapse
|
26
|
Weelink SAB, van Doesburg W, Saia FT, Rijpstra WIC, Röling WFM, Smidt H, Stams AJM. A strictly anaerobic betaproteobacterium Georgfuchsia toluolica gen. nov., sp. nov. degrades aromatic compounds with Fe(III), Mn(IV) or nitrate as an electron acceptor. FEMS Microbiol Ecol 2009; 70:575-85. [PMID: 19799633 DOI: 10.1111/j.1574-6941.2009.00778.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
A bacterium (strain G5G6) that grows anaerobically with toluene was isolated from a polluted aquifer (Banisveld, the Netherlands). The bacterium uses Fe(III), Mn(IV) and nitrate as terminal electron acceptors for growth on aromatic compounds. The bacterium does not grow on sugars, lactate or acetate. Phylogenetic analysis of the 16S rRNA gene sequence indicated that strain G5G6 belonged to the Betaproteobacteria. Its closest, but only distantly related, cultured relative is Sterolibacterium denitrificans Chol-1S(T) (94.6% similarity of the 16S rRNA genes), a cholesterol-oxidizing, denitrifying bacterium. Strain G5G6 possesses the benzylsuccinate synthase A (bssA) gene encoding the alpha-subunit of Bss, which catalyzes the first step in anaerobic toluene degradation. The deduced BssA amino acid sequence is closely related to those of Azoarcus and Thauera species, which also belong to the Betaproteobacteria. Strain G5G6 is the first toluene-degrading, iron-reducing bacterium that does not belong to the Geobacteraceae within the Deltaproteobacteria. Based on phylogenetic and physiological comparison, strain G5G6 could not be assigned to a described species. Therefore, strain G5G6 (DSMZ 19032(T)=JCM 14632(T)) is a novel taxon of the Betaproteobacteria. We propose the name Georgfuchsia toluolica gen. nov., sp. nov.
Collapse
Affiliation(s)
- Sander A B Weelink
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
27
|
Kasai Y, Kodama Y, Takahata Y, Hoaki T, Watanabe K. Degradative capacities and bioaugmentation potential of an anaerobic benzene-degrading bacterium strain DN11. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2007; 41:6222-6227. [PMID: 17937306 DOI: 10.1021/es062842p] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Azoarcus sp. strain DN11 is a denitrifying bacterium capable of benzene degradation under anaerobic conditions. The present study evaluated strain DN11 for its application to bioaugmentation of benzene-contaminated underground aquifers. Strain DN11 could grow on benzene, toluene, m-xylene, and benzoate as the sole carbon and energy sources under nitrate-reducing conditions, although o- and p-xylenes were transformed in the presence of toluene. Phenol was not utilized under anaerobic conditions. Kinetic analysis of anaerobic benzene degradation estimated its apparent affinity and inhibition constants to be 0.82 and 11 microM, respectively. Benzene-contaminated groundwater taken from a former coal-distillation plant site was anaerobically incubated in laboratory bottles and supplemented with either inorganic nutrients (nitrogen, phosphorus, and nitrate) alone, or the nutrients plus strain DN11, showing that benzene was significantly degraded only when DN11 was introduced. Denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA gene fragments, and quantitative PCR revealed that DN11 decreased after benzene was degraded. Following the decrease in DN11 16S rRNA gene fragments corresponding to bacteria related to Owenweeksia hongkongensis and Pelotomaculum isophthalicum, appeared as strong bands, suggesting possible metabolic interactions in anaerobic benzene degradation. Results suggest that DN11 is potentially useful for degrading benzene that contaminates underground aquifers at relatively low concentrations.
Collapse
Affiliation(s)
- Yuki Kasai
- Marine Biotechnology Institute, 3-75-1 Heita, Kamaishi, 026-0001, Japan, and Taisei Corporation, 344-1 Nase, Totsuka-ku, Yokohama, 245-0051, Japan.
| | | | | | | | | |
Collapse
|
28
|
Gusmão VR, Chinalia FA, Sakamoto IK, Varesche MBA. Performance of a reactor containing denitrifying immobilized biomass in removing ethanol and aromatic hydrocarbons (BTEX) in a short operating period. JOURNAL OF HAZARDOUS MATERIALS 2007; 139:301-9. [PMID: 16872740 DOI: 10.1016/j.jhazmat.2006.06.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Revised: 06/11/2006] [Accepted: 06/12/2006] [Indexed: 05/11/2023]
Abstract
A horizontal-flow anaerobic immobilized biomass reactor (HAIB) containing denitrifying biomass was evaluated with respect to its ability to remove, separately and in a short operating period (30 days), organic matter, nitrate, and the hydrocarbons benzene (41.4 mg L-1), toluene (27.8 mg L-1), ethylbenzene (31.1 mg L-1), o-xylene (28.5 mg L-1), m-xylene (28.4 mg L-1) and p-xylene (32.1 mg L-1). The purified culture, which was grown in the presence of the specific hydrocarbon, was used as the source of cells to be immobilized in the polyurethane foam. After 30 days of operation, the foam was removed and a new immobilized biomass was grown in the presence of another hydrocarbon. The average hydrocarbon removal efficiency attained was 97%. The organic matter, especially ethanol, was removed with an average efficiency of 83% at a mean influent concentration of 1185.0 mg L-1. A concomitant removal of 97% of nitrate was observed for a mean influent concentration of 423.4 mg L-1. The independent removal of each hydrocarbon demonstrated that these contaminants can be biodegraded separately, without the need for a compound to be the primary substrate for the degradation of another. This study proposes the application of the system for treatment of areas contaminated with these compounds, with substitution and formation of a biofilm in a 30-day period.
Collapse
Affiliation(s)
- Valquiria Ribeiro Gusmão
- Laboratory of Biological Processes, Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo (USP), Av. Trabalhador São-carlense 400, São Carlos 13566-590, SP, Brazil.
| | | | | | | |
Collapse
|
29
|
Bhandare R, Calabro M, Coschigano PW. Site-directed mutagenesis of the Thauera aromatica strain T1 tutE tutFDGH gene cluster. Biochem Biophys Res Commun 2006; 346:992-8. [PMID: 16780798 DOI: 10.1016/j.bbrc.2006.05.199] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Accepted: 05/31/2006] [Indexed: 10/24/2022]
Abstract
Benzylsuccinate synthase, encoded by the tutF, tutD, and tutG genes of Thauera aromatica strain T1, is responsible for the first step of anaerobic toluene metabolism. Previous work has shown that these genes are part of the tutE tutFDGH gene cluster and strains carrying a mutation in the tutE, tutF, tutD, or tutG genes are unable to metabolize toluene. In this study, we performed site-directed mutagenesis of the tutE, tutF, and tutG genes and determined that the cysteines at position 72 and 79 of TutE are likely to be critical for the radical activation of benzylsuccinate synthase, while the cysteine alanine at positions 9 and 10 of TutF, and the cysteine at position 29 of TutG are also essential for toluene metabolism. Additionally, we report that the tutH gene is necessary for toluene metabolism and the glycine lysine serine (part of the putative ATP/GTP binding domain) at positions 52-54 of the TutH protein is essential for toluene metabolism.
Collapse
Affiliation(s)
- Reena Bhandare
- Department of Biological Sciences, Ohio University Athens, OH 45701-2979, USA
| | | | | |
Collapse
|
30
|
Gusmão VR, Martins TH, Chinalia FA, Sakamoto IK, HenriqueThiemann O, Varesche MBA. BTEX and ethanol removal in horizontal-flow anaerobic immobilized biomass reactor, under denitrifying condition. Process Biochem 2006. [DOI: 10.1016/j.procbio.2006.02.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
31
|
Abstract
Autotrophic microorganisms have been isolated that are able to derive energy from the oxidation of arsenite [As(III)] to arsenate [As(V)] under aerobic conditions. Based on chemical energetics, microbial oxidation of As(III) can occur in the absence of oxygen, and may be relevant in some environments. Enrichment cultures were established from an arsenic contaminated industrial soil amended with As(III) as the electron donor, inorganic C as the carbon source and nitrate as the electron acceptor. In the active enrichment cultures, oxidation of As(III) was stoichiometrically coupled to the reduction of NO(3) (-). Two autotrophic As(III)-oxidizing strains were isolated that completely oxidized 5 mM As(III) within 7 days under denitrifying conditions. Based on 16S rRNA gene sequencing results, strain DAO1 was 99% related to Azoarcus and strain DAO10 was most closely related to a Sinorhizobium. The nitrous oxide reductase (nosZ) and the RuBisCO Type II (cbbM) genes were successfully amplified from both isolates underscoring their ability to denitrify and fix CO(2) while coupled to As(III) oxidation. Although limited work has been done to examine the diversity of anaerobic autotrophic oxidizers of As(III), this process may be an important component in the biological cycling of arsenic within the environment.
Collapse
Affiliation(s)
- E Danielle Rhine
- Biotechnology Center for Agriculture and the Environment, Cook College, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | | | | |
Collapse
|
32
|
Chakraborty R, O'Connor SM, Chan E, Coates JD. Anaerobic degradation of benzene, toluene, ethylbenzene, and xylene compounds by Dechloromonas strain RCB. Appl Environ Microbiol 2006; 71:8649-55. [PMID: 16332859 PMCID: PMC1317370 DOI: 10.1128/aem.71.12.8649-8655.2005] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dechloromonas strain RCB has been shown to be capable of anaerobic degradation of benzene coupled to nitrate reduction. As a continuation of these studies, the metabolic versatility and hydrocarbon biodegradative capability of this organism were investigated. The results of these revealed that in addition to nitrate, strain RCB could alternatively degrade benzene both aerobically and anaerobically with perchlorate or chlorate [(per)chlorate] as a suitable electron acceptor. Furthermore, with nitrate as the electron acceptor, strain RCB could also utilize toluene, ethylbenzene, and all three isomers of xylene (ortho-, meta-, and para-) as electron donors. While toluene and ethylbenzene were completely mineralized to CO2, strain RCB did not completely mineralize para-xylene but rather transformed it to some as-yet-unidentified metabolite. Interestingly, with nitrate as the electron acceptor, strain RCB degraded benzene and toluene concurrently when the hydrocarbons were added as a mixture and almost 92 microM total hydrocarbons were oxidized within 15 days. The results of these studies emphasize the unique metabolic versatility of this organism, highlighting its potential applicability to bioremediative technologies.
Collapse
Affiliation(s)
- Romy Chakraborty
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
33
|
Langenhoff AA, Brouwers-Ceiler DL, Engelberting JH, Quist JJ, Wolkenfelt JG, Zehnder AJ, Schraa G. Microbial reduction of manganese coupled to toluene oxidation. FEMS Microbiol Ecol 2006. [DOI: 10.1111/j.1574-6941.1997.tb00363.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
34
|
Langenhoff AA, Nijenhuis I, Tan NC, Briglia M, Zehnder AJ, Schraa G. Characterisation of a manganese-reducing, toluene-degrading enrichment culture. FEMS Microbiol Ecol 2006. [DOI: 10.1111/j.1574-6941.1997.tb00428.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
35
|
Abstract
Recent progress in microbiology resulted in the enrichment and isolation of anaerobic bacteria capable of the biodegradation of various hydrocarbons under a variety of electron-accepting conditions. Problems challenging the enrichment and isolation of anaerobic hydrocarbonclastic organisms required new approaches and modifications of conventional microbiological techniques. This chapter summarizes the collective experience accumulated in this area starting from anaerobic sampling precautions and includes all stages of cultivation from the construction of initial incubations to final isolation steps and the evaluation of culture purity.
Collapse
Affiliation(s)
- Irene A Davidova
- Department of Microbiology, University of Oklahoma, Norman 73019, USA
| | | |
Collapse
|
36
|
Mattison RG, Taki H, Harayama S. The soil flagellate Heteromita globosa accelerates bacterial degradation of alkylbenzenes through grazing and acetate excretion in batch culture. MICROBIAL ECOLOGY 2005; 49:142-150. [PMID: 15690226 DOI: 10.1007/s00248-003-0226-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2003] [Accepted: 06/01/2004] [Indexed: 05/24/2023]
Abstract
The impact of grazing by soil flagellates Heteromita globosa on aerobic biodegradation of benzene by Pseudomonas strain PS+ was examined in batch culture. Growth of H. globosa on these bacteria obeyed Monod kinetics (mu(max), 0.17 +/- 0.03 h(-1); K(s), 1.1 +/- 0.2 x 10(7) bacteria mL(-1)) and was optimal at a bacteria/ flagellate ratio of 2000. Carbon mass balance showed that 5.2% of total [ring-U-(14)C]benzene fed to bacteria was subsequently incorporated into flagellate biomass. Growth-inhibiting concentrations (IC50) of alkylbenzenes (benzene, toluene, ethylbenzene) were inversely related with their octanol/ water partitioning coefficients, and benzene was least toxic for bacteria and flagellates with IC50 values of 4392 (+/- 167) microM and 2770 (+/- 653) microM, respectively. The first-order rate constant for benzene degradation (k1, 0.48 +/- 0.12 day(-1)) was unaffected by the presence or absence of flagellates in cultures. However, the rate of benzene degradation by individual bacteria averaged three times higher in the presence of flagellates (0.73 +/- 0.13 fmol cell(-1) h(-1)) than in their absence (0.26 +/- 0.03 fmol cell(-1) h(-1)). Benzene degradation also coincided with higher levels of dissolved oxygen and a higher rate of nitrate reduction in the presence of flagellates (p < 0.02). Grazing by flagellates may have increased the availability of dissolved oxygen to a smaller surviving population of bacteria engaged in the aerobic reactions initiating benzene degradation. In addition, flagellates may also have increased the rate of nitrate reduction through the excretion of acetate as an additional electron donor for these bacteria. Indeed, acetate was shown to progressively accumulate in cultures where flagellates grazed on heat-killed bacteria. This study provided evidence that grazing flagellates stimulate bacterial degradation of alkylbenzenes and provide a link for carbon cycling to consumers at higher trophic levels. This may have important implications for bioremediation processes.
Collapse
Affiliation(s)
- R G Mattison
- Marine Biotechnology Institute Co., Ltd., 3-75-1 Heita, Kamaishi City, Iwate 026-0001, Japan.
| | | | | |
Collapse
|
37
|
Bonin P, Cravo-Laureau C, Michotey V, Hirschler-Réa A. The anaerobic hydrocarbon biodegrading bacteria: An overview. ACTA ACUST UNITED AC 2004. [DOI: 10.1080/00785236.2004.10410232] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
38
|
Coschigano PW, Bishop BJ. Role of benzylsuccinate in the induction of the tutE tutFDGH gene complex of T. aromatica strain T1. FEMS Microbiol Lett 2004; 231:261-6. [PMID: 14987773 DOI: 10.1016/s0378-1097(04)00005-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2003] [Revised: 11/17/2003] [Accepted: 12/22/2003] [Indexed: 10/26/2022] Open
Abstract
Expression of the tutE tutFDGH gene cluster of Thauera aromatica strain T1 was examined by Northern and Western analysis in a wild-type strain and chromosomally deleted strains with or without in-frame deletion plasmids. While expression was observed when the wild-type strain was induced with toluene, various chromosomally deleted strains exhibited little or no expression of the tut genes. In contrast, both wild-type and chromosomally deleted strains expressed the tut genes when induced with benzylsuccinate. We conclude that benzylsuccinate is required for the full induction of the tutE tutFDGH gene cluster of T. aromatica strain T1.
Collapse
Affiliation(s)
- Peter W Coschigano
- Department of Biomedical Sciences, Ohio University, Athens, OH 45701-2979, USA.
| | | |
Collapse
|
39
|
Inhibition of anaerobic microbial o-xylene degradation by toluene in sulfidogenic sediment columns and pure cultures. FEMS Microbiol Ecol 2004; 47:381-6. [DOI: 10.1016/s0168-6496(03)00303-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
40
|
Vogt C, Alfreider A, Lorbeer H, Hoffmann D, Wuensche L, Babel W. Bioremediation of chlorobenzene-contaminated ground water in an in situ reactor mediated by hydrogen peroxide. JOURNAL OF CONTAMINANT HYDROLOGY 2004; 68:121-141. [PMID: 14698874 DOI: 10.1016/s0169-7722(03)00092-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
New in situ reactive barrier technologies were tested nearby a local aquifer in Bitterfeld, Saxonia-Anhalt, Germany, which is polluted mainly by chlorobenzene (CB), in concentrations up to 450 microM. A reactor filled with original aquifer sediment was designed for the microbiological remediation of the ground water by indigenous bacterial communities. Two remediation variants were examined: (a) the degradation of CB under anoxic conditions in the presence of nitrate; (b) the degradation of CB under mixed electron acceptor conditions (oxygen+nitrate) using hydrogen peroxide as the oxygen-releasing compound. Under anoxic conditions, no definite degradation of CB was observed. Adding hydrogen peroxide (2.94 mM) and nitrate (2 mM) led to the disappearance of CB (ca. 150 microM) in the lower part of the reactor, accompanied by a strong increase of the number of cultivable aerobic CB degrading bacteria in reactor water and sediment samples, indicating that CB was degraded mainly by productive bacterial metabolism. Several aerobic CB degrading bacteria, mostly belonging to the genera Pseudomonas and Rhodococcus, were isolated from reactor water and sediments. In laboratory experiments with reactor water, oxygen was rapidly released by hydrogen peroxide, whereas biotic-induced decomposition reactions of hydrogen peroxide were almost four times faster than abiotic-induced decomposition reactions. A clear chemical degradation of CB mediated by hydrogen peroxide was not observed. CB was also completely degraded in the reactor after reducing the hydrogen peroxide concentration to 880 microM. The CB degradation completely collapsed after reducing the hydrogen peroxide concentration to 440 microM. In the following, the hydrogen peroxide concentrations were increased again (to 880 microM, 2.94 mM, and 880 microM, respectively), but the oxygen demand for CB degradation was higher than observed before, indicating a shift in the bacterial population. During the whole experiment, nitrate was uniformly reduced during the flow path in the reactor.
Collapse
Affiliation(s)
- Carsten Vogt
- Department of Environmental Microbiology, UFZ Centre for Environmental Research Leipzig-Halle, Permoserstrasse 15, D-04318, Leipzig, Germany.
| | | | | | | | | | | |
Collapse
|
41
|
Suflita J, Davidova I, Gieg L, Nanny M, Prince R. Chapter 10 Anaerobic hydrocarbon biodegradation and the prospects for microbial enhanced energy production. STUDIES IN SURFACE SCIENCE AND CATALYSIS 2004. [DOI: 10.1016/s0167-2991(04)80151-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
42
|
Abstract
Recent advances in molecular biology have extended our understanding of the metabolic processes related to microbial transformation of petroleum hydrocarbons. The physiological responses of microorganisms to the presence of hydrocarbons, including cell surface alterations and adaptive mechanisms for uptake and efflux of these substrates, have been characterized. New molecular techniques have enhanced our ability to investigate the dynamics of microbial communities in petroleum-impacted ecosystems. By establishing conditions which maximize rates and extents of microbial growth, hydrocarbon access, and transformation, highly accelerated and bioreactor-based petroleum waste degradation processes have been implemented. Biofilters capable of removing and biodegrading volatile petroleum contaminants in air streams with short substrate-microbe contact times (<60 s) are being used effectively. Microbes are being injected into partially spent petroleum reservoirs to enhance oil recovery. However, these microbial processes have not exhibited consistent and effective performance, primarily because of our inability to control conditions in the subsurface environment. Microbes may be exploited to break stable oilfield emulsions to produce pipeline quality oil. There is interest in replacing physical oil desulfurization processes with biodesulfurization methods through promotion of selective sulfur removal without degradation of associated carbon moieties. However, since microbes require an environment containing some water, a two-phase oil-water system must be established to optimize contact between the microbes and the hydrocarbon, and such an emulsion is not easily created with viscous crude oil. This challenge may be circumvented by application of the technology to more refined gasoline and diesel substrates, where aqueous-hydrocarbon emulsions are more easily generated. Molecular approaches are being used to broaden the substrate specificity and increase the rates and extents of desulfurization. Bacterial processes are being commercialized for removal of H(2)S and sulfoxides from petrochemical waste streams. Microbes also have potential for use in removal of nitrogen from crude oil leading to reduced nitric oxide emissions provided that technical problems similar to those experienced in biodesulfurization can be solved. Enzymes are being exploited to produce added-value products from petroleum substrates, and bacterial biosensors are being used to analyze petroleum-contaminated environments.
Collapse
Affiliation(s)
- Jonathan D Van Hamme
- Department of Biological Sciences, The University College of the Cariboo, Kamloops, British Columbia V2C 5N3
| | | | | |
Collapse
|
43
|
Schüth C, Taubald H, Bolaño N, Maciejczyk K. Carbon and hydrogen isotope effects during sorption of organic contaminants on carbonaceous materials. JOURNAL OF CONTAMINANT HYDROLOGY 2003; 64:269-281. [PMID: 12814884 DOI: 10.1016/s0169-7722(02)00216-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Stable carbon and hydrogen isotopes can be an efficient means to validate biodegradation of organic contaminants in groundwater since it results in an isotopic fractionation. A prerequisite in applying this method in the field is the proof that other processes decreasing the contaminant concentration are conservative with respect to isotope effects. In this paper we show for carbon isotopes of halogenated hydrocarbon compounds [trichloroethene (TCE), cis-dichloroethene (c-DCE), vinylchloride (VC)] and carbon and hydrogen isotopes of BTEX compounds (benzene, toluene, p-xylene) that no significant fractionation occurs during equilibrium sorption onto activated carbon, lignite coke and lignite. In general, effects were in the range of the reproducibility limit of the analytical instrument (0.5 per thousand for delta13C, and 8 per thousand for delta2H). This observation was made for fractions sorbed of less than 5% to more than 95%. Also for rate-limited sorption of TCE onto activated carbon, no significant fractionation in carbon isotopes could be observed. These findings support the assumption that for these classes of compounds, sorption processes in aquifer systems are conservative with respect to isotope effects.
Collapse
Affiliation(s)
- Christoph Schüth
- Applied Geology Group, Center for Applied Geoscience, University of Tübingen, Sigwartstr. 10, D-72076 Tübingen, Germany.
| | | | | | | |
Collapse
|
44
|
Reusser DE, Field JA. Determination of benzylsuccinic acid in gasoline-contaminated groundwater by solid-phase extraction coupled with gas chromatography-mass spectrometry. J Chromatogr A 2002; 953:215-25. [PMID: 12058935 DOI: 10.1016/s0021-9673(02)00107-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Benzylsuccinic acid (BSA) and methylbenzylsuccinic acid (methyl-BSA) are unambiguous biotransformation products resulting from anaerobic toluene and xylene biodegradation, respectively. A solid-phase extraction method based on polystyrene-divinylbenzene sorbent was developed for the quantitative BSA determination in groundwater samples as an alternative to liquid-liquid extraction. Gas chromatography coupled with mass spectrometry was used for separation and detection. The recovery from spiked 11 groundwater samples was 88 to 100%. The precision of the method, indicated by the relative standard deviation, was +/- 4% and the method detection limit was 0.2 microg/l. The concentration of BSA and methyl-BSA in groundwater samples from anaerobic BTEX (benzene, toluene, ethylbenzene and xylenes)-contaminated sites ranged from below the detection limit (3 microg/l) to 155 microg/l.
Collapse
Affiliation(s)
- D E Reusser
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis 97331, USA
| | | |
Collapse
|
45
|
Bae HS, Yamagishi T, Suwa Y. Evidence for degradation of 2-chlorophenol by enrichment cultures under denitrifying conditions. MICROBIOLOGY (READING, ENGLAND) 2002; 148:221-227. [PMID: 11782514 DOI: 10.1099/00221287-148-1-221] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Although chlorophenol (CP) degradation has been studied, no bacterium responsible for degradation of CP under denitrifying conditions has been isolated. Moreover, little substantial evidence for anaerobic degradation of CPs coupled with denitrification is available even for mixed cultures. Degradation of CP [2-CP, 3-CP, 4-CP, 2,4-dichlorophenol (DCP) or 2,6-DCP] under denitrifying conditions was examined in anaerobic batch culture inoculated with activated sludge. Although 3-CP, 4-CP, 2,4-DCP and 2,6-DCP were not stably degraded, 2-CP was degraded and its degradation capability was sustained in a subculture. However, the rate of 2-CP degradation was not significantly enhanced by subculturing. In 2-CP-degrading cultures, nitrate was consumed stoichiometrically and concomitantly during 2-CP degradation, and a dechlorination intermediate was not detected, suggesting that 2-CP degradation was coupled with nitrate reduction. A 2-CP-degrading enrichment culture degraded 2-CP in the presence of nitrate, but did not in the absence of nitrate or the presence of sulfate. This suggests that the enrichment culture strictly requires nitrate for degradation of 2-CP. The apparent specific growth rate of the 2-CP degrading species was 0.0139 d(-1). Thus the apparent doubling time of the 2-CP-degrading population in the enrichment culture was greater than 50 d, which may explain difficulty in enrichment and isolation of micro-organisms responsible for CP degradation under denitrifying conditions.
Collapse
Affiliation(s)
- Hee-Sung Bae
- National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan1
| | - Takao Yamagishi
- National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan1
| | - Yuichi Suwa
- National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan1
| |
Collapse
|
46
|
Achong GR, Rodriguez AM, Spormann AM. Benzylsuccinate synthase of Azoarcus sp. strain T: cloning, sequencing, transcriptional organization, and its role in anaerobic toluene and m-xylene mineralization. J Bacteriol 2001; 183:6763-70. [PMID: 11698363 PMCID: PMC95515 DOI: 10.1128/jb.183.23.6763-6770.2001] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biochemical studies in Azoarcus sp. strain T have demonstrated that anaerobic oxidation of both toluene and m-xylene is initiated by addition of the aromatic hydrocarbon to fumarate, forming benzylsuccinate and 3-methyl benzylsuccinate, respectively. Partially purified benzylsuccinate synthase was previously shown to catalyze both of these addition reactions. In this study, we identified and sequenced the genes encoding benzylsuccinate synthase from Azoarcus sp. strain T and examined the role of this enzyme in both anaerobic toluene and m-xylene mineralization. Based on reverse transcription-PCR experiments and transcriptional start site mapping, we found that the structural genes encoding benzylsuccinate synthase, bssCAB, together with two additional genes, bssD and bssE, were organized in an operon in the order bssDCABE. bssD is believed to encode an activating enzyme, similar in function to pyruvate formate-lyase activase. bssE shows homology to tutH from Thauera aromatica strain T1, whose function is currently unknown. A second operon that is upstream of bssDCABE and divergently transcribed contains two genes, tdiS and tdiR. The predicted amino acid sequences show similarity to sensor kinase and response regulator proteins of prokaryotic two-component regulatory systems. A chromosomal null bssA mutant was constructed (the bssA gene encodes the alpha-subunit of benzylsuccinate synthase). This bssA null mutant strain was unable to grow under denitrifying conditions on either toluene or m-xylene, while growth on benzoate was unaffected. The growth phenotype of the DeltabssA mutant could be rescued by reintroducing bssA in trans. These results demonstrate that benzylsuccinate synthase catalyzes the first step in anaerobic mineralization of both toluene and m-xylene.
Collapse
Affiliation(s)
- G R Achong
- Environmental Engineering and Science, Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305-4020, USA
| | | | | |
Collapse
|
47
|
Pelz O, Chatzinotas A, Zarda-Hess A, Abraham WR, Zeyer J. Tracing toluene-assimilating sulfate-reducing bacteria using 13C-incorporation in fatty acids and whole-cell hybridization. FEMS Microbiol Ecol 2001. [DOI: 10.1111/j.1574-6941.2001.tb00890.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
48
|
Leutwein C, Heider J. Succinyl-CoA:(R)-benzylsuccinate CoA-transferase: an enzyme of the anaerobic toluene catabolic pathway in denitrifying bacteria. J Bacteriol 2001; 183:4288-95. [PMID: 11418570 PMCID: PMC95319 DOI: 10.1128/jb.183.14.4288-4295.2001] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2000] [Accepted: 04/30/2001] [Indexed: 11/20/2022] Open
Abstract
Anaerobic microbial toluene catabolism is initiated by addition of fumarate to the methyl group of toluene, yielding (R)-benzylsuccinate as first intermediate, which is further metabolized via beta-oxidation to benzoyl-coenzyme A (CoA) and succinyl-CoA. A specific succinyl-CoA:(R)-benzylsuccinate CoA-transferase activating (R)-benzylsuccinate to the CoA-thioester was purified and characterized from Thauera aromatica. The enzyme is fully reversible and forms exclusively the 2-(R)-benzylsuccinyl-CoA isomer. Only some close chemical analogs of the substrates are accepted by the enzyme: succinate was partially replaced by maleate or methylsuccinate, and (R)-benzylsuccinate was replaced by methylsuccinate, benzylmalonate, or phenylsuccinate. In contrast to all other known CoA-transferases, the enzyme consists of two subunits of similar amino acid sequences and similar sizes (44 and 45 kDa) in an alpha(2)beta(2) conformation. Identity of the subunits with the products of the previously identified toluene-induced bbsEF genes was confirmed by determination of the exact masses via electrospray-mass spectrometry. The deduced amino acid sequences resemble those of only two other characterized CoA-transferases, oxalyl-CoA:formate CoA-transferase and (E)-cinnamoyl-CoA:(R)-phenyllactate CoA-transferase, which represent a new family of CoA-transferases. As suggested by kinetic analysis, the reaction mechanism of enzymes of this family apparently involves formation of a ternary complex between the enzyme and the two substrates.
Collapse
Affiliation(s)
- C Leutwein
- Mikrobiologie, Institut für Biologie II, Universität Freiburg, 79104 Freiburg, Germany
| | | |
Collapse
|
49
|
Abstract
Saturated and aromatic hydrocarbons are wide-spread in our environment. These compounds exhibit low chemical reactivity and for many decades were thought to undergo biodegradation only in the presence of free oxygen. During the past decade, however, an increasing number of microorganisms have been detected that degrade hydrocarbons under strictly anoxic conditions.
Collapse
Affiliation(s)
- F Widdel
- Max-Planck-Institut für Marine Mikrobiologie, Celsiusstrasse 1, D-28359, Bremen, Germany.
| | | |
Collapse
|
50
|
Krieger CJ, Roseboom W, Albracht SP, Spormann AM. A stable organic free radical in anaerobic benzylsuccinate synthase of Azoarcus sp. strain T. J Biol Chem 2001; 276:12924-7. [PMID: 11278506 DOI: 10.1074/jbc.m009453200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The novel enzyme benzylsuccinate synthase initiates anaerobic toluene metabolism by catalyzing the addition of toluene to fumarate, forming benzylsuccinate. Based primarily on its sequence similarity to the glycyl radical enzymes, pyruvate formate-lyase and anaerobic ribonucleotide reductase, benzylsuccinate synthase was speculated to be a glycyl radical enzyme. In this report we use EPR spectroscopy to demonstrate for the first time that active benzylsuccinate synthase from the denitrifying bacterium Azoarcus sp. strain T harbors an oxygen-sensitive stable organic free radical. The EPR signal of the radical was centered at g = 2.0021 and was characterized by a major 2-fold splitting of about 1.5 millitesla. The strong similarities between the EPR signal of the benzylsuccinate synthase radical and that of the glycyl radicals of pyruvate formate-lyase and anaerobic ribonucleotide reductase provide evidence that the benzylsuccinate synthase radical is located on a glycine residue, presumably glycine 828 in Azoarcus sp. strain T benzylsuccinate synthase.
Collapse
Affiliation(s)
- C J Krieger
- Department of Civil and Environmental Engineering, Environmental Engineering and Science, Stanford University, Stanford, California 94305, USA
| | | | | | | |
Collapse
|