1
|
Fasken MB, Corbett AH, Stewart M. Structure-function relationships in the Nab2 polyadenosine-RNA binding Zn finger protein family. Protein Sci 2019; 28:513-523. [PMID: 30578643 PMCID: PMC6371209 DOI: 10.1002/pro.3565] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 12/15/2018] [Accepted: 12/17/2018] [Indexed: 12/12/2022]
Abstract
The poly(A) RNA binding Zn finger ribonucleoprotein Nab2 functions to control the length of 3' poly(A) tails in Saccharomyces cerevisiae as well as contributing to the integration of the nuclear export of mature mRNA with preceding steps in the nuclear phase of the gene expression pathway. Nab2 is constructed from an N-terminal PWI-fold domain, followed by QQQP and RGG motifs and then seven CCCH Zn fingers. The nuclear pore-associated proteins Gfd1 and Mlp1 bind to opposite sides of the Nab2 N-terminal domain and function in the nuclear export of mRNA, whereas the Zn fingers, especially fingers 5-7, bind to A-rich regions of mature transcripts and function to regulate poly(A) tail length as well as mRNA compaction prior to nuclear export. Nab2 Zn fingers 5-7 have a defined spatial arrangement, with fingers 5 and 7 arranged on one side of the cluster and finger 6 on the other side. This spatial arrangement facilitates the dimerization of Nab2 when bound to adenine-rich RNAs and regulates both the termination of 3' polyadenylation and transcript compaction. Nab2 also functions to coordinate steps in the nuclear phase of the gene expression pathway, such as splicing and polyadenylation, with the generation of mature mRNA and its nuclear export. Nab2 orthologues in higher Eukaryotes have similar domain structures and play roles associated with the regulation of splicing and polyadenylation. Importantly, mutations in the gene encoding the human Nab2 orthologue ZC3H14 and cause intellectual disability.
Collapse
Affiliation(s)
- Milo B Fasken
- Department of Biology, Emory University, Atlanta, Georgia 30322
| | - Anita H Corbett
- Department of Biology, Emory University, Atlanta, Georgia 30322
| | - Murray Stewart
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
2
|
Soheilypour M, Mofrad MRK. Regulation of RNA-binding proteins affinity to export receptors enables the nuclear basket proteins to distinguish and retain aberrant mRNAs. Sci Rep 2016; 6:35380. [PMID: 27805000 PMCID: PMC5090210 DOI: 10.1038/srep35380] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/23/2016] [Indexed: 02/06/2023] Open
Abstract
Export of messenger ribonucleic acids (mRNAs) into the cytoplasm is a fundamental step in gene regulation processes, which is meticulously quality controlled by highly efficient mechanisms in eukaryotic cells. Yet, it remains unclear how the aberrant mRNAs are recognized and retained inside the nucleus. Using a new modelling approach for complex systems, namely the agent-based modelling (ABM) approach, we develop a minimal model of the mRNA quality control (QC) mechanism. Our results demonstrate that regulation of the affinity of RNA-binding proteins (RBPs) to export receptors along with the weak interaction between the nuclear basket protein (Mlp1 or Tpr) and RBPs are the minimum requirements to distinguish and retain aberrant mRNAs. Our results show that the affinity between Tpr and RBPs is optimized to maximize the retention of aberrant mRNAs. In addition, we demonstrate how the length of mRNA affects the QC process. Since longer mRNAs spend more time in the nuclear basket to form a compact conformation and initiate their export, nuclear basket proteins could more easily capture and retain them inside the nucleus.
Collapse
Affiliation(s)
- M. Soheilypour
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, CA, 94720, USA
| | - M. R. K. Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, CA, 94720, USA
- Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
3
|
Niepel M, Molloy KR, Williams R, Farr JC, Meinema AC, Vecchietti N, Cristea IM, Chait BT, Rout MP, Strambio-De-Castillia C. The nuclear basket proteins Mlp1p and Mlp2p are part of a dynamic interactome including Esc1p and the proteasome. Mol Biol Cell 2013; 24:3920-38. [PMID: 24152732 PMCID: PMC3861087 DOI: 10.1091/mbc.e13-07-0412] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mlp1p and Mlp2p form the basket of the yeast nuclear pore complex (NPC) and contribute to NPC positioning, nuclear stability, and nuclear envelope morphology. The Mlps also embed the NPC within an extended interactome, which includes protein complexes involved in mRNP biogenesis, silencing, spindle organization, and protein degradation. The basket of the nuclear pore complex (NPC) is generally depicted as a discrete structure of eight protein filaments that protrude into the nucleoplasm and converge in a ring distal to the NPC. We show that the yeast proteins Mlp1p and Mlp2p are necessary components of the nuclear basket and that they also embed the NPC within a dynamic protein network, whose extended interactome includes the spindle organizer, silencing factors, the proteasome, and key components of messenger ribonucleoproteins (mRNPs). Ultrastructural observations indicate that the basket reduces chromatin crowding around the central transporter of the NPC and might function as a docking site for mRNP during nuclear export. In addition, we show that the Mlps contribute to NPC positioning, nuclear stability, and nuclear envelope morphology. Our results suggest that the Mlps are multifunctional proteins linking the nuclear transport channel to multiple macromolecular complexes involved in the regulation of gene expression and chromatin maintenance.
Collapse
Affiliation(s)
- Mario Niepel
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115 Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, Rockefeller University, New York, NY 10065 Laboratory of Cellular and Structural Biology, Rockefeller University, New York, NY 10065 Institute for Research in Biomedicine, 6500 Bellinzona, Switzerland Istituto Cantonale di Microbiologia, 6500 Bellinzona, Switzerland Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Bukata L, Parker SL, D'Angelo MA. Nuclear pore complexes in the maintenance of genome integrity. Curr Opin Cell Biol 2013; 25:378-86. [PMID: 23567027 DOI: 10.1016/j.ceb.2013.03.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/20/2013] [Accepted: 03/13/2013] [Indexed: 11/26/2022]
Abstract
Maintaining genome integrity is crucial for successful organismal propagation and for cell and tissue homeostasis. Several processes contribute to safeguarding the genomic information of cells. These include accurate replication of genetic information, detection and repair of DNA damage, efficient segregation of chromosomes, protection of chromosome ends, and proper organization of genome architecture. Interestingly, recent evidence shows that nuclear pore complexes, the channels connecting the nucleus with the cytoplasm, play important roles in these processes suggesting that these multiprotein platforms are key regulators of genome integrity.
Collapse
Affiliation(s)
- Lucas Bukata
- Cardiovascular Research Institute, Biochemistry and Biophysics Department, University of California San Francisco, San Francisco, CA 94158, United States
| | | | | |
Collapse
|
5
|
Pan X, Lei B, Zhou N, Feng B, Yao W, Zhao X, Yu Y, Lu H. Identification of novel genes involved in DNA damage response by screening a genome-wide Schizosaccharomyces pombe deletion library. BMC Genomics 2012; 13:662. [PMID: 23173672 PMCID: PMC3536581 DOI: 10.1186/1471-2164-13-662] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 10/24/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND DNA damage response (DDR) plays pivotal roles in maintaining genome integrity and stability. An effective DDR requires the involvement of hundreds of genes that compose a complicated network. Because DDR is highly conserved in evolution, studies in lower eukaryotes can provide valuable information to elucidate the mechanism in higher organisms. Fission yeast (Schizosaccharomyces pombe) has emerged as an excellent model for DDR research in recent years. To identify novel genes involved in DDR, we screened a genome-wide S. pombe haploid deletion library against six different DNA damage reagents. The library covered 90.5% of the nonessential genes of S. pombe. RESULTS We have identified 52 genes that were actively involved in DDR. Among the 52 genes, 20 genes were linked to DDR for the first time. Flow cytometry analysis of the repair defective mutants revealed that most of them exhibited a defect in cell cycle progression, and some caused genome instability. Microarray analysis and genetic complementation assays were carried out to characterize 6 of the novel DDR genes in more detail. Data suggested that SPBC2A9.02 and SPAC27D7.08c were required for efficient DNA replication initiation because they interacted genetically with DNA replication initiation proteins Abp1 and Abp2. In addition, deletion of sgf73+, meu29+, sec65+ or pab1+ caused improper cytokinesis and DNA re-replication, which contributed to the diploidization in the mutants. CONCLUSIONS A genome-wide screen of genes involved in DDR emphasized the key role of cell cycle control in the DDR network. Characterization of novel genes identified in the screen helps to elucidate the mechanism of the DDR network and provides valuable clues for understanding genome stability in higher eukaryotes.
Collapse
Affiliation(s)
- Xian Pan
- State Key Laboratory of Genetic Engineering, School of Life Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, China
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Soucek S, Corbett AH, Fasken MB. The long and the short of it: the role of the zinc finger polyadenosine RNA binding protein, Nab2, in control of poly(A) tail length. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1819:546-54. [PMID: 22484098 PMCID: PMC3345082 DOI: 10.1016/j.bbagrm.2012.03.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 03/01/2012] [Accepted: 03/02/2012] [Indexed: 11/23/2022]
Abstract
In eukaryotic cells, addition of poly(A) tails to transcripts by 3'-end processing/polyadenylation machinery is a critical step in gene expression. The length of the poly(A) tail influences the stability, nuclear export and translation of mRNA transcripts. Control of poly(A) tail length is thus an important mechanism to regulate the abundance and ultimate translation of transcripts. Understanding the global regulation of poly(A) tail length will require dissecting the contributions of enzymes, regulatory factors, and poly(A) binding proteins (Pabs) that all cooperate to regulate polyadenylation. A recent addition to the Pab family is the CCCH-type zinc finger class of Pabs that includes S. cerevisiae Nab2 and its human counterpart, ZC3H14. In S. cerevisiae, Nab2 is an essential nuclear Pab implicated in both poly(A) RNA export from the nucleus and control of poly(A) tail length. Consistent with an important role in regulation of poly(A) tail length, depletion of Nab2 from yeast cells results in hyperadenylation of poly(A) RNA. In this review, we focus on the role of Nab2 in poly(A) tail length control and speculate on potential mechanisms by which Nab2 could regulate poly(A) tail length based on reported physical and genetic interactions. We present models, illustrating how Nab2 could regulate poly(A) tail length by limiting polyadenylation and/or enhancing trimming. Given that mutation of the gene encoding the human Nab2 homologue, ZC3H14, causes a form of autosomal recessive intellectual disability, we also speculate on how mutations in a gene encoding a ubiquitously expressed Pab lead specifically to neurological defects. This article is part of a Special Issue entitled: Nuclear Transport and RNA Processing.
Collapse
Affiliation(s)
- Sharon Soucek
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Anita H. Corbett
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Milo B. Fasken
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
7
|
Li F, Zhai YP, Tang YM, Wang LP, Wan PJ. Identification of a novel partner gene, TPR, fused to FGFR1 in 8p11 myeloproliferative syndrome. Genes Chromosomes Cancer 2012; 51:890-7. [DOI: 10.1002/gcc.21973] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 04/21/2012] [Indexed: 11/09/2022] Open
|
8
|
Ben-Efraim I, Frosst PD, Gerace L. Karyopherin binding interactions and nuclear import mechanism of nuclear pore complex protein Tpr. BMC Cell Biol 2009; 10:74. [PMID: 19835572 PMCID: PMC2770460 DOI: 10.1186/1471-2121-10-74] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Accepted: 10/16/2009] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Tpr is a large protein with an extended coiled-coil domain that is localized within the nuclear basket of the nuclear pore complex. Previous studies 1 involving antibody microinjection into mammalian cells suggested a role for Tpr in nuclear export of proteins via the CRM1 export receptor. In addition, Tpr was found to co-immunoprecipitate with importins alpha and beta from Xenopus laevis egg extracts 2, although the function of this is unresolved. Yeast Mlp1p and Mlp2p, which are homologous to vertebrate Tpr, have been implicated in mRNA surveillance to retain unspliced mRNAs in the nucleus34. To augment an understanding of the role of Tpr in nucleocytoplasmic trafficking, we explored the interactions of recombinant Tpr with the karyopherins CRM1, importin beta and importin alpha by solid phase binding assays. We also investigated the conditions required for nuclear import of Tpr using an in vitro assay. RESULTS We found that Tpr binds strongly and specifically to importin alpha, importin beta, and a CRM1 containing trimeric export complex, and that the binding sites for importins alpha and beta are distinct. We also determined that the nuclear import of Tpr is dependent on cytosolic factors and energy and is efficiently mediated by the importin alpha/beta import pathway. CONCLUSION Based on the binding and nuclear import assays, we propose that Tpr is imported into the nucleus by the importin alpha/beta heterodimer. In addition, we suggest that Tpr can serve as a nucleoporin binding site for importin beta during import of importin beta cargo complexes and/or importin beta recycling. Our finding that Tpr bound preferentially to CRM1 in an export complex strengthens the notion that Tpr is involved in protein export.
Collapse
Affiliation(s)
- Iris Ben-Efraim
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Phyllis D Frosst
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- National Human Genome Research Institute, National Institutes of Health Bethesda, Maryland 20892, USA
| | - Larry Gerace
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
9
|
Fasken MB, Stewart M, Corbett AH. Functional significance of the interaction between the mRNA-binding protein, Nab2, and the nuclear pore-associated protein, Mlp1, in mRNA export. J Biol Chem 2008; 283:27130-43. [PMID: 18682389 PMCID: PMC2555995 DOI: 10.1074/jbc.m803649200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Revised: 07/29/2008] [Indexed: 11/06/2022] Open
Abstract
Nuclear export of mRNA requires several key mRNA-binding proteins that recognize and remodel the mRNA and target it for export via interactions with the nuclear pore complex. In Saccharomyces cerevisiae, the shuttling heterogeneous nuclear ribonucleoprotein, Nab2, which is essential for mRNA export, specifically recognizes poly(A) RNA and binds to the nuclear pore-associated protein, myosin-like protein 1 (Mlp1), which functions in mRNA export and quality control. Specifically, the N-terminal domain of Nab2 (Nab2-N; residues 1-97) interacts directly with the C-terminal globular domain of Mlp1 (CT-Mlp1: residues 1490-1875). Recent structural and binding studies focused on Nab2-N have shown that Nab2-N contains a hydrophobic patch centered on Phe(73) that is critical for interaction with Mlp1. Engineered amino acid changes within this patch disrupt the Nab2/Mlp1 interaction in vitro. Given the importance of Nab2 and Mlp1 to mRNA export, we have examined the Nab2/Mlp1 interaction in greater detail and analyzed the functional consequences of disrupting the interaction in vivo. We find that the Nab2-binding domain of Mlp1 (Mlp1-NBD) maps to a 183-residue region (residues 1586-1768) within CT-Mlp1, binds directly to Nab2 with micromolar affinity, and confers nuclear accumulation of poly(A) RNA. Furthermore, we show that cells expressing a Nab2 F73D mutant that cannot interact with Mlp1 exhibit nuclear accumulation of poly(A) RNA and that this nab2 F73D mutant genetically interacts with alleles of two essential mRNA export genes, MEX67 and YRA1. These data provide in vivo evidence for a model of mRNA export in which Nab2 is important for targeting mRNAs to the nuclear pore for export.
Collapse
Affiliation(s)
- Milo B Fasken
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
10
|
Grant RP, Marshall NJ, Yang JC, Fasken MB, Kelly SM, Harreman MT, Neuhaus D, Corbett AH, Stewart M. Structure of the N-terminal Mlp1-binding domain of the Saccharomyces cerevisiae mRNA-binding protein, Nab2. J Mol Biol 2007; 376:1048-59. [PMID: 18190927 PMCID: PMC2728203 DOI: 10.1016/j.jmb.2007.11.087] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Revised: 11/21/2007] [Accepted: 11/28/2007] [Indexed: 12/25/2022]
Abstract
Nuclear abundant poly(A) RNA-binding protein 2 (Nab2) is an essential yeast heterogeneous nuclear ribonucleoprotein that modulates both mRNA nuclear export and poly(A) tail length. The N-terminal domain of Nab2 (residues 1-97) mediates interactions with both the C-terminal globular domain of the nuclear pore-associated protein, myosin-like protein 1 (Mlp1), and the mRNA export factor, Gfd1. The solution and crystal structures of the Nab2 N-terminal domain show a primarily helical fold that is analogous to the PWI fold found in several other RNA-binding proteins. In contrast to other PWI-containing proteins, we find no evidence that the Nab2 N-terminal domain binds to nucleic acids. Instead, this domain appears to mediate protein:protein interactions that facilitate the nuclear export of mRNA. The Nab2 N-terminal domain has a distinctive hydrophobic patch centered on Phe73, consistent with this region of the surface being a protein:protein interaction site. Engineered mutations within this hydrophobic patch attenuate the interaction with the Mlp1 C-terminal domain but do not alter the interaction with Gfd1, indicating that this patch forms a crucial component of the interface between Nab2 and Mlp1.
Collapse
Affiliation(s)
- Richard P Grant
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Hattier T, Andrulis ED, Tartakoff AM. Immobility, inheritance and plasticity of shape of the yeast nucleus. BMC Cell Biol 2007; 8:47. [PMID: 17996101 PMCID: PMC2222239 DOI: 10.1186/1471-2121-8-47] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Accepted: 11/09/2007] [Indexed: 01/11/2023] Open
Abstract
Background Since S. cerevisiae undergoes closed mitosis, the nuclear envelope of the daughter nucleus is continuous with that of the maternal nucleus at anaphase. Nevertheless, several constitutents of the maternal nucleus are not present in the daughter nucleus. The present study aims to identify proteins which impact the shape of the yeast nucleus and to learn whether modifications of shape are passed on to the next mitotic generation. The Esc1p protein of S. cerevisiae localizes to the periphery of the nucleoplasm, can anchor chromatin, and has been implicated in targeted silencing both at telomeres and at HMR. Results Upon increased Esc1p expression, cell division continues and dramatic elaborations of the nuclear envelope extend into the cytoplasm. These "escapades" include nuclear pores and associate with the nucleolus, but exclude chromatin. Escapades are not inherited by daughter nuclei. This exclusion reflects their relative immobility, which we document in studies of prezygotes. Moreover, excess Esc1p affects the levels of multiple transcripts, not all of which originate at telomere-proximal loci. Unlike Esc1p and the colocalizing protein, Mlp1p, overexpression of selected proteins of the inner nuclear membrane is toxic. Conclusion Esc1p is the first non-membrane protein of the nuclear periphery which – like proteins of the nuclear lamina of higher eukaryotes – can modify the shape of the yeast nucleus. The elaborations of the nuclear envelope ("escapades") which appear upon induction of excess Esc1p are not inherited during mitotic growth. The lack of inheritance of such components could help sustain cell growth when parental nuclei have acquired potentially deleterious characteristics.
Collapse
Affiliation(s)
- Thomas Hattier
- Cell Biology Program, Case Western Reserve University, 10700 Euclid Avenue, Cleveland, OH, 44106 USA.
| | | | | |
Collapse
|
12
|
Jacob Y, Mongkolsiriwatana C, Veley KM, Kim SY, Michaels SD. The nuclear pore protein AtTPR is required for RNA homeostasis, flowering time, and auxin signaling. PLANT PHYSIOLOGY 2007; 144:1383-90. [PMID: 17535820 PMCID: PMC1914142 DOI: 10.1104/pp.107.100735] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Nuclear pore complexes (NPCs) mediate the transport of RNA and other cargo between the nucleus and the cytoplasm. In vertebrates, the NPC protein TRANSLOCATED PROMOTER REGION (TPR) is associated with the inner filaments of the nuclear basket and is thought to serve as a scaffold for the assembly of transport machinery. In a screen for mutants that suppress the expression of the floral inhibitor FLOWERING LOCUS C, we identified lesions in the Arabidopsis (Arabidopsis thaliana) homolog of TPR (AtTPR). attpr mutants exhibit early-flowering and other pleiotropic phenotypes. A possible explanation for these developmental defects is that attpr mutants exhibit an approximately 8-fold increase in nuclear polyA RNA. Thus AtTPR is required for the efficient export of RNA from the nucleus. Microarray analysis shows that, in wild type, transcript abundance in the nuclear and total RNA pools are highly correlated; whereas, in attpr mutants, a significantly larger fraction of transcripts is enriched in either the nuclear or total pool. Thus AtTPR is required for homeostasis between nuclear and cytoplasmic RNA. We also show that the effects of AtTPR on small RNA abundance and auxin signaling are similar to that of two other NPC-associated proteins, HASTY (HST) and SUPPRESSOR OF AUXIN RESISTANCE3 (SAR3). This suggests that AtTPR, HST, and SAR3 may play related roles in the function of the nuclear pore.
Collapse
Affiliation(s)
- Yannick Jacob
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | | | | | | |
Collapse
|
13
|
Abstract
Production of mature mRNAs that encode functional proteins consists of a highly complex pathway of synthesis, processing and export. Along this pathway, the mRNA transcript is scrutinized by quality control machinery at numerous steps. Such extensive RNA surveillance ensures that only correctly processed mature mRNAs are translated and precludes production of aberrant transcripts that could encode mutant or possibly deleterious proteins.
Collapse
Affiliation(s)
- Milo B Fasken
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, NE, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
14
|
Zhao X, Blobel G. A SUMO ligase is part of a nuclear multiprotein complex that affects DNA repair and chromosomal organization. Proc Natl Acad Sci U S A 2005; 102:4777-82. [PMID: 15738391 PMCID: PMC555716 DOI: 10.1073/pnas.0500537102] [Citation(s) in RCA: 351] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Through a genetic screen using myosin-like protein strains mlp1Delta mlp2Delta and biochemical purification, we identified a complex of eight proteins, each required for growth and DNA repair in Saccharomyces cerevisiae. Among the subunits are Mms21 that contains a putative Siz/PIAS (protein inhibitor of activated signal transducer and activator of transcription) RING domain characteristic of small ubiquitin-like modifier (SUMO) ligases, two structural-maintenance-of-chromosome (Smc) proteins, Smc5 and Smc6, and a protein that contains an ubiquitin ligase signature domain. We show that these proteins colocalized to several distinct nuclear foci. Biochemical and genetic data demonstrated that Mms21 indeed functions as a SUMO ligase and that this activity requires the Siz/PIAS (protein inhibitor of activated signal transducer and activator of transcription) RING domain. The substrates for this SUMO ligase include a subunit of the octameric complex, Smc5, and the DNA repair protein Yku70. We further show that the abolition of the SUMO E3 activity of Mms21 leads to such disparate phenotypes as DNA damage sensitivity, defects in nucleolar integrity and telomere clustering, silencing, and length regulation. We propose that Mms21 sumoylates proteins involved in these diverse processes and that the other members of the complex, particularly Smc5/6, facilitate proper substrate sumoylation by localizing Mms21 to specific chromosomal regions.
Collapse
Affiliation(s)
- Xiaolan Zhao
- Laboratory of Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | |
Collapse
|
15
|
Lei EP, Stern CA, Fahrenkrog B, Krebber H, Moy TI, Aebi U, Silver PA. Sac3 is an mRNA export factor that localizes to cytoplasmic fibrils of nuclear pore complex. Mol Biol Cell 2003; 14:836-47. [PMID: 12631707 PMCID: PMC151563 DOI: 10.1091/mbc.e02-08-0520] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In eukaryotes, mRNAs are transcribed in the nucleus and exported to the cytoplasm for translation to occur. Messenger RNAs complexed with proteins referred to as ribonucleoparticles are recognized for nuclear export in part by association with Mex67, a key Saccharomyces cerevisiae mRNA export factor and homolog of human TAP/NXF1. Mex67, along with its cofactor Mtr2, is thought to promote ribonucleoparticle translocation by interacting directly with components of the nuclear pore complex (NPC). Herein, we show that the nuclear pore-associated protein Sac3 functions in mRNA export. Using a mutant allele of MTR2 as a starting point, we have identified a mutation in SAC3 in a screen for synthetic lethal interactors. Loss of function of SAC3 causes a strong nuclear accumulation of mRNA and synthetic lethality with a number of mRNA export mutants. Furthermore, Sac3 can be coimmunoprecipitated with Mex67, Mtr2, and other factors involved in mRNA export. Immunoelectron microscopy analysis shows that Sac3 localizes exclusively to cytoplasmic fibrils of the NPC. Finally, Mex67 accumulates at the nuclear rim when SAC3 is mutated, suggesting that Sac3 functions in Mex67 translocation through the NPC.
Collapse
Affiliation(s)
- Elissa P Lei
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Dana Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Green DM, Johnson CP, Hagan H, Corbett AH. The C-terminal domain of myosin-like protein 1 (Mlp1p) is a docking site for heterogeneous nuclear ribonucleoproteins that are required for mRNA export. Proc Natl Acad Sci U S A 2003; 100:1010-5. [PMID: 12531921 PMCID: PMC298717 DOI: 10.1073/pnas.0336594100] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2002] [Indexed: 11/18/2022] Open
Abstract
For mRNA to be transported from the nucleus to the cytoplasm, it must travel from the site of transcription through the nuclear interior to the nuclear pore. Studies in Saccharomyces cerevisiae have suggested a relationship between poly(A) RNA trafficking and myosin-like protein 1 (Mlp1p), a nuclear-pore associated protein that is homologous to the mammalian Tpr (translocated promoter region) protein [Kosova, B., Panté, N., Rollenhagen, C., Podtelejnikov, A., Mann, M., Aebi, U., and Hurt, E. (2000) J. Biol. Chem. 275, 343-350]. We identified a yeast two-hybrid interaction between the C-terminal globular domain of Mlp1p and Nab2p, a shuttling heterogeneous nuclear ribonucleoprotein that is required for mRNA export. Coimmunoprecipitation confirms that Nab2p also interacts with full-length Mlp1p and in vitro binding experiments show that Nab2p binds directly to the C-terminal domain of Mlp1p. In addition, our experiments reveal that the C-terminal domain of Mlp1p is both necessary and sufficient to cause accumulation of poly(A) RNA and Nab2p in the nucleus. We propose a model where Mlp1p acts as a checkpoint at the nuclear pore by interacting with export-competent ribonucleoprotein complexes through its C-terminal globular domain. This study identifies Nab2p as a heterogeneous nuclear ribonucleoprotein found in complex with Mlp1p and begins to delineate the path that mRNA travels from the chromatin to the nuclear pore.
Collapse
Affiliation(s)
- Deanna M Green
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
17
|
|
18
|
Hediger F, Dubrana K, Gasser SM. Myosin-like proteins 1 and 2 are not required for silencing or telomere anchoring, but act in the Tel1 pathway of telomere length control. J Struct Biol 2002; 140:79-91. [PMID: 12490156 DOI: 10.1016/s1047-8477(02)00533-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The positioning of chromosomal domains in interphase nuclei is thought to facilitate transcriptional repression in yeast. It has been reported that two large coiled-coil proteins of the nuclear envelope, myosin-like proteins 1 and 2, play direct roles in anchoring yeast telomeres to the nuclear periphery, thereby creating a subcompartment enriched for Sir proteins. We have created strains containing complete deletions of mlp1 and mlp2 genes, as well as the double null strain, and find no evidence for the disruption of telomere anchoring at the nuclear periphery in these cells. We also detect no disruption of telomere-associated gene silencing. We confirm, on the other hand, that mlp mutants are particularly sensitive to DNA-damaging agents, such as bleomycin. Moreover, we show that rather than having short telomeres as in yKu-deficient strains, the mlp1 mlp2 strains have extended telomeres, resembling phenotypes of mutations in rif1. Whereas the mlp1 mlp2 mutations act on a pathway of telomere length regulation different from that of yKu70, the effects of the tel1 deletion are epistatic to the mlp mutations, suggesting that the Mlp proteins restrict telomere length in wild-type cells by influencing the Rif-Tel1 pathway of telomerase regulation.
Collapse
Affiliation(s)
- Florence Hediger
- Department of Molecular Biology, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 4, Geneva, Switzerland
| | | | | |
Collapse
|
19
|
Frosst P, Guan T, Subauste C, Hahn K, Gerace L. Tpr is localized within the nuclear basket of the pore complex and has a role in nuclear protein export. J Cell Biol 2002; 156:617-30. [PMID: 11839768 PMCID: PMC2174070 DOI: 10.1083/jcb.200106046] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tpr is a coiled-coil protein found near the nucleoplasmic side of the pore complex. Since neither the precise localization of Tpr nor its functions are well defined, we generated antibodies to three regions of Tpr to clarify these issues. Using light and EM immunolocalization, we determined that mammalian Tpr is concentrated within the nuclear basket of the pore complex in a distribution similar to Nup153 and Nup98. Antibody localization together with imaging of GFP-Tpr in living cells revealed that Tpr is in discrete foci inside the nucleus similar to several other nucleoporins but is not present in intranuclear filamentous networks (Zimowska et al., 1997) or in long filaments extending from the pore complex (Cordes et al., 1997) as proposed. Injection of anti-Tpr antibodies into mitotic cells resulted in depletion of Tpr from the nuclear envelope without loss of other pore complex basket proteins. Whereas nuclear import mediated by a basic amino acid signal was unaffected, nuclear export mediated by a leucine-rich signal was retarded significantly. Nuclear injection of anti-Tpr antibodies in interphase cells similarly yielded inhibition of protein export but not import. These results indicate that Tpr is a nucleoporin of the nuclear basket with a role in nuclear protein export.
Collapse
Affiliation(s)
- Phyllis Frosst
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
20
|
Kim YK, Liu ZM, Li D, Kolattukudy PE. Two novel genes induced by hard-surface contact of Colletotrichum gloeosporioides conidia. J Bacteriol 2000; 182:4688-95. [PMID: 10940006 PMCID: PMC111342 DOI: 10.1128/jb.182.17.4688-4695.2000] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Germinating conidia of many phytopathogenic fungi must differentiate into an infection structure called the appressorium in order to penetrate into their hosts. This differentiation is known to require contact with a hard surface. However, the molecular basis for this requirement is not known. Induction of this differentiation in the avocado pathogen, Colletotrichum gloeosporioides, by chemical signals such as the host's surface wax or the fruit-ripening hormone, ethylene, requires contact of the conidia with a hard surface for about 2 h. To study molecular events triggered by hard-surface contact, we isolated several genes expressed during the early stage of hard-surface treatment by a differential-display method. The genes that encode Colletotrichum hard-surface induced proteins are designated chip genes. In this study, we report the characterization of CHIP2 and CHIP3 genes that would encode proteins with molecular masses of 65 and 64 kDa, respectively, that have no homology to any known proteins. The CHIP2 product would contain a putative nuclear localization signal, a leucine zipper motif, and a heptad repeat region which might dimerize into coiled-coil structure. The CHIP3 product would be a nine-transmembrane-domain-containing protein. RNA blots showed that CHIP2 and CHIP3 are induced by a 2-h hard-surface contact. However, disruption of these genes did not affect the appressorium-forming ability and did not cause a significant decrease in virulence on avocado or tomato fruits suggesting that C. gloeosporioides might have genes functionally redundant to CHIP2 and CHIP3 or that these genes induced by hard-surface contact control processes not directly involved in pathogenesis.
Collapse
Affiliation(s)
- Y K Kim
- Department of Biochemistry, Department of Molecular and Cellular Biochemistry, and Neurobiotechnology Center, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
21
|
Kosova B, Panté N, Rollenhagen C, Podtelejnikov A, Mann M, Aebi U, Hurt E. Mlp2p, a component of nuclear pore attached intranuclear filaments, associates with nic96p. J Biol Chem 2000; 275:343-50. [PMID: 10617624 DOI: 10.1074/jbc.275.1.343] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A fraction of the yeast nucleoporin Nic96p is localized at the terminal ring of the nuclear basket. When Nic96p was affinity purified from glutaraldehyde-treated spheroplasts, it was found to be associated with Mlp2p. Mlp2p, together with Mlp1p, are the yeast Tpr homologues, which form the nuclear pore-attached intranuclear filaments (Strambio-de-Castillia, C., Blobel, G., and Rout, M. P. (1999) J. Cell Biol. 144, 839-855). Double disruption mutants of MLP1 and MLP2 are viable and apparently not impaired in nucleocytoplasmic transport. However, overproduction of MLP1 causes nuclear accumulation of poly(A)(+) RNA in a chromatin-free area of the nucleus.
Collapse
Affiliation(s)
- B Kosova
- BZH, Biochemie-Zentrum Heidelberg, Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
22
|
Galy V, Olivo-Marin JC, Scherthan H, Doye V, Rascalou N, Nehrbass U. Nuclear pore complexes in the organization of silent telomeric chromatin. Nature 2000; 403:108-12. [PMID: 10638763 DOI: 10.1038/47528] [Citation(s) in RCA: 251] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The functional regulation of chromatin is closely related to its spatial organization within the nucleus. In yeast, perinuclear chromatin domains constitute areas of transcriptional repression. These 'silent' domains are defined by the presence of perinuclear telomere clusters. The only protein found to be involved in the peripheral localization of telomeres is Yku70/Yku80. This conserved heterodimer can bind telomeres and functions in both repair of DNA double-strand breaks and telomere maintenance. These findings, however, do not address the underlying structural basis of perinuclear silent domains. Here we show that nuclear-pore-complex extensions formed by the conserved TPR homologues Mlp1 and Mlp2 are responsible for the structural and functional organization of perinuclear chromatin. Loss of MLP2 results in a severe deficiency in the repair of double-strand breaks. Furthermore, double deletion of MLP1 and MLP2 disrupts the clustering of perinuclear telomeres and releases telomeric gene repression. These effects are probably mediated through the interaction with Yku70. Mlp2 physically tethers Yku70 to the nuclear periphery, thus forming a link between chromatin and the nuclear envelope. We show, moreover, that this structural link is docked to nuclear-pore complexes through a cleavable nucleoporin, Nup145. We propose that, through these interactions, nuclear-pore complexes organize a nuclear subdomain that is intimately involved in the regulation of chromatin metabolism.
Collapse
Affiliation(s)
- V Galy
- Laboratoire de Biologie Cellulaire du Noyau, Institut Pasteur, CNRS URA 1773, Paris, France
| | | | | | | | | | | |
Collapse
|
23
|
Strambio-de-Castillia C, Blobel G, Rout MP. Proteins connecting the nuclear pore complex with the nuclear interior. J Cell Biol 1999; 144:839-55. [PMID: 10085285 PMCID: PMC2148185 DOI: 10.1083/jcb.144.5.839] [Citation(s) in RCA: 174] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
While much has been learned in recent years about the movement of soluble transport factors across the nuclear pore complex (NPC), comparatively little is known about intranuclear trafficking. We isolated the previously identified Saccharomyces protein Mlp1p (myosin-like protein) by an assay designed to find nuclear envelope (NE) associated proteins that are not nucleoporins. We localized both Mlp1p and a closely related protein that we termed Mlp2p to filamentous structures stretching from the nucleoplasmic face of the NE into the nucleoplasm, similar to the homologous vertebrate and Drosophila Tpr proteins. Mlp1p can be imported into the nucleus by virtue of a nuclear localization sequence (NLS) within its COOH-terminal domain. Overexpression experiments indicate that Mlp1p can form large structures within the nucleus which exclude chromatin but appear highly permeable to proteins. Remarkably, cells harboring a double deletion of MLP1 and MLP2 were viable, although they showed a slower net rate of active nuclear import and faster passive efflux of a reporter protein. Our data indicate that the Tpr homologues are not merely NPC-associated proteins but that they can be part of NPC-independent, peripheral intranuclear structures. In addition, we suggest that the Tpr filaments could provide chromatin-free conduits or tracks to guide the efficient translocation of macromolecules between the nucleoplasm and the NPC.
Collapse
Affiliation(s)
- C Strambio-de-Castillia
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York 10021, USA
| | | | | |
Collapse
|
24
|
Esteban MR, Giovinazzo G, de la Hera A, Goday C. PUMA1: a novel protein that associates with the centrosomes, spindle and centromeres in the nematode Parascaris. J Cell Sci 1998; 111 ( Pt 6):723-35. [PMID: 9472001 DOI: 10.1242/jcs.111.6.723] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have identified a 227 kDa spindle- and centromere-associated protein in Parascaris, designated PUMA1 (Parascaris univalens mitotic apparatus), using a monoclonal antibody (mAb403) generated against Parascaris embryonic extracts. PUMA1 distribution was studied by immunofluorescence microscopy in mitotic and meiotic Parascaris cells, where centromere organization differs greatly. In mitosis, PUMA1 associates throughout cell division with the centrosomes and kinetochore-microtubules, and it concentrates at the continuous centromere region of the holocentric chromosomes. PUMA1 also localizes to the spindle mid-zone region during anaphase and at the midbody during telophase. In meiosis, PUMA1 associates with the centrosomes and with the discrete centromeric regions lacking kinetochore structures. The analysis of colchicine-treated embryos indicated that the association of PUMA1 with the centromeric region depends on microtubule integrity. mAb403 also recognizes spindle components in Drosophila. A series of overlapping cDNAs encoding the gene were isolated from a Parascaris embryonic expression library. Analysis of the nucleotide sequence identified an open reading frame capable of encoding a protein of 227 kDa. Analysis of the protein sequence indicated that PUMA1 is predicted to be a coiled-coil protein containing a large central alpha-helical domain flanked by nonhelical terminal domains. The structural features and cellular distribution of PUMA1 suggest that it may play a role in the organization of the spindle apparatus and in its interaction with the centromere in Parascaris.
Collapse
Affiliation(s)
- M R Esteban
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | | | | |
Collapse
|
25
|
Nobrega MP, Graminha MA, Troitskaya EN, Nobrega FG. Study of a region on yeast chromosome XIII that complements pet G199 mutants (COX7) and carries a new non-essential gene. Braz J Med Biol Res 1998; 31:355-63. [PMID: 9698782 DOI: 10.1590/s0100-879x1998000300004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The mutants of Saccharomyces cerevisiae assigned to complementation group G199 are deficient in mitochondrial respiration and lack a functional cytochrome oxidase complex. Recombinant plasmids capable of restoring respiration were cloned by transformation of mutants of this group with a yeast genomic library. Sequencing indicated that a 2.1-kb subclone encompasses the very end (last 11 amino acids) of the PET111 gene, the COX7 gene and a new gene (YMR255W) of unknown function that potentially codes for a polypeptide of 188 amino acids (about 21.5 kDa) without significant homology to any known protein. We have shown that the respiratory defect corresponding to group G199 is complemented by plasmids carrying only the COX7 gene. The gene YMR255W was inactivated by one-step gene replacement and the disrupted strain was viable and unaffected in its ability to grow in a variety of different test media such as minimal or complete media using eight distinct carbon sources at three pH values and temperatures. Inactivation of this gene also did not affect mating or sporulation.
Collapse
Affiliation(s)
- M P Nobrega
- Departamento de Fisiologia, Universidade de São Paulo, Brasil.
| | | | | | | |
Collapse
|
26
|
Santos B, Duran A, Valdivieso MH. CHS5, a gene involved in chitin synthesis and mating in Saccharomyces cerevisiae. Mol Cell Biol 1997; 17:2485-96. [PMID: 9111317 PMCID: PMC232097 DOI: 10.1128/mcb.17.5.2485] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The CHS5 locus of Saccharomyces cerevisiae is important for wild-type levels of chitin synthase III activity. chs5 cells have reduced levels of this activity. To further understand the role of CHS5 in yeast, the CHS5 gene was cloned by complementation of the Calcofluor resistance phenotype of a chs5 mutant. Transformation of the mutant with a plasmid carrying CHS5 restored Calcofluor sensitivity, wild-type cell wall chitin levels, and chitin synthase III activity levels. DNA sequence analysis reveals that CHS5 encodes a unique polypeptide of 671 amino acids with a molecular mass of 73,642 Da. The predicted sequence shows a heptapeptide repeated 10 times, a carboxy-terminal lysine-rich tail, and some similarity to neurofilament proteins. The effects of deletion of CHS5 indicate that it is not essential for yeast cell growth; however, it is important for mating. Deletion of CHS3, the presumptive structural gene for chitin synthase III activity, results in a modest decrease in mating efficiency, whereas chs5delta cells exhibit a much stronger mating defect. However, chs5 cells produce more chitin than chs3 mutants, indicating that CHS5 plays a role in other processes besides chitin synthesis. Analysis of mating mixtures of chs5 cells reveals that cells agglutinate and make contact but fail to undergo cell fusion. The chs5 mating defect can be partially rescued by FUS1 and/or FUS2, two genes which have been implicated previously in cell fusion, but not by FUS3. In addition, mating efficiency is much lower in fus1 fus2 x chs5 than in fus1 fus2 x wild type crosses. Our results indicate that Chs5p plays an important role in the cell fusion step of mating.
Collapse
Affiliation(s)
- B Santos
- Instituto de Microbiología Bioqúimica, Consejo Superior de Investigaciones Científicas/Universidad de Salamanca, Spain
| | | | | |
Collapse
|
27
|
Amberg DC, Zahner JE, Mulholland JW, Pringle JR, Botstein D. Aip3p/Bud6p, a yeast actin-interacting protein that is involved in morphogenesis and the selection of bipolar budding sites. Mol Biol Cell 1997; 8:729-53. [PMID: 9247651 PMCID: PMC276122 DOI: 10.1091/mbc.8.4.729] [Citation(s) in RCA: 152] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A search for Saccharomyces cerevisiae proteins that interact with actin in the two-hybrid system and a screen for mutants that affect the bipolar budding pattern identified the same gene, AIP3/BUD6. This gene is not essential for mitotic growth but is necessary for normal morphogenesis. MATa/alpha daughter cells lacking Aip3p place their first buds normally at their distal poles but choose random sites for budding in subsequent cell cycles. This suggests that actin and associated proteins are involved in placing the bipolar positional marker at the division site but not at the distal tip of the daughter cell. In addition, although aip3 mutant cells are not obviously defective in the initial polarization of the cytoskeleton at the time of bud emergence, they appear to lose cytoskeletal polarity as the bud enlarges, resulting in the formation of cells that are larger and rounder than normal. aip3 mutant cells also show inefficient nuclear migration and nuclear division, defects in the organization of the secretory system, and abnormal septation, all defects that presumably reflect the involvement of Aip3p in the organization and/or function of the actin cytoskeleton. The sequence of Aip3p is novel but contains a predicted coiled-coil domain near its C terminus that may mediate the observed homo-oligomerization of the protein. Aip3p shows a distinctive localization pattern that correlates well with its likely sites of action: it appears at the presumptive bud site prior to bud emergence, remains near the tips of small bund, and forms a ring (or pair of rings) in the mother-bud neck that is detectable early in the cell cycle but becomes more prominent prior to cytokinesis. Surprisingly, the localization of Aip3p does not appear to require either polarized actin or the septin proteins of the neck filaments.
Collapse
Affiliation(s)
- D C Amberg
- Department of Genetics, Stanford University School of Medicine, California 94305-5120, USA
| | | | | | | | | |
Collapse
|
28
|
Affiliation(s)
- B Winsor
- Institut de Biologie Moléculaire et Cellulaire, UPR 9005 du CNRS, Strasbourg, France
| | | |
Collapse
|
29
|
Valens M, Bohn C, Daignan-Fornier B, Dang VD, Bolotin-Fukuhara M. The sequence of a 54.7 kb fragment of yeast chromosome XV reveals the presence of two tRNAs and 24 new open reading frames. Yeast 1997; 13:379-90. [PMID: 9133743 DOI: 10.1002/(sici)1097-0061(19970330)13:4<379::aid-yea85>3.0.co;2-g] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A 54,719 bp fragment from the right arm of Saccharomyces cerevisiae chromosome XV has been sequenced from the inserts of two cosmids (pEOA213 and pEOA217). The computer analysis of this sequence has revealed the presence of eight known genes (CKA2, CYC1, ALG8, TCM1, TMP1, UFE1, RTS2 and ASE1) and four open reading frames (ORFs) with strong homologies with known yeast genes (MLP1, SIS2 and HBS1 and the allantoin permease). The characteristics of the other ORFs and of the corresponding proteins do not allow postulation of a precise function. Several have features reminiscent of cytoskeleton or motor elements (keratin-like, myosin-like) and several others have characteristics of proteins which interact with DNA (extremely basic, b-Zip structure and/or acidic domains). Two tRNAs (tRNA(Lys) and tRNA(Pro)) have also been identified on this fragment. Many of these ORFs present similarities with ORFs located on chromosome XI, indicating some information reshuffling between the two chromosomal fragments.
Collapse
Affiliation(s)
- M Valens
- Laboratoire de Génétique Moléculaire, Institut de Génétique et Microbiologie (URA 1354 du CNRS), Université Paris-Sud, Orsay, France
| | | | | | | | | |
Collapse
|
30
|
Kölling R, Hollenberg CP. The hemolysin B protein, expressed in Saccharomyces cerevisiae, accumulates in binding-protein (BiP)-containing structures. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 239:356-61. [PMID: 8706740 DOI: 10.1111/j.1432-1033.1996.0356u.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The hemolysin B (Hly B) protein of Escherichia coli, a member of the ABC-transporter family, was expressed in Saccharomyces cerevisiae and tested for its ability to complement a defect in the a-factor transporter Ste6. We found that HlyB was not able to restore mating ability to a STE6 deletion strain. The HlyB protein did not co-fractionate with Ste6 on sucrose gradients, indicating that improper localization of the HlyB protein could contribute to the lack of complementation. Immunofluorescence experiments suggest that HlyB is localized to structures derived from the endoplasmic reticulum (ER). The HlyB-expressing cells revealed a perinuclear staining typical of ER-localized proteins and intensely staining ring-like structures (HlyB-bodies). Double-label immunofluorescence experiments show that the HlyB structures also contain the ER binding protein (BiP), the product of the KAR2 gene. The HlyB protein, however, did not co-fractionate with another ER marker protein, the NADPH cytochrome c reductase. The HlyB bodies could be derivatives of a novel compartment of the early secretory pathway which contains BiP but not other resident ER proteins. In this case, HlyB could serve as a tool for the biochemical characterization of this compartment.
Collapse
Affiliation(s)
- R Kölling
- Institut für Mikrobiologie, Heinrich-Heine-Universität Düsseldorf, Germany
| | | |
Collapse
|
31
|
Elion EA, Trueheart J, Fink GR. Fus2 localizes near the site of cell fusion and is required for both cell fusion and nuclear alignment during zygote formation. J Biophys Biochem Cytol 1995; 130:1283-96. [PMID: 7559752 PMCID: PMC2120577 DOI: 10.1083/jcb.130.6.1283] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Zygote formation occurs through tightly coordinated cell and nuclear fusion events. Genetic evidence suggests that the FUS2 gene product promotes cell fusion during zygote formation in Saccharomyces cerevisiae, functioning with the Fus1 plasma membrane protein at or before cell wall and plasma membrane fusion. Here we report the sequence of the FUS2 gene, localization of Fus2 protein, and show that fus1 and fus2 mutants have distinct defects in cell fusion. FUS2 encodes a unique open reading frame of 617 residues that only is expressed in haploid cells in response to mating pheromone. Consistent with a role in cell fusion, Fus2 protein localizes with discrete structures that could be of cytoskeletal or vesicular origin that accumulate at the tip of pheromone-induced shmoos and at the junction of paired cells in zygotes. Fus2 is predicted to be a coiled-coil protein and fractionates with a 100,000 g pellet, suggesting that it is associated with cytoskeleton, membranes, or other macromolecular structures. Fus2 may interact with structures involved in the alignment of the nuclei during cell fusion, because fus2 mutants have strong defects in karyogamy and fail to orient microtubules between parental nuclei in zygotes. In contrast, fus1 mutants show no karyogamy defects. These, and other results suggest that Fus2 defines a novel cell fusion function and subcellular structure that is also required for the alignment of parental nuclei before nuclear fusion.
Collapse
Affiliation(s)
- E A Elion
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | | | | |
Collapse
|
32
|
Marshall J, Holberton DV. Giardia gene predicts a 183 kDa nucleotide-binding head-stalk protein. J Cell Sci 1995; 108 ( Pt 7):2683-92. [PMID: 7593309 DOI: 10.1242/jcs.108.7.2683] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previously described extended proteins from the cytoskeleton of Giardia lamblia (beta-giardin, median body protein) have been found to be segmented coiled coils with regular structural repeat patterns in their amino acid sequences. Screening a lambda ZAPII library derived from Giardia genomic DNA with an antibody directed against a 34 × 10(3) M(r) giardin isoform selected a gene encoding a much larger polypeptide chain (HPSR2), the sequence of which was determined by chromosome walking the open reading frame. The complete gene has been cloned and expressed as a recombinant protein of 183 × 10(3) M(r). The predicted amino acid sequence of the protein has identifiable features suggesting that it might be a motor protein with an amino-terminal hydrolytic domain attached to a long coiled coil stalk. The presumed head domain is 211 residues and contains a P-loop sequence conserved in purine nucleotide-binding proteins. The remaining 1409 amino acids mainly make up a region of heptad repeats such as in myosin or the kinesin stalk, ending in a small (67 amino acids) carboxy-terminal domain. Fourier analysis of the predicted stalk shows the presence of a strong physical repeat created by regular heptad phase changes dividing the coil into segments of 25 residues. This structure most closely resembles the smaller microtubule-associated median body protein which has segments of 24 residues.
Collapse
Affiliation(s)
- J Marshall
- Department of Life Science, Nottingham University, U.K
| | | |
Collapse
|
33
|
Matsui M, Stoop CD, von Arnim AG, Wei N, Deng XW. Arabidopsis COP1 protein specifically interacts in vitro with a cytoskeleton-associated protein, CIP1. Proc Natl Acad Sci U S A 1995; 92:4239-43. [PMID: 7753789 PMCID: PMC41919 DOI: 10.1073/pnas.92.10.4239] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Arabidopsis COP1 acts inside the nucleus to suppress photomorphogenic cellular development, and light inactivation of COP1 may involve a specific control of its nuclear activity in hypocotyls and cotyledons, but not in roots, of developing seedlings. To understand the molecular mechanisms of COP1 action during light-mediated development, we initiated a screen for Arabidopsis cDNAs encoding proteins which interact directly with COP1 in vitro as a step to identify the cellular components involved. We report here the isolation and characterization of a cDNA clone encoding a protein designated CIP1 (COP1-interactive protein 1). CIP1 is predominantly alpha-helical and most likely involved in coiled-coil formation. It interacts specifically with the putative coiled-coil region of COP1 in vitro. Further, CIP1 is encoded by a single gene in Arabidopsis, and its mRNA and protein levels are not regulated by light. Immunofluorescent labeling of CIP1 in Arabidopsis seedling protoplasts demonstrated that CIP1 is part of, or associated with, a cytoskeletal structure in hypocotyl and cotyledon cells, but not in roots. Our results are consistent with a possible role of CIP1 in mediating light control of COP1 nuclear activity by regulating its nucleocytoplasmic partitioning.
Collapse
Affiliation(s)
- M Matsui
- Department of Biology, Yale University, New Haven, CT 06520-8104, USA
| | | | | | | | | |
Collapse
|
34
|
Mannhaupt G, Stucka R, Ehnle S, Vetter I, Feldmann H. Analysis of a 70 kb region on the right arm of yeast chromosome II. Yeast 1994; 10:1363-81. [PMID: 7900426 DOI: 10.1002/yea.320101014] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In the framework of the EC programme for sequencing yeast chromosome II, we have determined the nucleotide sequence of a 70 kb region. Subsequent analysis revealed 35 open reading frames, 14 of which correspond to known yeast genes. From structural parameters and/or similarity searches with entries in the current data libraries, a preliminary functional assessment of several of the putative novel gene products can be made. The gene density in this region amounts to one gene in 1.98 kb. Coding regions occupy 75% of the total DNA sequence. Within the intergenic regions, potential regulatory elements can be predicted. The data obtained here may serve as a basis for a more detailed biochemical analysis of the novel genes.
Collapse
Affiliation(s)
- G Mannhaupt
- Institut für Physiologische Chemie, Universität München, Germany
| | | | | | | | | |
Collapse
|
35
|
Osborne MA, Schlenstedt G, Jinks T, Silver PA. Nuf2, a spindle pole body-associated protein required for nuclear division in yeast. J Cell Biol 1994; 125:853-66. [PMID: 8188751 PMCID: PMC2120077 DOI: 10.1083/jcb.125.4.853] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The NUF2 gene of the yeast Saccharomyces cerevisiae encodes an essential 53-kd protein with a high content of potential coiled-coil structure similar to myosin. Nuf2 is associated with the spindle pole body (SPB) as determined by coimmunofluorescence with known SPB proteins. Nuf2 appears to be localized to the intranuclear region and is a candidate for a protein involved in SPB separation. The nuclear association of Nuf2 can be disrupted, in part, by 1 M salt but not by the detergent Triton X-100. All Nuf2 can be removed from nuclei by 8 M urea extraction. In this regard, Nuf2 is similar to other SPB-associated proteins including Nufl/SPC110, also a coiled-coil protein. Temperature-sensitive alleles of NUF2 were generated within the coiled-coil region of Nuf2 and such NUF2 mutant cells rapidly arrest after temperature shift with a single undivided or partially divided nucleus in the bud neck, a shortened mitotic spindle and their DNA fully replicated. In sum, Nuf2 is a protein associated with the SPB that is critical for nuclear division. Anti-Nuf2 antibodies also recognize a mammalian 73-kd protein and display centrosome staining of mammalian tissue culture cells suggesting the presence of a protein with similar function.
Collapse
Affiliation(s)
- M A Osborne
- Department of Molecular Biology, Princeton University, New Jersey 08544-1014
| | | | | | | |
Collapse
|