1
|
Singh S, Tarannum Z, Kokane S, Ghosh DK, Sharma AK, Chauhan H. Efficient transformation and regeneration of transgenic plants in commercial cultivars of Citrus aurantifolia and Citrus sinensis. Transgenic Res 2023; 32:523-536. [PMID: 37702987 DOI: 10.1007/s11248-023-00367-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 08/30/2023] [Indexed: 09/14/2023]
Abstract
Citrus is one of the major horticultural crops with high economic and nutraceutical value. Despite the fact that conventional research has developed numerous improved varieties, citriculture is still susceptible to various stresses and requires innovative solutions such as genetic engineering. Among all the currently available modern approaches, Agrobacterium-mediated transformation is the most efficient method for introducing desired traits in citrus. However, being a non-host for Agrobacterium, various citrus species, including Citrus aurantifolia and Citrus sinensis, are recalcitrant to this method. The available reports on Agrobacterium-mediated transformation of commercial citrus cultivars show very low transformation efficiency with poor recovery rates of whole transgenic plantlets. Here, we provide an efficient and reliable procedure of Agrobacterium-mediated transformation for both C. aurantifolia and C. sinensis. This protocol depends on providing callus-inducing treatment to explants before and during Agrobacterium co-cultivation, using optimum conditions for shoot regeneration and modifying in-vitro micrografting protocol to combat the loss of transgenic lines. As transgenic citrus shoots are difficult to root, we also developed the ideal conditions for their rooting. Using this protocol, the whole transgenic plantlets of C. aurantifolia and C. sinensis can be developed in about ~ 4 months, with transformation efficiency of 30% and 22% for the respective species.
Collapse
Affiliation(s)
- Sweta Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247 667, India
| | - Zeba Tarannum
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247 667, India
| | - Sunil Kokane
- ICAR-Central Citrus Research Institute, Nagpur, 440 033, India
| | - Dilip K Ghosh
- ICAR-Central Citrus Research Institute, Nagpur, 440 033, India
| | - Ashwani K Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247 667, India
| | - Harsh Chauhan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247 667, India.
| |
Collapse
|
2
|
Saifi SK, Passricha N, Tuteja R, Nath M, Gill R, Gill SS, Tuteja N. OsRuvBL1a DNA helicase boost salinity and drought tolerance in transgenic indica rice raised by in planta transformation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 335:111786. [PMID: 37419328 DOI: 10.1016/j.plantsci.2023.111786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
RuvBL, is a member of SF6 superfamily of helicases and is conserved among the various model systems. Recently, rice (Oryza sativa L.) homolog of RuvBL has been biochemically characterized for its ATPase and DNA helicase activities; however its involvement in stress has not been studied so far. Present investigation reports the detailed functional characterization of OsRuvBL under abiotic stresses through genetic engineering. An efficient Agrobacterium-mediated in planta transformation protocol was developed in indica rice to generate the transgenic lines and study was focused on optimization of factors to achieve maximum transformation efficiency. Overexpressing OsRuvBL1a transgenic lines showed enhanced tolerance under in vivo salinity stress as compared to WT plants. The physiological and biochemical analysis of the OsRuvBL1a transgenic lines showed better performance under salinity and drought stresses. Several stress responsive interacting partners of OsRuvBL1a were identified using Y2H system revealed to its role in stress tolerance. Functional mechanism for boosting stress tolerance by OsRuvBL1a has been proposed in this study. This integration of OsRuvBL1a gene in rice genome using in planta transformation method helped to achieve the abiotic stress resilient smart crop. This study is the first direct evidence to show the novel function of RuvBL in boosting abiotic stress tolerance in plants.
Collapse
Affiliation(s)
- Shabnam K Saifi
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Nishat Passricha
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Renu Tuteja
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Manoj Nath
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; ICAR-Directorate of Mushroom Research, Chambaghat, Solan, Himachal Pradesh 173213, India
| | - Ritu Gill
- Stress Physiology and Molecular Biology Lab, Centre for Biotechnology, Maharshi Dayanand University, Rohtak 124 001, Haryana, India
| | - Sarvajeet Singh Gill
- Stress Physiology and Molecular Biology Lab, Centre for Biotechnology, Maharshi Dayanand University, Rohtak 124 001, Haryana, India.
| | - Narendra Tuteja
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
3
|
Abstract
Particle bombardment or biolistic transformation is an efficient, versatile method. This method does not need any vector for the gene transfer and is not dependent on the cell type, species, and genotype. The success of any transformation technique depends on the starting experimental materials or the explants. Here, we describe the factors that have influenced the choice of explants in biolistic transformation. Many general factors in the selection of explants in the development of transgenic plants are presented here. Therefore, this chapter provides extensive guidelines regarding the choice of explants for researchers working on various plant genetic transformation techniques.
Collapse
|
4
|
Hwang HH, Yu M, Lai EM. Agrobacterium-mediated plant transformation: biology and applications. THE ARABIDOPSIS BOOK 2017; 15:e0186. [PMID: 31068763 PMCID: PMC6501860 DOI: 10.1199/tab.0186] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Plant genetic transformation heavily relies on the bacterial pathogen Agrobacterium tumefaciens as a powerful tool to deliver genes of interest into a host plant. Inside the plant nucleus, the transferred DNA is capable of integrating into the plant genome for inheritance to the next generation (i.e. stable transformation). Alternatively, the foreign DNA can transiently remain in the nucleus without integrating into the genome but still be transcribed to produce desirable gene products (i.e. transient transformation). From the discovery of A. tumefaciens to its wide application in plant biotechnology, numerous aspects of the interaction between A. tumefaciens and plants have been elucidated. This article aims to provide a comprehensive review of the biology and the applications of Agrobacterium-mediated plant transformation, which may be useful for both microbiologists and plant biologists who desire a better understanding of plant transformation, protein expression in plants, and plant-microbe interaction.
Collapse
Affiliation(s)
- Hau-Hsuan Hwang
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, 402
| | - Manda Yu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan, 115
| | - Erh-Min Lai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan, 115
| |
Collapse
|
5
|
Kwon T. Mitochondrial Porin Isoform AtVDAC1 Regulates the Competence of Arabidopsis thaliana to Agrobacterium-Mediated Genetic Transformation. Mol Cells 2016; 39:705-13. [PMID: 27643450 PMCID: PMC5050536 DOI: 10.14348/molcells.2016.0159] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/08/2016] [Accepted: 08/11/2016] [Indexed: 11/27/2022] Open
Abstract
The efficiency of Agrobacterium-mediated transformation in plants depends on the virulence of Agrobacterium strains, the plant tissue culture conditions, and the susceptibility of host plants. Understanding the molecular interactions between Agrobacterium and host plant cells is crucial when manipulating the susceptibility of recalcitrant crop plants and protecting orchard trees from crown gall disease. It was discovered that Arabidopsis voltage-dependent anion channel 1 (atvdac1) mutant has drastic effects on Agrobacterium-mediated tumorigenesis and growth developmental phenotypes, and that these effects are dependent on a Ws-0 genetic background. Genetic complementation of Arabidopsis vdac1 mutants and yeast porin1-deficient strain with members of the AtVDAC gene family revealed that AtVDAC1 is required for Agrobacterium-mediated transformation, and there is weak functional redundancy between AtVDAC1 and AtVDAC3, which is independent of porin activity. Furthermore, atvdac1 mutants were deficient in transient and stable transformation by Agrobacterium, suggesting that AtVDAC1 is involved in the early stages of Agrobacterium infection prior to transferred-DNA (T-DNA) integration. Transgenic plants overexpressing AtVDAC1 not only complemented the phenotypes of the atvdac1 mutant, but also showed high efficiency of transient T-DNA gene expression; however, the efficiency of stable transformation was not affected. Moreover, the effect of phytohormone treatment on competence to Agrobacterium was compromised in atvdac1 mutants. These data indicate that AtVDAC1 regulates the competence of Arabidopsis to Agrobacterium infection.
Collapse
Affiliation(s)
- Tackmin Kwon
- Institute of Agricultural Life Sciences, Dong-A University, Busan 49315,
Korea
| |
Collapse
|
6
|
Sarazin V, Duclercq J, Mendou B, Aubanelle L, Nicolas V, Aono M, Pilard S, Guerineau F, Sangwan-Norreel B, Sangwan RS. Arabidopsis BNT1, an atypical TIR-NBS-LRR gene, acting as a regulator of the hormonal response to stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 239:216-229. [PMID: 26398806 DOI: 10.1016/j.plantsci.2015.07.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 07/20/2015] [Accepted: 07/25/2015] [Indexed: 06/05/2023]
Abstract
During their life cycle, plants have to cope with fluctuating environmental conditions. The perception of the stressful environmental conditions induces a specific stress hormone signature specifying a proper response with an efficient fitness. By reverse genetics, we isolated and characterized a novel mutation in Arabidopsis, associated with environmental stress responses, that affects the At5g11250/BURNOUT1 (BNT1) gene which encode a Toll/Interleukin1 receptor-nucleotide binding site leucine-rich repeat (TIR-NBS-LRR) protein. The knock-out bnt1 mutants displayed, in the absence of stress conditions, a multitude of growth and development defects, suchas severe dwarfism, early senescence and flower sterility, similar to those observed in vitro in wild type plants upon different biotic and/or abiotic stresses. The disruption of BNT1 causes also a drastic increase of the jasmonic, salicylic and abscisic acids as well as ethylene levels. Which was consistent with the expression pattern observed in bnt1 showing an over representation of genes involved in the hormonal response to stress? Therefore, a defect in BNT1 forced the plant to engage in an exhausting general stress response, which produced frail, weakened and poorly adapted plants expressing "burnout" syndromes. Furthermore, by in vitro phenocopying experiments, physiological, chemical and molecular analyses, we propose that BNT1 could represent a molecular link between stress perception and specific hormonal signature.
Collapse
Affiliation(s)
- Vivien Sarazin
- CNRS FRE 3498 EDYSAN (Unité Écologie et Dynamique des Systèmes Anthropisés), UPJV, Amiens, France; Laboulet Semences, Airaines, France
| | - Jérome Duclercq
- CNRS FRE 3498 EDYSAN (Unité Écologie et Dynamique des Systèmes Anthropisés), UPJV, Amiens, France
| | - Benjamin Mendou
- CNRS FRE 3498 EDYSAN (Unité Écologie et Dynamique des Systèmes Anthropisés), UPJV, Amiens, France
| | - Laurent Aubanelle
- CNRS FRE 3498 EDYSAN (Unité Écologie et Dynamique des Systèmes Anthropisés), UPJV, Amiens, France
| | - Veyres Nicolas
- CNRS FRE 3498 EDYSAN (Unité Écologie et Dynamique des Systèmes Anthropisés), UPJV, Amiens, France
| | - Mitsuko Aono
- National Institute for Environmental Studies, Environmental Biology Division, Tsukuba, Japan
| | | | | | - Brigitte Sangwan-Norreel
- CNRS FRE 3498 EDYSAN (Unité Écologie et Dynamique des Systèmes Anthropisés), UPJV, Amiens, France
| | - Rajbir S Sangwan
- CNRS FRE 3498 EDYSAN (Unité Écologie et Dynamique des Systèmes Anthropisés), UPJV, Amiens, France.
| |
Collapse
|
7
|
Ghedira R, De Buck S, Van Ex F, Angenon G, Depicker A. T-DNA transfer and T-DNA integration efficiencies upon Arabidopsis thaliana root explant cocultivation and floral dip transformation. PLANTA 2013; 238:1025-1037. [PMID: 23975012 DOI: 10.1007/s00425-013-1948-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 08/09/2013] [Indexed: 06/02/2023]
Abstract
T-DNA transfer and integration frequencies during Agrobacterium-mediated root explant cocultivation and floral dip transformations of Arabidopsis thaliana were analyzed with and without selection for transformation-competent cells. Based on the presence or absence of CRE recombinase activity without or with the CRE T-DNA being integrated, transient expression versus stable transformation was differentiated. During root explant cocultivation, continuous light enhanced the number of plant cells competent for interaction with Agrobacterium and thus the number of transient gene expression events. However, in transformation competent plant cells, continuous light did not further enhance cotransfer or cointegration frequencies. Upon selection for root transformants expressing a first T-DNA, 43-69 % of these transformants showed cotransfer of another non-selected T-DNA in two different light regimes. However, integration of the non-selected cotransferred T-DNA occurred only in 19-46 % of these transformants, indicating that T-DNA integration in regenerating root cells limits the transformation frequencies. After floral dip transformation, transient T-DNA expression without integration could not be detected, while stable T-DNA transformation occurred in 0.5-1.3 % of the T1 seedlings. Upon selection for floral dip transformants with a first T-DNA, 8-34 % of the transformants showed cotransfer of the other non-selected T-DNA and in 93-100 % of them, the T-DNA was also integrated. Therefore, a productive interaction between the agrobacteria and the female gametophyte, rather than the T-DNA integration process, restricts the floral dip transformation frequencies.
Collapse
Affiliation(s)
- Rim Ghedira
- Department Plant Systems Biology, VIB, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
| | - Sylvie De Buck
- Department Plant Systems Biology, VIB, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
| | - Frédéric Van Ex
- Laboratory of Plant Genetics, Institute for Molecular Biology and Biotechnology, Vrije Universiteit Brussel (VUB), 1050, Brussel, Belgium
- Bayer CropScience NV, Technologiepark 38, 9052, Ghent, Belgium
| | - Geert Angenon
- Laboratory of Plant Genetics, Institute for Molecular Biology and Biotechnology, Vrije Universiteit Brussel (VUB), 1050, Brussel, Belgium
| | - Ann Depicker
- Department Plant Systems Biology, VIB, Ghent University, Technologiepark 927, 9052, Ghent, Belgium.
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium.
| |
Collapse
|
8
|
Mayavan S, Subramanyam K, Arun M, Rajesh M, Kapil Dev G, Sivanandhan G, Jaganath B, Manickavasagam M, Selvaraj N, Ganapathi A. Agrobacterium tumefaciens-mediated in planta seed transformation strategy in sugarcane. PLANT CELL REPORTS 2013; 32:1557-74. [PMID: 23749098 DOI: 10.1007/s00299-013-1467-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 05/25/2013] [Accepted: 05/26/2013] [Indexed: 05/07/2023]
Abstract
An efficient, reproducible and genotype-independent in planta transformation has been standardized for sugarcane using seed as explant. Transgenic sugarcane production through Agrobacterium infection followed by in vitro regeneration is a time-consuming process and highly genotype dependent. To obtain more number of transformed sugarcane plants in a relatively short duration, sugarcane seeds were infected with Agrobacterium tumefaciens EHA 105 harboring pCAMBIA 1304-bar and transformed plants were successfully established without undergoing in vitro regeneration. Various factors affecting sugarcane seed transformation were optimized, including pre-culture duration, acetosyringone concentration, surfactants, co-cultivation, sonication and vacuum infiltration duration. The transformed sugarcane plants were selected against BASTA(®) and screened by GUS and GFP visual assay, PCR and Southern hybridization. Among the different combinations and concentrations tested, when 12-h pre-cultured seeds were sonicated for 10 min and 3 min vacuum infiltered in 100 µM acetosyringone and 0.1 % Silwett L-77 containing Agrobacterium suspension and co-cultivated for 72-h showed highest transformation efficiency. The amenability of the standardized protocol was tested on five genotypes. It was found that all the tested genotypes responded favorably, though CoC671 proved to be the best responding cultivar with 45.4 % transformation efficiency. The developed protocol is cost-effective, efficient and genotype independent without involvement of any tissue culture procedure and can generate a relatively large number of transgenic plants in approximately 2 months.
Collapse
Affiliation(s)
- Subramanian Mayavan
- Department of Biotechnology and Genetic Engineering, School of Biotechnology, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Genetic transformation of plants is an innovative research tool which has practical significance for the development of new and improved genotypes or cultivars. However, stable introduction of genes of interest into nuclear genomes depends on several factors such as the choice of target tissue, the method of DNA delivery in the target tissue, and the appropriate method to select the transformed plants. Mature or immature zygotic embryos have been a popular choice as explant or target tissue for genetic transformation in both angiosperms and gymnosperms. As a result, considerable protocols have emerged in the literature which have been optimized for various plant species in terms of transformation methods and selection procedures for transformed plants. This article summarizes the recent advances in plant transformation using zygotic embryos as explants.
Collapse
|
10
|
Clauce-Coupel H, Chateau S, Ducrocq C, Niot V, Kaveri S, Dubois F, Sangwan-Norreel B, Sangwan RS. Role of vitronectin-like protein in Agrobacterium attachment and transformation of Arabidopsis cells. PROTOPLASMA 2008; 234:65-75. [PMID: 18841324 DOI: 10.1007/s00709-008-0022-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Accepted: 07/19/2008] [Indexed: 05/26/2023]
Abstract
The role of plant vitronectin-like protein (Vn) in Agrobacterium-host plant interactions and receptor-specific bacterial attachment is unclear and still open to debate. Using a well-established Agrobacterium-mediated Arabidopsis transformation system, the marker gene beta-glucuronidase (GUS) of Escherichia coli, and biochemical and cytological methods, such as ELISA tests, immunoblots, immunolocalization, and functional in vitro binding assays, we have reassessed the role of Vn in receptor-specific bacterial attachment and transformation. We provide evidence that Vn is present in the host plant cells and anti-human vitronectin antibody cross-reacts with a 65-kDa protein from Arabidopsis cells. The specificity of the immunological cross-reactivity of anti-vitronectin antibodies was further demonstrated by ELISA competition experiments. Immunogold labeling showed that Vn is localized in the plant cell wall, and its level increased considerably after phytohormone treatment of the petiole explants. However, Agrobacterium attachment was unaffected, and no inhibition of petiole cell transformation was detected in the presence of human vitronectin and anti-vitronectin antibodies in the media. Additionally, no correlation between the occurrence of Vn, attachment of bacteria to the cells, and susceptibility to Agrobacterium-mediated transformation was observed. Taken together, our data do not support a functional role of plant Vn as the receptor for site-specific Agrobacterium attachment leading to the transformation of Arabidopsis cells.
Collapse
|
11
|
Veyres N, Danon A, Aono M, Galliot S, Karibasappa YB, Diet A, Grandmottet F, Tamaoki M, Lesur D, Pilard S, Boitel-Conti M, Sangwan-Norreel BS, Sangwan RS. The Arabidopsis sweetie mutant is affected in carbohydrate metabolism and defective in the control of growth, development and senescence. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 55:665-686. [PMID: 18452589 DOI: 10.1111/j.1365-313x.2008.03541.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Sugars modulate many vital metabolic and developmental processes in plants, from seed germination to flowering, senescence and protection against diverse abiotic and biotic stresses. However, the exact mechanisms involved in morphogenesis, developmental signalling and stress tolerance remain largely unknown. Here we report the characterization of a novel Arabidopsis thaliana mutant, sweetie, with drastically altered morphogenesis, and a strongly modified carbohydrate metabolism leading to elevated levels of trehalose, trehalose-6-phosphate and starch. We additionally show that the disruption of SWEETIE causes significant growth and developmental alterations, such as severe dwarfism, lancet-shaped leaves, early senescence and flower sterility. Genes implicated in sugar metabolism, senescence, ethylene biosynthesis and abiotic stress were found to be upregulated in sweetie. Our physiological, biochemical, genetic and molecular data indicate that the mutation in sweetie was nuclear, single and recessive. The effects of metabolizable sugars and osmolytes on sweetie morphogenesis were distinct; in light, sweetie was hypersensitive to sucrose and glucose during vegetative growth and a partial phenotypic reversion took place in the presence of high sorbitol concentrations. However, SWEETIE encodes a protein that is unrelated to any known enzyme involved in sugar metabolism. We suggest that SWEETIE plays an important regulatory function that influences multiple metabolic, hormonal and stress-related pathways, leading to altered gene expression and pronounced changes in the accumulation of sugar, starch and ethylene.
Collapse
Affiliation(s)
- Nicolas Veyres
- Faculté des Sciences, Unité de Recherche EA3900 'Biologie des Plantes et Contrôle des Insectes Ravageurs', Laboratoire Androgenèse et Biotechnologie, Université de Picardie Jules Verne, Amiens, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Takeda T, Mizukami M, Matsuoka H. Characterization of two-step direct somatic embryogenesis in carrot. Biochem Eng J 2008. [DOI: 10.1016/j.bej.2007.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Brencic A, Angert ER, Winans SC. Unwounded plants elicit Agrobacterium vir gene induction and T-DNA transfer: transformed plant cells produce opines yet are tumour free. Mol Microbiol 2005; 57:1522-31. [PMID: 16135221 DOI: 10.1111/j.1365-2958.2005.04763.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Agrobacterium tumefaciens is well known to cause crown gall tumours at plant wound sites and to benefit from this plant association by obtaining nutrients called opines that are produced by these tumours. Tumourigenesis requires expression of the vir regulon in response to chemical signals that are thought to be released from wound sites. Here, we examine chemical interactions between A. tumefaciens and unwounded plants. To determine whether unwounded plants can release significant amounts of vir gene inducers, we constructed an A. tumefaciens strain carrying a PvirB-gfp fusion. This fusion was strongly induced by co-culture with tobacco seedlings that have been germinated without any intentional wounding. The release of phenolic vir gene inducers was confirmed by GC/MS analysis. We also constructed a strain containing the gfp reporter located on an artificial T-DNA and expressed from a plant promoter. A. tumefaciens efficiently transferred this T-DNA into cells of unwounded plants in the absence of exogenous vir gene inducers. Many cells of seedlings colonized by the bacteria also produced octopine, which was detected using a Pocc-gfp reporter strain. This indicates transfer of the native T-DNA. However, these transformed plant cells did not form tumours. These results suggest that successful colonization of plants by A. tumefaciens, including T-DNA transfer and opine production, does not require wounding and does not necessarily cause cell proliferation. Transformation of plant cells without inciting tumours may represent a colonization strategy for this pathogen that has largely been overlooked.
Collapse
Affiliation(s)
- Anja Brencic
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
14
|
Oldacres AM, Newbury HJ, Puddephat IJ. QTLs controlling the production of transgenic and adventitious roots in Brassica oleracea following treatment with Agrobacterium rhizogenes. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2005; 111:479-88. [PMID: 15942754 DOI: 10.1007/s00122-005-2037-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2004] [Accepted: 04/11/2005] [Indexed: 05/02/2023]
Abstract
Brassica oleracea can be genetically engineered using Agrobacterium rhizogenes. The initial stage of this process is the production of transgenic ('hairy') roots; shoots are subsequently regenerated from these roots. Previous work using gus and gfp reporter genes has shown that genotypes of B. oleracea vary in their performance for transgenic root production. Quantitative trait loci (QTLs) controlling this trait have been located in one mapping population. The current study provides evidence that performance for transgenic root production is associated with performance for adventitious (non-transgenic) root production in B. oleracea across a second mapping population. This is shown by regression analyses between performance for the two traits and the demonstration that QTLs controlling the two traits map to the same positions within the genome. Since the rate of adventitious root production does not differ significantly in the presence and absence of A. rhizogenes, there is no evidence that the expression of Agrobacterium genes induces adventitious root production. It is apparent that genotypes exhibiting high adventitious root production in the absence of A. rhizogenes will also tend to show high transgenic root production, thereby allowing the selection of lines that are more efficiently transformed.
Collapse
Affiliation(s)
- A M Oldacres
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | | | |
Collapse
|
15
|
Joubert P, Beaupère D, Wadouachi A, Chateau S, Sangwan RS, Sangwan-Norreel BS. Effect of phenolic glycosides on Agrobacterium tumefaciens virH gene induction and plant transformation. JOURNAL OF NATURAL PRODUCTS 2004; 67:348-51. [PMID: 15043408 DOI: 10.1021/np030281z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
O-Aryl-d-glucoside (4-7) and d-xyloside (8-10) derivatives were synthesized and tested on Agrobacterium virH gene induction and plant transformation. alpha- or beta-Glycosides enhanced vir activity at concentrations above 250 micromicro. The highest vir activity was observed with beta-glucoside derivative 4 at 10 mM. A marked difference between phenol glucoside derivative 4 and the corresponding free phenol on the growth of transformants was observed. The regenerated transgenic tissues, after transformation on medium containing acetosyringyl beta-glucoside 4, grew at twice the rate of those on medium containing only free acetosyringone (AS). Compound 4 was less toxic for tobacco explants compared to the corresponding free phenol. However, the xyloside derivatives tested (8-10) were less effective for gene induction compared with corresponding free phenols.
Collapse
Affiliation(s)
- Philippe Joubert
- Laboratoire Androgenèse et Biotechnologie, Université de Picardie Jules Verne, 33 Rue Saint-Leu, 80039 Amiens Cedex, France
| | | | | | | | | | | |
Collapse
|
16
|
Catterou M, Dubois F, Smets R, Vaniet S, Kichey T, Van Onckelen H, Sangwan-Norreel BS, Sangwan RS. hoc: An Arabidopsis mutant overproducing cytokinins and expressing high in vitro organogenic capacity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 30:273-287. [PMID: 12000676 DOI: 10.1046/j.1365-313x.2002.01286.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A novel Arabidopsis thaliana mutant, named hoc, was found to have an high organogenic capacity for shoot regeneration. The HOC locus may be involved in cytokinin metabolism leading to cytokinin-overproduction. In vitro, hoc root explants develop many shoots in the absence of exogenous growth regulators. The mutant displays a bushy phenotype with supernumerary rosettes and with normal phyllotaxy, resulting from precocious axillary meristem development. Genetic and molecular analyses show that the high shoot regeneration and the bushy phenotype are controlled by a recessive single gene, located on chromosome I, next to the GAPB CAPS marker. The mapping data and allelism tests reveal that the hoc mutant is not allelic to other reported Arabidopsis growth-regulator mutants. In darkness the hoc mutant is de-etiolated, with a short hypocotyl, opened cotyledons and true leaves. Growth regulator assays reveal that the mutant accumulates cytokinins at about two- and sevenfold the cytokinin level of wild-type plants in its aerial parts and roots, respectively. Consequently, the elevated amounts of endogenous cytokinins in hoc plants are associated with high organogenic capacity and hence bushy phenotype. Thus hoc is the first cytokinin-overproducing Arabidopsis mutant capable of auto-regenerating shoots without exogenous growth regulators.
Collapse
Affiliation(s)
- Manuella Catterou
- Laboratoire Androgenèse et Biotechnologie, Université de Picardie Jules Verne, Faculté des Sciences, 33 rue Saint-Leu, 80039 Amiens Cedex 1, France
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Chateau S, Sangwan RS, Sangwan-Norreel BS. Competence of Arabidopsis thaliana genotypes and mutants for Agrobacterium tumefaciens-mediated gene transfer: role of phytohormones. JOURNAL OF EXPERIMENTAL BOTANY 2000; 51:1961-1968. [PMID: 11141170 DOI: 10.1093/jexbot/51.353.1961] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Many plant species and/or genotypes are highly recalcitrant to Agrobacterium-mediated genetic transformation, and yet little is known about this phenomenon. Using several Arabidopsis genotypes/ecotypes, the results of this study indicated that phytohormone pretreatment could overcome this recalcitrance by increasing the transformation rate in the known recalcitrant genotypes. Transient expression of a T-DNA encoded ss-glucuronidase (GUS) gene and stable kanamycin resistance were obtained for the ten Arabidopsis genotypes tested as well as for the mutant uvh1 (up to 69% of petioles with blue spots and up to 42% resistant calli). Cultivation of Arabidopsis tissues on phytohormones for 2-8 d before co-cultivation with Agrobacterium tumefaciens significantly increased transient GUS gene expression by 2-11-fold and stable T-DNA integration with petiole explants. Different Arabidopsis ecotypes revealed differences in their susceptibility to Agrobacterium-mediated transformation and in their type of reaction to pre-cultivation (three types of reactions were defined by gathering ecotypes into three groups). The Arabidopsis uvh1 mutant described as defective in a DNA repair system showed slightly lower competence to transformation than did its progenitor Colombia. This reduced transformation competence, however, could be overcome by 4-d pre-culture with phytohormones. The importance of pre-cultivation with phytohormones for genetic transformation is discussed.
Collapse
Affiliation(s)
- S Chateau
- Laboratoire Androgenèse et Biotechnologie, Université de Picardie Jules Verne, 33 rue Saint-Leu, 80039 Amiens cedex 01, France
| | | | | |
Collapse
|
18
|
The Embryo as a Tool for Genetic Engineering in Higher Plants. CURRENT ISSUES IN PLANT MOLECULAR AND CELLULAR BIOLOGY 1995. [DOI: 10.1007/978-94-011-0307-7_36] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
|
20
|
Fári M, Nagy I, Csányi M, Mitykó J, Andrásfalvy A. Agrobacterium mediated genetic transformation and plant regeneration via organogenesis and somatic embryogenesis from cotyledon leaves in eggplant (Solanum melongena L. cv. 'Kecskeméti lila'). PLANT CELL REPORTS 1995; 15:82-86. [PMID: 24185660 DOI: 10.1007/bf01690259] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/1994] [Revised: 12/20/1994] [Indexed: 06/02/2023]
Abstract
Novel and efficient protocols for plant regeneration and genetic transformation from longitudinally-halved cotyledons ofin vitro raised seedlings in eggplant (Solanum melongena L.) are described. After co-cultivation withAgrobacterium vectors harboring neomycin phosphotransferase (nptll) as selectable marker, transgenic plantlets were regenerated on selective media containing 100 mg/l kanamycin. Transformants were recovered from embryogenic calli induced by 4 mg/lα-naphthaleneacetic acid (NAA), and from organogenic calli induced by the addition of 2 mg/l zeatin plus 0.01 mg/l NAA. Nineteen independent transgenic lines were grown to maturity. The structural integrity, expression and sexual transmission of the introduced genes for neomycin phosphotransferase and ß-glucuronidase (gus) were investigated.
Collapse
Affiliation(s)
- M Fári
- Agricultural Biotechnology Center, Institute for Plant Sciences, Laboratory for Cell Biology and Tissue Culture, Szent-Györgyi A. u. 4, H-2100, Gödöllö, Hungary
| | | | | | | | | |
Collapse
|
21
|
Ducrocq C, Sangwan RS, Sangwan-Norreel BS. Production of Agrobacterium-mediated transgenic fertile plants by direct somatic embryogenesis from immature zygotic embryos of Datura innoxia. PLANT MOLECULAR BIOLOGY 1994; 25:995-1009. [PMID: 7919219 DOI: 10.1007/bf00014673] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
This work describes a new method to obtain transgenic somatic embryos from Agrobacterium-infected immature zygotic embryos of Datura innoxia. It has several advantages over previous transformation methods such as the absence of a callus phase, an average transformation rate of 76% and a high regeneration frequency. Critical steps for optimal transformation were the embryo stage and a short preculture treatment. The marker gene beta-glucuronidase and light microscopy were used to identify the competent embryogenic cells which, after transformation, passed through the classical stages of embryo development. The transgenes were transmitted to the progeny in a Mendelian fashion. The plants regenerated via direct somatic embryogenesis were cytologically and morphologically uniform. We also observed that: (1) wounding or wound-induced divisions were not required for zygotic embryo transformation; (2) epidermal cells were competent for both transformation and regeneration; and (3) competency for Agrobacterium infection was developmental stage-specific. This new method should facilitate the development of new strategies to routinely transform recalcitrant plant species.
Collapse
Affiliation(s)
- C Ducrocq
- Laboratoire Androgenèse et Biotechnologie, Université de Picardie Jules Verne, Amiens, France
| | | | | |
Collapse
|
22
|
|
23
|
de Kathen A, Jacobsen HJ. Transformation in Pea (Pisum sativum L.). BIOTECHNOLOGY IN AGRICULTURE AND FORESTRY 1993. [DOI: 10.1007/978-3-642-78037-0_26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|