1
|
Generation of large chromosomal deletions in koji molds Aspergillus oryzae and Aspergillus sojae via a loop-out recombination. Appl Environ Microbiol 2008; 74:7684-93. [PMID: 18952883 DOI: 10.1128/aem.00692-08] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We established a technique for efficiently generating large chromosomal deletions in the koji molds Aspergillus oryzae and A. sojae by using a ku70-deficient strain and a bidirectional marker. The approach allowed deletion of 200-kb and 100-kb sections of A. oryzae and A. sojae, respectively. The deleted regions contained putative aflatoxin biosynthetic gene clusters. The large genomic deletions generated by a loop-out deletion method (resolution-type recombination) enabled us to construct multiple deletions in the koji molds by marker recycling. No additional sequence remained in the resultant deletion strains, a feature of considerable value for breeding of food-grade microorganisms. Frequencies of chromosomal deletions tended to decrease in proportion to the length of the deletion range. Deletion efficiency was also affected by the location of the deleted region. Further, comparative genome hybridization analysis showed that no unintended deletion or chromosomal rearrangement occurred in the deletion strain. Strains with large deletions that were previously extremely laborious to construct in the wild-type ku70(+) strain due to the low frequency of homologous recombination were efficiently obtained from Delta ku70 strains in this study. The technique described here may be broadly applicable for the genomic engineering and molecular breeding of filamentous fungi.
Collapse
|
2
|
Obraztsova IN, Prados N, Holzmann K, Avalos J, Cerdá-Olmedo E. Genetic damage following introduction of DNA in Phycomyces. Fungal Genet Biol 2004; 41:168-80. [PMID: 14732263 DOI: 10.1016/j.fgb.2003.09.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Introduction of plasmids in Phycomyces blakesleeanus caused extensive changes in the exogenous DNA and in the resident genome. Plasmids with a bacterial gene for geneticin resistance under a Phycomyces promoter were either injected into immature sporangia or incubated with spheroplasts. An improved method produced about one viable spheroplast per cell. Colonies resistant to geneticin were rare and only about 0.1% of their spores grew in the presence of geneticin. The transformation frequency was very low, < or =1 transformed colony per million spheroplasts or per microg DNA. Few nuclei in the transformants contained exogenous DNA, as shown by a selective procedure that sampled single nuclei from heterokaryons. The exogenous DNA was not integrated into the genome and no stable transformants were obtained. The plasmids were replicated in the recipient cells, but their DNA sequences were modified by deletions and rearrangements and the transformed phenotype was eventually lost. The spores developed in injected sporangia were often inviable; a genetic test showed that spore death was caused by impaired nuclear proliferation and induction of lethal mutations. About one-fourth of the viable spores from injected sporangia formed abnormal colonies with obvious changes in shape, texture, or color. The abnormalities that could be investigated were due to dominant mutations. The results indicate that incoming DNA is not only attacked, but signals a situation of stress that leads to increased mutation and nuclear and cellular death.
Collapse
Affiliation(s)
- Irina N Obraztsova
- Departamento de Genética, Universidad de Sevilla, E-41012 Sevilla, Spain
| | | | | | | | | |
Collapse
|
3
|
Beadle J, Wright M, McNeely L, Bennett JW. Electrophoretic karyotype analysis in fungi. ADVANCES IN APPLIED MICROBIOLOGY 2004; 53:243-70. [PMID: 14696321 DOI: 10.1016/s0065-2164(03)53007-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The resolution of chromosomal-sized DNAs by PFGE has many applications that include karyotyping, strain identification of similar species, characterization of transformed strains, building of linkage maps, and preparation of DNA for genomic analysis. Successful electrophoretic separation of chromosomes is an empiric process in which the initial concentration of intact chromosome-sized DNA and the optimization of electrophoretic parameters are the most important experimental variables. Nonetheless, inherent attributes of the genome architecture of certain species may thwart success. When a karyotype contains numerous chromosomes of the same size and/or many large (greater than 8 Mb) chromosomes, no amount of manipulation of the electrophoretic parameters will resolve individual chromosome bands using present technology. Further, fungi display a surprising amount of intraspecific variation in both chromosome number and size, making it difficult to establish a standard "reference" karyotype for many species. Although PFGE is not a panacea for bringing genetics to species that lack classical genetic systems, it often does provide a way for developing a molecular linkage map in the absence of a formal genetic system. It is far faster than parasexual analysis in the discovery of linkage relationships. For genomics projects, DNA can be recovered from pulsed field gels and used to prepare chromosome-specific libraries. Where whole genome sequencing strategies are used, chromosomes separated by PFGE provide an anchor for sequencing data. Electrophoretic karyotypes can be probed with anonymous pieces of DNA from bacterial artificial chromosome (BAC) contigs, thereby facilitating the building of physical maps. In conclusion, despite its shortcomings, the PFGE technique underlies much of our current understanding of the physical nature of the fungal genome.
Collapse
Affiliation(s)
- J Beadle
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | | | | | | |
Collapse
|
4
|
Firon A, Beauvais A, Latgé JP, Couvé E, Grosjean-Cournoyer MC, D'Enfert C. Characterization of essential genes by parasexual genetics in the human fungal pathogen Aspergillus fumigatus: impact of genomic rearrangements associated with electroporation of DNA. Genetics 2002; 161:1077-87. [PMID: 12136012 PMCID: PMC1462181 DOI: 10.1093/genetics/161.3.1077] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have evaluated the usefulness of parasexual genetics in the identification of genes essential for the growth of the human fungal pathogen Aspergillus fumigatus. First, essentiality of the A. fumigatus AfFKS1 gene, encoding the catalytic subunit of the beta-(1,3)-glucan synthase complex, was assessed by inactivating one allele of AfFKS1 in a diploid strain of A. fumigatus obtained using adequate selectable markers in spore color and nitrate utilization pathways and by performing haploidization under conditions that select for the occurrence of the disrupted allele. Haploid progeny could not be obtained, demonstrating that AfFKS1 and, hence, beta-(1,3)-glucan synthesis are essential in A. fumigatus. Second, random heterozygous insertional mutants were generated by electroporation of diploid conidia with a heterologous plasmid. A total of 4.5% of the transformants failed to produce haploid progeny on selective medium. Genomic analysis of these heterozygous diploids led in particular to the identification of an essential A. fumigatus gene encoding an SMC-like protein resembling one in Schizosacccharomyces pombe involved in chromosome condensation and cohesion. However, significant plasmid and genomic DNA rearrangements were observed at many of the identified genomic loci where plasmid integration had occurred, thus suggesting that the use of electroporation to build libraries of A. fumigatus insertional mutants has relatively limited value and cannot be used in an exhaustive search of essential genes.
Collapse
Affiliation(s)
- Arnaud Firon
- Unité Microbiologie et Environnement, CNRS URA 2172, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | |
Collapse
|
5
|
Abstract
Both sexual and asexual fungi undergo chromosomal rearrangements, which are the main cause of karyotype variability among the populations. Different recombination processes can produce chromosomal reorganizations, both during mitosis and meiosis, but other mechanisms operate to limit the extent of the rearrangements; some of these mechanisms, such as the RIP (repeat-induced point mutations) of Neurospora crassa, have been well established for sexual fungi. In laboratory strains, treatments such as mutation and transformation enhance the appearance of chromosomal rearrangements. Different DNA sequences present in fungal genomes are able to promote these reorganizations; some of these sequences are involved in well-regulated processes (e.g., site-specific recombination) but most of them act simply as substrates for recombination events leading to DNA rearrangements. In Penicillium chrysogenum we have found that short specific DNA sequences are involved in tandem reiterations leading to amplification of the cluster of the penicillin biosynthesis genes. In some cases, specific chromosomal rearrangements have been associated with particular phenotypes (as occurs in adaptive-like mutants of Candida albicans and Candida stellatoidea), and they may play a role in genetic variability for environmental adaptation.
Collapse
Affiliation(s)
- F Fierro
- Faculty of Biology, University of León, Spain
| | | |
Collapse
|
6
|
Wötemeyer A, Wöstemeyer J. Fungal protoplasts: relics or modern objects of molecular research? Microbiol Res 1998. [DOI: 10.1016/s0944-5013(98)80026-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
7
|
Perkins DD. Chromosome rearrangements in Neurospora and other filamentous fungi. ADVANCES IN GENETICS 1998; 36:239-398. [PMID: 9348657 DOI: 10.1016/s0065-2660(08)60311-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Knowledge of fungal chromosome rearrangements comes primarily from N. crassa, but important information has also been obtained from A. nidulans and S. macrospora. Rearrangements have been identified in other Sordaria species and in Cochliobolus, Coprinus, Magnaporthe, Podospora, and Ustilago. In Neurospora, heterozygosity for most chromosome rearrangements is signaled by the appearance of unpigmented deficiency ascospores, with frequencies and ascus types that are characteristic of the type of rearrangement. Summary information is provided on each of 355 rearrangements analyzed in N. crassa. These include 262 reciprocal translocations, 31 insertional translocations, 27 quasiterminal translocations, 6 pericentric inversions, 1 intrachromosomal transposition, and numerous complex or cryptic rearrangements. Breakpoints are distributed more or less randomly among the seven chromosomes. Sixty of the rearrangements have readily detected mutant phenotypes, of which half are allelic with known genes. Constitutive mutations at certain positively regulated loci involve rearrangements having one breakpoint in an upstream regulatory region. Of 11 rearrangements that have one breakpoint in or near the NOR, most appear genetically to be terminal but are in fact physically reciprocal. Partial diploid strains can be obtained as recombinant progeny from crosses heterozygous for insertional or quasiterminal rearrangements. Duplications produced in this way precisely define segments that cover more than two thirds of the genome. Duplication-producing rearrangements have many uses, including precise genetic mapping by duplication coverage and alignment of physical and genetic maps. Typically, fertility is greatly reduced in crosses parented by a duplication strain. The finding that genes within the duplicated segment have undergone RIP mutation in some of the surviving progeny suggests that RIP may be responsible for the infertility. Meiotically generated recessive-lethal segmental deficiencies can be rescued in heterokaryons. New rearrangements are found in 10% or more of strains in which transforming DNA has been stably integrated. Electrophoretic separation of rearranged chromosomal DNAs has found useful applications. Synaptic adjustment occurs in inversion heterozygotes, leading progressively to nonhomologous association of synaptonemal complex lateral elements, transforming loop pairing into linear pairing. Transvection has been demonstrated in Neurospora. Beginnings have been made in constructing effective balancers. Experience has increased our understanding of several phenomena that may complicate analysis. With some rearrangements, nondisjunction of centromeres from reciprocal translocation quadrivalents results in 3:1 segregation and produces asci with four deficiency ascospores that occupy diagnostic positions in linear asci. Three-to-one segregation is most frequent when breakpoints are near centromeres. With some rearrangements, inviable deficiency ascospores become pigmented. Diagnosis must then depend on ascospore viability. In crosses between highly inbred strains, analysis may be handicapped by random ascospore abortion. This is minimized by using noninbred strains as testers.
Collapse
Affiliation(s)
- D D Perkins
- Department of Biological Sciences, Stanford University, California 94305-5020, USA
| |
Collapse
|
8
|
Tobin MB, Peery RB, Skatrud PL. An electrophoretic molecular karyotype of a clinical isolate of Aspergillus fumigatus and localization of the MDR-like genes AfuMDR1 and AfuMDR2. Diagn Microbiol Infect Dis 1997; 29:67-71. [PMID: 9368081 DOI: 10.1016/s0732-8893(97)00103-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The molecular karyotype of a clinical isolate of Aspergillus fumigatus (10AF/86/10) was determined by contour-clamped homogeneous electric field gel electrophoresis. Five chromosomal bands were resolved by this method. The resolved chromosomes ranged in size from 1.7 to 4.8 Mb, and together constituted a total genomic size of at least 15.8 Mb. Southern analysis of the separated chromosomes located the position of two MDR-like genes, AfuMDR1 and AfuMDR2, on chromosomes III and IV, respectively. The methods described herein may enable the application of molecular karyotyping of A. fumigatus in epidemiologic surveillance studies.
Collapse
Affiliation(s)
- M B Tobin
- Department of Infectious Diseases, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, USA
| | | | | |
Collapse
|
9
|
Thornewell SJ, Peery RB, Skatrud PL. Integrative and replicative genetic transformation of Aureobasidium pullulans. Curr Genet 1995; 29:66-72. [PMID: 8595660 DOI: 10.1007/bf00313195] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A hybrid selectable marker for transformation was constructed by placing the promoter (TEF1p) from the gene encoding the Aureobasidium pullulans translation elongation factor 1-alpha (TEF1) adjacent to the 5' end of the Escherichia coli hygromycin B phosphotransferase gene (HPT). Plasmids containing this hybrid gene (TEF1p/HPT) transformed A. pullulans strain R106 to a hygromycin B-resistant (HmBR) phenotype. A PCR-generated DNA fragment consisting of the TEF1p/HPT resistance marker flanked by 41bp of homologous DNA has also been shown to transform A. pullulans to HmBR. Linearized plasmid DNA consistently produced more transformants than circular plasmid DNA. Analyses of 23 HmBR transformants revealed integration of the plasmid in only eight of these transformants. In two transformants, integration into the largest chromosome (VIII) resulted in an alteration of the molecular karyotype. In four other transformants, integration occurred in chromosome VI (the chromosome containing TEF1) but only one was the result of homologous recombination with the genomic copy of the TEF1 promoter. The remainder of the transformants contained replicative plasmids that could be visualized on an agarose gel by ethidium bromide staining. These plasmids were generally 7-8kb in size. One transformant appeared to contain four plasmids ranging in size from 4 to 8kb, suggesting rearrangement of the transforming DNA. One plasmid obtained from a HmBR A. pullulans transformant was able to transform E. coli to ampicillin resistance. However, after recovery from E. coli, this plasmid (approximately 4kb) was unable to transform A. pullulans to HmBR.
Collapse
Affiliation(s)
- S J Thornewell
- Infectious Disease Research, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | | | | |
Collapse
|
10
|
Walz M, Kück U. Transformation of Sordaria macrospora to hygromycin B resistance: characterization of transformants by electrophoretic karyotyping and tetrad analysis. Curr Genet 1995; 29:88-95. [PMID: 8595663 DOI: 10.1007/bf00313198] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The ascomycete Sordaria macrospora was transformed using different plasmid molecules containing the bacterial hygromycin B resistance gene (hph) under the control of different expression signals. The highest transformation frequency was obtained with vector pMW1. On this plasmid molecule, expression of the hph gene is directed by the upstream region of the isopenicillin N synthetase gene (pcbC) from the deuteromycete Acremonium chrysogenum. Southern analysis suggests that the vector copies are integrated as tandem repeats into the S. macrospora chromosomes and that duplicated sequences are most probably not inactivated by methylation during meiosis. Furthermore, the hygromycin B resistance (hygR) is not correlated with the number of integrated vector molecules. Electrophoretic karyotyping was used to further characterize S. macrospora transformants. Five chromosomal bands were separated by pulsed-field gel electrophoresis (PFGE) representing seven chromosomes with a total genome size of 39.5Mb. Hybridization analysis revealed ectopic integration of vector DNA into different chromosomes. In a few transformants, major rearrangements were detected. Transformants were sexually propagated to analyze the fate of the heterologous vector DNA. Although the hygR phenotype is stably maintained during mitosis, about a third of all lines tested showed loss of the resistance marker gene after meiosis. However, as was concluded from electrophoretic karyotyping, the resistant spores showed a Mendelian segregation of the integrated vector molecules in at least three consecutive generations. Our data indicate that heterologous marker genes can be used for transformation tagging, or the molecular mapping of chromosomal loci in S. macrospora.
Collapse
Affiliation(s)
- M Walz
- Lehrstuhl für Allgemeine Botanik, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | | |
Collapse
|
11
|
Abstract
The examination of fungal chromosomes by pulsed-field gel electrophoresis has revealed that length polymorphism is widespread in both sexual and asexual species. This review summarizes characteristics of fungal chromosome-length polymorphism and possible mitotic and meiotic mechanisms of chromosome length change. Most fungal chromosome-length polymorphisms are currently uncharacterized with respect to content and origin. However, it is clear that long tandem repeats, such as tracts of rRNA genes, are frequently variable in length and that other chromosomal rearrangements are suppressed during normal mitotic growth. Dispensable chromosomes and dispensable chromosome regions, which have been well documented for some fungi, also contribute to the variability of the fungal karyotype. For sexual species, meiotic recombination increases the overall karyotypic variability in a population while suppressing genetic translocations. The range of karyotypes observed in fungi indicates that many karyotypic changes may be genetically neutral, at least under some conditions. In addition, new linkage combinations of genes may also be advantageous in allowing adaptation of fungi to new environments.
Collapse
Affiliation(s)
- M E Zolan
- Department of Biology, Indiana University, Bloomington 47405, USA
| |
Collapse
|
12
|
Thornewell SJ, Peery RB, Skatrud PL. Cloning and characterization of the gene encoding translation elongation factor 1 alpha from Aureobasidium pullulans. Gene X 1995; 162:105-10. [PMID: 7557396 DOI: 10.1016/0378-1119(95)00312-t] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The gene (TEF1) encoding translation elongation factor 1 alpha from the dimorphic fungus Aureobasidium pullulans (Ap) strain R106 has been cloned using Candida albicans TEF1 as a heterologous hybridization probe. Electrophoretic molecular karyotype/hybridization analysis of Ap revealed eight chromosomal bands and suggested that TEF1 resides on chromosome VI. Comparison of the genomic DNA sequence with the cDNA sequence of TEF1 verified the presence of three introns, the first one occurring five nucleotides from the start of translation. The deduced amino acid (aa) sequence encoded a protein consisting of 459 aa (49,663 Da) possessing high identity to a variety of TEF1-encoded proteins. A strong codon bias, similar to that observed in highly expressed yeast genes, was evident in A. pullulans TEF1. The ApTEF1 promoter region showed some sequence similarity to the well-studied TEF1 promoter from Saccharomyces cerevisiae, including a region from -23 to -11. This region exhibited high homology to a promoter upstream activating sequence (UAS) in S. cerevisiae. Such sequences have been shown to be essential promoter elements in genes coding for the highly expressed components of the yeast translation apparatus.
Collapse
Affiliation(s)
- S J Thornewell
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | | | | |
Collapse
|