1
|
Zhang Y, Xian Y, Yang H, Yang X, Yu T, Liu S, Liang M, Jiang X, Deng S. A novel geminivirus-derived 3' flanking sequence of terminator mediates the gene expression enhancement. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:1053-1066. [PMID: 39723813 PMCID: PMC11933866 DOI: 10.1111/pbi.14561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 11/18/2024] [Accepted: 12/15/2024] [Indexed: 12/28/2024]
Abstract
Exploring the new elements to re-design the expression cassette is crucial in synthetic biology. Viruses are one of the most important sources for exploring gene expression elements. In this study, we found that the DNA sequence of the SBG51 deltasatellite from the Sweet potato leaf curl virus (SPLCV) greatly enhanced the gene expression when flanked downstream of the terminator. The SBG51 sequence increased transient GFP gene expression in Nicotiana benthamiana leaves by up to ~6 times and ~10 times compared to the gene expression controlled by the UBQ10 promoter and 35S promoter alone, respectively. The increased GFP gene expression level contributed to the continuous accumulation of GFP protein and GFP fluorescence until 8 days post-inoculation (dpi). The SBG51 sequence also enhanced the gene expression in the transgenic Arabidopsis plants and maintained the spatio-temporal pattern of the FLOWERING LOCUS T (FT) and TOO MANY MOUTHS (TMM) promoters. We identified a 123 bp of AT-rich sequence containing seven "ATAAA" or "TTAAA" elements from the SBG51 DNA, which had the gene expression enhancement effect. Furthermore, the artificial synthetic sequences containing tandem repeated "ATAAA" or "TTAAA" elements were sufficient to increase the gene expression but did not alter the polyadenylation of mRNA, similar to the function of matrix attachment regions (MAR). Additionally, the compact artificial synthetic sequence also had an effect on yeast when the expression cassette was integrated into the genome. We conclude that the geminivirus deltasatellite-derived sequence and the "ATAAA"/"TTAAA" elements are powerful tools for enhancing gene expression.
Collapse
Affiliation(s)
- Yi Zhang
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical GardenChinese Academy of SciencesGuangzhouGuangdongChina
| | - Yibo Xian
- Moon (Guangzhou) Biotech Co., LtdGuangzhouGuangdongChina
| | - Heng Yang
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical GardenChinese Academy of SciencesGuangzhouGuangdongChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xuangang Yang
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical GardenChinese Academy of SciencesGuangzhouGuangdongChina
- University of Chinese Academy of SciencesBeijingChina
| | - Tianli Yu
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical GardenChinese Academy of SciencesGuangzhouGuangdongChina
- University of Chinese Academy of SciencesBeijingChina
| | - Sai Liu
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical GardenChinese Academy of SciencesGuangzhouGuangdongChina
- University of Chinese Academy of SciencesBeijingChina
| | - Minting Liang
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical GardenChinese Academy of SciencesGuangzhouGuangdongChina
| | - Xianzhi Jiang
- Moon (Guangzhou) Biotech Co., LtdGuangzhouGuangdongChina
| | - Shulin Deng
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical GardenChinese Academy of SciencesGuangzhouGuangdongChina
- University of Chinese Academy of SciencesBeijingChina
- National Engineering Research Center of Navel OrangeGannan Normal UniversityGanzhouJiangxiChina
| |
Collapse
|
2
|
Ohashi T, Mabira Y, Mitsuyoshi Y, Kajiura H, Misaki R, Ishimizu T, Fujiyama K. Expression of an endo-rhamnogalacturonase from Aspergillus aculeatus enhances release of Arabidopsis transparent mucilage. J Biosci Bioeng 2024; 138:73-82. [PMID: 38643032 DOI: 10.1016/j.jbiosc.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 03/24/2024] [Accepted: 03/24/2024] [Indexed: 04/22/2024]
Abstract
Mucilage is a gelatinous and sticky hydrophilic polysaccharide released from epidermal cells of seed coat after the hydration of mature seeds and is composed primarily of unbranched rhamnogalacturonan I (RG-I). In this study, we produced a recombinant endo-RG-I hydrolase from Aspergillus aculeatus (AaRhgA) in the fission yeast Schizosaccharomyces pombe and examined its substrate preference for pyridylaminated (PA) RG-I with the various degrees of polymerization (DP). Recombinant AaRhgA requires PA-RG-I with a DP of 10 or higher for its hydrolase activity. We heterologously expressed the AarhgA gene under the strong constitutive promoter, cauliflower mosaic virus 35S promoter, in Arabidopsis thaliana. In a series of biochemical analyses of each mucilage fraction released from the water-imbibed seeds of the transgenic plants, we found the enhanced deposition of the transparent mucilage layer that existed in the peripheral regions of the adherent mucilage and was not stained with ruthenium red. This study demonstrated the feasibility of manipulating the mucilage organization by heterologous expression of the endo-RG-I hydrolase.
Collapse
Affiliation(s)
- Takao Ohashi
- International Center for Biotechnology, Osaka University, Suita, Osaka 565-0871, Japan; Department of Life Science, Faculty of Science and Engineering, Setsunan University, Neyagawa, Osaka 572-8508, Japan.
| | - Yurika Mabira
- International Center for Biotechnology, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yutaro Mitsuyoshi
- International Center for Biotechnology, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiroyuki Kajiura
- International Center for Biotechnology, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ryo Misaki
- International Center for Biotechnology, Osaka University, Suita, Osaka 565-0871, Japan
| | - Takeshi Ishimizu
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Kazuhito Fujiyama
- International Center for Biotechnology, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
3
|
Bibik JD, Hamberger B. Plant Engineering to Enable Platforms for Sustainable Bioproduction of Terpenoids. Methods Mol Biol 2024; 2760:3-20. [PMID: 38468079 DOI: 10.1007/978-1-0716-3658-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Terpenoids represent the most diverse class of natural products, with a broad spectrum of industrial relevance including applications in green solvents, flavors and fragrances, nutraceuticals, colorants, and therapeutics. They are typically challenging to extract from their natural sources, where they occur in small amounts and mixtures of related but unwanted byproducts. Formal chemical synthesis, where established, is reliant on petrochemistry. Hence, there is great interest in developing sustainable solutions to assemble biosynthetic pathways in engineered host organisms. Metabolic engineering for chemical production has largely focused on microbial hosts, yet plants offer a sustainable production platform. In addition to containing the precursor pathways that generate the terpenoid building blocks as well as the cell structures and compartments required, or tractable localization for the enzymes involved, plants may provide a low input system to produce these chemicals using carbon dioxide and sunlight only. There have been significant recent advancements in the discovery of pathways to terpenoids of interest as well as strategies to boost yields in host plants. While part of the phytochemical field is focusing on the discovery of biosynthetic pathways, this review will focus on advancements using the pathway toolbox and toward engineering plants for the production of terpenoids. We will highlight strategies currently used to produce target products, optimization of known pathways to improve yields, compartmentalization of pathways within cells, and genetic tools developed to facilitate complex engineering of biosynthetic pathways. These advancements in Synthetic Biology are bringing engineered plant systems closer to commercially relevant hosts for the bioproduction of terpenoids.
Collapse
Affiliation(s)
- Jacob D Bibik
- Department of Biochemistry, Michigan State University, East Lansing, MI, USA
- MelaTech, LLC, Baltimore, MD, USA
| | - Björn Hamberger
- Department of Biochemistry, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
4
|
Bt and G10evo-EPSPS Protein Expressed in ZDAB3 Corn Has No Impact on Nutritional Composition and Toxicological Safety. Processes (Basel) 2022. [DOI: 10.3390/pr10122739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Genetically modified (GM) crops expressing insecticidal and herbicide-tolerant traits provide a new approach to agriculture production, but concerns about food safety were often raised by the public. The present research shows the findings of the nutritional assessment of ZDAB3 expressing insecticidal Cry proteins (Cry1Ab and Cry2Ab) and EPSPS protein (G10evo-EPSPS). The key nutrients and anti-nutrients of ZDAB3 maize were examined and contrasted with those of its non-transgenic control maize grown at the same locations during three planting seasons. The values for proximates, amino acids, fatty acids, minerals, vitamins, phytic acid, and trypsin inhibitor assessed for ZDAB3 were comparable to those of its non-transgenic control maize or within the range of values reported for other commercial lines. In addition, no adverse effects related to the G10evo-EPSPS protein in mammals were observed. These data indicated that the expression of Cry1Ab, Cry2Ab, and G10evo-EPSPS proteins in ZDAB3 maize does not affect the nutritional compositions, and ZDAB3 maize is equivalent to non-transgenic maize regarding those important compositions.
Collapse
|
5
|
Khan A, Shrestha A, Bhuyan K, Maiti IB, Dey N. Structural characterization of a novel full-length transcript promoter from Horseradish Latent Virus (HRLV) and its transcriptional regulation by multiple stress responsive transcription factors. PLANT MOLECULAR BIOLOGY 2018; 96:179-196. [PMID: 29327227 DOI: 10.1007/s11103-017-0693-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/04/2017] [Indexed: 06/07/2023]
Abstract
KEY MESSAGE The promoter fragment described in this study can be employed for strong transgene expression under both biotic and abiotic stress conditions. Plant-infecting Caulimoviruses have evolved multiple regulatory mechanisms to address various environmental stimuli during the course of evolution. One such mechanism involves the retention of discrete stress responsive cis-elements which are required for their survival and host-specificity. Here we describe the characterization of a novel Caulimoviral promoter isolated from Horseradish Latent Virus (HRLV) and its regulation by multiple stress responsive Transcription factors (TFs) namely DREB1, AREB1 and TGA1a. The activity of full length transcript (Flt-) promoter from HRLV (- 677 to + 283) was investigated in both transient and transgenic assays where we identified H12 (- 427 to + 73) as the highest expressing fragment having ~ 2.5-fold stronger activity than the CaMV35S promoter. The H12 promoter was highly active and near-constitutive in the vegetative and reproductive parts of both Tobacco and Arabidopsis transgenic plants. Interestingly, H12 contains a distinct cluster of cis-elements like dehydration-responsive element (DRE-core; GCCGAC), an ABA-responsive element (ABRE; ACGTGTC) and as-1 element (TGACG) which are known to be induced by cold, drought and pathogen/SA respectively. The specific binding of DREB1, AREB1 and TGA1a to DRE, ABRE and as-1 elements respectively were confirmed by the gel-binding assays using H12 promoter-specific probes. Detailed mutational analysis of the H12 promoter suggested that the presence of DRE-core and as-1 element was indispensable for its activity which was further confirmed by the transactivation assays. Our studies imply that H12 could be a valuable genetic tool for regulated transgene expression under diverse environmental conditions.
Collapse
Affiliation(s)
- Ahamed Khan
- Department of Gene Function and Regulation, Department of Biotechnology, Government of India, Institute of Life Sciences, Chandrasekharpur, Bhubaneswar, Odisha, India
| | - Ankita Shrestha
- Department of Gene Function and Regulation, Department of Biotechnology, Government of India, Institute of Life Sciences, Chandrasekharpur, Bhubaneswar, Odisha, India
| | - Kashyap Bhuyan
- Department of Gene Function and Regulation, Department of Biotechnology, Government of India, Institute of Life Sciences, Chandrasekharpur, Bhubaneswar, Odisha, India
| | - Indu B Maiti
- Department of Molecular Plant Virology and Plant Genetic Engineering, KTRDC, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546-0236, USA
| | - Nrisingha Dey
- Department of Gene Function and Regulation, Department of Biotechnology, Government of India, Institute of Life Sciences, Chandrasekharpur, Bhubaneswar, Odisha, India.
| |
Collapse
|
6
|
Zhang D, Gates KP, Barske L, Wang G, Lancman JJ, Zeng XXI, Groff M, Wang K, Parsons MJ, Crump JG, Dong PDS. Endoderm Jagged induces liver and pancreas duct lineage in zebrafish. Nat Commun 2017; 8:769. [PMID: 28974684 PMCID: PMC5626745 DOI: 10.1038/s41467-017-00666-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 07/15/2017] [Indexed: 12/17/2022] Open
Abstract
Liver duct paucity is characteristic of children born with Alagille Syndrome (ALGS), a disease associated with JAGGED1 mutations. Here, we report that zebrafish embryos with compound homozygous mutations in two Notch ligand genes, jagged1b (jag1b) and jagged2b (jag2b) exhibit a complete loss of canonical Notch activity and duct cells within the liver and exocrine pancreas, whereas hepatocyte and acinar pancreas development is not affected. Further, animal chimera studies demonstrate that wild-type endoderm cells within the liver and pancreas can rescue Notch activity and duct lineage specification in adjacent cells lacking jag1b and jag2b expression. We conclude that these two Notch ligands are directly and solely responsible for all duct lineage specification in these organs in zebrafish. Our study uncovers genes required for lineage specification of the intrahepatopancreatic duct cells, challenges the role of duct cells as progenitors, and suggests a genetic mechanism for ALGS ductal paucity.The hepatopancreatic duct cells connect liver hepatocytes and pancreatic acinar cells to the intestine, but the mechanism for their lineage specification is unclear. Here, the authors reveal that Notch ligands Jagged1b and Jagged2b induce duct cell lineage in the liver and pancreas of the zebrafish.
Collapse
Affiliation(s)
- Danhua Zhang
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
- Graduate School of Biomedical, Science, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Keith P Gates
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Lindsey Barske
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA, 90033, USA
| | - Guangliang Wang
- Department of Surgery, and McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, 733N. Broadway, Baltimore, MD, 21205, USA
| | - Joseph J Lancman
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Xin-Xin I Zeng
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Megan Groff
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA, 90033, USA
| | - Kasper Wang
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA, 90033, USA
| | - Michael J Parsons
- Department of Surgery, and McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, 733N. Broadway, Baltimore, MD, 21205, USA
| | - J Gage Crump
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA, 90033, USA
| | - P Duc Si Dong
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA.
- Graduate School of Biomedical, Science, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
7
|
A plant 35S CaMV promoter induces long-term expression of luciferase in Atlantic salmon. Sci Rep 2016; 6:25096. [PMID: 27114167 PMCID: PMC4844988 DOI: 10.1038/srep25096] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/30/2016] [Indexed: 11/08/2022] Open
Abstract
The long-term persistence and activity of a naked plasmid DNA (pGL3-35S) containing a luc gene (reporter gene) controlled by a plant 35S CaMV promoter was studied in Atlantic salmon (Salmo salar L.) after injection. Atlantic salmon (mean weight 70 grams) were injected intramuscularly with 100 μg of plasmid DNA. Blood, different tissues and organs were sampled at different time points up to day 535 after injection. Southern blot analysis suggested the presence of extra-chromosomally open circular, linear and supercoiled topoforms of pGL3-35S at day 150 after injection. At day 536 open circular and supercoiled topoforms were detected. Luciferase activity was detected at the injection site up to 536 days post-injection of pGL3-35S, where it peaked at day 150 and decreased to approximately 17% of its maximum activity by day 536. Our study demonstrated that a plasmid containing the 35S promoter was able to induce expression of a reporter gene/protein in fish in vivo and that the plasmid DNA persisted for a prolonged time after intramuscular injection.
Collapse
|
8
|
Salunke D, Manglekar R, Gadre R, Nene S, Harsulkar AM. Production of polyunsaturated fatty acids in recombinant Lipomyces starkeyi through submerged fermentation. Bioprocess Biosyst Eng 2015; 38:1407-14. [DOI: 10.1007/s00449-015-1382-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 02/25/2015] [Indexed: 11/30/2022]
|
9
|
Ho MW, Ryan A, Cummins J. Cauliflower Mosaic Viral Promoter - A Recipe for Disaster? MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2009. [DOI: 10.1080/08910609908540827] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Mae-Wan Ho
- From the Biology Department, Open University,Walton Hall Milton Keynes, MK7 6AA, UK
| | - Angela Ryan
- From the Biology Department, Open University,Walton Hall Milton Keynes, MK7 6AA, UK
| | - Joe Cummins
- Dept. of Plant Sciences, University of Western Ontario,Ontario, Canada
| |
Collapse
|
10
|
Lenka SK, Lohia B, Kumar A, Chinnusamy V, Bansal KC. Genome-wide targeted prediction of ABA responsive genes in rice based on over-represented cis-motif in co-expressed genes. PLANT MOLECULAR BIOLOGY 2009; 69:261-271. [PMID: 18998058 DOI: 10.1007/s11103-008-9423-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Accepted: 10/16/2008] [Indexed: 05/27/2023]
Abstract
Abscisic acid (ABA), the popular plant stress hormone, plays a key role in regulation of sub-set of stress responsive genes. These genes respond to ABA through specific transcription factors which bind to cis-regulatory elements present in their promoters. We discovered the ABA Responsive Element (ABRE) core (ACGT) containing CGMCACGTGB motif as over-represented motif among the promoters of ABA responsive co-expressed genes in rice. Targeted gene prediction strategy using this motif led to the identification of 402 protein coding genes potentially regulated by ABA-dependent molecular genetic network. RT-PCR analysis of arbitrarily chosen 45 genes from the predicted 402 genes confirmed 80% accuracy of our prediction. Plant Gene Ontology (GO) analysis of ABA responsive genes showed enrichment of signal transduction and stress related genes among diverse functional categories.
Collapse
Affiliation(s)
- Sangram K Lenka
- National Research Centre on Plant Biotechnology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | | | | | | | | |
Collapse
|
11
|
Rapid tip-directed movement of Golgi equivalents in growing Aspergillus nidulans hyphae suggests a mechanism for delivery of growth-related materials. Microbiology (Reading) 2008; 154:1544-1553. [DOI: 10.1099/mic.0.2007/014811-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
12
|
Shababi M, Bourque J, Palanichelvam K, Cole A, Xu D, Wan XF, Schoelz J. The ribosomal shunt translation strategy of cauliflower mosaic virus has evolved from ancient long terminal repeats. J Virol 2006; 80:3811-22. [PMID: 16571798 PMCID: PMC1440423 DOI: 10.1128/jvi.80.8.3811-3822.2006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Accepted: 01/25/2006] [Indexed: 12/17/2022] Open
Abstract
We have screened portions of the large intergenic region of the Cauliflower mosaic virus (CaMV) genome for promoter activity in baker's yeast (Saccharomyces cerevisiae) and have identified an element that contributes to promoter activity in yeast but has negligible activity in plant cells when expressed in an agroinfiltration assay. A search of the yeast genome sequence revealed that the CaMV element had sequence similarity with the R region of the long terminal repeat (LTR) of the yeast Ty1 retrotransposon, with significant statistical confidence. In plants, the same CaMV sequence has been shown to have an essential role in the ribosomal shunt mechanism of translation, as it forms the base of the right arm of the stem-loop structure that is required for the ribosomal shunt. Since the left arm of the stem-loop structure must represent an imperfect reverse copy of the right arm, we propose that the ribosomal shunt has evolved from a pair of LTRs that have become incorporated end to end into the CaMV genome.
Collapse
Affiliation(s)
- Monir Shababi
- Division of Plant Sciences, 108 Waters Hall, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
|
14
|
Pecota DC, Da Silva NA. Evaluation of the tetracycline promoter system for regulated gene expression inKluyveromyces marxianus. Biotechnol Bioeng 2005; 92:117-23. [PMID: 15962338 DOI: 10.1002/bit.20584] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A tetracycline repressible promoter system designed for Saccharomyces cerevisiae was evaluated for use in Kluyveromyces marxianus. A plasmid was constructed containing the Escherichia coli beta-glucuronidase (gus) gene cloned downstream of the yeast tet-off promoter, the tetR-VP16 activator protein gene, and the URA3 gene for selection. The tet-off promoter-gus construct was integrated into the chromosomal DNA and tested under varying growth conditions in complex medium. The repressors tetracycline and doxycycline were both found to be effective for inhibiting gene expression. Doxycycline levels of 0.5 microg/mL or greater were sufficient to nearly completely suppress Gus synthesis. For most transformants, the induction ratio was approximately 2,000-fold. The tet-off promoter was effective at 30, 37, and 42 degrees C, although the overall Gus activity was highest at 37 degrees C. During exponential growth, little product was formed; expression increased dramatically in late exponential and early stationary phase. The promoter thus shows promise for protein synthesis following cell growth. No inducer is required and the repressor is only needed to prevent expression during the seed culture.
Collapse
Affiliation(s)
- Douglas C Pecota
- Department of Chemical Engineering and Materials Science, University of California, Irvine, California 92697-2575, USA
| | | |
Collapse
|
15
|
Tepfer M, Gaubert S, Leroux-Coyau M, Prince S, Houdebine LM. Transient expression in mammalian cells of transgenes transcribed from theCauliflower mosaic virus35S promoter. ACTA ACUST UNITED AC 2004; 3:91-7. [PMID: 15612506 DOI: 10.1051/ebr:2004010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Gene constructs containing the Cauliflower mosaic virus (CaMV) 35S promoter and a sequence coding either for a green fluorescent protein (GFP) or for firefly luciferase were transfected into Chinese hamster ovary (CHO) cells. Both reporter genes were expressed to significant levels. The 35S promoter was 40 times less active than the human eF1 alpha promoter, which is known to be one of the most potent promoters in mammalian cells. The 35S promoter must therefore be considered to be a promoter of significant potency in mammalian cells. RT-PCR analysis suggested that transcription initiation in CHO cells occurred between the TATA box and the transcription start site of the 35S promoter that function in plant cells. Further analysis by 5'RACE confirmed that transcription was initiated in CHO cells at different sites located essentially between the TATA box and the plant transcription start site, showing that 35S promoter activity in animal cells is due to the presence of promoter elements that are functional in mammalian cells, but that are not those used in plants. The data reported here raise the possibility that genes controlled by the 35S promoter, which is commonly used in transgenic plants, have the potential for expression in animal cells.
Collapse
Affiliation(s)
- Mark Tepfer
- Laboratoire de Biologie Cellulaire, INRA-Versailles, 78026 Versailles Cedex, France.
| | | | | | | | | |
Collapse
|
16
|
Jacob D, Lewin A, Meister B, Appel B. Plant-specific promoter sequences carry elements that are recognised by the eubacterial transcription machinery. Transgenic Res 2002; 11:291-303. [PMID: 12113461 DOI: 10.1023/a:1015620016472] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
During evolution the promoter elements from prokaryotes and eukaryotes have developed differently with regard to their sequence and structure, implying that in general a transfer of eukaryotic promoter sequences into prokaryotes will not cause an efficient gene expression. However, there have been reports on the functionality of the 35S promoter from cauliflower mosaic virus (CaMV) in bacteria. We therefore decided to experimentally investigate the capability of plant promoter sequences to direct gene expression in various bacteria. Accordingly, we tested ten different plant-specific promoters from Solanum tuberosum, Nicotiana tabacum, CaMV, Agrobacterium tumefaciens, and A. rhizogenes for their ability to initiate transcription in five different eubacterial species (Escherichia coli, Yersinia enterocolitica, A. tumefaciens, Pseudomonas putida, and Acinetobacter sp. BD413). To monitor the strength of the plant-specific promoters in bacteria we created fusions between these promoters and the coding region of the luciferase genes from Vibrio harveyi and measured the luminescence in the bacteria. Heterologous gene expression was observed in 50% of the combinations analysed. We then mapped the transcription start site caused by one of the plant-specific promoters, the ST-LS1 promoter from S. tuberosum, in these bacterial species. The location of the mapped transcription start site indicated that the sequences of the plant promoter themselves were recognised by the bacterial transcription apparatus. The recognition of plant-specific promoter sequences by the bacterial RNA polymerase was further confirmed by site-directed mutagenesis of the ST-LS1 promoter and the analysis of the effects of the mutations on the strength of gene expression in E. coli. Using these mutants in our reporter assays we could localise the sequences of the ST-LS1 promoter serving as -10 region in E. coli. The results of our study show that promoter sequences are much less specific than is generally assumed. This is of great importance for our knowledge about the evolution of gene expression systems and for the construction of optimised expression vectors.
Collapse
|
17
|
Ho, MW, Ryan, A, Cummins J. Cauliflower Mosaic Viral Promoter - A Recipe for Disaster? MICROBIAL ECOLOGY IN HEALTH AND DISEASE 1999. [DOI: 10.1080/089106099435628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Mae-Wan Ho,
- Biology Department Open University, Walton Hall Milton Keynes, MK7 6AA UK
| | | | | |
Collapse
|
18
|
Sha Y, Broglio EP, Cannon JF, Schoelz JE. Expression of a plant viral polycistronic mRNA in yeast, Saccharomyces cerevisiae, mediated by a plant virus translational transactivator. Proc Natl Acad Sci U S A 1995; 92:8911-5. [PMID: 7568042 PMCID: PMC41077 DOI: 10.1073/pnas.92.19.8911] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We demonstrate that the cauliflower mosaic virus (CaMV) gene VI product can transactivate the expression of a reporter gene in bakers' yeast, Saccharomyces cerevisiae. The gene VI coding sequence was placed under the control of the galactose-inducible promoter GAL1, which is presented in the yeast shuttle vector pYES2, to create plasmid JS169. We also created a chloramphenicol acetyltransferase (CAT) reporter plasmid, JS161, by inserting the CAT reporter gene in-frame into CaMV gene II and subsequently cloning the entire CaMV genome into the yeast vector pRS314. When JS161 was transformed into yeast and subsequently assayed for CAT activity, only a very low level of CAT activity was detected in cellular extracts. To investigate whether the CaMV gene VI product would mediate an increase in CAT activity, we cotransformed yeast with JS169 and JS161. Upon induction with galactose, we found that CAT activity in yeast transformed with JS161 and JS169 was about 19 times higher than the level in the transformants that contained only JS161. CAT activity was dependent on the presence of the gene VI protein, because essentially no CAT activity was detected in yeast cells grown in the presence of glucose, which represses expression from the GAL1 promoter. RNase protection assays showed that the gene VI product had no effect on transcription from the 35S RNA promoter, demonstrating that regulation was occurring at the translation level. This yeast system will prove useful for understanding how the gene VI product of CaMV mediates the translation of genes present on a eukaryotic polycistronic mRNA.
Collapse
Affiliation(s)
- Y Sha
- Department of Plant Pathology, University of Missouri, Columbia 65211, USA
| | | | | | | |
Collapse
|
19
|
Rüth J, Schweyen RJ, Hirt H. The plant transcription factor TGA1 stimulates expression of the CaMV 35S promoter in Saccharomyces cerevisiae. PLANT MOLECULAR BIOLOGY 1994; 25:323-328. [PMID: 8018880 DOI: 10.1007/bf00023248] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We have previously shown that two CRE elements situated on a 31 bp region of the cauliflower mosaic virus (CaMV) 35S promoter activate gene expression in the yeast Saccharomyces cerevisiae and are regulated by cAMP. Studies with the yeast transcription factors GCN4, SKO1 and YAP1, which bind CRE-like sequences, showed no influence on expression of the 35S promoter indicating that a yet unknown factor is involved in activation. Band shift experiments with the 31 bp promoter region revealed binding of similar factors in yeast and plant protein extracts. In a previous study this promoter region was shown to confer tissue-specific expression in plants and to interact with the transcription factor TGA1. To test whether expression of TGA1 in yeast also stimulates transcription of the 35S promoter, we co-transformed yeast cells with a cDNA clone of this transcription factor and a 35S promoter/reporter gene construct. Promoter activity studies revealed that TGA1 confers enhanced expression of a reporter gene under the control of the 35S promoter in yeast cells. Yeast cells that were transformed with a 35S promoter construct that containing a mutated TGA1-binding site showed that both TGA1 and the intact binding site are necessary for this activation. These results suggest that stimulation of the 35S promoter by TGA1 is mediated by competition with an endogenous down-regulating yeast factor that is modulated by the nutritional state of the cells.
Collapse
Affiliation(s)
- J Rüth
- Institute of Microbiology and Genetics, University of Vienna, Austria
| | | | | |
Collapse
|
20
|
Rüth J, Hirt H, Schweyen RJ. The cauliflower mosaic virus 35S promoter is regulated by cAMP in Saccharomyces cerevisiae. MOLECULAR & GENERAL GENETICS : MGG 1992; 235:365-72. [PMID: 1334531 DOI: 10.1007/bf00279382] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The cauliflower mosaic virus 35S promoter confers strong gene expression in plants, animals and fission yeast, but not in budding yeast. On investigating this paradox, we found that in budding yeast the promoter acts through two domains. Whereas the upstream domain acts as a silencer, the downstream domain couples expression to the nutritional state of the cells via the RAS/cAMP pathway. Point mutations indicate that two boxes with similarity to the cAMP regulated element (CRE) of mammalian cells mediate this response. Gel retardation assays show that, in both yeast and plant protein extracts, factors bind to this promoter element. Therefore, transcriptional activation appears to be highly conserved at the level of transcription factors and specific DNA target elements in eukaryotes. This offers new ways to investigate gene regulation mechanisms of higher eukaryotes, which are not as amenable to genetic analysis as yeast.
Collapse
Affiliation(s)
- J Rüth
- Institute of Microbiology and Genetics, University of Vienna, Austria
| | | | | |
Collapse
|
21
|
Judelson HS, Tyler BM, Michelmore RW. Regulatory sequences for expressing genes in oomycete fungi. MOLECULAR & GENERAL GENETICS : MGG 1992; 234:138-46. [PMID: 1495476 DOI: 10.1007/bf00272355] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Promoter and terminator sequences from a range of species were tested for activity in the oomycetes, a group of lower fungi that bear an uncertain taxonomic affinity to other organisms and in which little is known of the sequences required for transcription. Transient assays, using the reporter gene beta-glucuronidase (GUS), were used to examine the function of these promoters and terminators in the plant pathogens Phytophthora infestans and P. megasperma f. sp. glycinea, and in the saprophytic water mold, Achlya ambisexualis. Oomycete promoters, isolated from the ham34 and hsp70 genes of Bremia lactucae and the actin gene of P. megasperma f. sp. glycinea, resulted in high levels of GUS accumulation in each of the three oomycetes. In contrast, little or no activity was detected when promoters from higher fungi (four ascomycetes and one basidiomycete), plants, and animals were tested. The terminator from the ham34 gene resulted in much higher levels of GUS accumulation than did others, although an oomycete terminator was not absolutely required for expression. Transcript mapping of RNA from stable transformants confirmed accurate initiation from the B. lactucae hsp70 promoter and termination within 3' ham34 sequences in P. infestans. Our results indicate that the transcriptional machinery of the oomycetes differs significantly from that of the higher fungi, but that enough conservation exists within the class to allow vectors developed from one oomycete species to be used for others.
Collapse
Affiliation(s)
- H S Judelson
- NSF Center for Engineering Plants for Resistance Against Pathogens, University of California, Davis 95616
| | | | | |
Collapse
|
22
|
Hohn T, Fütterer J. Transcriptional and translational control of gene expression in cauliflower mosaic virus. Curr Opin Genet Dev 1992; 2:90-6. [PMID: 1633431 DOI: 10.1016/s0959-437x(05)80328-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cauliflower mosaic virus sequences have developed as a powerful tool for the study of various aspects of gene expression in plants. Analysis of the promoter/enhancer region has led to the discovery of several transcription factors and factor-binding sites. Studies on RNA processing and polyadenylation reveal a viral strategy to obtain terminal redundancy of retrovirus pregenomic RNA. Striking differences between plant and vertebrate polyadenylation signals have been disclosed. The mechanisms for translation of the polycistronic 35S RNA are novel in the eukaryotic field and may give new insight to translational control in general.
Collapse
Affiliation(s)
- T Hohn
- Friedrich-Miescher-Institute, Basel, Switzerland
| | | |
Collapse
|
23
|
Hirt H. A novel method for in situ screening of yeast colonies with the beta-glucuronidase reporter gene. Curr Genet 1991; 20:437-9. [PMID: 1807836 DOI: 10.1007/bf00317075] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Expression of the beta-galactosidase gene in yeast has served as a screening marker for many purposes. Here it is shown that in two yeasts, Saccharomyces cerevisiae and Schizosaccharomyces pombe, the beta-glucuronidase (GUS) gene can be used as an alternative marker. Since the histochemical substrate can not be taken up by yeast cells, direct colony screening of plates was found to be impossible. However, by a replica plating technique, GUS expression became visibly detectable within 10 min when the GUS gene was strongly expressed. The staining method could still be performed for expression at a 100-fold lower level, but incubation times of several hours were needed. Furthermore, specific GUS expression levels of yeast protein extracts could be quantified by a fluorometric assay which is both very simple to perform and highly sensitive. Since the GUS gene can also tolerate large N-terminal fusions, this method should be particularly attractive for studying such diverse problems as transcriptional and translational regulation or subcellular localization in yeast.
Collapse
Affiliation(s)
- H Hirt
- Institute of Microbiology and Genetics, University of Vienna, Austria
| |
Collapse
|
24
|
MacDonald MH, Mogen BD, Hunt AG. Characterization of the polyadenylation signal from the T-DNA-encoded octopine synthase gene. Nucleic Acids Res 1991; 19:5575-81. [PMID: 1945833 PMCID: PMC328959 DOI: 10.1093/nar/19.20.5575] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We have characterized the polyadenylation signal from the octopine synthase (ocs) gene. This signal directs mRNA 3' end formation at a number of distinct sites. A combination of deletion and linker-substitution analyses revealed that each of these sites is controlled by multiple upstream sequence elements. Upstream sequences relatively far (greater than 80 nt) from the ocs poly[A] sites were found to be needed for functioning of these sites. Upstream sequences nearer to poly [A] sites were also found to be involved in mRNA 3' end formation in the ocs gene. In addition, a set of novel elements that mediates 3' end choice was uncovered by deletion analysis of sequences downstream from the ocs polyadenylation sites. Our experiments indicate mRNA 3' end formation in the ocs is controlled by a complex series of cis-acting signals, and suggest that the process of mRNA 3' end formation might be linked to transcription termination.
Collapse
Affiliation(s)
- M H MacDonald
- Department of Agronomy, University of Kentucky, Lexington 40546-00914
| | | | | |
Collapse
|