1
|
Lee HC, Fadaili Y, Stern CD. Development and functions of the area opaca of the chick embryo. Dev Biol 2025; 519:13-20. [PMID: 39662721 PMCID: PMC11785533 DOI: 10.1016/j.ydbio.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/02/2024] [Accepted: 12/08/2024] [Indexed: 12/13/2024]
Abstract
Before radial symmetry-breaking of the blastoderm, the chick embryo is distinctly divided into a central area pellucida and a surrounding region, the area opaca. In this review, we focus on the area opaca and its functions. First, we survey current knowledge about how the area opaca is formed during the intrauterine period and how it sets up its initial tissue structure. With the formation of a vascularized mesoderm layer, the area opaca becomes subdivided into an inner area vasculosa and an outer area vitellina, which contribute to the development of extraembryonic membranes: the yolk sac and chorion. Second, we review the various functions of the area opaca during development including supplying nutrients, driving the expansion of the embryo by a specialized population of edge cells, and active, instructive signaling that plays a role in the establishment of embryonic polarity and orchestrates the formation of another extraembryonic tissue, the marginal zone, essential for positioning the first midline structure, the primitive streak, at the beginning of gastrulation.
Collapse
Affiliation(s)
- Hyung Chul Lee
- School of Biological Sciences and Technology, College of Natural Sciences, Chonnam National University, 77 Yongbong-ro, Gwangju, 61186, South Korea.
| | - Yara Fadaili
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Claudio D Stern
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
2
|
Zhao H, Li Z, Sun Y, Yan M, Wang Y, Li Y, Zhang Y, Zhu M. Supplementation of Chlorogenic Acid Alleviates the Effects of H 2O 2-Induced Oxidative Stress on Laying Performance, Egg Quality, Antioxidant Capacity, Hepatic Inflammation, Mitochondrial Dysfunction, and Lipid Accumulation in Laying Hens. Antioxidants (Basel) 2024; 13:1303. [PMID: 39594445 PMCID: PMC11591049 DOI: 10.3390/antiox13111303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/15/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
This research examined the impact of chlorogenic acid (CGA) on laying performance, antioxidant capacity, egg quality, hepatic inflammation, mitochondrial function, and lipid metabolism in hens subjected to hydrogen peroxide (H2O2)-induced oxidative stress (OS). Three hundred sixty healthy 43-wk-old Hy-Line brown hens were randomly assigned to six treatments: a basal diet + 0 (control and H2O2), 600 (600 mg/kg CGA and 600 mg/kg CGA + H2O2), and 800 (800 mg/kg CGA and 800 mg/kg CGA + H2O2) mg/kg CGA for 84 d. On the 64th and 78th days of the trial, hens in groups H2O2, 600 mg/kg CGA + H2O2, and 800 mg/kg CGA + H2O2 were injected intraperitoneally with 10% H2O2. The results demonstrated that 600 and 800 mg/kg CGA significantly improved the egg production rate (EPR) and egg quality and reduced lipid peroxidation compared to the control group. The 800 mg/kg CGA showed greater improvements in the EPR and average egg weight (AEW) compared to the 600 mg/kg dose. Conversely, H2O2 exposure significantly decreased the EPR, AEW, and egg quality and increased feed conversion rate and average daily feed intake. H2O2 exposure significantly decreased serum T-AOC and increased serum MDA levels while reducing hepatic T-SOD, GSH-Px, and CAT activities. Meanwhile, H2O2 exposure significantly elevated liver reactive oxygen species levels, pathological damage, and NF-κB, TNFα, and IL-1β gene expression. Additionally, H2O2 treatment disrupted hepatocyte mitochondrial structure and significantly increased the expression of VDAC1 protein, and IP3R, GRP75, MCU, Fis1, and MFF genes, while downregulating the expression of MFN2 protein and PGC1α gene. Oil Red O staining demonstrated that H2O2 induced significant lipid accumulation in hepatocytes. Concurrently, H2O2 significantly increased serum triglycerides, total cholesterol, and liver triglycerides levels while decreasing serum hepatic lipase activity. This was primarily attributed to the significant upregulation of liver SREBP1, FASN, and ACC genes and the downregulation of the liver CPT1 gene induced by H2O2. Furthermore, CGA pretreatment effectively prevented the degeneration in laying performance and egg quality, as well as OS, liver inflammation, pathological damage, and mitochondrial dysfunction induced by H2O2. CGA inhibited H2O2-induced hepatic lipid accumulation by upregulating fatty acid oxidation-related gene expression and downregulating fatty acid synthesis-related gene expression. These findings indicate that the dietary addition of 800 mg/kg of CGA is the optimum supplementation dose. CGA can enhance laying performance and egg quality while alleviating OS, hepatic inflammation, mitochondrial dysfunction, and lipid accumulation in H2O2-challenged laying hens.
Collapse
Affiliation(s)
- Haitong Zhao
- Jiangsu Key Laboratory of Sericultural Biology and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (H.Z.); (Z.L.); (Y.S.); (M.Y.); (Y.W.); (Y.L.); (Y.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Zhuang Li
- Jiangsu Key Laboratory of Sericultural Biology and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (H.Z.); (Z.L.); (Y.S.); (M.Y.); (Y.W.); (Y.L.); (Y.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Yue Sun
- Jiangsu Key Laboratory of Sericultural Biology and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (H.Z.); (Z.L.); (Y.S.); (M.Y.); (Y.W.); (Y.L.); (Y.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Ming Yan
- Jiangsu Key Laboratory of Sericultural Biology and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (H.Z.); (Z.L.); (Y.S.); (M.Y.); (Y.W.); (Y.L.); (Y.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Yingjie Wang
- Jiangsu Key Laboratory of Sericultural Biology and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (H.Z.); (Z.L.); (Y.S.); (M.Y.); (Y.W.); (Y.L.); (Y.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Yurong Li
- Jiangsu Key Laboratory of Sericultural Biology and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (H.Z.); (Z.L.); (Y.S.); (M.Y.); (Y.W.); (Y.L.); (Y.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Yeshun Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (H.Z.); (Z.L.); (Y.S.); (M.Y.); (Y.W.); (Y.L.); (Y.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Mingkun Zhu
- Jiangsu Key Laboratory of Sericultural Biology and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (H.Z.); (Z.L.); (Y.S.); (M.Y.); (Y.W.); (Y.L.); (Y.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| |
Collapse
|
3
|
Song X, Wang D, Zhou Y, Sun Y, Ao X, Hao R, Gao M, Xu Y, Li P, Jia C, Wei Z. Yolk precursor synthesis and deposition in hierarchical follicles and effect on egg production performance of hens. Poult Sci 2023; 102:102756. [PMID: 37236035 DOI: 10.1016/j.psj.2023.102756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Egg production of hens is related to ovarian follicles development. The hierarchical follicle development accompanies the deposition of a large amount of yolk precursor. The aim of this study was to illustrate the effects of strain and age on yolk deposition and egg production. The experiment compared yolk synthesis, transport, and deposition in 3 groups of hens: one of a high-yield commercial hybrid laying breed (Jinghong No.1) in 2 stages (35 wk and 75 wk; JH35, JH75) and one of Chinese native breed (Lueyang Black-Boned chicken) at 35 wk (LY35). The results showed that the number of hierarchical follicles in JH35 and JH75 was significantly more than in LY35. At the same time, the yolk weight of the LY35 and JH75 was significantly higher than that of JH35. The expression of apolipoprotein A1 and apolipoprotein B genes in the liver of JH35 was higher than that of JH75. The expression of the very low-density lipoprotein receptor gene in the JH75 ovary was higher than that of the other 2 groups. The plasma concentrations of very low-density lipoprotein and vitellogenin were no significant difference among groups. The yolk deposition in hierarchical follicles based on the fat-soluble dyes measurement meant that the rate of yolk deposition of LY35 was lower than the other 2 groups. In most cases, the yolk deposition of JH75 was higher than that of the other groups, but the process showed greater fluctuation over time. These results meant that the rate and stability of yolk deposition played an essential role in affecting egg performance. In summary, both strain and age were related to egg production, but the 2 factors might impact yolk deposition and egg-laying performance differently. The egg performance may be affected by both yolk precursor synthesis and deposition for different strains, but it may be affected by yolk precursor deposition for the old laying hens.
Collapse
Affiliation(s)
- Xinru Song
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dan Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yang Zhou
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yifang Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xianpei Ao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ruidong Hao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mengyu Gao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yijing Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Pengcheng Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cunling Jia
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zehui Wei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
4
|
Immuno-Neutralization of Follistatin Bioactivity Enhances the Developmental Potential of Ovarian Pre-hierarchical Follicles in Yangzhou Geese. Animals (Basel) 2022; 12:ani12172275. [PMID: 36077995 PMCID: PMC9454918 DOI: 10.3390/ani12172275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Follistatin involves in the regulation of ovarian follicular development in mammals; however, the role of follistatin in goose ovarian follicular development has not been investigated. In this study, following immuno-neutralization of follistatin bioactivity in geese, the number of ovarian pre-ovulatory follicles significantly increased, and mRNA levels of genes involved in ovarian steroidogenesis and yolk deposition were upregulated in the granulosa layer of pre-hierarchical follicles. These results suggest that follistatin plays a limiting role in the development of ovarian pre-hierarchical follicles into pre-ovulatory follicles. These results also expand our understanding of the mechanism of follistatin on ovarian follicular development in geese. Abstract In order to explore the role of follistatin (FST) in ovarian follicular development and egg production in Yangzhou geese, sixty-four egg laying geese of the same genetic origin were selected and divided into two groups with equal numbers. One group was immunized against the recombinant goose FST protein by intramuscular injection, whereas the control group received bovine serum albumin (BSA) injection. Immunization against FST significantly increased the number of pre-ovulatory follicles. Furthermore, immunization against FST upregulated Lhr, Star, Vldlr, Smad3, and Smad4 mRNA levels in the granulosa layer of pre-hierarchical follicles. The results suggest that FST plays a limiting role in the development of ovarian pre-hierarchical follicles into pre-ovulatory follicles by decreasing follicular sensitivity to activin in geese. The mechanism may be achieved by regulating the SMAD3 signaling pathway, which affects progesterone synthesis and yolk deposition in pre-hierarchical follicles.
Collapse
|
5
|
Bello SF, Adeola AC, Nie Q. The study of candidate genes in the improvement of egg production in ducks – a review. Poult Sci 2022; 101:101850. [PMID: 35544958 PMCID: PMC9108513 DOI: 10.1016/j.psj.2022.101850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 11/01/2022] Open
Abstract
Duck is the second-largest poultry species aside from chicken. The rate of egg production is a major determinant of the economic income of poultry farmers. Among the reproductive organs, the ovary is a major part of the female reproductive system which is highly important for egg production. Based on the importance of this organ, several studies have been carried out to identify candidate genes at the transcriptome level, and also the expression level of these genes at different tissues or egg-laying conditions, and single nucleotide polymorphism (SNPs) of genes associated with egg production in duck. In this review, expression profile and association study analyses at SNPs level of different candidate genes with egg production traits of duck were highlighted. Furthermore, different studies on transcriptome analysis, Quantitative Trait Loci (QTL) mapping, and Genome Wide Association Study (GWAS) approach used to identify potential candidate genes for egg production in ducks were reported. This review would widen our knowledge on molecular markers that are associated or have a positive correlation to improving egg production in ducks, for the increasing world populace.
Collapse
|
6
|
Wu C, Li L, Jiang YX, Kim WK, Wu B, Liu GM, Wang J, Lin Y, Zhang KY, Song JP, Zhang RN, Wu FL, Liang KH, Bai S. Effects of Selenium Supplementation on the Ion Homeostasis in the Reproductive Organs and Eggs of Laying Hens Fed With the Diet Contaminated With Cadmium, Lead, Mercury, and Chromium. Front Vet Sci 2022; 9:902355. [PMID: 35754545 PMCID: PMC9226609 DOI: 10.3389/fvets.2022.902355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/05/2022] [Indexed: 11/22/2022] Open
Abstract
The objective of this study was to explore the toxic effects of different heavy metals in combination with their deposition and ion homeostasis in the reproductive organs and eggs of laying hens, as well as the alleviating action of selenized yeast. A total of 160 Lohmann pink-shell laying hens (63-week-old) were randomly allocated into four treatments with 10 replicates of four hens each. The four dietary treatments were the corn-soybean meal basal dietary (control; CON); the CON dietary supplemented with 0.4 mg/kg selenium from selenized yeast (Se); the CON dietary supplemented with 5 mg/kg Cd + 50 mg/kg Pb +3 mg/kg Hg + 5 mg/kg Cr (HEM), and the HEM dietary supplemented with 0.4 mg/kg selenium from selenized yeast (HEM+Se). The dietary HEM significantly increased Cd, Pb, and Hg deposition in the egg yolk and ovary, and Cd and Hg deposition in the oviduct and in the follicular wall (p < 0.05). The HEM elevated Fe concentration in the egg yolk, ovary, and oviduct (p < 0.05). The HEM decreased Mn concentration in the egg yolk, Fe, Mn, and Zn concentrations in the egg white, Cu concentration in the ovary, Mg concentration in the oviduct, as well as Ca, Cu, Zn, and Mg concentrations in the follicular walls (p < 0.05). Dietary Se addition elevated Se concentration in the egg yolk, oviduct, and follicular walls and Mg concentration (p < 0.05) in the oviduct, whereas it reduced Fe concentration in the oviduct compared with the HEM-treated hens. Some positive or negative correlations among these elements were observed. Canonical Correlation Analysis showed that the concentrations of Pb and Hg in the egg yolk were positively correlated with those in the ovary. The concentration of Cd in the egg white was positively correlated with that in the oviduct. In summary, dietary Cd, Pb, Hg, and Cr in combination caused ion loss and deposition of HEM in reproductive organs of laying hens. Dietary Se addition at 0.4 mg/kg from selenized yeast alleviated the negative effects of HEM on Fe and Mg ion disorder in the oviduct and follicle wall of hens.
Collapse
Affiliation(s)
- Caimei Wu
- Key Laboratory for Animal Disease-Resistance Nutrition and Feedstuffs of China Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - L Li
- Key Laboratory for Animal Disease-Resistance Nutrition and Feedstuffs of China Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Y X Jiang
- Key Laboratory for Animal Disease-Resistance Nutrition and Feedstuffs of China Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - B Wu
- Chelota biotechnology CO., LTD, Deyang, China
| | - G M Liu
- Key Laboratory for Animal Disease-Resistance Nutrition and Feedstuffs of China Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Jianping Wang
- Key Laboratory for Animal Disease-Resistance Nutrition and Feedstuffs of China Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Y Lin
- Key Laboratory for Animal Disease-Resistance Nutrition and Feedstuffs of China Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - K Y Zhang
- Key Laboratory for Animal Disease-Resistance Nutrition and Feedstuffs of China Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - J P Song
- Key Laboratory for Animal Disease-Resistance Nutrition and Feedstuffs of China Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - R N Zhang
- Key Laboratory for Animal Disease-Resistance Nutrition and Feedstuffs of China Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - F L Wu
- Key Laboratory for Animal Disease-Resistance Nutrition and Feedstuffs of China Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - K H Liang
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Shiping Bai
- Key Laboratory for Animal Disease-Resistance Nutrition and Feedstuffs of China Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
7
|
Wang Y, Guo Z, Zi C, Wu P, Lv X, Chen L, Chen F, Zhang G, Wang J. CircRNA expression in chicken granulosa cells illuminated with red light. Poult Sci 2022; 101:101734. [PMID: 35202895 PMCID: PMC8866055 DOI: 10.1016/j.psj.2022.101734] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 01/03/2022] [Accepted: 01/12/2022] [Indexed: 11/19/2022] Open
Abstract
Red light (RL) can improve egg production in Jinghai Yellow hens. Circular RNAs (circRNAs) are novel, non-coding RNAs, but the molecular mechanism underlying circRNA function during follicular development in hens under monochromatic light has not been established. Herein, we compared expression profiles of granulosa cells (GCs) from small yellow follicles (SYFs) from hens under RL and white light (WL). A total of 2,468 circRNAs were identified, of which 22 were differentially expressed (DE) in the RL and WL groups. DE circRNA host genes were enriched in ovarian steroidogenesis, and MAPK and PI3K-Akt signaling pathways. Furthermore, DE circRNA_0320 and circRNA_0185 interacted with miR-143-3p, which targets the follicle-stimulating hormone receptor and is essential for GC differentiation and follicle development. These findings will facilitate further analysis of the molecular mechanism leading to GC development in hens raised under monochromatic light, which could lead to increased egg production.
Collapse
Affiliation(s)
- Ying Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, P. R. China
| | - Zhenyu Guo
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, P. R. China
| | - Chen Zi
- Department of Pathology, Linyi People's Hospital, Linyi 276000, Shandong Province, China
| | - Pengfei Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, P. R. China
| | - Xiaoyang Lv
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, P. R. China
| | - Lan Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, P. R. China
| | - Fuxiang Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, P. R. China
| | - Genxi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, P. R. China
| | - Jinyu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, P. R. China.
| |
Collapse
|
8
|
Arshad R, Meng Y, Qiu N, Geng F, Mine Y, Keast R, Zhu C. Phosphoproteomic analysis of duck egg yolk provides novel insights into its characteristics and biofunctions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1165-1173. [PMID: 34329491 DOI: 10.1002/jsfa.11453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 07/07/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Although the importance of phosphorylation in the function of proteins is known, investigation of the protein phosphorylation of duck egg yolk (DEY) is still very limited. This study aimed to conduct a detailed phosphoproteomic study of DEY using immobilized metal affinity chromatography and ultra-high liquid chromatography tandem mass spectrometry. RESULTS A total of 253 phosphorylation sites assigned to 66 phosphoproteins were identified in DEY, of which VTG-1, VTG-2, and fibrinogen alpha chain were found to be the highly phosphorylated proteins in DEY. The biological functions of the identified phosphoproteins were illuminated through gene ontology analysis, which showed that they were mainly involved in binding, catalytic, immune response, and metabolic activity. S-X-E and S-X-S were found to be the most conserved serine motifs of phosphorylation in DEY. The comparison of DEY phosphoproteins with those of chicken egg yolk (CEY) revealed that differences mostly involved molecular functions and biological processes. The comparison also revealed a higher phosphorylation level in DEY proteins. CONCLUSION The higher phosphorylation level in DEY proteins than that in CEY proteins are supposed to help enhance duck growth performance and biological activities (e.g. antibacterial and antioxidant ability) for better adapting the humid environment the duck lived. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rida Arshad
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
| | - Yaqi Meng
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
| | - Ning Qiu
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
| | - Fang Geng
- Meat Processing Key Laboratory of Sichuan Province, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, P. R. China
| | - Yoshinori Mine
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - Russell Keast
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC, Australia
| | - Chunxia Zhu
- Center of Stomatology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| |
Collapse
|
9
|
Mfoundou JDL, Guo YJ, Liu MM, Ran XR, Fu DH, Yan ZQ, Li MN, Wang XR. The morphological and histological study of chicken left ovary during growth and development among Hy-line brown layers of different ages. Poult Sci 2021; 100:101191. [PMID: 34242943 PMCID: PMC8271164 DOI: 10.1016/j.psj.2021.101191] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/25/2021] [Accepted: 04/05/2021] [Indexed: 10/25/2022] Open
Abstract
Chicken ovaries are known to develop asymmetrically and only the left ovary fully develops. Although both have been greatly investigated, a gap in scientific reports is still felt between 2-mo-old and sexual maturity. In this study, we aimed at investigating the changes in components that occur during growth to analyze the morphohistological correlation between the left ovary and the follicle development at different age stages in Gallus domesticus. The ovaries were harvested from 60 chickens aged 1 and 3-wk-old, 1, 2, 3, and 4-mo-old (n = 10 per age group), then fixed in AAF solution. Hematoxylin-and Eosin protocol was used to stain the tissue for microscopic observations. Results revealed that the left ovary exhibited an ovarian tissue, a site of follicular growth that displayed various shapes from smooth to greatly indented as the follicles differentiated. Atretic follicles at various regression stages were noticed frequently as the chicks grew in age from 3-wk-old onward along with their differentiation. Rete ovarii, remnants from the male homologs were observed throughout the whole study showing epoöphoron, connecting rete, and gland-like structures that tend to diminish with age. The feature of the left ovary is closely related to the follicular developmental stage, and the bigger and differentiated the follicles are, the more indented and irregular its epithelium appears. Atresia is a normal physiological process that we observed throughout the whole study. Also that, rete ovarii do not spontaneously arise in the ovary but it develops and grows in juvenile chicken as well as in adult ones.
Collapse
Affiliation(s)
- J D L Mfoundou
- College of Animal Science and Technology, Gansu Agricultural University, No. 1, Yingmen Village, Bei Binhe West Road, Anning District, Lanzhou, Gansu Province 730070, China
| | - Y J Guo
- College of Animal Science and Technology, Gansu Agricultural University, No. 1, Yingmen Village, Bei Binhe West Road, Anning District, Lanzhou, Gansu Province 730070, China
| | - M M Liu
- College of Animal Science and Technology, Gansu Agricultural University, No. 1, Yingmen Village, Bei Binhe West Road, Anning District, Lanzhou, Gansu Province 730070, China
| | - X R Ran
- College of Animal Science and Technology, Gansu Agricultural University, No. 1, Yingmen Village, Bei Binhe West Road, Anning District, Lanzhou, Gansu Province 730070, China
| | - D H Fu
- College of Animal Science and Technology, Gansu Agricultural University, No. 1, Yingmen Village, Bei Binhe West Road, Anning District, Lanzhou, Gansu Province 730070, China
| | - Z Q Yan
- College of Animal Science and Technology, Gansu Agricultural University, No. 1, Yingmen Village, Bei Binhe West Road, Anning District, Lanzhou, Gansu Province 730070, China
| | - M N Li
- College of Animal Science and Technology, Gansu Agricultural University, No. 1, Yingmen Village, Bei Binhe West Road, Anning District, Lanzhou, Gansu Province 730070, China
| | - X R Wang
- College of Animal Science and Technology, Gansu Agricultural University, No. 1, Yingmen Village, Bei Binhe West Road, Anning District, Lanzhou, Gansu Province 730070, China.
| |
Collapse
|
10
|
Zhang J, Duan Z, Wang X, Li F, Chen J, Lai X, Qu L, Sun C, Xu G. Screening and validation of candidate genes involved in the regulation of egg yolk deposition in chicken. Poult Sci 2021; 100:101077. [PMID: 33857910 PMCID: PMC8054188 DOI: 10.1016/j.psj.2021.101077] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 11/06/2020] [Accepted: 02/22/2021] [Indexed: 11/30/2022] Open
Abstract
Eggs with the same total weight may have considerable differences in yolk weight. Eggs with a high percentage of yolk have a higher nutritional value, more flavor, and are more desirable to consumers. However, a large yolk proportion means more dry matter in the eggs, which reduces the feed efficiency. The elucidation of the genetic factors of yolk quantity in eggs is of scientific and practical significance. Through RNA sequencing, we explored the transcriptome of ovarian tissue from 12 Wenchang chickens, including 6 chickens that laid eggs with a high yolk percentage (32%) and 6 that laid low yolk percentage eggs (25%). We identified a total of 362 differentially expressed genes (P-value < 0.01, log2 fold change < −1, log2 fold change > 1), of which 220 were upregulated and 142 were downregulated in high yolk percentage hens. According to the Gene Ontology terms annotation and Kyoto Encyclopedia of Genes and Genomes enrichment analysis, the differentially expressed genes were associated with the regulation of various cell functions, cell differentiation and development, neuroactive ligand–receptor interactions, and calcium and ubiquitin-mediated proteolysis signaling pathways. To further filter for genes that were directly involved in yolk accumulation, the chicken quantitative trait loci database, genes within 100 kb upstream and downstream of the yolk weight trait SNP, and intersection genes in protein–protein interaction network diagrams were used to detect genes that overlapped with the differentially expressed genes. We found 7 candidate genes in total, MNR2, AOX1, ANTXRL, GRAMD1C, EEF2, COMP, and JUND, which affect female reproductive performance and the growth and development of follicles, supporting cell transport, cell proliferation, and differentiation. All candidate genes and several randomly selected genes were verified by quantitative real time PCR, and the results were consistent with the RNA sequencing. In conclusion, investigating the molecular mechanisms of high yolk percentage traits will allow breeding strategies to be optimized to alter the percentage of yolk in chicken eggs.
Collapse
Affiliation(s)
- Junnan Zhang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhongyi Duan
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiqiong Wang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Fengning Li
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jiajing Chen
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xingfu Lai
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Liang Qu
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Congjiao Sun
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Guiyun Xu
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
11
|
Liu H, Ding P, Tong Y, He X, Yin Y, Zhang H, Song Z. Metabolomic analysis of the egg yolk during the embryonic development of broilers. Poult Sci 2021; 100:101014. [PMID: 33676096 PMCID: PMC7933800 DOI: 10.1016/j.psj.2021.01.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/10/2021] [Accepted: 01/14/2021] [Indexed: 02/08/2023] Open
Abstract
The chicken egg yolk, which is abundant with lipids, proteins, and minerals, is the major nutrient resource for the embryonic development. In fact, the magnitude and type of yolk nutrients are dynamically changed during the chicken embryogenesis to meet the developmental and nutritional requests at different stages. The yolk nutrients are metabolized and absorbed by the yolk sac membrane and then used by the embryo or other extraembryonic tissues. Thus, understanding the metabolites in the yolk helps to unveil the developmental nutritional requirements for the chicken embryo. In this study, we performed ultra high performance liquid chromatography/tandem mass spectrometry (UHPLC-MS/MS) analysis to investigate the change of metabolites in the egg yolk at embryonic (E) 07, E09, E11, E15, E17, and E19. The results showed that 1) the egg yolk metabolites at E07 and E09 were approximately similar, but E09, E11, E15, E17, and E19 were different from each other, indicating the developmental and metabolic change of the egg yolk; and 2) most of the metabolites were annotated in amino acid metabolism pathways from E11 to E15 and E17 to E19. Especially, arginine, lysine, cysteine, and histidine were continuously increased during the embryonic development, probably because of their effects on the growth promotion and oxidative stress amelioration of the embryo. Interestingly, the ferroptosis was found as one of major processes occurred from E15 to E17 and E17 to E19. Owing to the upregulated expression of acyl-CoA synthetase long-chain family member 4 detected in the yolk sac, we assumed that the ferroptosis of the yolk sac was perhaps caused by the accumulation of reactive oxygen species, which was induced by the large amount of polyunsaturated fatty acids and influx of iron in the yolk. Our findings might offer a novel understanding of embryonic nutrition of broilers according to the developmental changes of metabolites in the egg yolk and may provide new ideas to improve the health and nutrition for prehatch broiler chickens.
Collapse
Affiliation(s)
- Huichao Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Peng Ding
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Yueyue Tong
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Xi He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China; Ministry of Education Engineering Research Center of Feed Safety and Efficient Use, Changsha, Hunan, China; Hunan Engineering Research Center of Poultry Production Safety, Changsha, Hunan, China; Hunan Co-Innovation Center of Animal Production Safety, Changsha, Hunan, China
| | - Yulong Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China; Ministry of Education Engineering Research Center of Feed Safety and Efficient Use, Changsha, Hunan, China; Hunan Co-Innovation Center of Animal Production Safety, Changsha, Hunan, China
| | - Haihan Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China; Ministry of Education Engineering Research Center of Feed Safety and Efficient Use, Changsha, Hunan, China; Hunan Engineering Research Center of Poultry Production Safety, Changsha, Hunan, China; Hunan Co-Innovation Center of Animal Production Safety, Changsha, Hunan, China.
| | - Zehe Song
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China; Ministry of Education Engineering Research Center of Feed Safety and Efficient Use, Changsha, Hunan, China; Hunan Engineering Research Center of Poultry Production Safety, Changsha, Hunan, China; Hunan Co-Innovation Center of Animal Production Safety, Changsha, Hunan, China
| |
Collapse
|
12
|
Liu G, Zeng M, Li X, Rong Y, Hu Z, Zhang H, Liu X. Expression and analysis of ESR1, IGF-1, FSH, VLDLR, LRP, LH, PRLR genes in Pekin duck and Black Muscovy duck. Gene 2020; 769:145183. [PMID: 33007371 DOI: 10.1016/j.gene.2020.145183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 09/12/2020] [Accepted: 09/23/2020] [Indexed: 12/27/2022]
Abstract
In order to explore the influence of egg-laying regulatory genes on egg production in ducks at different laying stages, Pekin duck and Black Muscovy duck were used in this study, including early laying stage (20-30 weeks old), peak laying period (31-48 weeks old) and late laying stage (49-66 weeks old). Relative quantitative RT-PCR was used to detect the mRNA transcription level of selected egg-laying regulatory genes in the ovary tissues of ducks at different laying stages. Study shows: during the laying period of Pekin duck, ESR1, LRP1, IGF-1 and LHR were involved in the regulation of egg-laying, and the high expression of LRP1 in the late stage could inhibit egg production. Still, the expression products of the other three genes showed promoting effect. During the laying period of Black Muscovy duck, FSH, VLDLR, IGF-1, PRLR, LHR and LRP1 participated in the regulation of egg-laying, in which the expression products of the first five genes could promote egg production, while LRP1 showed inhibitory effect. Through our experiments, these data will provide strong theoretical support for the breeding of Pekin duck and Black Muscovy duck.
Collapse
Affiliation(s)
- Guangyu Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Mingfei Zeng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Xingxing Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Yu Rong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Zhigang Hu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Huilin Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Xiaolin Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China.
| |
Collapse
|
13
|
Dynamic characteristics of lipid metabolism in cultured granulosa cells from geese follicles at different developmental stages. Biosci Rep 2020; 39:221432. [PMID: 31808518 PMCID: PMC6928526 DOI: 10.1042/bsr20192188] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 11/22/2019] [Accepted: 12/05/2019] [Indexed: 12/20/2022] Open
Abstract
Previous studies have shown that lipid metabolism in granulosa cells (GCs) plays a vital role during mammalian ovarian follicular development. However, little research has been done on lipid metabolism in avian follicular GCs. The goal of the present study was to investigate the dynamic characteristics of lipid metabolism in GCs from geese pre-hierarchical (6–10 mm) and hierarchical (F4-F2 and F1) follicles during a 6-day period of in vitro culture. Oil red O staining showed that with the increasing incubation time, the amount of lipids accumulated in three cohorts of GCs increased gradually, reached the maxima after 96 h of culture, and then decreased. Moreover, the lipid content varied among these three cohorts, with the highest in F1 GCs. The qPCR results showed genes related to lipid synthesis and oxidation were highest expressed in pre-hierarchical GCs, while those related to lipid transport and deposition were highest expressed in hierarchical GCs. These results suggested that the amount of intracellular lipids in GCs increases with both the follicular diameter and culture time, which is accompanied by significant changes in expression of genes related to lipid metabolism. Therefore, it is postulated that the lipid accumulation capacity of geese GCs depends on the stage of follicle development and is finely regulated by the differential expression of genes related to lipid metabolism.
Collapse
|
14
|
Huang J, Li G, Cao H, Yang F, Xing C, Zhuang Y, Zhang C, Liu P, Cao H, Hu G. The improving effects of biotin on hepatic histopathology and related apolipoprotein mRNA expression in laying hens with fatty liver hemorrhagic syndrome. CANADIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1139/cjas-2019-0147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fatty liver hemorrhagic syndrome (FLHS) is a metabolic disease mostly observed in laying hens that causes an economic toll on the poultry industry. To investigate the improving effects of biotin on FLHS in laying hens, a total of 135 Hy-Line Brown layers of 300-d-old were randomly divided into three groups and treated for 60 d. The hens from these three groups were fed with different diets: control group (the basal diet), pathology group [high-energy-low-protein diet (HELP)], and treatment group (HELP containing a biotin dosage of 0.3 mg kg−1). The results showed that the mRNA expression level of apolipoprotein A I (apoA I) in pathology group significantly (P < 0.01) decreased on day 60 compared with the control group, while the mRNA level of apolipoprotein B100 (apoB100) increased significantly in pathology group on day 30, whereas it decreased significantly on day 60 (P < 0.05). Significantly increased mRNA levels of apoA I and apoB100 were observed in treatment group compared with the pathology group on days 30 and 60 (P < 0.05 or P < 0.01). These results indicated that biotin could effectively alleviate the pathological changes and abnormal expression of apoA I and apoB100 induced by FLHS, which might closely relate to the ability of biotin to promote egg production.
Collapse
Affiliation(s)
- Jiamei Huang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population and Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, People’s Republic of China
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population and Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, People’s Republic of China
| | - Guyue Li
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population and Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, People’s Republic of China
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population and Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, People’s Republic of China
| | - Hongfeng Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population and Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, People’s Republic of China
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population and Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, People’s Republic of China
| | - Fei Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population and Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, People’s Republic of China
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population and Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, People’s Republic of China
| | - Chenghong Xing
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population and Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, People’s Republic of China
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population and Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, People’s Republic of China
| | - Yu Zhuang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population and Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, People’s Republic of China
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population and Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, People’s Republic of China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population and Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, People’s Republic of China
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population and Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, People’s Republic of China
| | - Ping Liu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population and Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, People’s Republic of China
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population and Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, People’s Republic of China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population and Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, People’s Republic of China
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population and Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, People’s Republic of China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population and Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, People’s Republic of China
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population and Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, People’s Republic of China
| |
Collapse
|
15
|
Reicher N, Epstein T, Gravitz D, Cahaner A, Rademacher M, Braun U, Uni Z. From broiler breeder hen feed to the egg and embryo: The molecular effects of guanidinoacetate supplementation on creatine transport and synthesis. Poult Sci 2020; 99:3574-3582. [PMID: 32616254 PMCID: PMC7597819 DOI: 10.1016/j.psj.2020.03.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 01/26/2020] [Accepted: 03/27/2020] [Indexed: 01/25/2023] Open
Abstract
Supplementation of broiler breeder hens with beneficial additives bears great potential for affecting nutrient deposition into the fertile egg. Guanidinoacetate (GAA) is the endogenous precursor of creatine that is used as a feed additive for improving cellular energy metabolism in animal nutrition. In the present study, we have investigated whether GAA supplementation in broiler breeder feed affects creatine deposition into the hatching egg and molecular mechanisms of creatine transport and synthesis within hens and their progeny. For this, broiler breeder hens of 47 wk of age were supplemented with 0.15% GAA for 15 wk, and samples from their tissues, hatching eggs and progeny were compared with those of control, nonsupplemented hens. A significant increase in creatine content was found within the yolk and albumen of hatching eggs obtained from the GAA group, compared with the control group. The GAA group exhibited a significant increased creatine transporter gene expression compared with the control group in their small intestines and oviduct. In GAA group progeny, a significant decrease in creatine transporter expression at embryonic day 19 and day of hatch was found, compared with control group progeny. At the day of hatch, creatine synthesis genes (arginine glycine amidinotransferase and guanidinoacetate N-methyltransferase) exhibited significant decrease in expression in the GAA group progeny compared with control group progeny. These results indicate that GAA supplementation in broiler breeder feed increases its absorbance and deposition into hatching eggs, subsequently affecting GAA and creatine absorbance and synthesis within broiler progeny.
Collapse
Affiliation(s)
- Naama Reicher
- Department of Animal Science, The Robert H. Smith, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Tomer Epstein
- Department of Animal Science, The Robert H. Smith, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Dor Gravitz
- Department of Animal Science, The Robert H. Smith, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Avigdor Cahaner
- Department of Animal Science, The Robert H. Smith, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | | | - Ulrike Braun
- AlzChem Trostberg GmbH, Trostberg 83308, Germany
| | - Zehava Uni
- Department of Animal Science, The Robert H. Smith, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| |
Collapse
|
16
|
Zhu MK, Li HY, Bai LH, Wang LS, Zou XT. Histological changes, lipid metabolism, and oxidative and endoplasmic reticulum stress in the liver of laying hens exposed to cadmium concentrations. Poult Sci 2020; 99:3215-3228. [PMID: 32475458 PMCID: PMC7597684 DOI: 10.1016/j.psj.2019.12.073] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/21/2019] [Accepted: 12/24/2019] [Indexed: 12/18/2022] Open
Abstract
The objective of this study was to determine the effects of cadmium (Cd) on histological changes, lipid metabolism, and oxidative and endoplasmic reticulum (ER) stress in the liver of layers. A total of 480 hens at 38 wk of age were randomly assigned in 5 groups that were fed a basal diet or basal diet supplemented with CdCl2 2.5H2O at 7.5, 15, 30, and 60 mg Cd/kg feed for 9 wk. The results showed that accumulation of Cd was the greatest in the kidney, followed by the liver, pancreas, and lung. Diet contaminated with 30 mg Cd/kg induced antioxidant defenses accompanied by the increase of the activities of antioxidant enzymes in the liver, while dietary supplementation with 60 mg Cd/kg decreased the antioxidant levels significantly (P < 0.05). Immunofluorescence assay showed Cd induced reactive oxygen species production and endoplasmic reticulum stress in hepatocytes. Exposure to 60 mg Cd/kg significantly upregulated the expression of cytochrome C, caspase 3, caspase 9, caspase 7, Grp78, and Chop (P < 0.05). Histopathology and quantitative real-time PCR results presented periportal fibrosis, bile duct hyperplasia, and periportal inflammatory cell infiltration in the liver accompanied by upregulating the expression of tumor necrosis factor-α, IL-6 and IL-10 in the 30- or 60-mg Cd/kg groups. Oil Red O staining and RT-qPCR results showed dietary supplementation with 7.5, 15, and 30 mg Cd/kg promoted the synthesis of lipid droplets and upregulated the expression of fatty acid synthase, while dietary supplementation with 60 mg Cd/kg attenuated the synthesis of lipid droplets and downregulated the expression of acyl-CoA oxidase 1, carnitine palmitoyltransferase-1, and perixisome proliferation-activated receptor α (P < 0.05). Besides, the expression of vitellogenin (VTG) II and microsomal triglyceride transfer protein were upregulated in the 7.5-mg Cd/kg group, and the expressions of apolipoprotein B, vitellogenin II, and apolipoprotein very-low-density lipoprotein-II were downregulated in the 30- and/or 60-mg Cd/kg groups (P < 0.05). Conclusively, although low-dose Cd exposure promoted the synthesis of lipids and lipoproteins in the liver, the increase of Cd exposure could trigger liver injury through inducing oxidative and endoplasmic reticulum stress and negatively affect lipid metabolism and yolk formation in laying hens.
Collapse
Affiliation(s)
- M K Zhu
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - H Y Li
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - L H Bai
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - L S Wang
- Jiande Weifeng Feed Co., Ltd., Jiande, 311603 Hangzhou, Zhejiang, P.R. China
| | - X T Zou
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, P.R. China.
| |
Collapse
|
17
|
Reducing shell egg cholesterol content. I. Overview, genetic approaches, and nutritional strategies. WORLD POULTRY SCI J 2019. [DOI: 10.1017/s0043933906001206] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
Wen R, Gan X, Hu S, Gao S, Deng Y, Qiu J, Sun W, Li L, Han C, Hu J, Wang J. Evidence for the existence of de novo lipogenesis in goose granulosa cells. Poult Sci 2019; 98:1023-1030. [PMID: 30376078 DOI: 10.3382/ps/pey400] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 10/10/2018] [Indexed: 12/21/2022] Open
Abstract
De novo lipogenesis (DNL) is an important physiological mechanism, but it is poorly understood in avian follicles. The protein distribution patterns of three key genes related to DNL (i.e., FAS, ACC, and PPARγ) were firstly determined in geese developing follicles using immunohistochemistry, and our results showed that all three proteins were present in both prehierarchical and hierarchical follicles. Furthermore, it was revealed by qPCR that transcripts of these three genes were widely expressed in theca and granulosa layers of all staged follicles; however, the expression of DNL-related genes in granulosa cell changed significantly (P < 0.05) after follicle selection (FAS and PPARγ) and before ovulation (FAS). It is suggested that the DNL mechanism may be closely related to the follicular selection, while FAS may be closely associated with ovulation and steroidogenesis. These results suggested that DNL exists throughout follicle development and it potentially have an important role in the process of follicular selection, development, steroidogenesis, and ovulation, especially in their granulosa layers. To further demonstrate this point, granulosa cells isolated from hierarchical follicles were cultured in vitro. By analyzing the mRNA and protein expression patterns of these three genes, the fatty acid synthase enzyme activity, the contents of extracellular triglyceride, and intracellular lipids, as well as the cell activity at different time points of in vitro culture (0, 6, 12, and 18 h). These findings not only ensured the existence of DNL in the granulosa cells of goose follicles, but also suggested the complex process of lipid metabolism that associated with DNL, may play an important role in cell proliferation and physiological functions. Taken together, we first confirmed the existence of lipid metabolism, especially the DNL in goose follicles, and further suggested its role in the follicles, especially in the granulosa cells.
Collapse
Affiliation(s)
| | | | - Shenqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Shanyan Gao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Deng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiamin Qiu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Wenqiang Sun
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Chunchun Han
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiwei Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
19
|
Abdul-Rahman II, Jeffcoate I, Obese FY. Age-related changes in the gross anatomy of the reproductive organs, and associated steroid hormone profiles in male and female guinea fowls ( Numida meleagris). Vet Anim Sci 2018; 6:41-49. [PMID: 32734051 PMCID: PMC7386659 DOI: 10.1016/j.vas.2018.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 07/22/2018] [Accepted: 07/26/2018] [Indexed: 11/13/2022] Open
Abstract
Owing to the paucity of information on the reproductive biology of guinea fowls, a study involving a total of 132 birds was conducted, and this documented the developmental changes in the gross anatomy of the reproductive organs of males and females from hatching until 32 weeks of age (WOA), and associated steroid hormone changes. Testicular anatomical biometric traits increased significantly (p < 0.0001) from 8 WOA, and stabilised between 16 and 20 WOA, while peripheral testosterone concentration peaked at 20 WOA. Correlations among all testicular biometric characteristics were strong and positive (p < 0.0001). Similarly peripheral testosterone concentrations strongly (p < 0.01) and positively correlated with all the testicular anatomical biometric traits. In the female guinea fowl, the ovary and oviduct were discernible and measurable at hatching. Significant (p < 0.0001) increases were seen in ovarian and relative ovarian weights, and oviducal weights and lengths between 24 and 28 WOA. Plasma 17β-oestradiol decreased gradually to a very minimum at 16 WOA, and then began to increase gradually until 28 WOA when it plateaued. Peripheral progesterone concentrations on the other hand increased gradually from 4 WOA and peaked at 12 WOA, and then fluctuated considerably thereafter. Correlations among ovarian/oviducal anatomical parameters were strong (p < 0.0001) and positive. Similarly, peripheral oestradiol concentrations strongly (p < 0.0001) and positively correlated with all ovarian/oviducal anatomical parameters. Testicular anatomical biometric traits stabilised between 16 and 20 WOA, coinciding with peak peripheral testosterone concentrations, while ovarian/oviducal parameters recorded huge increases between 24 and 28 WOA, and may be under the influence of oestradiol.
Collapse
Affiliation(s)
- Ibn Iddriss Abdul-Rahman
- Department of Veterinary Science, Faculty of Agriculture, University for Development Studies, P. O. Box TL 1882, Nyankpala Campus, Tamale, Ghana
| | - Ian Jeffcoate
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, Scotland G61 1QH, UK
| | - Frederick Yeboah Obese
- Department of Animal Science, School of Agriculture, University of Ghana, P. O. Box LG 226, Legon, Ghana
| |
Collapse
|
20
|
Oestrogen regulates the expression of cathepsin E-A-like gene through ER
$$\upbeta $$
β
in liver of chicken (Gallus gallus). J Genet 2018. [DOI: 10.1007/s12041-018-0890-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
21
|
Stephens CS, Johnson PA. Occludin expression and regulation in small follicles of the layer and broiler breeder hen. Gen Comp Endocrinol 2017; 248:106-113. [PMID: 28238709 DOI: 10.1016/j.ygcen.2017.02.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/20/2017] [Accepted: 02/22/2017] [Indexed: 11/28/2022]
Abstract
Synchronized yolk accumulation and follicle development are essential for egg production in oviparous species. In birds, yolk is incorporated into the oocyte by an avian specific yolk receptor (LR8), and it has been suggested that occludin (OCLN), a tight junction protein, mediates transfer of yolk material to the oocyte surface. OCLN may be a key regulator of yolk accumulation and follicle growth, however, the expression and regulation of OCLN in granulosa cells during various stages of follicle development is unknown. In the first experiment, we found that LR8 and OCLN mRNA were highest in small follicles within the ovary. In addition, OCLN decreased with increasing follicle size. OCLN mRNA was more abundant in the germinal disc region of the granulosa cell layer than the non-germinal disc region. In addition, we found epidermal growth factor (EGF) and activin B, decreased OCLN mRNA, while activin A increased OCLN. In the second experiment, restricted fed (RF) broiler breeder hens were randomly divided into two groups and one group remained on RF and the other was fed ad libitum (FF). OCLN expression in granulosa cells of 3-5mm follicles of FF hens was lower compared to RF hens and yolk weights were higher in the FF group, however, LR8 mRNA in small whole follicles (<3mm) did not differ between groups. In conclusion, the level of feed intake is related to or may directly regulate OCLN mRNA expression or may have an indirect effect through paracrine or autocrine factors in the ovary.
Collapse
Affiliation(s)
- C S Stephens
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA.
| | - P A Johnson
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
22
|
Pan S, Wang C, Dong X, Chen M, Xing H, Zhang T. Association of VLDLR haplotypes with abdominal fat trait in ducks. Arch Anim Breed 2017. [DOI: 10.5194/aab-60-175-2017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Abstract. This study aimed to determine the correlation among VLDLR (very low-density lipoprotein receptor) gene polymorphisms, body weight and abdominal fat deposition of Gaoyou ducks. A total of 267 Gaoyou ducks from one pure line was employed for testing. The polymorphisms of the VLDLR gene were screened by polymerase chain reaction and DNA sequencing. Four novel single nucleotide polymorphisms (SNPs) (g.151G > A, g.170C > T, g.206A > G and g.278–295del) were identified in the 5'-UTR and signal peptide region. Furthermore, eight haplotypes were identified based on the four SNPs. The H8 was the most common haplotype with a frequency of more than 31 %. The four SNPs and their haplotype combinations were shown to be significantly associated with body weight at 6–10 weeks of age (P < 0. 05 or P < 0. 01) and abdominal fat percentage (AFP) (P < 0. 05 or P < 0. 01). Remarkably, the H1H1 diplotype had an effect on increasing body weight and decreasing AFP from the 6th to the 10th weeks of age. However, increasing positive effects of the H5H8 diplotype were observed for both body weight and AFP. This study suggests that the VLDLR gene plays an important role in the regulation of body weight and fat-related traits and may serve as a potential marker for the marker-assisted selection program during duck breeding.
Collapse
|
23
|
Stephens CS, Johnson PA. Bone morphogenetic protein 15 may promote follicle selection in the hen. Gen Comp Endocrinol 2016; 235:170-176. [PMID: 27340039 DOI: 10.1016/j.ygcen.2016.06.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 06/17/2016] [Accepted: 06/19/2016] [Indexed: 11/25/2022]
Abstract
In the hen, optimal ovulation rate depends on selection of a single follicle into the pre-ovulatory hierarchy. Follicle selection is associated with increased oocyte growth and changes in gene expression in granulosa cells surrounding the oocyte, in preparation for ovulation. This study investigated the expression, function and regulation of bone morphogenetic protein-15 (BMP15) during follicle development in the hen. BMP15 mRNA expression was analyzed in the ooplasm and granulosa cells of 3mm follicles and was confirmed to be primarily in the ooplasm. BMP15 was detected by immunoblotting in 6 and 8mm follicles near the time of follicle selection. Expression of mRNA for BMP15 receptors (BMPR1B and BMPR2) in granulosa cells increased with follicle size, indicating that BMP15 may play an important role around follicle selection. The function of BMP15 was examined by culturing granulosa cells from 3-5mm and 6-8mm follicles with recombinant human BMP15 (rhBMP15). BMP15 increased expression of follicle stimulating hormone receptor (FSHR) mRNA and decreased anti-Müllerian hormone (AMH) mRNA and occludin (OCLN), factors associated with follicle maturation and growth in the hen. Hormonal regulation of BMP15 was assessed by whole follicle culture with estradiol (E2) which increased BMP15 mRNA expression. The distinct expression pattern of BMP15 and its receptors, coupled with the effects of BMP15 to increase FSHR mRNA and decrease AMH mRNA and OCLN mRNA and protein expression suggest that the oocyte may have a role in follicle selection in the chicken.
Collapse
Affiliation(s)
- C S Stephens
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA.
| | - P A Johnson
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
24
|
Mohammadi H, Ansari-Pirsaraei Z, Mousavi SN, Bouyeh M, Gholibeikifard A, Nouri P, Hatefi A, Rahmani M. Egg quality and production performance of laying hens injected with growth hormone and testosterone in the late phase of production. ANIMAL PRODUCTION SCIENCE 2016. [DOI: 10.1071/an14111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this study, 160 73-week-old laying hens (HyLine W-36) were used to investigate the changes in production performance and egg quality parameters of aged laying hens after injection of different doses of growth hormone (GH) and a fixed dose of testosterone (Ts). The hens were weighed individually, placed in laying cages and then randomly assigned to four treatments with four replicates of 10 birds each, in a completely randomised design. The experiment was started at the 75th week and lasted until the 82nd week of age. The treatments were: 1: injection of 100 µL distilled water (control group), 2: injection of 500 µg Ts/kg liveweight + 50 µg GH/kg liveweight, 3: injection of 500 µg Ts/kg liveweight + 100 µg GH/kg liveweight and 4: injection of 500 µg Ts/kg liveweight + 150 µg GH/kg liveweight. In this study, ovulation rate (egg production percent), egg mass and feed intake were significantly higher in Treatment 3 than the control group (P < 0.05), and in Treatment 4, feed conversion ratio was significantly higher than for the other experimental groups (P < 0.05). In addition, the birds in Treatment 3 showed greater egg weight, albumen height, eggshell weight, eggshell density and eggshell weight per surface area than the control group (P < 0.05). In Treatment 3, egg length significantly increased compared with Treatments 1 and 4 (P < 0.05), and in Treatments 2 and 4, shell breaking strength was significantly lower than for the control group (P < 0.05). In conclusion, our results showed positive effects of GH and Ts administration on egg quality parameters and production performance in aged laying hens. Taken together, in the present study Treatment 3 was found more effective in improving egg quality and production performance of the old laying hens.
Collapse
|
25
|
Damsteegt EL, Mizuta H, Hiramatsu N, Lokman PM. How do eggs get fat? Insights into ovarian fatty acid accumulation in the shortfinned eel, Anguilla australis. Gen Comp Endocrinol 2015; 221:94-100. [PMID: 25660471 DOI: 10.1016/j.ygcen.2014.12.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 12/17/2014] [Accepted: 12/31/2014] [Indexed: 11/30/2022]
Abstract
Previous research using eels has shown that 11-ketotestosterone can induce ovarian triacylglyceride accumulation both in vivo and in vitro. Further, accumulation is dramatically enhanced in the presence of very-low density lipoprotein. This study examined the involvement of the low density lipoprotein receptor and vitellogenin receptor in oocyte lipid accumulation. Specific antisera were used in an attempt to block the vitellogenin receptor and/or the low density lipoprotein receptor. Accordingly, incubation with the low density lipoprotein receptor antiserum clearly reduced the oocyte diameter and the amount of oil present within the oocyte. In contrast, blocking the vitellogenin receptor had little effect on either oocyte surface area or the abundance of oil droplets in the cytosol. In keeping with birds, we conclude that the low density lipoprotein receptor is a major player involved in mediating ovarian fatty acid accumulation in the eel. However, lipoprotein lipase-mediated fatty acid accumulation also remains conceivable, for example through interactions between this enzyme and the low density lipoprotein receptor.
Collapse
Affiliation(s)
- Erin L Damsteegt
- Department of Zoology, University of Otago, 340 Great King Street, PO Box 56, Dunedin 9054, New Zealand.
| | - Hiroko Mizuta
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate, Hokkaido 041-8611, Japan
| | - Naoshi Hiramatsu
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate, Hokkaido 041-8611, Japan
| | - P Mark Lokman
- Department of Zoology, University of Otago, 340 Great King Street, PO Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
26
|
Sun C, Lu J, Yi G, Yuan J, Duan Z, Qu L, Xu G, Wang K, Yang N. Promising Loci and Genes for Yolk and Ovary Weight in Chickens Revealed by a Genome-Wide Association Study. PLoS One 2015; 10:e0137145. [PMID: 26332579 PMCID: PMC4558091 DOI: 10.1371/journal.pone.0137145] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/12/2015] [Indexed: 11/24/2022] Open
Abstract
Because it serves as the cytoplasm of the oocyte and provides a large amount of reserves, the egg yolk has biological significance for developing embryos. The ovary and its hierarchy of follicles are the main reproductive organs responsible for yolk deposition in chickens. However, the genetic architecture underlying the yolk and ovarian follicle weights remains elusive. Here, we measured the yolk weight (YW) at 11 age points from onset of egg laying to 72 weeks of age and measured the follicle weight (FW) and ovary weight (OW) at 73 weeks as part of a comprehensive genome-wide association study (GWAS) in 1,534 F2 hens derived from reciprocal crosses between White Leghorn (WL) and Dongxiang chickens (DX). For all ages, YWs exhibited moderate single nucleotide polymorphism (SNP)-based heritability estimates (0.25–0.38), while the estimates for FW (0.16) and OW (0.20) were relatively low. Independent univariate genome-wide screens for each trait identified 12, 3, and 31 novel significant associations with YW, FW, and OW, respectively. A list of candidate genes such as ZAR1, STARD13, ACER1b, ACSBG2, and DHRS12 were identified for having a plausible function in yolk and follicle development. These genes are important to the initiation of embryogenesis, lipid transport, lipoprotein synthesis, lipid droplet promotion, and steroid hormone metabolism, respectively. Our study provides for the first time a genome-wide association (GWA) analysis for follicle and ovary weight. Identification of the promising loci as well as potential candidate genes will greatly advance our understanding of the genetic basis underlying dynamic yolk weight and ovarian follicle development and has practical significance in breeding programs for the alteration of yolk weight at different age points.
Collapse
Affiliation(s)
- Congjiao Sun
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jian Lu
- Jiangsu Institute of Poultry Science, Yangzhou, Jiangsu, China
| | - Guoqiang Yi
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jingwei Yuan
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhongyi Duan
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lujiang Qu
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Guiyun Xu
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Kehua Wang
- Jiangsu Institute of Poultry Science, Yangzhou, Jiangsu, China
| | - Ning Yang
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- * E-mail:
| |
Collapse
|
27
|
Wu Y, Pi JS, Pan AL, Du JP, Shen J, Pu YJ, Liang ZH. Two novel linkage SNPs of VLDLR gene intron 11 are associated with laying traits in two quail populations. Arch Anim Breed 2015. [DOI: 10.5194/aab-58-1-2015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Abstract. The very low density lipoprotein receptor (VLDLR) is an important multifunctional receptor and plays a key role in chicken reproduction. This study is designed to investigate the effect of variants in the VLDLR gene on quail laying traits. Two quail populations were studied – yellow feather quail and chestnut feather quail; 384 individuals per breed were used. The laying traits (the weight of the first egg, the age of the first egg, egg weight, the weight of 20-week-old and the egg number of 20-week-old) were measured and recorded. The polymerase chain reaction–restriction fragment length polymorphism (PCR-RFLP) method was developed to genotype those individuals. The results showed two novel polymorphisms, i.e. two linkage variations in intron 11 of the VLDLR gene (363T > C and 392C > T). They are associated with the weight of the first egg, the age of the first egg and egg number of 20-week-old in yellow feather and chestnut feather quail. The two variations in intron 11 of VLDLR may be linked with potential major loci or genes affecting some laying traits.
Collapse
|
28
|
Johnson PA, Stephens CS, Giles JR. The domestic chicken: Causes and consequences of an egg a day. Poult Sci 2015; 94:816-20. [PMID: 25667424 DOI: 10.3382/ps/peu083] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The domestic laying chicken has been intensely selected to be a persistent ovulator. That is, the tendency for broodiness has been nearly eliminated and, given the appropriate lighting and nutrition, many strains of laying hens produce an egg on almost every day. The regulatory mechanisms involved in coordination of neuroendocrine and ovarian events have been well studied and described. In spite of this, there has been little attention focused on the oocyte itself. Recent findings in mammals have indicated that the oocyte produces several oocyte-specific factors, including growth differentiation factor 9 (GDF9) and bone morphogenetic factor 15 (BMP15), which influence the surrounding cells and follicular development. Our studies indicate that GDF9 is present in the hen oocyte and influences granulosa cell proliferation. Additionally, Bmp15 mRNA is most abundant in oocytes of small follicles and stimulates an increase in follicle stimulating hormone (FSH) receptor mRNA in granulosa cells. BMP15 also enhances yolk uptake in growing follicles by decreasing tight junctions between granulosa cells. These studies indicate that the oocyte likely contributes to follicle development. Commercial laying hens also spontaneously develop ovarian cancer at a high rate, and susceptibility to this disease has been associated with ovulatory events in women. Studies have shown that ovulation, or events associated with ovulation, increase the prevalence of ovarian cancer in hens. Inhibition of ovulation in hens through a hormonal strategy mimicking oral contraceptives results in a decrease of ovarian cancer incidence. Recent studies in women have suggested that some ovarian tumors may arise from the distal oviduct. Gene expression profiles in very early stage tumors from hens show a high expression of oviduct-related genes, supporting the possibility of oviduct origin for some ovarian tumors. Genetic selection for high productivity in commercial laying hens has generated an efficient and valuable food source as well as an important animal model for human ovarian cancer.
Collapse
Affiliation(s)
- P A Johnson
- Department of Animal Science, Cornell University, Ithaca, NY 14853
| | - C S Stephens
- Department of Animal Science, Cornell University, Ithaca, NY 14853
| | - J R Giles
- Department of Animal Science, Cornell University, Ithaca, NY 14853
| |
Collapse
|
29
|
Hu S, Liu H, Pan Z, Xia L, Dong X, Li L, Xu F, He H, Wang J. Molecular cloning, expression profile and transcriptional modulation of two splice variants of very low density lipoprotein receptor during ovarian follicle development in geese (Anser cygnoide). Anim Reprod Sci 2014; 149:281-96. [DOI: 10.1016/j.anireprosci.2014.06.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 06/19/2014] [Accepted: 06/20/2014] [Indexed: 10/25/2022]
|
30
|
Reading BJ, Hiramatsu N, Schilling J, Molloy KT, Glassbrook N, Mizuta H, Luo W, Baltzegar DA, Williams VN, Todo T, Hara A, Sullivan CV. Lrp13 is a novel vertebrate lipoprotein receptor that binds vitellogenins in teleost fishes. J Lipid Res 2014; 55:2287-95. [PMID: 25217480 DOI: 10.1194/jlr.m050286] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcripts encoding a novel member of the lipoprotein receptor superfamily, termed LDL receptor-related protein (Lrp)13, were sequenced from striped bass (Morone saxatilis) and white perch (Morone americana) ovaries. Receptor proteins were purified from perch ovary membranes by protein-affinity chromatography employing an immobilized mixture of vitellogenins Aa and Ab. RT-PCR revealed lrp13 to be predominantly expressed in striped bass ovary, and in situ hybridization detected lrp13 transcripts in the ooplasm of early secondary growth oocytes. Quantitative RT-PCR confirmed peak lrp13 expression in the ovary during early secondary growth. Quantitative mass spectrometry revealed peak Lrp13 protein levels in striped bass ovary during late-vitellogenesis, and immunohistochemistry localized Lrp13 to the oolemma and zona radiata of vitellogenic oocytes. Previously unreported orthologs of lrp13 were identified in genome sequences of fishes, chicken (Gallus gallus), mouse (Mus musculus), and dog (Canis lupus familiaris). Zebrafish (Danio rerio) and Nile tilapia (Oreochromis niloticus) lrp13 loci are discrete and share genomic synteny. The Lrp13 appears to function as a vitellogenin receptor and may be an important mediator of yolk formation in fishes and other oviparous vertebrates. The presence of lrp13 orthologs in mammals suggests that this lipoprotein receptor is widely distributed among vertebrates, where it may generally play a role in lipoprotein metabolism.
Collapse
Affiliation(s)
- Benjamin J Reading
- Departments of Applied Ecology North Carolina State University, Raleigh, NC
| | - Naoshi Hiramatsu
- Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, Japan
| | - Justin Schilling
- Departments of Applied Ecology North Carolina State University, Raleigh, NC
| | - Katelyn T Molloy
- Departments of Applied Ecology North Carolina State University, Raleigh, NC
| | - Norm Glassbrook
- Genomic Sciences Laboratory, North Carolina State University, Raleigh, NC
| | - Hiroko Mizuta
- Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, Japan
| | - Wenshu Luo
- Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, Japan
| | | | - Valerie N Williams
- Departments of Applied Ecology North Carolina State University, Raleigh, NC
| | - Takashi Todo
- Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, Japan
| | - Akihiko Hara
- Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, Japan
| | - Craig V Sullivan
- Biological Sciences, North Carolina State University, Raleigh, NC Carolina AquaGyn, Raleigh, NC
| |
Collapse
|
31
|
Estrogen stimulates expression of chicken hepatic vitellogenin II and very low-density apolipoprotein II through ER-α. Theriogenology 2014; 82:517-24. [DOI: 10.1016/j.theriogenology.2014.05.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 04/29/2014] [Accepted: 05/13/2014] [Indexed: 01/23/2023]
|
32
|
Sato K, Norris A, Sato M, Grant BD. C. elegans as a model for membrane traffic. WORMBOOK : THE ONLINE REVIEW OF C. ELEGANS BIOLOGY 2014:1-47. [PMID: 24778088 PMCID: PMC4096984 DOI: 10.1895/wormbook.1.77.2] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The counterbalancing action of the endocytosis and secretory pathways maintains a dynamic equilibrium that regulates the composition of the plasma membrane, allowing it to maintain homeostasis and to change rapidly in response to alterations in the extracellular environment and/or intracellular metabolism. These pathways are intimately integrated with intercellular signaling systems and play critical roles in all cells. Studies in Caenorhabditis elegans have revealed diverse roles of membrane trafficking in physiology and development and have also provided molecular insight into the fundamental mechanisms that direct cargo sorting, vesicle budding, and membrane fisson and fusion. In this review, we summarize progress in understanding membrane trafficking mechanisms derived from work in C. elegans, focusing mainly on work done in non-neuronal cell-types, especially the germline, early embryo, coelomocytes, and intestine.
Collapse
Affiliation(s)
- Ken Sato
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan. ;
| | | | | | | |
Collapse
|
33
|
Mizuta H, Luo W, Ito Y, Mushirobira Y, Todo T, Hara A, Reading BJ, Sullivan CV, Hiramatsu N. Ovarian expression and localization of a vitellogenin receptor with eight ligand binding repeats in the cutthroat trout (Oncorhynchus clarki). Comp Biochem Physiol B Biochem Mol Biol 2013; 166:81-90. [PMID: 23872140 DOI: 10.1016/j.cbpb.2013.07.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Revised: 07/12/2013] [Accepted: 07/12/2013] [Indexed: 10/26/2022]
Abstract
A cDNA encoding a vitellogenin receptor with 8 ligand binding repeats (vtgr) was cloned from ovaries of the cutthroat trout, Oncorhynchus clarki. In situ hybridization and quantitative PCR analyses revealed that the main site of vtgr mRNA expression was the oocytes. Expression was strongly detected in perinucleous stage oocytes, gradually decreased as oocytes grew, and became hardly detectable in vitellogenic oocytes. A rabbit antibody (a-Vtgr) was raised against a recombinant Vtgr protein in order to immunologically detect and localize Vtgr within the ovarian follicles. Western blotting using a-Vtgr detected a bold band with an apparent mass of ~95-105kDa in an ovarian preparation that also bound Sakhalin taimen, Hucho perryi, vitellogenin in ligand blots. Immunohistochemistry using a-Vtgr revealed that the Vtgr was uniformly distributed throughout the ooplasm of perinucleolus stage oocytes, subsequently translocated to the periphery of lipid droplet stage oocytes, and became localized to the oolemma during vitellogenesis. We provide the first characterization of Vtgr at both the transcriptional and the translational levels in the cutthroat trout, and our results suggest that this receptor is involved in uptake of Vtg by oocytes of this species.
Collapse
Affiliation(s)
- Hiroko Mizuta
- Division of Marine Life Science, Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido, 041-8611, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Mohammadi H, Ansari-Pirsaraei Z. Changes in some blood parameters and production performance of old laying hens due to growth hormone and testosterone injection. J Anim Physiol Anim Nutr (Berl) 2013; 98:483-90. [PMID: 23808354 DOI: 10.1111/jpn.12095] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 05/27/2013] [Indexed: 12/24/2022]
Abstract
The experiment was designed to study the changes in some blood parameters and production performance of old laying hens after injection of different doses of growth hormone (GH) and testosterone (Ts). A total of 160 old laying hens (HyLine W-36) at 73 weeks of age were weighed individually and randomly allocated to four treatments with four replicates and 10 birds in each replicate in a completely randomized design. Growth hormone and Ts hormones were injected subcutaneously. Treatment groups were as follows: treatment 1: injection of 100 μl distiled water (control group), treatment 2: injection of 500 μg Ts/kg live-weight + 50 μgGH/kg live-weight, treatment 3: injection of 500 μgTs/kg live-weight + 100 μgGH/kg live-weight and treatment 4: injection of 500 μgTs/kg live-weight + 150 μgGH/kg live-weight. Plasma levels of oestradiol, T4 , LDL, HDL and cholesterol significantly increased in treatment 3 in relation to the control group. All injected hens showed significantly higher levels of glucose in relation to control group. The results showed the positive effects of GH and Ts administration on production performance and blood parameters which are associated with egg production potentiality and in turn may improve reproductivity (egg production) in old laying hens. The positive results of the study may be useful in animal selection and breeding programmes.
Collapse
Affiliation(s)
- H Mohammadi
- Department of Agriculture, Payame Noor University, Tehran, Iran
| | | |
Collapse
|
35
|
Wang XJ, Li Y, Song QQ, Guo YY, Jiao HC, Song ZG, Lin H. Corticosterone regulation of ovarian follicular development is dependent on the energy status of laying hens. J Lipid Res 2013; 54:1860-76. [PMID: 23599356 DOI: 10.1194/jlr.m036301] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glucocorticoids participate in the arousal of stress responses and trigger physiological adjustments that shift energy away from reproduction toward survival. Ovarian follicular development in avians is accompanied by the supply of yolk precursors, which are mainly synthesized in the liver. Therefore, we hypothesized energy status and hepatic lipogenesis are involved in the induction of reproductive disorders by glucocorticoids in laying hens. The results show that corticosterone decreased the laying performance by suppressing follicular development in energy-deficit state, rather than in energy-sufficient state. In corticosterone-treated hens, the suppressed follicular development was associated with the reduced availability of yolk precursor, indicated by the plasma concentration of VLDL and vitellogenin and the decreased proportion of yolk-targeted VLDL (VLDLy). Corticosterone decreased the expression of apolipoprotein B and apolipoprotein VLDL-II in the liver. A drop in VLDL receptor content and an increase in the expression of tight junction proteins occludin and claudin1 were also observed in hierarchical follicles. The results suggest corticosterone-suppressed follicular development is energy dependent. The decreased apolipoprotein synthesis and VLDLy secretion by liver are responsible for the decreased availability of circulating yolk precursor, and the upregulation of occludin and claudin expression further prevents yolk deposition into oocytes.
Collapse
Affiliation(s)
- Xiao-Juan Wang
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Follicle development in the highly efficient laying hen is characterized by a well-organized follicular hierarchy. This is not the case in other chickens such as the broiler breeder hen that has excessive follicle development and lower reproductive efficiency. Although management practices can optimize egg production in less productive breeds of chickens, the factors that contribute to this difference are not known. Interactions between the oocyte and surrounding somatic cells are believed to be involved in promoting follicle selection. Anti-Müllerian hormone (AMH) has been shown to have a role in regulating rate of follicle development in mammals. In hens, the expression of AMH is restricted to the growing population of follicles and, similar to mammals, is markedly decreased at around the time of follicle selection. The oocyte factors, growth and differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15), have been identified in the hen, and their expression pattern has been characterized. Anti-Müllerian hormone expression in hens is decreased by a protein factor from the oocyte (not GDF9) and is also decreased by vitamin D. Associated with the decrease in AMH expression by vitamin D, follicle-stimulating hormone receptor mRNA is increased. These data suggest that information about AMH regulation may enhance our understanding of follicle selection, particularly in birds with aberrant follicle development.
Collapse
|
37
|
Bauer R, Plieschnig JA, Finkes T, Riegler B, Hermann M, Schneider WJ. The developing chicken yolk sac acquires nutrient transport competence by an orchestrated differentiation process of its endodermal epithelial cells. J Biol Chem 2012; 288:1088-98. [PMID: 23209291 DOI: 10.1074/jbc.m112.393090] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
During chicken yolk sac (YS) growth, mesodermal cells in the area vasculosa follow the migrating endodermal epithelial cell (EEC) layer in the area vitellina. Ultimately, these cells form the vascularized YS that functions in nutrient transfer to the embryo. How and when EECs, with their apical aspect directly contacting the oocytic yolk, acquire the ability to take up yolk macromolecules during the vitellina-to-vasculosa transition has not been investigated. In addressing these questions, we found that with progressive vascularization, the expression level in EECs of the nutrient receptor triad, LRP2-cubilin-amnionless, changes significantly. The receptor complex, competent for uptake of yolk proteins, is produced by EECs in the area vasculosa but not in the area vitellina. Yolk components endocytosed by LRP2-cubilin-amnionless, preformed and newly formed lipid droplets, and yolk-derived very low density lipoprotein, shown to be efficiently endocytosed and lysosomally processed by EECs, probably provide substrates for resynthesis and secretion of nutrients, such as lipoproteins. In fact, as directly demonstrated by pulse-chase experiments, EECs in the vascularized, but not in the avascular, region efficiently produce and secrete lipoproteins containing apolipoprotein A-I (apoA-I), apoB, and/or apoA-V. In contrast, perilipin 2, a lipid droplet-stabilizing protein, is produced exclusively by the EECs of the area vitellina. These data suggest a differentiation process that orchestrates the vascularization of the developing YS with the induction of yolk uptake and lipoprotein secretion by EECs to ensure embryo nutrition.
Collapse
Affiliation(s)
- Raimund Bauer
- Department of Medical Biochemistry, Medical University of Vienna, Max F. Perutz Laboratories, Dr. Bohr Gasse 9/2, 1030 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
38
|
Wang C, Li SJ, Yu WH, Xin QW, Li C, Feng YP, Peng XL, Gong YZ. Cloning and expression profiling of the VLDLR gene associated with egg performance in duck (Anas platyrhynchos). Genet Sel Evol 2011; 43:29. [PMID: 21819592 PMCID: PMC3162882 DOI: 10.1186/1297-9686-43-29] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Accepted: 08/05/2011] [Indexed: 11/15/2022] Open
Abstract
Background The very low density lipoprotein receptor gene (VLDLR), a member of the low density lipoprotein receptor (LDLR) gene family, plays a crucial role in the synthesis of yolk protein precursors in oviparous species. Differential splicing of this gene has been reported in human, rabbit and rat. In chicken, studies showed that the VLDLR protein on the oocyte surface mediates the uptake of yolk protein precursors into growing oocytes. However, information on the VLDLR gene in duck is still scarce. Methods Full-length duck VLDLR cDNA was obtained by comparative cloning and rapid amplification of cDNA ends (RACE). Tissue expression patterns were analysed by semi-quantitative reverse-transcription polymerase chain reaction (RT-PCR). Association between the different genotypes and egg performance traits was investigated with the general linear model (GLM) procedure of the SAS® software package. Results In duck, two VLDLR transcripts were identified, one transcript (variant-a) containing an O-linked sugar domain and the other (variant-b) not containing this sugar domain. These transcripts share ~70 to 90% identity with their counterparts in other species. A phylogenetic tree based on amino acid sequences showed that duck VLDLR proteins were closely related with those of chicken and zebra finch. The two duck VLDLR transcripts are differentially expressed i.e. VLDLR-a is mainly expressed in muscle tissue and VLDLR-b in reproductive organs. We have localized the duck VLDLR gene on chromosome Z. An association analysis using two completely linked SNP sites (T/C at position 2025 bp of the ORF and G/A in intron 13) and records from two generations demonstrated that the duck VLDLR gene was significantly associated with egg production (P < 0.01), age of first egg (P < 0.01) and body weight of first egg (P < 0.05). Conclusions Duck and chicken VLDLR genes probably perform similar function in the development of growing oocytes and deposition of yolk lipoprotein. Therefore, VLDLR could be a candidate gene for duck egg performance and be used as a genetic marker to improve egg performance in ducks.
Collapse
Affiliation(s)
- Cui Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Li J, Zhang B, Han H, Cao Z, Lian Z, Li N. Metabolic properties of chicken embryonic stem cells. SCIENCE CHINA-LIFE SCIENCES 2010; 53:1073-84. [PMID: 21104367 DOI: 10.1007/s11427-010-4055-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 04/19/2010] [Indexed: 11/26/2022]
Abstract
Cellular energy metabolism correlates with cell fate, but the metabolic properties of chicken embryonic stem (chES) cells are poorly understood. Using a previously established chES cell model and electron microscopy (EM), we found that undifferentiated chES cells stored glycogen. Additionally, undifferentiated chES cells expressed lower levels of glucose transporter 1 (GLUT1) and phosphofructokinase (PFK) mRNAs but higher levels of hexokinase 1 (HK1) and glycogen synthase (GYS) mRNAs compared with control primary chicken embryonic fibroblast (CEF) cells, suggesting that chES cells direct glucose flux towards the glycogenic pathway. Moreover, we demonstrated that undifferentiated chES cells block gluconeogenic outflow and impede the accumulation of glucose-6-phosphate (G6P) from this pathway, as evidenced by the barely detectable levels of pyruvate carboxylase (PCX) and mitochondrial phosphoenolpyruvate carboxykinase (PCK2) mRNAs. Additionally, cell death occurred in undifferentiated chES cells as shown by Hoechst 33342 and propidium iodide (PI) double staining, but it could be rescued by exogenous G6P. However, we found that differentiated chES cells decreased the glycogen reserve through the use of PAS staining. Moreover, differentiated chES cells expressed higher levels of GLUT1, HK1 and PFK mRNAs, while the level of GYS mRNA remained similar in control CEF cells. These data indicate that undifferentiated chES cells continue to synthesize glycogen from glucose at the expense of G6P, while differentiated chES cells have a decreased glycogen reserve, which suggests that the amount of glycogen is indicative of the chES cell state.
Collapse
Affiliation(s)
- Jia Li
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100194, China
| | | | | | | | | | | |
Collapse
|
40
|
Roth Z, Parnes S, Wiel S, Sagi A, Zmora N, Chung JS, Khalaila I. N-glycan moieties of the crustacean egg yolk protein and their glycosylation sites. Glycoconj J 2010; 27:159-69. [PMID: 19921429 DOI: 10.1007/s10719-009-9268-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 10/23/2009] [Accepted: 10/27/2009] [Indexed: 11/27/2022]
Abstract
Vitellogenin (Vg) is the precursor of the egg yolk glycoprotein of crustaceans. In the prawn Macrobrachium rosenbergii, Vg is synthesized in the hepatopancreas, secreted to the hemolymph, and taken up by means of receptor-mediated endocytosis into the oocytes. The importance of glycosylation of Vg lies in its putative role in the folding, processing and transport of this protein to the egg yolk and in the fact that the N-glycan moieties could provide a source of carbohydrate during embryogenesis. The present study describes, for the first time, the structure of the glycan moieties and their sites of attachment to the Vg of M. rosenbergii. Bioinformatics analysis revealed seven putative N-glycosylation sites in M. rosenbergii Vg; two of these glycosylation sites are conserved throughout the Vgs of decapod crustaceans from the Pleocyemata suborder (N 159 and N 660). The glycosylation of six putative sites of M. rosenbergii Vg (N 151, N 159, N ,168 N ,614 N 660 and N 2300) was confirmed; three of the confirmed glycosylation sites are localized around the N-terminally conserved N-glycosylation site N 159. From a theoretical three-dimensional structure, these three N-glycosylated sites N 151, N 159, and N 168 were localized on the surface of the Vg consensus sequence. In addition, an uncommon high mannose N-linked oligosaccharide structure with a glucose cap (Glc1Man9GlcNAc2) was characterized in the secreted Vg. These findings thus make a significant contribution to the structural elucidating of the crustacean Vg glycan moieties, which may shed light on their role in protein folding and transport and in recognition between Vg and its target organ, the oocyte.
Collapse
Affiliation(s)
- Ziv Roth
- Department of Biotechnology Engineering, Ben-Gurion University of the Negev, P.O.Box 653, Beer-Sheva, 84105, Israel
| | | | | | | | | | | | | |
Collapse
|
41
|
Bae HD, Kitaguchi K, Horio F, Murai A. Higher incorporation of heterologous chicken immunoglobulin Y compared with homologous quail immunoglobulin Y into egg yolks of Japanese quail (Coturnix japonica). Poult Sci 2009; 88:1703-11. [PMID: 19590086 DOI: 10.3382/ps.2008-00238] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In avian species, blood IgY is selectively incorporated into the yolks of maturing oocytes, although the precise mechanism is poorly understood. Our previous study showed that 22% of i.v.-injected heterologous chicken IgY (cIgY) was incorporated into egg yolks of Japanese quail (Coturnix japonica). However, it is not known whether homologous quail IgY (qIgY) can be more efficiently incorporated into quail egg yolks than cIgY. Therefore, we compared the uptakes of qIgY and cIgY i.v. administered into quail egg yolks and further characterized the uptakes of these 2 antibodies into quail ovarian follicles. Quail IgY and cIgY purified from the blood of the respective bird were labeled with digoxigenin, and their uptakes into quail egg yolks were determined by ELISA. Unexpectedly, total incorporation of the injected qIgY was only one-third of that of cIgY, although much more qIgY was left in blood compared with cIgY, suggesting that qIgY is the less preferable antibody as a transport ligand into quail egg yolks. On the other hand, deposition of the qIgY into heart, lung, liver, spleen, kidney, and ovarian follicular membrane was markedly higher than that of cIgY. Amino acid sequence analysis of 3 peptides derived from the trypsin-digested qIgY heavy chain revealed low homology between qIgY and cIgY. In conclusion, our results show that heterologous cIgY is more efficiently incorporated into quail egg yolks than homologous qIgY, possibly due to a distinctive antibody transport system existing in oocytes. The present results also may provide a new strategy for delivering useful proteinaceous substances into egg yolks in an attempt to produce designer eggs.
Collapse
Affiliation(s)
- H-D Bae
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, 464-8601 Nagoya, Japan
| | | | | | | |
Collapse
|
42
|
Schneider WJ. Receptor-mediated mechanisms in ovarian follicle and oocyte development. Gen Comp Endocrinol 2009; 163:18-23. [PMID: 19523388 DOI: 10.1016/j.ygcen.2008.11.032] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 11/26/2008] [Accepted: 11/27/2008] [Indexed: 11/21/2022]
Abstract
The normal development of the chicken oocyte within the ovarian follicle depends on the coordinated expression and function of several members of the low density lipoprotein receptor gene family. The human low density lipoprotein receptor (LDLR) is the prototype of the gene family; since its discovery and the elucidation of the medical significance of mutations in the ldlr gene, many additional family members have been discovered and characterized, and some important advances have resulted from studies in the chicken. I describe the analogies as well as the differences that exist between the molecular genetics of the mammalian and avian members of this important gene family, with emphasis on receptor-mediated oocyte growth. Recent progress in the molecular characterization of the chicken genes whose products mediate oocyte growth, follicle development, and accessory pathways is described in detail, and emerging information of preliminary nature is included. As the availability of chicken genome sequence data has enhanced the rate of progress in the field, our understanding of the physiological roles of members of this receptor family in general has already gained from studies in the avian model system.
Collapse
Affiliation(s)
- Wolfgang J Schneider
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Dr. Bohr Gasse 9/2, A-1030 Vienna, Austria.
| |
Collapse
|
43
|
Han D, Haunerland NH, Williams TD. Variation in yolk precursor receptor mRNA expression is a key determinant of reproductive phenotype in the zebra finch (Taeniopygia guttata). J Exp Biol 2009; 212:1277-83. [DOI: 10.1242/jeb.026906] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
The vitellogenin/very low density lipoprotein receptor (VTG/VLDL-R), a 95 kDa protein that belongs to the low density lipoprotein receptor gene family,mediates the uptake of yolk precursors by developing follicles during oocyte growth. However, the extent to which variation in VTG/VLDL-R expression plays a role in determining inter-individual variation in reproductive phenotype(e.g. follicle or egg size) is not known. Here we show that the mRNA sequence of the zebra finch (Taeniopygia guttata) VTG/VLDL-R shows a high degree of sequence identity (92%) with chicken VTG/VLDL-R mRNA. Using quantitative real-time PCR we measured transcriptional expression of VTG/VLDL-R mRNA in various tissues, and for different stages of oocyte growth,in individual female zebra finches. VTG/VLDL-R mRNA was expressed at high levels in vitellogenic oocytes and in skeletal muscle, and was also detectable in liver, but these tissues expressed different splice variants: the short-form LR8–in oocytes and liver, and the LR8+ form in skeletal muscle. There was significant temporal variation in VTG/VLDL-R expression during follicle growth, with highest levels in ovary and a gradual decrease from pre-F3 to F1 vitellogenic follicles. Variation in ovary mRNA expression was correlated with inter-individual variation in clutch size and laying interval. Furthermore, variation in F3 follicle VTG/VLDL-R mRNA expression was correlated with inter-individual variation in egg mass and F1 follicle mass,suggesting that VTG/VLDL receptor mRNA expression is a key determinant of inter-individual variation in reproductive phenotype.
Collapse
Affiliation(s)
- Dong Han
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, Canada, V5A 1S6
| | - Norbert H. Haunerland
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, Canada, V5A 1S6
| | - Tony D. Williams
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, Canada, V5A 1S6
| |
Collapse
|
44
|
Yousaf MS, Rahman ZU, Sandhu MA, Bukhari SA, Yousaf A. Comparison of the fast-induced and high dietary zinc-induced molting: trace elements dynamic in serum and eggs at different production stages in hens (Gallus domesticus). J Anim Physiol Anim Nutr (Berl) 2009; 93:35-43. [DOI: 10.1111/j.1439-0396.2007.00775.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Madekurozwa MC, Kimaro WH. An Ultrastructural Characterization of the Ooplasm in Ovarian Follicles of the Immature Ostrich (Struthio camelus). Anat Histol Embryol 2008; 37:214-8. [DOI: 10.1111/j.1439-0264.2007.00831.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Kitaguchi K, Osada K, Horio F, Murai A. Exclusion of polymeric immunoglobulins and selective immunoglobulin Y transport that recognizes its Fc region in avian ovarian follicles. Vet Immunol Immunopathol 2007; 121:290-9. [PMID: 18031828 DOI: 10.1016/j.vetimm.2007.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 10/05/2007] [Accepted: 10/09/2007] [Indexed: 11/16/2022]
Abstract
In avian species, blood immunoglobulin (Ig) Y, the equivalent to mammalian IgG, is selectively incorporated into ovarian follicles, but other classes, IgA and IgM, are much less abundant in the follicles. Several mammalian Igs, including IgG and IgA, are also incorporated into ovarian follicles when administered to birds. To clarify the Ig structure required for incorporation into ovarian follicles, Ig uptakes were determined after the intravenous injection of chicken and human Igs. Three chicken Igs (cIgY, cIgA and cIgM) and two human IgAs (monomeric hIgA and polymeric hIgA) were labeled with digoxigenin, and their uptakes into quail (Coturnix japonica) egg yolks were determined by ELISA and SDS-PAGE. The uptake of cIgY was the highest among the three cIgs (22% of injected cIgY was recovered from egg yolks). Chicken IgA was efficiently incorporated into egg yolk when it formed a monomeric state. Pentameric IgM was untransportable into egg yolk. We also found that the uptake of monomeric hIgA was much more efficient than that of polymeric hIgA. These results suggest that the retention of the monomeric form contributes to the efficient transport of Igs into ovarian follicles. On the other hand, Ig uptakes among monomeric Igs nevertheless differed; for example, a time-course analysis showed that the rate of monomeric cIgY uptake was approximately eight times faster than that of monomeric hIgA. The injection of cIgY fragments Fc, Fab and F(ab')(2) resulted in the largest uptake of Fc fragment, with the same level as that of cIgY. These results suggest the presence of a selective IgY transport system that recognizes its Fc region in avian ovarian follicles.
Collapse
Affiliation(s)
- Kohji Kitaguchi
- Department of Applied Molecular Biosciences, Nagoya University, Nagoya 464-8601, Japan
| | | | | | | |
Collapse
|
47
|
Agulleiro MJ, André M, Morais S, Cerdà J, Babin PJ. High Transcript Level of Fatty Acid-Binding Protein 11 but Not of Very Low-Density Lipoprotein Receptor Is Correlated to Ovarian Follicle Atresia in a Teleost Fish (Solea senegalensis)1. Biol Reprod 2007; 77:504-16. [PMID: 17554079 DOI: 10.1095/biolreprod.107.061598] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Transcripts encoding a fatty acid-binding protein (FABP), Fabp11, and two isoforms of very low-density lipoprotein receptor (Vldlr; vitellogenin receptor) were characterized from the ovary of Senegalese sole (Solea senegalensis). Phylogenetic analyses of vertebrate FABPs demonstrated that Senegalese sole Fabp11, as zebrafish (Danio rerio) homologous sequences, is part of a newly defined teleost fish FABP subfamily that is a sister clade of tetrapod FABP4/FABP5/FABP8/FABP9. RT-PCR revealed high levels of vldlr transcript splicing variants in the ovaries and, to a lesser extent, in somatic tissues, whereas fabp11 was highly expressed in the ovaries, liver, and adipose tissue. In situ hybridization analysis showed vldlr and fabp11 mRNAs in previtellogenic oocytes, whereas no hybridization signals were detected in the larger vitellogenic oocytes. Transcript expression of fabp11 was strongly upregulated in somatic cells surrounding atretic follicles. Real-time quantitative RT-PCR demonstrated that ovarian transcript levels of vldlr and fabp11 had a significant positive correlation with the percentage of follicles in previtellogenesis and atresia, respectively. These results suggest that the expression level of vldlr transcripts may be used as a precocious functional marker to quantify the number of oocytes recruited for vitellogenesis and that fabp11 mRNA may be a very useful molecular marker for determining cellular events and environmental factors that regulate follicular atresia in fish.
Collapse
Affiliation(s)
- Maria J Agulleiro
- Institut de Recerca i Tecnologia Agroalimentàries Center of Aquaculture, Sant Carles de la Ràpita, Tarragona 43540, Spain
| | | | | | | | | |
Collapse
|
48
|
Schneider WJ. Low density lipoprotein receptor relatives in chicken ovarian follicle and oocyte development. Cytogenet Genome Res 2007; 117:248-55. [PMID: 17675866 DOI: 10.1159/000103186] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Accepted: 08/08/2006] [Indexed: 11/19/2022] Open
Abstract
The normal development of the chicken oocyte within the ovarian follicle depends on the coordinated expression and function of several members of the low density lipoprotein receptor gene family. The human low density lipoprotein receptor is the prototype of the gene family; since its discovery and the elucidation of the medical significance of mutations in the LDLR gene, many additional family members have been discovered and characterized, and some important advances have resulted from studies in the chicken. I describe the analogies as well as the differences that exist between the molecular genetics of the mammalian and avian members of this important gene family, with emphasis on receptor-mediated oocyte growth. Recent progress in the molecular characterization of the chicken genes whose products mediate oocyte growth, follicle development, and accessory pathways is described in detail, and emerging information of preliminary nature is included. As the availability of chicken genome sequence data has enhanced the rate of progress in the field, our understanding of the physiological roles of members of this receptor family in general has already gained from studies in the avian model system.
Collapse
Affiliation(s)
- W J Schneider
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
49
|
Sawaguchi S, Kagawa H, Ohkubo N, Hiramatsu N, Sullivan CV, Matsubara T. Molecular characterization of three forms of vitellogenin and their yolk protein products during oocyte growth and maturation in red seabream (Pagrus major), a marine teleost spawning pelagic eggs. Mol Reprod Dev 2007; 73:719-36. [PMID: 16541459 DOI: 10.1002/mrd.20446] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Full-length cDNAs encoding three forms of vitellogenin (Vg) were obtained from a liver cDNA library of estrogen-treated red seabream, Pagrus major. Two of the three Vg sequences had high homology with type-A and -B Vgs (VgA and VgB) of other teleosts. The third red seabream Vg was classified as a type-C or phosvitinless (Pvl) Vg due to its lack of a phosvitin (Pv) domain. Two Vg preparations (610 and 340 kDa) from blood serum of estradiol-treated fish were biochemically characterized. Analyses of precursor-product relationships by examination of N-terminal amino acid sequences verified cleavage of the 610 kDa Vg into a 540 kDa lipovitellin (Lv) and a 32 kDa beta'-component. Each of these yolk preparations comprising both VgA- and VgB-derived polypeptides. The 340 kDa Vg, which was immunologically verified to be a PvlVg, was accumulated by vitellogenic oocytes with no alterations to its native molecular mass. During oocyte maturation, the VgA- and VgB-derived yolk proteins were differentially processed, presumably to generate a pool of free amino acids for oocyte hydration or for allocation of specific types of nutrients, amino acids, and proteins, to the developing embryo. Conversely, the 340 kDa Vg-derived yolk protein is unlikely to contribute to oocyte hydration or diffusible nutrients since the molecule underwent only minor proteolytic nicking during oogenesis. The present study elucidates for the first time specific functions of three different forms of Vg and their product yolk proteins in a higher taxonomic group of marine teleosts that spawn pelagic eggs.
Collapse
Affiliation(s)
- Sayumi Sawaguchi
- Hokkaido National Fisheries Research Institute, Fisheries Research Agency, 116, Katsurakoi, Kushiro, Hokkaido, Japan.
| | | | | | | | | | | |
Collapse
|
50
|
Hummel S, Christian S, Osanger A, Heid H, Nimpf J, Schneider WJ. Identification of a novel chondroitin-sulfated collagen in the membrane separating theca and granulosa cells in chicken ovarian follicles: the granulosa-theca cell interface is not a bona fide basement membrane. J Biol Chem 2007; 282:8011-8. [PMID: 17204479 DOI: 10.1074/jbc.m606029200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The membranous structure separating the granulosa from theca cells in the developing ovarian follicles of birds is generally perceived as a genuine basement membrane (BM). Previously, we suggested that this membrane is unusual in that it lacks several typical BM components, e.g. collagen IV, laminin B, perlecan, and fibronectin (Hummel, S., Osanger, A., Bajari, T. M., Balasubramani, M., Halfter, W., Nimpf, J., and Schneider, W. J. (2004) J. Biol. Chem. 279, 23486-23494). We have now identified a novel chondroitin sulfate-modified collagen, tentatively termed ggBM1 (Gallus gallus basement membrane protein1) as a major component of the border between the vascularized theca and the epitheloid granulosa cells. In biosynthetic experiments using [3H]proline and [35S]sulfate, ggBM1 was shown to be synthesized by and secreted from the granulosa cells that support the developing oocyte. The acidic heterogeneous 135-kDa proteoglycan was converted to a protein with an apparent Mr of 95,000 by treatment with chondroitinase ABC and was completely degraded by collagenase. Sequencing of tryptic fragments revealed peptides typical of collagens. The follicular BM accumulated apolipoprotein B and apo-VLDLII, the major resident proteins of the yolk precursor very low density lipoprotein. Interestingly, and likely indicating an analogous situation to the follicle, ggBM1 is also a component of Bruch's membrane of the eye, which separates the vascularized choroid from retinal pigmented epithelial cells. Based on our data we propose that in addition to thecal perlecan, ggBM1 is involved in the transfer of yolk precursors from the thecal capillary bed to oocyte surface lipoprotein receptors mediating their uptake into oocytes.
Collapse
Affiliation(s)
- Susanna Hummel
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Dr. Bohr Gasse 9/2, A-1030 Vienna, Austria
| | | | | | | | | | | |
Collapse
|