1
|
Feiss M, Reynolds E, Schrock M, Sippy J. DNA packaging by lambda-like bacteriophages: mutations broadening the packaging specificity of terminase, the lambda-packaging enzyme. Genetics 2010; 184:43-52. [PMID: 19841094 PMCID: PMC2815929 DOI: 10.1534/genetics.109.108548] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Accepted: 10/09/2009] [Indexed: 11/18/2022] Open
Abstract
The DNA-packaging specificities of phages lambda and 21 depend on the specific DNA interactions of the small terminase subunits, which have support helix-turn-recognition helix-wing DNA-binding motifs. lambda-Terminase with the recognition helix of 21 preferentially packages 21 DNA. This chimeric terminase's ability to package lambdaDNA is reduced approximately 20-fold. Phage lambda with the chimeric terminase is unable to form plaques, but pseudorevertants are readily obtained. Some pseudorevertants have trans-acting suppressors that change codons of the recognition helix. Some of these codons appear to remove an unfavorable base-pair contact; others appear to create a novel nonspecific DNA contact. Helper-packaging experiments show that these mutant terminases have lost the ability to discriminate between lambda and 21 during DNA packaging. Two cis-acting suppressors affect cosB, the small subunit's DNA-binding site. Each changes a cosB(lambda)-specific base pair to a cosB(21)-specific base pair. These cosB suppressors cause enhanced DNA packaging by 21-specific terminase and reduce packaging by lambda-terminase. Both the cognate support helix and turn are required for strong packaging discrimination. The wing does not contribute to cosB specificity. Evolution of packaging specificity is discussed, including a model in which lambda- and 21-packaging specificities diverged from a common ancestor phage with broad packaging specificity.
Collapse
Affiliation(s)
- Michael Feiss
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA.
| | | | | | | |
Collapse
|
2
|
Cue D, Feiss M. Termination of packaging of the bacteriophage lambda chromosome: cosQ is required for nicking the bottom strand of cosN. J Mol Biol 1998; 280:11-29. [PMID: 9653028 DOI: 10.1006/jmbi.1998.1841] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Termination of packaging of the lambda chromosome involves completion of translocation of the DNA into the head shell, and conversion of the translocation complex into a cleavage complex. The cleavage reaction introduces staggered nicks into the downstream cosN to generate the right cohesive end of the chromosome. cosQ, a site adjacent to cosN, was found to be required for nicking the bottom strand of cosN; bottom strand nicking was also sequence-specific for bps at the nick site. Nicking of the top strand of cosN (cosNL) was stimulated by cosQ, but fidelity and efficiency of cosNL nicking were largely dictated by other cos subsites (i.e. cosB and I2). Aberrant top-strand cleavage within cosQ was observed in the absence of I2, and nicking at a site 8 nt 5' to the normal cosNL nick site occurred in the absence of cosB. The presence of cosQ was found to be insufficient to arrest DNA translocation in vivo, indicating that cosQ, per se, is not a packaging stop signal. A model is presented in which the role of cosQ is to depolarize the asymmetric arrangement of terminase protomers in the translocation complex so that protomers are configured to match the 2-fold rotational symmetry of cosN.
Collapse
Affiliation(s)
- D Cue
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
3
|
Morita M, Tasaka M, Fujisawa H. Analysis of functional domains of the packaging proteins of bacteriophage T3 by site-directed mutagenesis. J Mol Biol 1994; 235:248-59. [PMID: 8289246 DOI: 10.1016/s0022-2836(05)80031-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Intracellular phage T3 DNA is synthesized as a concatemer in which unit-length molecules are jointed together in head-to-tail fashion through terminally redundant sequences. The concatemeric DNA is processed and packaged into the prohead with the aid of non-capsid proteins, gp18 and gp19. We have developed a defined system, composed of purified gp18, gp19 and proheads, and a crude system, composed of lysates of T3 infected cells, for in vitro packaging of T3 DNA. The defined system displays an ATPase activity which is composed of DNA packaging-dependent and -independent ATPases (pac- and nonpac-ATPases, respectively). In the crude system, DNA is packaged by a way of concatemer as an intermediate. gp19 has ATP binding activity and three ATP binding and two Mg2+ binding consensus motifs in its amino acid sequence. We have expanded the previous studies on the roles of these domains in the DNA packaging reaction by more extensive analysis by site-directed mutagenesis. gp19 mutants, including the previously isolated four mutants, were divided into four groups according to the DNA packaging activity in the defined and crude systems: group 1 mutants were defective in both systems (gp19-G61D, which is a gp19 mutant with Gly to Asp at amino acid 61 and so on, and gp19-H344D); the group 2 mutant had decreased activity in both systems (gp19-G429R); group 3 mutants were active in the defined system but defective in the crude system (gp19-G63D, gp19-H347R, gp19-G367D, gp19-G369D, gp19-G424E); group 4 mutants had almost the same activity as gp19-wt (gp19-K64T, gp19-K370I, gp19-G429L, gp19-K430T and gp19-H553L). Group 1 mutants had an altered conformation, resulting in defective interaction with ATP and in abortive binding to the prohead, and lost specifically the pac-ATPase activity. The group 2 mutant had an increased pac-ATPase activity in spite of the decreased DNA packaging activity, indicating that this mutant is inefficient in coupling of ATP hydrolysis to DNA translocation. The inability of the group 3 mutants except gp19-H347R to package DNA in the crude system would be due to a defect in processing of concatemer DNA. gp19-H347R would be a mutant defective in the initiation event(s) of DNA packaging.
Collapse
Affiliation(s)
- M Morita
- Department of Botany, Faculty of Science, Kyoto University, Japan
| | | | | |
Collapse
|
4
|
Morse BK, Michalczyk R, Kosturko LD. Multiple molecules of integration host factor (IHF) at a single DNA binding site, the bacteriophage lambda cos I1 site. Biochimie 1994; 76:1005-17. [PMID: 7748922 DOI: 10.1016/0300-9084(94)90025-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Integration host factor (IHF) is an E coli protein that binds DNA sequence-specifically and serves as a cofactor in many intracellular processes including lambda DNA packaging. In gel shift experiments, cos DNA, a DNA fragment containing the recognition signal for lambda DNA packaging, forms multiple protein-DNA complexes when combined with pure IHF. Copper(II)-1,10 orthophenanthroline footprinting of individual IHF-cos DNA complexes shows that multiple complex formation does not result from IHF binding to successive sites on the cos DNA fragment. Instead, the footprinting of DNA from two IHF-cos complexes shows protection at one site alone. DNA in the first complex is only partially protected from nucleolytic cleavage, while DNA in the second, slower-moving, complex is completely protected at the same binding site. Quantitative Western blotting experiments determined the relative stoichiometry of IHF to DNA in the two complexes. The results confirm that two molecules of IHF bind at a single site in the cos fragment. This site, cos I1, has two matches to the IHF consensus sequence, but the two matches overlap by eight of thirteen nucleotides. A search of the DNA sequence around cos, using an expanded IHF consensus sequence, has revealed additional, low-affinity consensus matches, contiguous to these. The extent of the copper(II)-1,10 orthophenanthroline footprint and the stoichiometry of the IHF-cos I1 complexes suggest that either two molecules of IHF bind to overlapping sites, or IHF binds to a site of low affinity contiguous to a strong site. Application of a thermodynamic model to the results of gel shift experiments with IHF and cos DNA suggests that multiple complex formation requires cooperative interaction between the two IHF binding sites.
Collapse
Affiliation(s)
- B K Morse
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06459-0175, USA
| | | | | |
Collapse
|
5
|
Tomka M, Catalano C. Physical and kinetic characterization of the DNA packaging enzyme from bacteriophage lambda. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53659-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
6
|
Cue D, Feiss M. Genetic analysis of mutations affecting terminase, the bacteriophage lambda DNA packaging enzyme, that suppress mutations in cosB, the terminase binding site. J Mol Biol 1992; 228:72-87. [PMID: 1447796 DOI: 10.1016/0022-2836(92)90492-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Terminase, the DNA packaging enzyme of phage lambda, binds to lambda DNA at a site called cosB, and introduces staggered nicks at an adjacent site, cosN, to generate the cohesive ends of virion lambda DNA molecules. Terminase also is involved in separation of the cohesive ends and in binding the prohead, the empty protein shell into which lambda DNA is packaged. Terminase is a DNA-dependent ATPase, and both subunits, gpNu1 and gpA, have ATPase activity. cosB contains a series of gpNu1 binding sites, R3, R2 and R1; between R3 and R2 is a binding site, I1, for integration host factor (IHF), the Escherichia coli DNA bending protein. In this work, a series of mutations in Nu1 have been isolated as suppressors of cosB mutations. One of the Nu1 mutations is identical to the previously described Nu1ms1/ohm1 mutation predicted to cause the change L40F in the 181 amino acid-long gpNu1. Three other Nu1 missense mutations, the Nu1ms2 (L40I), ms3 (Q97K) and ms4 (A92G) mutations, have been isolated; the relative strengths of suppression of cosB mutations by the Nu1ms mutations are: ms1 > ms2 > ms3 > ms4. The Nu1 missense mutations all affect amino acid residues that lie outside of the putative helix-turn-helix DNA binding motif of gpNu1. The Nu1ms1 and Nu1ms2 mutations alter an amino acid residue (L40) that lies directly between two segments of gpNu1 proposed to be involved in ATP binding and hydrolysis; thus these mutations are likely to alter the gpNu1 ATP-binding site. The Nu1ms3 and Nu1ms4 mutations both affect amino acid residues in the central region of gpNu1 that is predicted to form a hydrophilic alpha-helix. To explain how the Nu1ms mutations suppress cosB defects, models involving alterations of the DNA binding and/or catalytic properties of terminase are considered. The results also indicate that terminase occupancy of a single gpNu1 binding site (R3) is necessary and sufficient for the efficient initiation of DNA packaging; the Nu1ms1, ms2 and ms3 mutations permit IHF-independent plaque formation by a phage lacking R2 and R1.
Collapse
Affiliation(s)
- D Cue
- Department of Microbiology, University of Iowa, Iowa City 52242
| | | |
Collapse
|
7
|
Cue D, Feiss M. Genetic analysis of cosB, the binding site for terminase, the DNA packaging enzyme of bacteriophage lambda. J Mol Biol 1992; 228:58-71. [PMID: 1447794 DOI: 10.1016/0022-2836(92)90491-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
cosB, the binding site for terminase, the DNA packaging enzyme of bacteriophage lambda, consists of three binding sites (called R3, R2 and R1) for gpNu1, the small subunit of terminase; and I1, a binding site for integration host factor (IHF), the DNA bending protein of Escherichia coli. cosB is located between cosN, the site where terminase introduces staggered nicks to generate cohesive ends, and the Nu1 gene; the order of sites is: cosN-R3-I1-R2-R1-Nu1. A series of lambda mutants have been constructed that have single base-pair C-to-T transition mutations in R3, R2 and R1. A single base-pair transition mutation within any one of the gpNul binding sites renders lambda dependent upon IHF for plaque formation. lambda phage with mutations in both R2 and R3 are incapable of plaque formation even in the presence of IHF. Phages that carry DNA insertions between R1 and R2, from 7 to 20 base-pairs long, are also IHF-dependent, demonstrating the requirement for a precise spacing of gpNu1 binding sites within cosB. The IHF-dependent phenotype of a lambda mutant carrying a deletion of the R1 sequence indicates that IHF obviates the need for terminase binding to the R1 site. In contrast, a lambda mutant deleted for R2 and R1 fails to form plaques on either IHF+ or IHF- cells, indicating terminase binding of R2 is involved in suppression of R mutants by IHF. A fourth R sequence, R4, is situated on the left side of cosN; a phage with a mutant R4 sequence shows a reduced burst size on both an IHF+ and an IHF- host. The inability of the R4- mutant to be suppressed by IHF, plus the fact that R4 does not bind gpNu1, suggests R4 is not part of cosB and may play a role in DNA packaging that is distinct from that of cosB.
Collapse
Affiliation(s)
- D Cue
- Department of Microbiology, University of Iowa, Iowa City 52242
| | | |
Collapse
|
8
|
Abstract
Bacteriophage lambda relies to a large extent on processes requiring interactions between viral- and host-encoded proteins for its lytic growth, establishment of lysogeny, and release from the prophage state. Both biochemical and genetic studies of these interactions have yielded new information about important host and lambda functions. In particular, mutations in Escherichia coli that compromise lambda DNA replication, genome packaging, transcription elongation, and site-specific recombination have led to the identification of bacterial genes whose products are chaperones, transcription factors, or DNA-binding proteins.
Collapse
|
9
|
Davidson A, Yau P, Murialdo H, Gold M. Isolation and characterization of mutations in the bacteriophage lambda terminase genes. J Bacteriol 1991; 173:5086-96. [PMID: 1830578 PMCID: PMC208199 DOI: 10.1128/jb.173.16.5086-5096.1991] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The terminase enzyme of bacteriophage lambda is a hetero-oligomeric protein which catalyzes the site-specific endonucleolytic cleavage of lambda DNA and its packaging into phage proheads; it is composed of the products of the lambda Nul and A genes. We have developed a simple method to select mutations in the terminase genes carried on a high-copy-number plasmid, based on the ability of wild-type terminase to kill recA strains of Escherichia coli. Sixty-three different spontaneous mutations and 13 linker insertion mutations were isolated by this method and analyzed. Extracts of cells transformed by mutant plasmids displayed variable degrees of reduction in the activity of one or both terminase subunits as assayed by in vitro lambda DNA packaging. A method of genetically mapping plasmid-borne mutations in the A gene by measuring their ability to rescue various lambda Aam phages showed that the A mutations were fairly evenly distributed across the gene. Mutant A genes were also subcloned into overproducing plasmid constructs, and it was determined that more than half of them directed the synthesis of normal amounts of full-length A protein. Three of the A gene mutants displayed dramatically reduced in vitro packaging activity only when immature (uncut) lambda DNA was used as the substrate; therefore, these mutations may lie in the endonuclease domain of terminase. Interestingly, the putative endonuclease mutations mapped in two distinct locations in the A gene separated by a least 400 bp.
Collapse
Affiliation(s)
- A Davidson
- Department of Molecular and Medical Genetics, University of Toronto, Canada
| | | | | | | |
Collapse
|
10
|
Mendelson I, Gottesman M, Oppenheim AB. HU and integration host factor function as auxiliary proteins in cleavage of phage lambda cohesive ends by terminase. J Bacteriol 1991; 173:1670-6. [PMID: 1825651 PMCID: PMC207316 DOI: 10.1128/jb.173.5.1670-1676.1991] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
HU and integration host factor (IHF) are small, basic heterodimeric DNA-binding proteins which participate in transcription initiation, DNA replication, and recombination. We constructed isogenic Escherichia coli strains in which HU, IHF, or both proteins were absent. Bacteriophage lambda did not grow in hosts lacking both HU and IHF. Phage DNA replication and late gene transcription were normal in the double mutants, but packaging of lambda DNA was defective. Mature phage DNA molecules were absent, indicating that terminase was unable to linearize lambda DNA. Phage variants carrying a small substitution near cos or the ohm1 mutation in the terminase gene, Nul, formed plaques on HU- IHF- strains. We propose that HU or IHF is required to establish the higher-order DNA-protein structure at cos that is the substrate for lambda terminase.
Collapse
Affiliation(s)
- I Mendelson
- Department of Molecular Genetics, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | |
Collapse
|
11
|
Integration host factor of Escherichia coli reverses the inhibition of R6K plasmid replication by pi initiator protein. J Bacteriol 1991; 173:1279-86. [PMID: 1991721 PMCID: PMC207252 DOI: 10.1128/jb.173.3.1279-1286.1991] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Integration host factor (IHF) protein is the only host-encoded protein known to bind and to affect replication of the gamma origin of Escherichia coli plasmid R6K. We examined the ability of R6K origins to replicate in cells lacking either of the two subunits of IHF. As shown previously, the gamma origin cannot replicate in IHF-deficient cells. However, this inability to replicate was relieved under the following conditions: underproduction of the wild-type pi replication protein of R6K or production of normal levels of mutant pi proteins which exhibit relaxed replication control. The copy number of plasmids containing the primary R6K origins (alpha and beta) is substantially reduced in IHF-deficient bacteria. Furthermore, replication of these plasmids is completely inhibited if the IHF-deficient strains contain a helper plasmid producing additional wild-type pi protein. IHF protein has previously been shown to bind to two sites within the gamma origin. These sites flank a central repeat segment which binds pi protein. We propose a model in which IHF binding to its sites reduces the replication inhibitor activity of pi protein at all three R6K origins.
Collapse
|
12
|
Affiliation(s)
- A Becker
- Department of Medical Genetics, University of Toronto, Ontario, Canada
| | | |
Collapse
|
13
|
Biek DP, Cohen SN. Involvement of integration host factor (IHF) in maintenance of plasmid pSC101 in Escherichia coli: characterization of pSC101 mutants that replicate in the absence of IHF. J Bacteriol 1989; 171:2056-65. [PMID: 2539358 PMCID: PMC209857 DOI: 10.1128/jb.171.4.2056-2065.1989] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Escherichia coli mutants defective in the stable maintenance of plasmid pSC101 have been isolated following Tn10 insertion mutagenesis. One class of mutations affecting pSC101 replication was located in the genes himA and himD (hip), which encode the two subunits of integration host factor (IHF), a small histonelike DNA-binding protein that has multiple cellular functions. Mutants of pSC101 that could replicate in the absence of IHF were isolated and characterized; four independent mutational alterations were found to affect the third codon of the pSC101 rep gene, resulting in the replacement of glutamic acid by lysine. The compensating alteration appears to function by altering the activity of the pSC101 rep protein in him mutants.
Collapse
Affiliation(s)
- D P Biek
- Department of Genetics, Stanford University School of Medicine, California 94305
| | | |
Collapse
|
14
|
Kosturko LD, Daub E, Murialdo H. The interaction of E. coli integration host factor and lambda cos DNA: multiple complex formation and protein-induced bending. Nucleic Acids Res 1989; 17:317-34. [PMID: 2521383 PMCID: PMC331553 DOI: 10.1093/nar/17.1.317] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The interaction of E. coli's integration Host Factor (IHF) with fragments of lambda DNA containing the cos site has been studied by gel-mobility retardation and electron microscopy. The cos fragment used in the mobility assays is 398 bp and spans a region from 48,298 to 194 on the lambda chromosome. Several different complexes of IHF with this fragment can be distinguished by their differential mobility on polyacrylamide gels. Relative band intensities indicate that the formation of a complex between IHF and this DNA fragment has an equilibrium binding constant of the same magnitude as DNA fragments containing lambda's attP site. Gel-mobility retardation and electron microscopy have been employed to show that IHF sharply bends DNA near cos and to map the bending site. The protein-induced bend is near an intrinsic bend due to DNA sequence. The position of the bend suggests that IHF's role in lambda DNA packaging may be the enhancement of terminase binding/cos cutting by manipulating DNA structure.
Collapse
Affiliation(s)
- L D Kosturko
- Department of Molecular Biology and Biochemistry, Hall-Atwater Laboratory, Wesleyan University, Middletown, CT 06457
| | | | | |
Collapse
|
15
|
Affiliation(s)
- D I Friedman
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor 48109-0620
| |
Collapse
|
16
|
Abstract
In the terminus-generating (ter) reaction of phage lambda, the phage enzyme terminase catalyzes the production of staggered nicks within the cohesive-end nicking site (cosN). Although the two nicks are related by a rotational symmetry axis that bisects cosN, the in vitro ter reaction is strikingly asymmetric at the nucleotide level. Nicking of the lambda r strand precedes nicking of the I strand. Furthermore, when the two nicking reactions are uncoupled, they have different nucleotide cofactor requirements. ATP plays critical roles during cos cleavage: First, nicking of both DNA strands is stimulated by the addition of ATP. Second, ATP is required for the correct specificity of r-strand nicking since, in the absence of nucleotide, the r-strand nick is shifted 8 bases to the left. Studies with nonhydrolyzable analogs indicate that ATP hydrolysis is not required for these functions. However, after the two nicks are made, terminase catalyzes a disengagement of the cohered ends in a reaction that requires ATP hydrolysis.
Collapse
|
17
|
Miller G, Feiss M. The bacteriophage lambda cohesive end site: isolation of spacing/substitution mutations that result in dependence on Escherichia coli integration host factor. MOLECULAR & GENERAL GENETICS : MGG 1988; 212:157-65. [PMID: 2836703 DOI: 10.1007/bf00322459] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Substitution, insertion and deletion mutations have been constructed at the XmnI restriction site in cos lambda. The XmnI site is located between cosB, the site where terminase binds lambda DNA; and cosN, the site where terminase introduces staggered nicks to generate cohesive ends. Substitution mutations and deletion of a base pair (a -1 change) do not obviously affect lambda growth and DNA packaging. Changes of -2, +2 and -3 render lambda unable to grow on host cells lacking integration host factor (IHF). The -3 mutant has a reduced burst size in IHF+ cells, due to a defect in the initiation of packaging. A -7 deletion mutation is lethal. Models for the basis of these mutational effects are discussed.
Collapse
Affiliation(s)
- G Miller
- Department of Microbiology, College of Medicine, University of Iowa, Iowa City 52242
| | | |
Collapse
|
18
|
Granston AE, Alessi DM, Eades LJ, Friedman DI. A point mutation in the Nul gene of bacteriophage lambda facilitates phage growth in Escherichia coli with himA and gyrB mutations. MOLECULAR & GENERAL GENETICS : MGG 1988; 212:149-56. [PMID: 2836702 DOI: 10.1007/bf00322458] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A mutant of lambda was isolated that grows in the Escherichia coli himA delta/gyrB-him320(Ts) double mutant at 42 degrees C; conditions which are non-permissive for wild-type lambda growth. The responsible mutation, ohm1, alters the 40th codon of the Nul reading frame. The Nul and A gene products comprise the terminase protein which cleaves concatameric DNA into unit-length phage genomes during DNA packaging. The Nul-ohm1 gene product acts in trans to support lambda growth in the double himA/gyrB mutant, and lambda cos154 growth in the single himA mutant. The observation that an alteration in Nul suppresses the inhibition of growth in the double himA/gyrB mutant implicates DNA gyrase, as well as integration host factor, in the DNA:protein interactions that occur at the initiation of packaging.
Collapse
Affiliation(s)
- A E Granston
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor 48109
| | | | | | | |
Collapse
|