1
|
Khan YA, White KI, Brunger AT. The AAA+ superfamily: a review of the structural and mechanistic principles of these molecular machines. Crit Rev Biochem Mol Biol 2021; 57:156-187. [PMID: 34632886 DOI: 10.1080/10409238.2021.1979460] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
ATPases associated with diverse cellular activities (AAA+ proteins) are a superfamily of proteins found throughout all domains of life. The hallmark of this family is a conserved AAA+ domain responsible for a diverse range of cellular activities. Typically, AAA+ proteins transduce chemical energy from the hydrolysis of ATP into mechanical energy through conformational change, which can drive a variety of biological processes. AAA+ proteins operate in a variety of cellular contexts with diverse functions including disassembly of SNARE proteins, protein quality control, DNA replication, ribosome assembly, and viral replication. This breadth of function illustrates both the importance of AAA+ proteins in health and disease and emphasizes the importance of understanding conserved mechanisms of chemo-mechanical energy transduction. This review is divided into three major portions. First, the core AAA+ fold is presented. Next, the seven different clades of AAA+ proteins and structural details and reclassification pertaining to proteins in each clade are described. Finally, two well-known AAA+ proteins, NSF and its close relative p97, are reviewed in detail.
Collapse
Affiliation(s)
- Yousuf A Khan
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA.,Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.,Department of Structural Biology, Stanford University, Stanford, CA, USA.,Department of Photon Science, Stanford University, Stanford, CA, USA.,Center for Biomedical Informatics Research, Stanford University, Stanford, CA, USA
| | - K Ian White
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA.,Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.,Department of Structural Biology, Stanford University, Stanford, CA, USA.,Department of Photon Science, Stanford University, Stanford, CA, USA.,Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Axel T Brunger
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA.,Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.,Department of Structural Biology, Stanford University, Stanford, CA, USA.,Department of Photon Science, Stanford University, Stanford, CA, USA.,Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
2
|
Monachino E, Jergic S, Lewis JS, Xu ZQ, Lo ATY, O'Shea VL, Berger JM, Dixon NE, van Oijen AM. A Primase-Induced Conformational Switch Controls the Stability of the Bacterial Replisome. Mol Cell 2020; 79:140-154.e7. [PMID: 32464091 DOI: 10.1016/j.molcel.2020.04.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/12/2020] [Accepted: 04/20/2020] [Indexed: 12/16/2022]
Abstract
Recent studies of bacterial DNA replication have led to a picture of the replisome as an entity that freely exchanges DNA polymerases and displays intermittent coupling between the helicase and polymerase(s). Challenging the textbook model of the polymerase holoenzyme acting as a stable complex coordinating the replisome, these observations suggest a role of the helicase as the central organizing hub. We show here that the molecular origin of this newly found plasticity lies in the 500-fold increase in strength of the interaction between the polymerase holoenzyme and the replicative helicase upon association of the primase with the replisome. By combining in vitro ensemble-averaged and single-molecule assays, we demonstrate that this conformational switch operates during replication and promotes recruitment of multiple holoenzymes at the fork. Our observations provide a molecular mechanism for polymerase exchange and offer a revised model for the replication reaction that emphasizes its stochasticity.
Collapse
Affiliation(s)
- Enrico Monachino
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Zernike Institute for Advanced Materials, University of Groningen, Groningen 9747, the Netherlands
| | - Slobodan Jergic
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Jacob S Lewis
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Zhi-Qiang Xu
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Allen T Y Lo
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Valerie L O'Shea
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - James M Berger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nicholas E Dixon
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.
| | - Antoine M van Oijen
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.
| |
Collapse
|
3
|
Abstract
This review describes the components of the Escherichia coli replisome and the dynamic process in which they function and interact under normal conditions. It also briefly describes the behavior of the replisome during situations in which normal replication fork movement is disturbed, such as when the replication fork collides with sites of DNA damage. E. coli DNA Pol III was isolated first from a polA mutant E. coli strain that lacked the relatively abundant DNA Pol I activity. Further biochemical studies, and the use of double mutant strains, revealed Pol III to be the replicative DNA polymerase essential to cell viability. In a replisome, DnaG primase must interact with DnaB for activity, and this constraint ensures that new RNA primers localize to the replication fork. The leading strand polymerase continually synthesizes DNA in the direction of the replication fork, whereas the lagging-strand polymerase synthesizes short, discontinuous Okazaki fragments in the opposite direction. Discontinuous lagging-strand synthesis requires that the polymerase rapidly dissociate from each new completed Okazaki fragment in order to begin the extension of a new RNA primer. Lesion bypass can be thought of as a two-step reaction that starts with the incorporation of a nucleotide opposite the lesion, followed by the extension of the resulting distorted primer terminus. A remarkable property of E. coli, and many other eubacterial organisms, is the speed at which it propagates. Rapid cell division requires the presence of an extremely efficient replication machinery for the rapid and faithful duplication of the genome.
Collapse
|
4
|
Abstract
Bacterial replicases are complex, tripartite replicative machines. They contain a polymerase, polymerase III (Pol III), a β₂ processivity factor, and a DnaX complex ATPase that loads β₂ onto DNA and chaperones Pol III onto the newly loaded β₂. Bacterial replicases are highly processive, yet cycle rapidly during Okazaki fragment synthesis in a regulated way. Many bacteria encode both a full-length τ and a shorter γ form of DnaX by a variety of mechanisms. γ appears to be uniquely placed in a single position relative to two τ protomers in a pentameric ring. The polymerase catalytic subunit of Pol III, α, contains a PHP domain that not only binds to a prototypical ε Mg²⁺-dependent exonuclease, but also contains a second Zn²⁺-dependent proofreading exonuclease, at least in some bacteria. This review focuses on a critical evaluation of recent literature and concepts pertaining to the above issues and suggests specific areas that require further investigation.
Collapse
Affiliation(s)
- Charles S McHenry
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, USA.
| |
Collapse
|
5
|
Jergic S, Ozawa K, Williams NK, Su XC, Scott DD, Hamdan SM, Crowther JA, Otting G, Dixon NE. The unstructured C-terminus of the tau subunit of Escherichia coli DNA polymerase III holoenzyme is the site of interaction with the alpha subunit. Nucleic Acids Res 2007; 35:2813-24. [PMID: 17355988 PMCID: PMC1888804 DOI: 10.1093/nar/gkm079] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The τ subunit of Escherichia coli DNA polymerase III holoenzyme interacts with the α subunit through its C-terminal Domain V, τC16. We show that the extreme C-terminal region of τC16 constitutes the site of interaction with α. The τC16 domain, but not a derivative of it with a C-terminal deletion of seven residues (τC16Δ7), forms an isolable complex with α. Surface plasmon resonance measurements were used to determine the dissociation constant (KD) of the α−τC16 complex to be ∼260 pM. Competition with immobilized τC16 by τC16 derivatives for binding to α gave values of KD of 7 μM for the α−τC16Δ7 complex. Low-level expression of the genes encoding τC16 and τC16▵7, but not τC16Δ11, is lethal to E. coli. Suppression of this lethal phenotype enabled selection of mutations in the 3′ end of the τC16 gene, that led to defects in α binding. The data suggest that the unstructured C-terminus of τ becomes folded into a helix–loop–helix in its complex with α. An N-terminally extended construct, τC24, was found to bind DNA in a salt-sensitive manner while no binding was observed for τC16, suggesting that the processivity switch of the replisome functionally involves Domain IV of τ.
Collapse
Affiliation(s)
- Slobodan Jergic
- Research School of Chemistry, Australian National University, Canberra ACT 0200, Australia and Department of Chemistry, University of Wollongong, NSW 2522, Australia
| | - Kiyoshi Ozawa
- Research School of Chemistry, Australian National University, Canberra ACT 0200, Australia and Department of Chemistry, University of Wollongong, NSW 2522, Australia
| | - Neal K. Williams
- Research School of Chemistry, Australian National University, Canberra ACT 0200, Australia and Department of Chemistry, University of Wollongong, NSW 2522, Australia
| | - Xun-Cheng Su
- Research School of Chemistry, Australian National University, Canberra ACT 0200, Australia and Department of Chemistry, University of Wollongong, NSW 2522, Australia
| | - Daniel D. Scott
- Research School of Chemistry, Australian National University, Canberra ACT 0200, Australia and Department of Chemistry, University of Wollongong, NSW 2522, Australia
| | - Samir M. Hamdan
- Research School of Chemistry, Australian National University, Canberra ACT 0200, Australia and Department of Chemistry, University of Wollongong, NSW 2522, Australia
| | - Jeffrey A. Crowther
- Research School of Chemistry, Australian National University, Canberra ACT 0200, Australia and Department of Chemistry, University of Wollongong, NSW 2522, Australia
| | - Gottfried Otting
- Research School of Chemistry, Australian National University, Canberra ACT 0200, Australia and Department of Chemistry, University of Wollongong, NSW 2522, Australia
| | - Nicholas E. Dixon
- Research School of Chemistry, Australian National University, Canberra ACT 0200, Australia and Department of Chemistry, University of Wollongong, NSW 2522, Australia
- *To whom correspondence should be addressed. +61 2 42214346+61 2 42214287
| |
Collapse
|
6
|
Pham PT, Zhao W, Schaaper RM. Mutator mutants of Escherichia coli carrying a defect in the DNA polymerase III tau subunit. Mol Microbiol 2006; 59:1149-61. [PMID: 16430690 DOI: 10.1111/j.1365-2958.2005.05011.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To investigate the possible role of accessory subunits of Escherichia coli DNA polymerase III holoenzyme (HE) in determining chromosomal replication fidelity, we have investigated the role of the dnaX gene. This gene encodes both the tau and gamma subunits of HE, which play a central role in the organization and functioning of HE at the replication fork. We find that a classical, temperature-sensitive dnaX allele, dnaX36, displays a pronounced mutator effect, characterized by an unusual specificity: preferential enhancement of transversions and -1 frameshifts. The latter occur predominantly at non-run sequences. The dnaX36 defect does not affect the gamma subunit, but produces a tau subunit carrying a missense substitution (E601K) in its C-terminal domain (domain V) that is involved in interaction with the Pol III alpha subunit. A search for new mutators in the dnaX region of the chromosome yielded six additional dnaX mutators, all carrying a specific tau subunit defect. The new mutators displayed phenotypes similar to dnaX36: strong enhancement of transversions and frameshifts and only weak enhancement for transitions. The combined findings suggest that the tau subunit of HE plays an important role in determining the fidelity of the chromosomal replication, specifically in the avoidance of transversions and frameshift mutations.
Collapse
Affiliation(s)
- Phuong T Pham
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | | | | |
Collapse
|
7
|
Abstract
We isolated a mutant allele of dnaX, encoding the tau and gamma subunits of the DNA polymerase III holoenzyme, that causes extreme cell filamentation but does not affect either cell growth or DNA replication. This phenotype results from a defect in daughter chromosome decatenation during rapid growth. In these cells, ParC, one subunit of topoisomerase IV, no longer associated with the replication factory, as occurs in wild-type cells, and was instead distributed uniformly on the nucleoid; the distribution of ParE, the other subunit of topoisomerase IV, was unaffected. In addition, the majority of topoisomerase IV activity in synchronized cell populations was restricted to late in the cell cycle, when replication was essentially complete. These observations suggest that topoisomerase IV activity in vivo might be dependent on release of ParC from the replication factory.
Collapse
Affiliation(s)
- Olivier Espeli
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | |
Collapse
|
8
|
Bullard JM, Williams JC, Acker WK, Jacobi C, Janjic N, McHenry CS. DNA polymerase III holoenzyme from Thermus thermophilus identification, expression, purification of components, and use to reconstitute a processive replicase. J Biol Chem 2002; 277:13401-8. [PMID: 11823461 DOI: 10.1074/jbc.m110833200] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA replication in bacteria is performed by a specialized multicomponent replicase, the DNA polymerase III holoenzyme, that consist of three essential components: a polymerase, the beta sliding clamp processivity factor, and the DnaX complex clamp-loader. We report here the assembly of the minimal functional holoenzyme from Thermus thermophilus (Tth), an extreme thermophile. The minimal holoenzyme consists of alpha (pol III catalytic subunit), beta (sliding clamp processivity factor), and the essential DnaX (tau/gamma), delta and delta' components of the DnaX complex. We show with purified recombinant proteins that these five components are required for rapid and processive DNA synthesis on long single-stranded DNA templates. Subunit interactions known to occur in DNA polymerase III holoenzyme from mesophilic bacteria including delta-delta' interaction, deltadelta'-tau/gamma complex formation, and alpha-tau interaction, also occur within the Tth enzyme. As in mesophilic holoenzymes, in the presence of a primed DNA template, these subunits assemble into a stable initiation complex in an ATP-dependent manner. However, in contrast to replicative polymerases from mesophilic bacteria, Tth holoenzyme is efficient only at temperatures above 50 degrees C, both with regard to initiation complex formation and processive DNA synthesis. The minimal Tth DNA polymerase III holoenzyme displays an elongation rate of 350 bp/s at 72 degrees C and a processivity of greater than 8.6 kilobases, the length of the template that is fully replicated after a single association event.
Collapse
|
9
|
Song MS, Dallmann HG, McHenry CS. Carboxyl-terminal domain III of the delta' subunit of the DNA polymerase III holoenzyme binds delta. J Biol Chem 2001; 276:40668-79. [PMID: 11518714 DOI: 10.1074/jbc.m106373200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The delta and delta' subunits are essential components of the DNA polymerase III holoenzyme, required for assembly and function of the DnaX-complex clamp loader (tau2gammadeltadelta'chipsi). The x-ray crystal structure of delta' contains three structural domains (Guenther, B., Onrust, R., Sali, A., O'Donnell, M., and Kuriyan, J. (1997) Cell 91, 335-345). In this study, we localize the delta-binding domain of delta' to a carboxyl-terminal domain III by quantifying the interaction of delta with a series of delta' fusion proteins lacking specific domains. Purification and immobilization of the fusion proteins were facilitated by the inclusion of a tag containing hexahistidine and a short biotinylation sequence. Both NH2- and COOH-terminal-tagged full-length delta' were soluble and had specific activities comparable with that of native delta'. delta and delta' form a 1:1 heterodimer with a dissociation constant (K(D)) of 5 x 10(-7) m determined by equilibrium sedimentation. The K(D) determined by surface plasmon resonance was comparable. Domain III alone bound delta at an affinity comparable to that of wild type delta', whereas proteins lacking domain III did not bind delta. Using a panel of domain-specific anti-delta' monoclonal antibodies, we found that two of the domain III-specific monoclonal antibodies interfered with delta-delta' interaction and abolished the replication activity of DNA polymerase-III holoenzyme.
Collapse
Affiliation(s)
- M S Song
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | |
Collapse
|
10
|
Glover BP, Pritchard AE, McHenry CS. tau binds and organizes Escherichia coli replication proteins through distinct domains: domain III, shared by gamma and tau, oligomerizes DnaX. J Biol Chem 2001; 276:35842-6. [PMID: 11463787 DOI: 10.1074/jbc.m103719200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The tau and gamma proteins of the DNA polymerase III holoenzyme DnaX complex are products of the dnaX gene with gamma being a truncated version of tau arising from ribosomal frameshifting. tau is comprised of five structural domains, the first three of which are shared by gamma (Gao, D., and McHenry, C. (2001) J. Biol. Chem. 276, 4433-4453). In the absence of the other holoenzyme subunits, DnaX exists as a tetramer. Association of delta, delta', chi, and psi with domain III of DnaX(4) results in a DnaX complex with a stoichiometry of DnaX(3)deltadelta'chipsi. To identify which domain facilitates DnaX self-association, we examined the properties of purified biotin-tagged DnaX fusion proteins containing domains I-II or III-V. Unlike domain I-II, treatment of domain III-V, gamma, and tau with the chemical cross-linking reagent BS3 resulted in the appearance of high molecular weight intramolecular cross-linked protein. Gel filtration of domains I-II and III-V demonstrated that domain I-II was monomeric, and domain III-V was an oligomer. Biotin-tagged domain III-V, and not domain I-II, was able to form a mixed DnaX complex by recruiting tau, delta, delta', chi, and psi onto streptavidin-agarose beads. Thus, domain III not only contains the delta, delta', chi, and psi binding interface, but also the region that enables DnaX to oligomerize.
Collapse
Affiliation(s)
- B P Glover
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | |
Collapse
|
11
|
Glover BP, McHenry CS. The DNA polymerase III holoenzyme: an asymmetric dimeric replicative complex with leading and lagging strand polymerases. Cell 2001; 105:925-34. [PMID: 11439188 DOI: 10.1016/s0092-8674(01)00400-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The DNA Polymerase III holoenzyme forms initiation complexes on primed DNA in an ATP-dependent reaction. We demonstrate that the nonhydrolyzable ATP analog, ATP gamma S, supports the formation of an isolable leading strand complex that loads and replicates the lagging strand only in the presence of ATP, beta, and the single-stranded DNA binding protein. The single endogenous DnaX complex within DNA polymerase III holoenzyme assembles beta onto both the leading and lagging strand polymerases by an ordered mechanism. The dimeric replication complex disassembles in the opposite order from which it assembled. Upon ATP gamma S-induced dissociation, the leading strand polymerase is refractory to disassembly allowing cycling to occur exclusively on the lagging strand. These results establish holoenzyme as an intrinsic asymmetric dimer with distinguishable leading and lagging strand polymerases.
Collapse
Affiliation(s)
- B P Glover
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | | |
Collapse
|
12
|
Gao D, McHenry CS. Tau binds and organizes Escherichia coli replication proteins through distinct domains. Domain III, shared by gamma and tau, binds delta delta ' and chi psi. J Biol Chem 2001; 276:4447-53. [PMID: 11078742 DOI: 10.1074/jbc.m009827200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The DnaX complex of the DNA polymerase holoenzyme assembles the beta(2) processivity factor onto the primed template enabling highly processive replication. The key ATPases within this complex are tau and gamma, alternative frameshift products of the dnaX gene. Of the five domains of tau, I-III are shared with gamma In vivo, gamma binds the auxiliary subunits deltadelta' and chipsi (Glover, B. P., and McHenry, C. S. (2000) J. Biol. Chem. 275, 3017-3020). To localize deltadelta' and chipsi binding domains within gamma domains I-III, we measured the binding of purified biotin-tagged DnaX proteins lacking specific domains to deltadelta' and chipsi by surface plasmon resonance. Fusion proteins containing either DnaX domains I-III or domains III-V bound deltadelta' and chipsi subunits. A DnaX protein only containing domains I and II did not bind deltadelta' or chipsi. The binding affinity of chipsi for DnaX domains I-III and domains III-V was the same as that of chipsi for full-length tau, indicating that domain III contained all structural elements required for chipsi binding. Domain III of tau also contained deltadelta' binding sites, although the interaction between deltadelta' and domains III-V of tau was 10-fold weaker than the interaction between deltadelta' and full length tau. The presence of both delta and chipsi strengthened the delta'-C(0)tau interaction by at least 15-fold. Domain III was the only domain common to all of tau fusion proteins whose interaction with delta' was enhanced in the presence of delta and chipsi. Thus, domain III of the DnaX proteins not only contains the deltadelta' and chipsi binding sites but also contains the elements required for the positive cooperative assembly of the DnaX complex.
Collapse
Affiliation(s)
- D Gao
- Department of Biochemistry, Program in Molecular Biology, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | |
Collapse
|
13
|
Dallmann HG, Kim S, Pritchard AE, Marians KJ, McHenry CS. Characterization of the unique C terminus of the Escherichia coli tau DnaX protein. Monomeric C-tau binds alpha AND DnaB and can partially replace tau in reconstituted replication forks. J Biol Chem 2000; 275:15512-9. [PMID: 10748120 DOI: 10.1074/jbc.m909257199] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A contact between the dimeric tau subunit within the DNA polymerase III holoenzyme and the DnaB helicase is required for replication fork propagation at physiologically-relevant rates (Kim, S., Dallmann, H. G., McHenry, C. S., and Marians, K. J. (1996) Cell 84, 643-650). In this report, we exploit the OmpT protease to generate C-tau, a protein containing only the unique C-terminal sequences of tau, free of the sequences shared with the alternative gamma frameshifting product of dnaX. We have established that C-tau is a monomer by sedimentation equilibrium and sedimentation velocity ultracentrifugation. Monomeric C-tau binds the alpha catalytic subunit of DNA polymerase III with a 1:1 stoichiometry. C-tau also binds DnaB, revealed by a coupled immunoblotting method. C-tau restores the rapid replication rate of inefficient forks reconstituted with only the gamma dnaX gene product. The acceleration of the DnaB helicase can be observed in the absence of primase, when only leading-strand replication occurs. This indicates that C-tau, bound only to the leading-strand polymerase, can trigger the conformational change necessary for DnaB to assume the fast, physiologically relevant form.
Collapse
Affiliation(s)
- H G Dallmann
- Department of Biochemistry and Molecular Genetics and Molecular Biology Program, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | | | |
Collapse
|
14
|
Glover BP, McHenry CS. The DnaX-binding subunits delta' and psi are bound to gamma and not tau in the DNA polymerase III holoenzyme. J Biol Chem 2000; 275:3017-20. [PMID: 10652279 DOI: 10.1074/jbc.275.5.3017] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The DnaX complex subassembly of the DNA polymerase III holoenzyme is comprised of the DnaX proteins tau and gamma and the auxiliary subunits delta, delta', chi, and psi, which together load the beta processivity factor onto primed DNA in an ATP-dependent reaction. delta' and psi bind directly to DnaX whereas delta and chi bind to delta' and psi, respectively (Onrust, R., Finkelstein, J., Naktinis, V., Turner, J., Fang, L., and O'Donnell, M. (1995) J. Biol. Chem. 270, 13348-13357). Until now, it has been unclear which DnaX protein, tau or gamma, in holoenzyme binds the auxiliary subunits delta, delta', chi,and psi. Treatment of purified holoenzyme with the homobifunctional cross-linker bis(sulfosuccinimidyl)suberate produces covalently cross-linked gamma-delta' and gamma-psi complexes identified by Western blot analysis. Immunodetection of cross-linked species with anti-delta' and anti-psi antibodies revealed that no tau-delta' or tau-psi cross-links had formed, suggesting that the delta' and psi subunits reside only on gamma within holoenzyme.
Collapse
Affiliation(s)
- B P Glover
- Department of Biochemistry, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | |
Collapse
|
15
|
Glover BP, McHenry CS. The chi psi subunits of DNA polymerase III holoenzyme bind to single-stranded DNA-binding protein (SSB) and facilitate replication of an SSB-coated template. J Biol Chem 1998; 273:23476-84. [PMID: 9722585 DOI: 10.1074/jbc.273.36.23476] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A complex of the chi and psi proteins is required to confer resistance to high levels of glutamate on the DNA polymerase III holoenzyme-catalyzed reaction (Olson, M., Dallmann, H. G., and McHenry, C. (1995) J. Biol. Chem. 270, 29570-29577). We demonstrate that this salt resistance also requires templates to be coated with the Escherichia coli single-stranded DNA-binding protein (SSB). We show that this is the result of a direct chipsi-SSB interaction that is strengthened approximately 1000-fold when SSB is bound to DNA. On model oligonucleotide templates, DNA polymerase III core is inhibited by SSB. We show that the minimal polymerase assembly that will synthesize DNA on SSB-coated templates is polymerase III-tau-psi chi. gamma, the alternative product of the dnaX gene, will not replace tau in this reaction, indicating that tau's unique ability to bind to DNA polymerase III holding chipsi in the same complex is essential. All of our findings are consistent with chipsi strengthening DNA polymerase III holoenzyme interactions with the SSB-coated lagging strand at the replication fork, facilitating complex assembly and elongation.
Collapse
Affiliation(s)
- B P Glover
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | |
Collapse
|
16
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|
17
|
Levine C, Marians KJ. Identification of dnaX as a high-copy suppressor of the conditional lethal and partition phenotypes of the parE10 allele. J Bacteriol 1998; 180:1232-40. [PMID: 9495763 PMCID: PMC107012 DOI: 10.1128/jb.180.5.1232-1240.1998] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Termination of DNA replication, complete topological unlinking of the parental template DNA strands, partition of the daughter chromosomes, and cell division follow in an ordered and interdependent sequence during normal bacterial growth. In Escherichia coli, topoisomerase IV (Topo IV), encoded by parE and parC, is responsible for decatenation of the two newly formed chromosomes. In an effort to uncover the pathway of information flow between the macromolecular processes that describe these events, we identified dnaX, encoding the tau and gamma subunits of the DNA polymerase III holoenzyme, as a high-copy suppressor of the temperature-sensitive phenotype of the parE10 allele. We show that suppression derives from overexpression of the gamma, but not the tau, subunit of the holoenzyme and that the partition defect of parE10 cells is nearly completely reverted at the nonpermissive temperature as well. These observations suggest a possible association between Topo IV and the replication machinery.
Collapse
Affiliation(s)
- C Levine
- Molecular Biology Graduate Program, Cornell University Graduate School of Medical Sciences, New York, New York 10021, USA
| | | |
Collapse
|
18
|
Abstract
Peptidoglycan (murein) segregation has been studied by means of a new labeling method. The method relies on the ability of Escherichia coli cells to incorporate D-Cys into macromolecular murein. The incorporation depends on a periplasmic amino acid exchange reaction. At low concentrations, D-Cys is innocuous to the cell. The distribution of modified murein in purified sacculi can be traced and visualized by immunodetection of the -SH groups by fluorescence and electron microscopy techniques. Analysis of murein segregation in wild-type and cell division mutant strains revealed that murein in polar caps is metabolically inert and is segregated in a conservative fashion. Elongation of the sacculus apparently occurs by diffuse insertion of precursors over the cylindrical part of the cell surface. At the initiation of cell division, there is a FtsZ-dependent localized activation of murein synthesis at the potential division sites. Penicillin-binding protein 3 and the products of the division genes ftsA and ftsQ are dispensable for the activation of division sites. As a consequence, under restrictive conditions ftsA,ftsI,or ftsQ mutants generate filamentous sacculi with rings of all-new murein at the positions where septa would otherwise develop.
Collapse
Affiliation(s)
- M A de Pedro
- Centro de Biología Molecular Severo Ochoa Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Facultad de Ciencias, Spain.
| | | | | | | |
Collapse
|
19
|
Marszalek J, Zhang W, Hupp TR, Margulies C, Carr KM, Cherry S, Kaguni JM. Domains of DnaA protein involved in interaction with DnaB protein, and in unwinding the Escherichia coli chromosomal origin. J Biol Chem 1996; 271:18535-42. [PMID: 8702501 DOI: 10.1074/jbc.271.31.18535] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
DnaA protein of Escherichia coli is a sequence-specific DNA-binding protein required for the initiation of DNA replication from the chromosomal origin, oriC. It is also required for replication of several plasmids including pSC101, F, P-1, and R6K. A collection of monoclonal antibodies to DnaA protein has been produced and the primary epitopes recognized by them have been determined. These antibodies have also been examined for the ability to inhibit activities of DNA binding, ATP binding, unwinding of oriC, and replication of both an oriC plasmid, and an M13 single-stranded DNA with a proposed hairpin structure containing a DnaA protein-binding site. Replication of the latter DNA is dependent on DnaA protein by a mechanism termed ABC priming. These studies suggest regions of DnaA protein involved in interaction with DnaB protein, and in unwinding of oriC, or low-affinity binding of ATP.
Collapse
Affiliation(s)
- J Marszalek
- Department of Biochemistry, Michigan State University, East Lansing, Michigan 48824-1319, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Ginés-Candelaria E, Blinkova A, Walker JR. Mutations in Escherichia coli dnaA which suppress a dnaX(Ts) polymerization mutation and are dominant when located in the chromosomal allele and recessive on plasmids. J Bacteriol 1995; 177:705-15. [PMID: 7836305 PMCID: PMC176647 DOI: 10.1128/jb.177.3.705-715.1995] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Extragenic suppressor mutations which had the ability to suppress a dnaX2016(Ts) DNA polymerization defect and which concomitantly caused cold sensitivity have been characterized within the dnaA initiation gene. When these alleles (designated Cs, Sx) were moved into dnaX+ strains, the new mutants became cold sensitive and phenotypically were initiation defective at 20 degrees C (J.R. Walker, J.A. Ramsey, and W.G. Haldenwang, Proc. Natl. Acad. Sci. USA 79:3340-3344, 1982). Detailed localization by marker rescue and DNA sequencing are reported here. One mutation changed codon 213 from Ala to Asp, the second changed Arg-432 to Leu, and the third changed codon 435 from Thr to Lys. It is striking that two of the three spontaneous mutations occurred in codons 432 and 435; these codons are within a very highly conserved, 12-residue region (K. Skarstad and E. Boye, Biochim. Biophys. Acta 1217:111-130, 1994; W. Messer and C. Weigel, submitted for publication) which must be critical for one of the DnaA activities. The dominance of wild-type and mutant alleles in both initiation and suppression activities was studied. First, in initiation function, the wild-type allele was dominant over the Cs, Sx alleles, and this dominance was independent of location. That is, the dnaA+ allele restored growth to dnaA (Cs, Sx) strains at 20 degrees C independently of which allele was present on the plasmid. The dnaA (Cs, Sx) alleles provided initiator function at 39 degrees C and were dominant in a dnaA(Ts) host at that temperature. On the other hand, suppression was dominant when the suppressor allele was chromosomal but recessive when it was plasmid borne. Furthermore, suppression was not observed when the suppressor allele was present on a plasmid and the chromosomal dnaA was a null allele. These data suggest that the suppressor allele must be integrated into the chromosome, perhaps at the normal dnaA location. Suppression by dnaA (Cs, Sx) did not require initiation at oriC; it was observed in strains deleted of oriC and which initiated at an integrated plasmid origin.
Collapse
|
21
|
Affiliation(s)
- M G Cull
- Department of Biochemistry, Biophysics and Genetics, University of Colorado Health Sciences Center, Denver 80262, USA
| | | |
Collapse
|
22
|
Carter JR, Franden MA, Lippincott JA, McHenry CS. Identification, molecular cloning and characterization of the gene encoding the chi subunit of DNA polymerase III holoenzyme of Escherichia coli. MOLECULAR & GENERAL GENETICS : MGG 1993; 241:399-408. [PMID: 8246893 DOI: 10.1007/bf00284693] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have identified a previously reported open reading frame (ORF13) that maps between pepA and valS at 96.6 centisomes of the Escherichia coli genome as the structural gene for the chi subunit of DNA polymerase III holoenzyme. This conclusion is supported by a perfect match of the amino-terminal 24 residues of chi with the DNA sequence of ORF13 and a demonstration that ORF13 directs expression of a protein that co-migrates with authentic chi on SDS-polyacrylamide gels. ORF13, designated holC, was isolated from the E. coli chromosome and inserted into a tac promoter-based expression plasmid to direct production of the chi subunit to 5-7% of the total soluble protein. The 3' end of holC was sequenced to resolve discrepancies between two published versions.
Collapse
Affiliation(s)
- J R Carter
- University of Colorado Health Sciences Center, Department of Biochemistry, Biophysics and Genetics, Denver 80262
| | | | | | | |
Collapse
|
23
|
Abstract
The Escherichia coli dnaX gene encodes both the tau and gamma subunits of DNA polymerase III. This gene is located immediately downstream of the adenine salvage gene apt and upstream of orf12-recR, htpG, and adk. The last three are involved in recombination, heat shock, and nucleotide biosynthesis, respectively. apt, dnaX, and orf12-recR all have separate promoters, and the first two are expressed predominantly from those separate promoters. However, use of an RNase E temperature-sensitive mutant allowed the detection of lesser amounts of polycistronic messengers extending from both the apt and dnaX promoters through htpG. Interestingly, transcription of the weak dnaX promoter is stimulated 4- to 10-fold by a sequence contained entirely within the dnaX reading frame. This region has been localized; at least a portion of the sequence (and perhaps the entire sequence) is located within a 31-bp region downstream of the dnaX promoter.
Collapse
Affiliation(s)
- K S Chen
- Department of Microbiology, University of Texas, Austin 78712-1095
| | | | | |
Collapse
|
24
|
Carter JR, Franden MA, Aebersold R, McHenry CS. Identification, isolation, and overexpression of the gene encoding the psi subunit of DNA polymerase III holoenzyme. J Bacteriol 1993; 175:5604-10. [PMID: 8366044 PMCID: PMC206617 DOI: 10.1128/jb.175.17.5604-5610.1993] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The gene encoding the psi subunit of DNA polymerase III holoenzyme, holD, was identified and isolated by an approach in which peptide sequence data were used to obtain a DNA hybridization probe. The gene, which maps to 99.3 centisomes, was sequenced and found to be identical to a previously uncharacterized open reading frame that overlaps the 5' end of rimI by 29 bases, contains 411 bp, and is predicted to encode a protein of 15,174 Da. When expressed in a plasmid that also expressed holC, holD directed expression of the psi subunit to about 3% of total soluble protein.
Collapse
Affiliation(s)
- J R Carter
- Department of Biochemistry, Biophysics and Genetics, University of Colorado Health Sciences Center, Denver 80262
| | | | | | | |
Collapse
|
25
|
Blinkova A, Hervas C, Stukenberg PT, Onrust R, O'Donnell ME, Walker JR. The Escherichia coli DNA polymerase III holoenzyme contains both products of the dnaX gene, tau and gamma, but only tau is essential. J Bacteriol 1993; 175:6018-27. [PMID: 8376347 PMCID: PMC206684 DOI: 10.1128/jb.175.18.6018-6027.1993] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The replicative polymerase of Escherichia coli, DNA polymerase III, consists of a three-subunit core polymerase plus seven accessory subunits. Of these seven, tau and gamma are products of one replication gene, dnaX. The shorter gamma is created from within the tau reading frame by a programmed ribosomal -1 frameshift over codons 428 and 429 followed by a stop codon in the new frame. Two temperature-sensitive mutations are available in dnaX. The 2016(Ts) mutation altered both tau and gamma by changing codon 118 from glycine to aspartate; the 36(Ts) mutation affected the activity only of tau because it altered codon 601 (from glutamate to lysine). Evidence which indicates that, of these two proteins, only the longer tau is essential includes the following. (i) The 36(Ts) mutation is a temperature-sensitive lethal allele, and overproduction of wild-type gamma cannot restore its growth. (ii) An allele which produced tau only could be substituted for the wild-type chromosomal gene, but a gamma-only allele could not substitute for the wild-type dnaX in the haploid state. Thus, the shorter subunit gamma is not essential, suggesting that tau can be substitute for the usual function(s) of gamma. Consistent with these results, we found that a functional polymerase was assembled from nine pure subunits in the absence of the gamma subunit. However, the possibility that, in cells growing without gamma, proteolysis of tau to form a gamma-like product in amounts below the Western blot (immunoblot) sensitivity level cannot be excluded.
Collapse
Affiliation(s)
- A Blinkova
- Microbiology Department, University of Texas, Austin 78712
| | | | | | | | | | | |
Collapse
|
26
|
Carter JR, Franden MA, Aebersold R, McHenry CS. Identification, isolation, and characterization of the structural gene encoding the delta' subunit of Escherichia coli DNA polymerase III holoenzyme. J Bacteriol 1993; 175:3812-22. [PMID: 8509334 PMCID: PMC204798 DOI: 10.1128/jb.175.12.3812-3822.1993] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The gene encoding the delta' subunit of DNA polymerase III holoenzyme, designated holB, was cloned by a strategy in which peptide sequence was used to derive a DNA hybridization probe. The gene maps to 24.95 centisomes of the chromosome. Sequencing of holB revealed a 1,002-bp open reading frame predicted to produce a 36,936-Da protein. The gene has a ribosome-binding site and promoter that are highly similar to the consensus sequences and is flanked by two potential open reading frames. Protein sequence analysis of delta' revealed a high degree of similarity to the dnaX gene products of Escherichia coli and Bacillus subtilis, including one stretch of 10 identical amino acid residues. A lesser degree of similarity to the gene 44 protein of bacteriophage T4 and the 40-kDa protein of the A1 complex (replication factor C) of HeLa cells was seen. The gene, when placed into a tac promoter-based expression plasmid, directed expression of two proteins of similar size. By immunodetection with anti-holoenzyme immunoglobulin G, both proteins are judged to be products of holB.
Collapse
Affiliation(s)
- J R Carter
- University of Colorado Health Sciences Center, Department of Biochemistry, Biophysics and Genetics, Denver, Colorado 80262
| | | | | | | |
Collapse
|
27
|
Wu C, Zechner E, Marians K. Coordinated leading- and lagging-strand synthesis at the Escherichia coli DNA replication fork. I. Multiple effectors act to modulate Okazaki fragment size. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50628-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
28
|
Coordinated leading- and lagging-strand synthesis at the Escherichia coli DNA replication fork. IV. Reconstitution of an asymmetric, dimeric DNA polymerase III holoenzyme. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50631-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
29
|
McHenry C. DNA polymerase III holoenzyme. Components, structure, and mechanism of a true replicative complex. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54967-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
30
|
Abstract
We have determined the transcriptional organization of the Escherichia coli dnaX gene, the structural gene for both the gamma and tau subunits of DNA polymerase III holoenzyme. By S1 nuclease protection and primer extension mapping of transcripts encoding the dnaX products, one primary promoter of dnaX has been identified that initiates transcription 37 nucleotides upstream from the first codon. dnaX resides in an operon with two recently sequenced genes, orf12, encoding an unidentified product, and recR, the structural gene for a protein involved in the recF pathway of recombination. Under conditions of balanced growth, a very small amount of transcription from the upstream apt promoter (less than 5%) contributes to the expression of tau and gamma, too low for apt to be considered to be on an operon with dnaX, orf12, and recR are transcribed from an independent promoter as well as from the dnaX promoter, providing a mechanism for orf12 and recR to be regulated independent of dnaX. Transcription of the dnaX-orf12-recR operon is terminated upstream from the previously characterized heat shock gene htpG. The dnaX and orf12-recR promoters, cloned into a promoter detection vector, efficiently direct the expression of the downstream reporter gene, lacZ. These results extend our knowledge of the genetic and transcriptional organization of this region of the E. coli chromosome. The transcriptional organization has been defined as follows: apt, dnaX-orf12-recR, htpG. All of these genes are transcribed in the clockwise direction and only dnaX, orf12 and recR are contained in the dnaX operon.
Collapse
Affiliation(s)
- A M Flower
- Department of Biochemistry, Biophysics and Genetics, University of Colorado Health Sciences Center, Denver 80262
| | | |
Collapse
|
31
|
Abstract
Production of the gamma subunit of Escherichia coli DNA polymerase III holoenzyme is dependent on a very efficient translational frameshif in the dnaX gene. I used an E. coli in vitro translation system to analyze the mechanism of this frameshifting event. In this system, gamma was produced almost to the same extent as the inframe translation product, tau, suggesting that efficient frameshifting was reproduced in vitro. Coupling with transcription was not necessary for frameshifting. Addition of purified tau or gamma had no effect on the frameshifting process suggesting the absence of direct feedback regulation. By use of mutant genes, a strong pausing site was identified at or very close to the frameshift site. This pausing was apparently caused by a potential stem-loop structure which was previously shown to enhance frameshifting. Thus, enhancement of frameshifting by this putative stem-loop seems to be mediated by the translation pausing at the frameshift site. Despite the apparent structural similarity of the dnaX frameshift site to that of the eukaryotic retroviral genes, dnaX mRNA synthesized in vitro failed to direct the production of gamma in eukaryotic translation systems. This suggests that frameshifting in the dnaX gene depends on components specific to the E. coli translation system.
Collapse
Affiliation(s)
- Z Tsuchihashi
- Howard Hughes Medical Institute, Stanford University School of Medicine, CA 94305
| |
Collapse
|
32
|
Yeung T, Mullin DA, Chen KS, Craig EA, Bardwell JC, Walker JR. Sequence and expression of the Escherichia coli recR locus. J Bacteriol 1990; 172:6042-7. [PMID: 1698765 PMCID: PMC526927 DOI: 10.1128/jb.172.10.6042-6047.1990] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The Escherichia coli RecR protein participates in a recombinational DNA repair process. Its gene is located in a region of chromosome that extends from 502 to 509 kilobases on the physical map and that contains apt, dnaX, orf12-recR, htpG, and adk. Most, if not all, of these are involved in nucleic acid metabolism. The orf12-recR reading frames consist of 935 base pairs and overlap by one nucleotide, with the 3' A of the orf12 termination codon forming the 5' nucleotide of the recR initiation codon. The orf12-recR promoter was located upstream of orf12 by sequence analysis, promoter cloning, and S1 nuclease protection analysis. The start point of transcription was determined by primer extension. The transcript 5' end contained a long, apparently untranslated region of 199 nucleotides. Absence of a detectable promoter specific for recR and the overlap of the orf12 and recR reading frames suggest that translation of recR is coupled to that of orf12. By maxicell analysis, it was determined that both orf12 and recR are translated.
Collapse
Affiliation(s)
- T Yeung
- Department of Microbiology, University of Texas, Austin 78712
| | | | | | | | | | | |
Collapse
|
33
|
Flower AM, McHenry CS. The gamma subunit of DNA polymerase III holoenzyme of Escherichia coli is produced by ribosomal frameshifting. Proc Natl Acad Sci U S A 1990; 87:3713-7. [PMID: 2187190 PMCID: PMC53973 DOI: 10.1073/pnas.87.10.3713] [Citation(s) in RCA: 216] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The tau and gamma subunits of DNA polymerase III holoenzyme are both products of the dnaX gene. Since tau and gamma are required as stoichiometric components of the replicative complex, a mechanism must exist for the cell to coordinate their synthesis and ensure that both subunits are present in an adequate quantity and ratio for assembly. We have proposed that gamma is produced by a translational frameshift event. In this report, we describe the use of dnaX-lacZ fusions in all three reading frames to demonstrate that gamma, the shorter product of dnaX, is generated by ribosomal frameshifting to the -1 reading frame of the mRNA within an oligo(A) sequence that is followed by a sequence predicted to form a stable secondary structure. Immediately after frameshifting a stop codon is encountered, leading to translational termination. Mutagenesis of the oligo(A) sequence abolishes frameshifting, and partial disruption of the predicted distal secondary structure severely impairs the efficiency. Comparison of the expression of lacZ fused to dnaX distal to the site of frameshifting in the -1 and 0 reading frames indicates that the efficiency of frameshifting is approximately 40%.
Collapse
Affiliation(s)
- A M Flower
- Department of Biochemistry, Biophysics and Genetics, University of Colorado Health Sciences Center, Denver 80262
| | | |
Collapse
|
34
|
Blinkowa AL, Walker JR. Programmed ribosomal frameshifting generates the Escherichia coli DNA polymerase III gamma subunit from within the tau subunit reading frame. Nucleic Acids Res 1990; 18:1725-9. [PMID: 2186364 PMCID: PMC330589 DOI: 10.1093/nar/18.7.1725] [Citation(s) in RCA: 202] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The Escherichia coli dnaX gene encodes both the tau and gamma subunits of DNA polymerase III holoenzyme in one reading frame. The 71.1 kDa tau and the shorter gamma share N-terminal sequences. Mutagenesis of a potential ribosomal frameshift signal located at codons 428-430 without changing the amino acid sequence of the tau product, eliminated detectable synthesis of the gamma subunit, suggesting that the reading frame is shifted at that sequence and gamma is terminated by a nonsense codon located in the -1 frame 3 nucleotides downstream of the signal. This seems to be the first known case of a frameshift which is used, along with the termination codon in the -1 frame, to terminate a peptide within a reading frame. [Mutagenesis of a dibasic peptide (lys-lys) at codons 498-499, the site at which a tau'-'LacZ fusion protein was cleaved in vitro (1) had no effect on gamma formation in vivo, suggesting that cleavage observed in vitro is not the mechanism of gamma formation in vivo.
Collapse
Affiliation(s)
- A L Blinkowa
- Department of Microbiology, University of Texas, Austin 78712
| | | |
Collapse
|
35
|
Tsuchihashi Z, Kornberg A. Translational frameshifting generates the gamma subunit of DNA polymerase III holoenzyme. Proc Natl Acad Sci U S A 1990; 87:2516-20. [PMID: 2181440 PMCID: PMC53720 DOI: 10.1073/pnas.87.7.2516] [Citation(s) in RCA: 238] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The dnaX gene (previously called dnaZX) of Escherichia coli has only one open reading frame for a 71-kDa polypeptide from which two distinct DNA polymerase III holoenzyme subunits, tau (71 kDa) and gamma (47 kDa), are produced. To determine how the gamma subunit is generated, we examined the influence of mutations in the dnaX gene on the pattern of tau and gamma production in overproducing cells. Important structural elements in dnaX mRNA include a stretch of six adenines (nucleotides 1425-1430), a stable hairpin structure (nucleotides 1437-1466), and a UGA stop codon in a -1 frame (nucleotides 1434-1436) between the stretch of adenines and the hairpin structure. Disruption of this stop codon generates a slightly larger gamma subunit, indicative of the use of a -1 stop codon farther downstream (nucleotides 1470-1472). These results suggest that a -1 frameshift during translation allows the use of this UGA codon to terminate translation of the gamma polypeptide. The amino acid composition, sequence, and mass spectra of a C-terminal peptide from mild digestion of the purified gamma protein with endoproteinase Lys-C confirms that this frameshift occurs at either of the two lysine codons in the region of the adenine stretch. Remarkable features of this frameshifting are its high frequency (i.e., about 80% in an overproducing cell) and the striking structural similarity to the frameshifting signal responsible for expression of the pol and pro genes in many retroviruses.
Collapse
Affiliation(s)
- Z Tsuchihashi
- Department of Biochemistry, Stanford University, CA 94305-5307
| | | |
Collapse
|
36
|
Abstract
The identities and precise roles of the DNA polymerase(s) involved in mammalian cell DNA replication are uncertain. Circumstantial evidence suggests that DNA polymerase alpha and at least one form of DNA polymerase delta, that which is stimulated by Proliferating Cell Nuclear Antigen, catalyze mammalian cell replicative DNA synthesis. Further, the in vitro properties of polymerases alpha and delta suggest a model for their coordinate action at the replication fork. The present paper summarizes the current status of DNA polymerases alpha and delta in DNA replication, and describes newly available approaches to the study of those enzymes.
Collapse
Affiliation(s)
- R V Talanian
- Department of Pharmacology, University of Massachusetts Medical School, Worcester 01655
| | | |
Collapse
|
37
|
Tsuchihashi Z, Kornberg A. ATP interactions of the τ and γ subunits of DNA polymerase III holoenzyme of Escherichia coli. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(19)84642-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
38
|
Abstract
DNA mismatch correction is a strand-specific process involving recognition of noncomplementary Watson-Crick nucleotide pairs and participation of widely separated DNA sites. The Escherichia coli methyl-directed reaction has been reconstituted in a purified system consisting of MutH, MutL, and MutS proteins, DNA helicase II, single-strand DNA binding protein, DNA polymerase III holoenzyme, exonuclease I, DNA ligase, along with ATP (adenosine triphosphate), and the four deoxynucleoside triphosphates. This set of proteins can process seven of the eight base-base mismatches in a strand-specific reaction that is directed by the state of methylation of a single d(GATC) sequence located 1 kilobase from the mispair.
Collapse
Affiliation(s)
- R S Lahue
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710
| | | | | |
Collapse
|
39
|
McHenry CS. The asymmetric dimeric polymerase hypothesis: a progress report. BIOCHIMICA ET BIOPHYSICA ACTA 1988; 951:240-8. [PMID: 3061467 DOI: 10.1016/0167-4781(88)90092-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In 1983, my laboratory first proposed that the DNA polymerase III holoenzyme is an asymmetric dimer with distinguishable leading and lagging strand polymerases. Here, I review progress by my laboratory and others in testing this hypothesis. To date, the hypothesis is supported by our demonstration of (i) an asymmetry in function of two populations of holoenzyme in solution in their ability to use the ATP analog, ATP gamma S, to support initiation complex formation, (ii) the stabilization of a dimeric polymerase structure by the tau subunit, (iii) allosteric communication between polymerase halves and (iv) the coexistence of gamma and the tau, subunits which share common sequences, within the same holoenzyme assemblies. This latter observation may provide a structural basis for holoenzyme asymmetry. I discuss the implications of the asymmetric dimer hypothesis to the solution of problems encountered by polymerases at the replication fork and delineate further tests required before the hypothesis can be firmly established.
Collapse
Affiliation(s)
- C S McHenry
- Department of Biochemistry, Biophysics and Genetics, University of Colorado Health Sciences Center, Denver 80262
| |
Collapse
|
40
|
Abstract
Although Shigella flexneri possesses the genes for two siderophore systems, enterobactin and aerobactin, the enterobactin system is only rarely utilized. To investigate the regulation of enterobactin expression in S. flexneri, all of the genes specifically required for synthesis and transport of enterobactin were cloned from both an expressing (Ent+) and a nonexpressing (Ent-) strain. Notable differences between the cloned genes included endonuclease restriction site changes and the presence of an IS1 element in the Ent- DNA. Southern hybridization revealed that this IS1 element, present at the 3' end of the entF gene, is conserved at this location in different strains and serotypes of Ent- S. flexneri. The Ent- cloned genes were tested for their ability to complement the defect in 11 different Escherichia coli enterobactin mutants. The Ent- genes fully complemented nine mutants but failed to complement the entF mutant AN117 and only partially complemented the entE mutant AN93. Whole-cell RNA isolated from E. coli and the Shigella strains was hybridized to 32P-labeled DNA containing the entB gene or a fragment carrying a portion of the entF gene. E. coli and the Ent+ Shigella strains exhibited derepression of transcription of these genes in low-iron media. Transcription in the Ent- strain remained repressed regardless of iron concentration. Expression of the entB and entF genes was also examined in an Ent- Shigella fur mutant. Expression of entF was only partially derepressed and entB remained fully repressed at all iron concentrations, suggesting that factors other than Fur are responsible for the repression of these enterobactin genes in the Ent- Shigella strains.
Collapse
|
41
|
Maki S, Kornberg A. DNA polymerase III holoenzyme of Escherichia coli. II. A novel complex including the gamma subunit essential for processive synthesis. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)68677-6] [Citation(s) in RCA: 92] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
42
|
DNA polymerase III holoenzyme of Escherichia coli. III. Distinctive processive polymerases reconstituted from purified subunits. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)68678-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
43
|
Maki S, Kornberg A. DNA polymerase III holoenzyme of Escherichia coli. I. Purification and distinctive functions of subunits tau and gamma, the dnaZX gene products. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)68676-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
44
|
Abstract
We have determined the sequence of a 4,350-nucleotide region of the Escherichia coli chromosome that contains dnaE, the structural gene for the alpha subunit of DNA polymerase III holoenzyme. The dnaE gene appeared to be part of an operon containing at least three other genes: 5'-lpxB-ORF23-dnaE-ORF37-3' (ORF, open reading frame). The lpxB gene encodes lipid A disaccharide synthase, an enzyme essential for cell growth and division (M. Nishijima, C.E. Bulawa, and C.R.H. Raetz, J. Bacteriol. 145:113-121, 1981). The termination codons of lpxB and ORF23 overlapped the initiation codons of ORF23 and dnaE, respectively, suggesting translational coupling. No rho-independent transcription termination sequences were observed. A potential internal transcriptional promoter was found preceding dnaE. Deletion of the -35 region of this promoter abolished dnaE expression in plasmids lacking additional upstream sequences. From the deduced amino acid sequence, alpha had a molecular weight of 129,920 and an isoelectric point of 4.93 for the denatured protein. ORF23 encoded a more basic protein (pI 7.11) with a molecular weight of 23,228. In the accompanying paper (D.N. Crowell, W.S. Reznikoff, and C.R.H. Raetz, J. Bacteriol. 169:5727-5734, 1987), the sequence of the upstream region that contains lpxA and lpxB is reported.
Collapse
Affiliation(s)
- H G Tomasiewicz
- Department of Biochemistry, Biophysics and Genetics, University of Colorado Health Sciences Center, Denver 80262
| | | |
Collapse
|
45
|
Lee SH, Kanda P, Kennedy RC, Walker JR. Relation of the Escherichia coli dnaX gene to its two products--the tau and gamma subunits of DNA polymerase III holoenzyme. Nucleic Acids Res 1987; 15:7663-75. [PMID: 3313272 PMCID: PMC306299 DOI: 10.1093/nar/15.19.7663] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The Escherichia coli DNA polymerase III holoenzyme 71.1 kDa tau subunit is a 643 amino acid protein encoded by the dnaX gene. This gene also encodes the holoenzyme 56.5 kDa gamma subunit. The tau factor (as a tau'-LacZ' fusion protein) has been isolated and shown to be cleaved in vitro to form gamma and a 135 kda C-terminal cleavage product. The tau'-LacZ' fusion protein, gamma, and the C-terminal cleavage product have been isolated. N-terminal sequencing has demonstrated that tau and gamma share the same N-terminal sequences and that tau is proteolytically cleaved in vitro between residues 498 and 499 to form gamma. In addition, residues 420-440 were shown to be present in both tau and gamma by use of antibody specific for a synthetic peptide corresponding to that sequence. Some mechanism functions in vivo to ensure that tau and gamma are synthesized in a ratio of about one-to-one, as shown by radioimmune precipitation of tau and gamma from cellular extracts.
Collapse
Affiliation(s)
- S H Lee
- Department of Microbiology, University of Texas, Austin 78712
| | | | | | | |
Collapse
|
46
|
Hawker JR, McHenry CS. Monoclonal antibodies specific for the tau subunit of the DNA polymerase III holoenzyme of Escherichia coli. Use to demonstrate that tau is the product of the dnaZX gene and that both it and gamma, the dnaZ gene product, are integral components of the same enzyme assembly. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)45265-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
47
|
Lee SH, Walker JR. Escherichia coli DnaX product, the tau subunit of DNA polymerase III, is a multifunctional protein with single-stranded DNA-dependent ATPase activity. Proc Natl Acad Sci U S A 1987; 84:2713-7. [PMID: 3033660 PMCID: PMC304728 DOI: 10.1073/pnas.84.9.2713] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The dnaZX gene of Escherichia coli directs the synthesis of two proteins, DnaZ and DnaX. These products are confirmed as the gamma and tau subunits of DNA polymerase III because antibody to a synthetic peptide present in both the DnaZ and DnaX proteins reacts also with the gamma and tau subunits of holoenzyme. To characterize biochemically the tau subunit, for which there has been no activity assay, the dnaZX gene was fused to the beta-galactosidase gene to encode a fusion product in which the 20 C-terminal amino acids of the DnaX protein (tau) were replaced by beta-galactosidase lacking only 7 N-terminal amino acids. The 185-kDa fusion protein, which retained beta-galactosidase activity, was overproduced to the level of about 5% of the soluble cellular protein by placing the gene fusion under control of the tac promoter and Shine-Dalgarno sequence. The fusion protein was isolated in one step by affinity chromatography on p-aminobenzyl 1-thio-beta-D-galactopyranoside-agarose. The purified fusion protein also had ATPase (and dATPase) activity that was dependent on single-stranded DNA. This activity copurified with the beta-galactosidase activity not only through the affinity column but also through a subsequent gel filtration. We conclude that the DnaX protein function involves binding to single-stranded DNA and hydrolysis of ATP or dATP, in addition to binding to other DNA polymerase III holoenzyme components, increasing the processivity of the core enzyme, and serving as a substrate for the production of the gamma subunit.
Collapse
|
48
|
Flower AM, McHenry CS. The adjacent dnaZ and dnaX genes of Escherichia coli are contained within one continuous open reading frame. Nucleic Acids Res 1986; 14:8091-101. [PMID: 3534795 PMCID: PMC311836 DOI: 10.1093/nar/14.20.8091] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The dnaZ and dnaX loci of Escherichia coli have been genetically defined as separate genes, both of which are essential for DNA replication (1). The 2.1 kb region of DNA that complements mutations in both genes has a maximum coding capacity of approximately 80,000 daltons. Two protein products are produced from this region with molecular weights of 77,000 and 52,000 (2,3). We have sequenced a 2.7 kb fragment containing the dnaZ and dnaX genes and determined that it contains only one open reading frame of sufficient length to encode either of these proteins. This open reading frame may encode a protein of 71,147 daltons or of 68,451 daltons depending on which potential translational initiation codon is utilized. There are two transcriptional promoters preceding the gene as well as a ribosome binding site preceding the two potential initiation codons. Both the promoters and ribosome binding sites are predicted to be weak, perhaps contributing to the low expression of these genes.
Collapse
|
49
|
Yin KC, Blinkowa A, Walker JR. Nucleotide sequence of the Escherichia coli replication gene dnaZX. Nucleic Acids Res 1986; 14:6541-9. [PMID: 3018672 PMCID: PMC311662 DOI: 10.1093/nar/14.16.6541] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The Escherichia coli 2.2 kilobase dnaZX region contains one 1929 nucleotide reading frame which directs the synthesis of two protein products involved in DNA polymerization. The larger consists of 643 amino acids in a deduced 71,114 dalton chain which could be the tau subunit of DNA polymerase III. The smaller, the DNA polymerase III gamma subunit, is encoded by the same reading frame as the larger. The dnaZX sequence contains a region homologous to ATP binding sites, suggesting that these replication factors are adenine nucleotide binding proteins.
Collapse
|
50
|
McHenry CS. DNA polymerase III holoenzyme of Escherichia coli: components and function of a true replicative complex. Mol Cell Biochem 1985; 66:71-85. [PMID: 3885002 DOI: 10.1007/bf00231826] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The DNA polymerase III holoenzyme is a complex, multisubunit enzyme that is responsible for the synthesis of most of the Escherichia coli chromosome. Through studies of the structure, function and regulation of this enzyme over the past decade, considerable progress has been made in the understanding of the features of a true replicative complex. The holoenzyme contains at least seven different subunits. Three of these, alpha, epsilon and theta, compose the catalytic core. Apparently alpha is the catalytic subunit and the product of the dnaE gene. Epsilon, encoded by dnaQ (mutD), is responsible for the proofreading 3'----5' activity of the polymerase. The function of the theta subunit remains to be established. The auxiliary subunits, beta, gamma and delta, encoded by dnaN, dnaZ and dnaX, respectively, are required for the functioning of the polymerase on natural chromosomes. All of the proteins participate in increasing the processivity of the polymerase and in the ATP-dependent formation of an initiation complex. Tau causes the polymerase to dimerize, perhaps forming a structure that can coordinate leading and lagging strand synthesis at the replication fork. This dimeric complex may be asymmetric with properties consistent with the distinct requirements for leading and lagging strand synthesis.
Collapse
|