1
|
Arce-Rodríguez A, Nikel PI, Calles B, Chavarría M, Platero R, Krell T, de Lorenzo V. Low CyaA expression and anti-cooperative binding of cAMP to CRP frames the scope of the cognate regulon of Pseudomonas putida. Environ Microbiol 2021; 23:1732-1749. [PMID: 33559269 DOI: 10.1111/1462-2920.15422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/09/2021] [Accepted: 02/02/2021] [Indexed: 12/29/2022]
Abstract
Although the soil bacterium Pseudomonas putida KT2440 bears a bona fide adenylate cyclase gene (cyaA), intracellular concentrations of 3',5'-cyclic adenosine monophosphate (cAMP) are barely detectable. By using reporter technology and direct quantification of cAMP under various conditions, we show that such low levels of the molecule stem from the stringent regulation of its synthesis, efflux and degradation. Poor production of cAMP was the result of inefficient translation of cyaA mRNA. Moreover, deletion of the cAMP-phosphodiesterase pde gene led to intracellular accumulation of the cyclic nucleotide, exposing an additional cause of cAMP drain in vivo. But even such low levels of the signal sustained activation of promoters dependent on the cAMP-receptor protein (CRP). Genetic and biochemical evidence indicated that the phenomenon ultimately rose from the unusual binding parameters of cAMP to CRP. This included an ultratight cAMP-CrpP. putida affinity (KD of 45.0 ± 3.4 nM) and an atypical 1:1 effector/dimer stoichiometry that obeyed an infrequent anti-cooperative binding mechanism. It thus seems that keeping the same regulatory parts and their relational logic but changing the interaction parameters enables genetic devices to take over entirely different domains of the functional landscape.
Collapse
Affiliation(s)
- Alejandro Arce-Rodríguez
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, 38124, Germany
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Belén Calles
- Systems Biology Department, Centro Nacional de Biotecnología-CSIC, Campus de Cantoblanco, Madrid, 28049, Spain
| | - Max Chavarría
- Escuela de Química and CIPRONA, Universidad de Costa Rica, San José, 2060, Costa Rica
| | - Raúl Platero
- Departamento de Bioquímica y Genómica Microbianas, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Montevideo, Uruguay
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín CSIC, Granada, 18008, Spain
| | - Victor de Lorenzo
- Systems Biology Department, Centro Nacional de Biotecnología-CSIC, Campus de Cantoblanco, Madrid, 28049, Spain
| |
Collapse
|
2
|
Deutscher J, Francke C, Postma PW. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev 2007; 70:939-1031. [PMID: 17158705 PMCID: PMC1698508 DOI: 10.1128/mmbr.00024-06] [Citation(s) in RCA: 1040] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The phosphoenolpyruvate(PEP):carbohydrate phosphotransferase system (PTS) is found only in bacteria, where it catalyzes the transport and phosphorylation of numerous monosaccharides, disaccharides, amino sugars, polyols, and other sugar derivatives. To carry out its catalytic function in sugar transport and phosphorylation, the PTS uses PEP as an energy source and phosphoryl donor. The phosphoryl group of PEP is usually transferred via four distinct proteins (domains) to the transported sugar bound to the respective membrane component(s) (EIIC and EIID) of the PTS. The organization of the PTS as a four-step phosphoryl transfer system, in which all P derivatives exhibit similar energy (phosphorylation occurs at histidyl or cysteyl residues), is surprising, as a single protein (or domain) coupling energy transfer and sugar phosphorylation would be sufficient for PTS function. A possible explanation for the complexity of the PTS was provided by the discovery that the PTS also carries out numerous regulatory functions. Depending on their phosphorylation state, the four proteins (domains) forming the PTS phosphorylation cascade (EI, HPr, EIIA, and EIIB) can phosphorylate or interact with numerous non-PTS proteins and thereby regulate their activity. In addition, in certain bacteria, one of the PTS components (HPr) is phosphorylated by ATP at a seryl residue, which increases the complexity of PTS-mediated regulation. In this review, we try to summarize the known protein phosphorylation-related regulatory functions of the PTS. As we shall see, the PTS regulation network not only controls carbohydrate uptake and metabolism but also interferes with the utilization of nitrogen and phosphorus and the virulence of certain pathogens.
Collapse
Affiliation(s)
- Josef Deutscher
- Microbiologie et Génétique Moléculaire, INRA-CNRS-INA PG UMR 2585, Thiverval-Grignon, France.
| | | | | |
Collapse
|
3
|
Glaser P, Ladant D, Sezer O, Pichot F, Ullmann A, Danchin A. The calmodulin-sensitive adenylate cyclase ofBordetella pertussis: cloning and expression inEscherichia col. Mol Microbiol 2006; 2:19-30. [DOI: 10.1111/j.1365-2958.1988.tb00003.x] [Citation(s) in RCA: 214] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Ropers D, de Jong H, Page M, Schneider D, Geiselmann J. Qualitative simulation of the carbon starvation response in Escherichia coli. Biosystems 2006; 84:124-52. [PMID: 16325332 DOI: 10.1016/j.biosystems.2005.10.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Revised: 09/28/2005] [Accepted: 10/04/2005] [Indexed: 10/25/2022]
Abstract
In case of nutritional stress, like carbon starvation, Escherichia coli cells abandon their exponential-growth state to enter a more resistant, non-growth state called stationary phase. This growth-phase transition is controlled by a genetic regulatory network integrating various environmental signals. Although E. coli is a paradigm of the bacterial world, it is little understood how its response to carbon starvation conditions emerges from the interactions between the different components of the regulatory network. Using a qualitative method that is able to overcome the current lack of quantitative data on kinetic parameters and molecular concentrations, we model the carbon starvation response network and simulate the response of E. coli cells to carbon deprivation. This allows us to identify essential features of the transition between exponential and stationary phase and to make new predictions on the qualitative system behavior following a carbon upshift.
Collapse
Affiliation(s)
- Delphine Ropers
- Institut National de Recherche en Informatique et en Automatique (INRIA), Unité de recherche Rhône-Alpes, 655 Avenue de l 'Europe, Montbonnot, 38334 Saint Ismier Cedex, France.
| | | | | | | | | |
Collapse
|
5
|
El-Kazzaz W, Morita T, Tagami H, Inada T, Aiba H. Metabolic block at early stages of the glycolytic pathway activates the Rcs phosphorelay system via increased synthesis of dTDP-glucose in Escherichia coli. Mol Microbiol 2004; 51:1117-28. [PMID: 14763984 DOI: 10.1046/j.1365-2958.2003.03888.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A mutational block in the early stages of the glycolytic pathway facilitates the degradation of the ptsG mRNA encoding the major glucose transporter IICBGlc in Escherichia coli. The degradation is RNase E dependent and is correlated with the accumulation of either glucose-6-P or fructose-6-P (Kimata et al., 2001, EMBO J 20: 3587-3595; Morita et al., 2003, J Biol Chem 278: 15608-15614). In this paper, we investigate additional physiological effects resulting from the accumulation of glucose-6-P caused by a mutation in pgi encoding phosphoglucose isomerase, focusing on changes in gene expression. The addition of glucose to the pgi strain caused significant growth inhibition, in particular in the mlc background. Cell growth then gradually resumed as the level of IICBGlc decreased. We found that the transcription of the cps operon, encoding a series of proteins responsible for the synthesis of colanic acid, was markedly but transiently induced under this metabolic stress. Both genetic and biochemical studies revealed that the metabolic stress induces cps transcription by activating the RcsC/YojN/RcsB signal transduction system. Overexpression of glucose-6-P dehydrogenase eliminated both growth inhibition and cps induction by reducing the glucose-6-P level. Mutations in genes responsible for the synthesis of glucose-1-P and/or dTDP-glucose eliminated the activation of the Rcs system by the metabolic stress. Taken together, we conclude that an increased synthesis of dTDP-glucose activates the Rcs phosphorelay system, presumably by affecting the synthesis of oligosaccharides for enterobacterial common antigen and O-antigen.
Collapse
Affiliation(s)
- Waleed El-Kazzaz
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | | | | | | | | |
Collapse
|
6
|
Morita T, El-Kazzaz W, Tanaka Y, Inada T, Aiba H. Accumulation of glucose 6-phosphate or fructose 6-phosphate is responsible for destabilization of glucose transporter mRNA in Escherichia coli. J Biol Chem 2003; 278:15608-14. [PMID: 12578824 DOI: 10.1074/jbc.m300177200] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previously we found that a mutation in either pgi or pfkA, encoding phosphoglucose isomerase or phosphofructokinase A, respectively, facilitates degradation of the ptsG mRNA in an RNase E-dependent manner in Escherichia coli (1). In this study, we examined the effects of a series of glycolytic genes on the degradation of ptsG mRNA and how the mutations destabilize the ptsG mRNA. The conditional lethal mutation ts8 in fda, encoding fructose-1,6-P(2) aldolase just downstream of pfkA in the glycolytic pathway, caused the destabilization of ptsG mRNA at the nonpermissive temperature. Mutations in any other gene did not destabilize the ptsG mRNA; rather, they reduced the ptsG transcription mainly by affecting the cAMP level. The rapid degradation of ptsG mRNA in mutant strains was completely dependent upon the presence of glucose or any one of its compounds, which enter the Embden-Meyerhof glycolytic pathway before the block points. A significant increase in the intracellular glucose-6-P level was observed in the presence of glucose in the pgi strain. An overexpression of glucose-6-phosphate dehydrogenase eliminated both the accumulation and the degradation of ptsG mRNA in the pgi strain. In addition, accumulation of fructose-6-P led to the rapid degradation of ptsG mRNA in a pgi pfkA mutant strain lacking glucose-6-P. We conclude that the RNase E-dependent destabilization of ptsG mRNA occurs in response to accumulation of glucose-6-P or fructose-6-P.
Collapse
Affiliation(s)
- Teppei Morita
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | | | | | | | | |
Collapse
|
7
|
Krin E, Laurent-Winter C, Bertin PN, Danchin A, Kolb A. Transcription regulation coupling of the divergent argG and metY promoters in Escherichia coli K-12. J Bacteriol 2003; 185:3139-46. [PMID: 12730174 PMCID: PMC154083 DOI: 10.1128/jb.185.10.3139-3146.2003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cAMP-catabolite activator protein (CAP) complex is a pleiotropic regulator that regulates a vast number of Escherichia coli genes, including those involved in carbon metabolism. We identified two new targets of this complex: argG, which encodes the arginosuccinate synthase involved in the arginine biosynthetic pathway, and metY, which encodes one of the two methionine tRNA initiators, tRNAf2Met. The cAMP-CAP complex activates argG transcription and inhibits metY transcription from the same DNA position. We also show that ArgR, the specific repressor of the arginine biosynthetic pathway, together with its arginine cofactor, acts on the regulation of metY mediated by CAP. The regulation of the two divergent promoters is thus simultaneously controlled not only by the cAMP-CAP complex, a global regulator, but also by a specific regulator of arginine metabolism, suggesting a previously unsuspected link between carbon metabolism and translation initiation.
Collapse
Affiliation(s)
- Evelyne Krin
- Unité de Génétique des Génomes Bactériens, Institut Pasteur, 75724 Paris Cedex 15, France.
| | | | | | | | | |
Collapse
|
8
|
Krin E, Sismeiro O, Danchin A, Bertin PN. The regulation of Enzyme IIA(Glc) expression controls adenylate cyclase activity in Escherichia coli. MICROBIOLOGY (READING, ENGLAND) 2002; 148:1553-1559. [PMID: 11988530 DOI: 10.1099/00221287-148-5-1553] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
During the last few years, several genes, such as pap, bgl and flhDC, have been shown to be coregulated by the histone-like nucleoid-structuring (H-NS) protein and the cyclic AMP-catabolite activator protein (cAMP/CAP) complex, suggesting an interaction between both systems in the control of some cellular functions. In this study, the possible effect of H-NS on the cAMP level was investigated. In a CAP-deficient strain, the presence of an hns mutation results in a strong reduction in the amount of cAMP, due to a decrease in adenylate cyclase activity. This is caused by the reduced expression of crr, which encodes the Enzyme IIA(Glc) of the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS), from its specific P2 promoter. This leads to a twofold reduction in the global amount of Enzyme IIA(Glc), the adenylate cyclase activator, responsible for the decrease in adenylate cyclase activity observed in the hns crp strain.
Collapse
Affiliation(s)
- Evelyne Krin
- Unité de Génétique des Génomes Bactériens, Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France1
| | - Odile Sismeiro
- Unité de Génétique des Génomes Bactériens, Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France1
| | - Antoine Danchin
- Unité de Génétique des Génomes Bactériens, Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France1
| | - Philippe N Bertin
- Unité de Génétique des Génomes Bactériens, Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France1
| |
Collapse
|
9
|
Wang J, Gilles ED, Lengeler JW, Jahreis K. Modeling of inducer exclusion and catabolite repression based on a PTS-dependent sucrose and non-PTS-dependent glycerol transport systems in Escherichia coli K-12 and its experimental verification. J Biotechnol 2001; 92:133-58. [PMID: 11640984 DOI: 10.1016/s0168-1656(01)00354-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We used genetically engineered sucrose positive Escherichia coli K-12 derivatives as a model system for the modeling and experimental verification of regulatory processes in bacteria. These cells take up and metabolize sucrose by the phosphoenolpyruvate (PEP)-dependent sucrose phosphotransferase system (Scr-PTS). Expression of the scr genes, which cluster in two different operons (scrYAB and scrK), is negatively controlled by the ScrR repressor. Additionally, expression of the scrYAB operon, but not of the scrK operon is positively controlled by the cAMP-CRP complex. Modeling of sucrose transport and metabolism through the Scr-system and of the scr gene expression has been performed using a modular and object-orientated new approach. To verify the model and identify important model parameters we measured in a first set of experiments induction kinetics of the scr genes after growth on glycerol using strains with single copy lacZ operon fusions in the scrK or scrY genes, respectively. In a second set of experiments an additional copy of the complete scr-regulon was integrated into the chromosome to construct diplogenotic strains. Differences were observed in the induction kinetics of the cAMP-CRP-dependent scrY operon compared to the cAMP-CRP independent scrK operon as well as between the single copy and the corresponding diplogenotic strains.
Collapse
Affiliation(s)
- J Wang
- Institut für Systemdynamik und Regelungstechnik, Pfaffenwaldring 9, 70550 Stuttgart, Germany.
| | | | | | | |
Collapse
|
10
|
Plumbridge J. Expression of the phosphotransferase system both mediates and is mediated by Mlc regulation in Escherichia coli. Mol Microbiol 1999; 33:260-73. [PMID: 10411743 DOI: 10.1046/j.1365-2958.1999.01462.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ptsHIcrr operon encodes the cytoplasmic components of the phosphotransferase system (PTS). It is expressed from two major promoters, of which the upstream promoter has previously been shown to be induced by glucose and to be dependent upon cAMP/CAP. This promoter is now shown to be repressed by Mlc. Mlc is a transcriptional regulator controlling, among others, the gene ptsG, encoding EIICBGlc, the glucose-specific transporter of the PTS. Transcription of ptsH p0 and ptsG are subject to the same regulatory pattern. In addition to induction by glucose and repression by Mlc, mutations in ptsHIcrr, which interrupt the PEP-dependent phosphate transfer through the soluble components of the PTS, lead to high expression of both ptsH and ptsG, while mutations inactivating EIIBCGlc are non-inducible. Mutations in mlc lead to high constitutive expression and are dominant, implying that Mlc is the ultimate regulator of ptsHI and ptsG expression. Growth on other PTS sugars, besides glucose, also induces ptsH and ptsG expression, suggesting that the target of Mlc regulation is the PTS. However, induction by these other sugars is only observed in the presence of ptsG+, thus confirming the importance of glucose and EIICBGlc in the regulation of the PTS. The ptsG22 mutation, although negative for glucose transport, shows a weak positive regulatory phenotype. The mutation has been sequenced and its effect on regulation investigated.
Collapse
Affiliation(s)
- J Plumbridge
- Institut de Biologie Physico-chimique (UPR9073), 13, rue Pierre et Marie Curie, 75005 Paris, France.
| |
Collapse
|
11
|
Ambrose M, MacPhee DG. Glucose and related catabolite repressors are powerful inhibitors of pKM101-enhanced UV mutagenesis in Escherichia coli. Mutat Res 1998; 422:107-12. [PMID: 9920434 DOI: 10.1016/s0027-5107(98)00179-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
When stationary phase Escherichia coli K12 trp (amber) cells were exposed to UV doses ranging from 180-540 J m(-2), we found that we could not recover any induced Trp+ revertants unless the irradiated cultures were first supplied with the Muc+ mutation-enhancing IncP plasmid pKM101 (by conjugation). We also found that the numbers of UV-induced Trp+ revertants recovered from pKM101+ cultures varied quite dramatically depending upon which of several commonly-used carbon sources were present in the post-irradiation plating medium, e.g., there were always significantly fewer revertants on minimal glucose plates than on minimal glycerol plates. More importantly, there were also fewer UV-induced revertants on glycerol + glucose plates than on 'glycerol-only' plates. We then tested two glucose-related compounds which are known to depress intracellular cyclic AMP (cAMP) levels even more effectively than glucose (glucose-6-phosphate and the non-utilisable methyl-alpha-D-glucopyranoside) and found that they too were able to exert powerfully antimutagenic effects in UV-treated pKM101-containing bacteria. Taken together, these results provide strong additional support for our working hypothesis that at least one component of the mutational pathway which operates in UV-irradiated pKM101-containing cells is extremely sensitive to classical cAMP-mediated catabolite repression.
Collapse
Affiliation(s)
- M Ambrose
- Department of Microbiology, La Trobe University, Bundoora, Victoria, Australia
| | | |
Collapse
|
12
|
Hogema BM, Arents JC, Bader R, Eijkemans K, Yoshida H, Takahashi H, Aiba H, Postma PW. Inducer exclusion in Escherichia coli by non-PTS substrates: the role of the PEP to pyruvate ratio in determining the phosphorylation state of enzyme IIAGlc. Mol Microbiol 1998; 30:487-98. [PMID: 9822815 DOI: 10.1046/j.1365-2958.1998.01053.x] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The main mechanism causing catabolite repression in Escherichia coli is the dephosphorylation of enzyme IIAGlc, one of the enzymes of the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS). The PTS is involved in the uptake of a large number of carbohydrates that are phosphorylated during transport, phosphoenolpyruvate (PEP) being the phosphoryl donor. Dephosphorylation of enzyme IIAGlc causes inhibition of uptake of a number of non-PTS carbon sources, a process called inducer exclusion. In this paper, we show that dephosphorylation of enzyme IIAGlc is not only caused by the transport of PTS carbohydrates, as has always been thought, and that an additional mechanism causing dephosphorylation exists. Direct monitoring of the phosphorylation state of enzyme IIAGlc also showed that many carbohydrates that are not transported by the PTS caused dephosphorylation during growth. In the case of glucose 6-phosphate, it was shown that transport and the first metabolic step are not involved in the dephosphorylation of enzyme IIAGlc, but that later steps in the glycolysis are essential. Evidence is provided that the [PEP]-[pyruvate] ratio, the driving force for the phosphorylation of the PTS proteins, determines the phosphorylation state of enzyme IIAGlc. The implications of these new findings for our view on catabolite repression and inducer exclusion are discussed.
Collapse
Affiliation(s)
- B M Hogema
- E.C. Slater Institute, BioCentrum, University of Amsterdam, Plantage Muidergracht 12, 1018 TV Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Süsstrunk U, Pidoux J, Taubert S, Ullmann A, Thompson CJ. Pleiotropic effects of cAMP on germination, antibiotic biosynthesis and morphological development in Streptomyces coelicolor. Mol Microbiol 1998; 30:33-46. [PMID: 9786183 DOI: 10.1046/j.1365-2958.1998.01033.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In wild-type Streptomyces coelicolor MT1110 cultures, cyclic adenosine 3',5' monophosphate (cAMP) was synthesized throughout the developmental programme with peaks of accumulation both during germination and later when aerial mycelium and actinorhodin were being produced. Construction and characterization of an adenylate cyclase disruption mutant (BZ1) demonstrated that cAMP facilitated these developmental processes. Although pulse-labelling experiments showed that a similar germination process was initiated in BZ1 and MT1110, germ-tube emergence was severely delayed in BZ1 and never occurred in more than 85% of the spores. Studies of growth and development on solid glucose minimal medium (SMMS, buffered or unbuffered) showed that MT1110 and BZ1 produced acid during the first rapid growth phase, which generated substrate mycelium. Thereafter, on unbuffered SMMS, only MT1110 resumed growth and produced aerial mycelium by switching to an alternative metabolism that neutralized its medium, probably by reincorporating and metabolizing extracellular acids. BZ1 was not able to neutralize its medium or produce aerial mycelium on unbuffered SMMS; these defects were suppressed by high concentrations (>1 mM) of cAMP during early growth or on buffered medium. Other developmental mutants (bldA, bldB, bldC, bldD, bldG) also irreversibly acidified this medium. However, these bald mutants were not suppressed by exogenous cAMP or neutralizing buffer. BZ1 also differentiated when it was cultured in close proximity to MT1110, a property observed in cross-feeding experiments between bald mutants and commonly thought to reflect diffusion of a discrete positively acting signalling molecule. In this case, MT1110 generated a more neutral pH environment that allowed BZ1 to reinitiate growth and form aerial mycelium. The fact that actinorhodin synthesis could be induced by concentrations of cAMP (< 20 microM) found in the medium of MT1110 cultures, suggested that it may serve as a diffusible signalling molecule to co-ordinate antibiotic biosynthesis.
Collapse
Affiliation(s)
- U Süsstrunk
- Department of Microbiology, Biozentrum, University of Basle, Switzerland
| | | | | | | | | |
Collapse
|
14
|
Marschall C, Labrousse V, Kreimer M, Weichart D, Kolb A, Hengge-Aronis R. Molecular analysis of the regulation of csiD, a carbon starvation-inducible gene in Escherichia coli that is exclusively dependent on sigma s and requires activation by cAMP-CRP. J Mol Biol 1998; 276:339-53. [PMID: 9512707 DOI: 10.1006/jmbi.1997.1533] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The general stress-induced sigma subunit sigma s of Escherichia coli RNA polymerase is closely related to the vegetative sigma factor sigma 70. In view of their very similar promoter specificity in vitro, it is unclear how sigma factor selectivity in the expression of sigma s-dependent genes is generated in vivo. The csiD gene is such a strongly sigma s-dependent gene. In contrast to sigma s, which is induced in response to many different stresses, csiD, whose expression is driven from a single promoter, is induced by carbon starvation only. To our knowledge, the csiD promoter is the first characterized promoter which is not only exclusively dependent on sigma s-containing RNA polymerase (E sigma s), but also requires an activator, cAMP-CRP. In addition, leucine-responsive regulatory protein (Lrp) acts as a positive modulator of csiD expression. Also in vitro, E sigma s is more efficient than E sigma 70 in csiD promoter binding, open complex formation and run-off transcription, which might be due to the poor match of the csiD -35 region to the sigma 70 consensus and to transcription by E sigma s being less dependent on contacts in this region. By DNase I protection experiments, a cAMP-CRP binding site centered at -68.5 nucleotides upstream of the csiD transcriptional start site was identified. While cAMP-CRP stimulates E sigma 70 binding, it does not promote open complex formation by E sigma 70, but does so in conjunction with E sigma s. With linear templates, cAMP-CRP significantly stimulates E sigma s-mediated in vitro transcription, whereas transcription by E sigma 70 is negligible and hardly stimulated by cAMP-CRP. These findings may reflect different or less stringent positional requirements for an activator site for E sigma s than for E sigma 70, and indicate that cAMP-CRP contributes to sigma factor selectivity at the csiD promoter. In vitro transcription experiments with super-coiled templates, however, revealed significant cAMP-CRP-stimulated transcription also by E sigma 70. Yet, under these conditions, H-NS was found to restore E sigma s specificity by strongly interfering with cAMP-CRP/E sigma 70-dependent transcription. Lrp strongly and cooperatively binds to multiple sites located between positions -14 and -102 (in a way that suggests DNA wrapping around multiple Lrp molecules) and moderately stimulates in vitro transcription, especially with E sigma s. In summary, we conclude that the csiD promoter has an intrinsic preference for E sigma s, but that also protein factors such as cAMP-CRP, Lrp and probably H-NS as well as DNA conformation contribute to its strong E sigma s selectivity. Furthermore, this strong E sigma s preference in combination with a requirement for high concentrations of the essential activator cAMP-CRP ensures csiD expression under conditions of carbon starvation, but not other stress conditions.
Collapse
Affiliation(s)
- C Marschall
- Department of Biology, University of Konstanz, Germany
| | | | | | | | | | | |
Collapse
|
15
|
Coudart-Cavalli MP, Sismeiro O, Danchin A. Bifunctional structure of two adenylyl cyclases from the myxobacterium Stigmatella aurantiaca. Biochimie 1997; 79:757-67. [PMID: 9523018 DOI: 10.1016/s0300-9084(97)86934-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Two adenylyl cyclase genes (cyaA and cyaB) from the myxobacterium Stigmatella aurantiaca were cloned by complementation of Escherichia coli mutants defective in the cya gene. cyaA codes for a protein of 424 amino acid residues (AC1), while cyaB encodes a protein of 352 residues (AC2). Both cyclases are sensitive to adenosine: cAMP production was strongly inhibited in E coli cells and cell extracts expressing these genes. AC1 comprises a hydrophobic domain of six transmembrane helices coupled to a cytoplasmic catalytic domain endowed with adenylyl cyclase activity. A 17 amino acid residue sequence, which is a signature of G-protein coupled receptors, as well as of slime mold Dictyostelium discoideum cyclic AMP receptors, was found in the membrane domain. AC2 displays features also indicating that it is a bifunctional enzyme. The domain located upstream from the catalytic adenylyl cyclase domain shows strong similarity to receiver modules of response regulators of two-component bacterial signaling systems. In vitro mutagenesis of conserved aspartate residues in this domain was shown to interfere with cAMP synthesis.
Collapse
|
16
|
Notley-McRobb L, Death A, Ferenci T. The relationship between external glucose concentration and cAMP levels inside Escherichia coli: implications for models of phosphotransferase-mediated regulation of adenylate cyclase. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 6):1909-1918. [PMID: 9202467 DOI: 10.1099/00221287-143-6-1909] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The concentration of glucose in the medium influences the regulation of cAMP levels in Escherichia coli. Growth in minimal medium with micromolar glucose results in 8- to 10-fold higher intracellular cAMP concentrations than observed during growth with excess glucose. Current models would suggest that the difference in cAMP levels between glucose-rich and glucose-limited states is due to altered transport flux through the phosphoenolpyruvate: glucose phosphotransferase system (PTS), which in turn controls adenylate cyclase. A consequence of this model is that cAMP levels should be inversely related to the saturation of the PTS transporter. To test this hypothesis, the relationship between external glucose concentration and cAMP levels inside E. coli were investigated in detail, both through direct cAMP assay and indirectly through measurement of expression of cAMP-regulated genes. Responses were followed in batch, dialysis and glucose-limited continuous culture. A sharp rise in intracellular cAMP occurred when the nutrient concentration in minimal medium dropped to approximately 0.3 mM glucose. Likewise, addition of > 0.3 mM glucose, but not < 0.3 mM glucose, sharply reduced the intracellular cAMP level of starving bacteria. There was no striking shift in growth rate or [14C] glucose assimilation in bacteria passing through the 0.5 to 0.3 mM concentration threshold influencing cAMP levels, suggesting that neither metabolic flux nor transporter saturation influenced the sensing of nutrient levels. The (IIA/IIBC)Glc PTS is 96-97% saturated at 0.3 mM glucose so these results are not easily reconcilable with current models of cAMP regulation. Aside from the transition in cAMP levels initiated above 0.3 mM, a second shift occurred below 1 muM glucose. Approaching starvation, well below saturation of the PTS, cAMP levels either increased or decreased depending on unknown factors that differ between common E. coli K-12 strains.
Collapse
Affiliation(s)
- Lucinda Notley-McRobb
- Department of Microbiology G08, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Alison Death
- Department of Microbiology G08, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Thomas Ferenci
- Department of Microbiology G08, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
17
|
Crasnier-Mednansky M, Park MC, Studley WK, Saier MH. Cra-mediated regulation of Escherichia coli adenylate cyclase. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 3):785-792. [PMID: 9084162 DOI: 10.1099/00221287-143-3-785] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In Escherichia coli, expression of certain genes and operons, including the fructose operon, is controlled by Cra, the pleiotropic catabolite repressor/activator protein formerly known as FruR. In this study we have demonstrated that cra mutant strains synthesize 10-fold less cAMP than isogenic wild-type strains, specifically when grown in fructose-containing minimal media. The glucose-specific IIA protein (IIAglc) of the phosphotransferase system, which activates adenylate cyclase when phosphorylated, is largely dephosphorylated in cra but not wild-type strains growing under these conditions. Dephosphorylation of IIAglc in cra strains apparently results from enhanced fructose operon transcription and fructose uptake. These conclusions were supported by showing that fructose-grown cra strains possess 2.5-fold higher fructose-1-phosphate kinase activity than fructose-grown wild-type strains. Moreover, artificially increasing fructose operon expression in cells transporting fructose dramatically decreased the activity of adenylate cyclase. The results establish that Cra indirectly regulates the activity of adenylate cyclase by controlling the expression of the fructose operon in cells growing with fructose as the sole carbon source.
Collapse
Affiliation(s)
| | - Maxwell C Park
- University of California at San Diego, Department of Biology, La Jolla, CA 92093-0116, USA
| | - William K Studley
- University of California at San Diego, Department of Biology, La Jolla, CA 92093-0116, USA
| | - Milton H Saier
- University of California at San Diego, Department of Biology, La Jolla, CA 92093-0116, USA
| |
Collapse
|
18
|
Affiliation(s)
- M Crasnier
- University of California San Diego, Department of Biology, La Jolla 92093-0116, USA
| |
Collapse
|
19
|
Bouquin N, Chen MX, Kim S, Vannier F, Bernard S, Holland IB, Séror SJ. Characterization of an Escherichia coli mutant, feeA, displaying resistance to the calmodulin inhibitor 48/80 and reduced expression of the rare tRNA3Leu. Mol Microbiol 1996; 20:853-65. [PMID: 8793881 DOI: 10.1111/j.1365-2958.1996.tb02523.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We previously described a mutation feeB1 conferring a temperature-sensitive filamentation phenotype and resistance to the calmodulin inhibitor 48/80 in Escherichia coli, which constitutes a single base change in the acceptor stem of the rare tRNA3Leu recognizing CUA codons. We now describe a second mutant, feeA1, unlinked to feeB, but displaying a similar phenotype, 48/80 resistance and a reduced growth rate at the permissive temperature, 30 degrees C, and temperature-sensitive, forming short filaments at 42 degrees C. In the feeA mutant, tRNA3Leu expression (but not that of tRNA1Leu) was reduced approximately fivefold relative to the wild type. We previously showed that the synthesis of beta-galactosidase, which unusually requires the translation of 6-CUA codons, was substantially reduced, particularly at 42 degrees C, in feeB mutants. The feeA mutant also shows drastically reduced synthesis of beta-galactosidase at the non-permissive temperature and reduced levels even at the permissive temperature. We also show that increased copy numbers of the abundant tRNA1Leu, which can also read CUA codons at low efficiency, suppressed the effects of feeA1 under some conditions, providing further evidence that the mutant was deficient in CUA translation. This, and the previous study, demonstrates that mutations which either reduce the activity of tRNA3Leu or the cellular amount of tRNA3Leu confer resistance to the drug 48/80, with concomitant inhibition of cell division at 42 degrees C.
Collapse
Affiliation(s)
- N Bouquin
- Institut de Génétique et Microbiologie, Unité de Recherche Associée au CNRS D1354, Université Paris XI, Orsay, France
| | | | | | | | | | | | | |
Collapse
|
20
|
Dumay V, Danchin A, Crasnier M. Regulation of Escherichia coli adenylate cyclase activity during hexose phosphate transport. MICROBIOLOGY (READING, ENGLAND) 1996; 142 ( Pt 3):575-583. [PMID: 8868432 DOI: 10.1099/13500872-142-3-575] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In Escherichia coli, cAMP levels vary with the carbon source used in the culture medium. These levels are dependent on the cellular concentration of phosphorylated EnzymeIIAglc, a component of the glucose-phosphotransferase system, which activates adenylate cyclase (AC). When cells are grown on glucose 6-phosphate (Glc6P), the cAMP level is particularly low. In this study, we investigated the mechanism leading to the low cAMP level when Glc6P is used as the carbon source, i.e. the mechanism preventing the activation of AC by phosphorylated EnzymeIIAglc. Glc6P is transported via the Uhp system which is inducible by extracellular Glc6P. The Uhp system comprises a permease UhpT and three proteins UhpA, UhpB and UhpC which are necessary for uhpT gene transcription. Controlled expression of UhpT in the absence of the regulatory proteins (UhpA, UhpB and UhpC) allowed us to demonstrate that (i) the Uhp regulatory proteins do not prevent the activation of AC by direct interaction with EnzymeIIAglc and (ii) an increase in the amount of UhpT synthesized (corresponding to an increase in the amount of Glc6P transported) correlates with a decrease in the cAMP level. We present data indicating that Glc6P per se or its degradation is unlikely to be responsible for the low cAMP level. It is concluded that the level of cAMP in the cell is determined by the flux of Glc6P through UhpT.
Collapse
Affiliation(s)
- Valérie Dumay
- Unité de Régulation de l'Expression Génétique (Centre National de la Recherche Scientifique Unité Associée 1129), Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris cedex 15, France
| | - Antoine Danchin
- Unité de Régulation de l'Expression Génétique (Centre National de la Recherche Scientifique Unité Associée 1129), Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris cedex 15, France
| | - Martine Crasnier
- Unité de Régulation de l'Expression Génétique (Centre National de la Recherche Scientifique Unité Associée 1129), Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris cedex 15, France
| |
Collapse
|
21
|
Heveker N, Bonnaffé D, Ullmann A. Chemical fatty acylation confers hemolytic and toxic activities to adenylate cyclase protoxin of Bordetella pertussis. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(20)30068-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
22
|
Danchin A, Pidoux J, Krin E, Thompson CJ, Ullmann A. The adenylate cyclase catalytic domain of Streptomyces coelicolor is carboxy-terminal. FEMS Microbiol Lett 1993; 114:145-51. [PMID: 8282183 DOI: 10.1111/j.1574-6968.1993.tb06565.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A DNA fragment of Streptomyces coelicolor encoding the carboxy-terminal catalytic domain of adenylate cyclase was cloned, sequenced and expressed in an Escherichia coli cya-defective strain where it produced nanomole levels of cAMP. The amino acid sequence of the enzyme displays similarities with the Brevibacterium liquefaciens pyruvate regulated adenylate cyclase.
Collapse
Affiliation(s)
- A Danchin
- Unité de Régulation de l'Expression Génétique, Institut Pasteur, Paris, France
| | | | | | | | | |
Collapse
|
23
|
Ishizuka H, Hanamura A, Kunimura T, Aiba H. A lowered concentration of cAMP receptor protein caused by glucose is an important determinant for catabolite repression in Escherichia coli. Mol Microbiol 1993; 10:341-50. [PMID: 7934825 DOI: 10.1111/j.1365-2958.1993.tb01960.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A decreased intracellular concentration of cAMP is insufficient to account for catabolite repression in Escherichia coli. We show that glucose lowers the amount of cAMP receptor protein (CRP) in cells. A correlation exists between CRP and beta-galactosidase levels in cells growing under various conditions. Exogenous cAMP completely eliminates catabolite repression in CRP-overproducing cells, while it does not fully reverse the effect of glucose on beta-galactosidase expression in wild-type cells. When the CRP concentration is reduced by manipulating the crp gene, beta-galactosidase expression decreases in proportion to the concentration of CRP. These findings indicate that the lowered concentration of CRP caused by glucose is one of the major factors for catabolite repression. We propose that glucose causes catabolite repression by lowering the intracellular levels of both CRP and cAMP.
Collapse
Affiliation(s)
- H Ishizuka
- Department of Molecular Biology, School of Science, Nagoya University, Japan
| | | | | | | |
Collapse
|
24
|
Postma PW, Lengeler JW, Jacobson GR. Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 1993; 57:543-94. [PMID: 8246840 PMCID: PMC372926 DOI: 10.1128/mr.57.3.543-594.1993] [Citation(s) in RCA: 866] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Numerous gram-negative and gram-positive bacteria take up carbohydrates through the phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS). This system transports and phosphorylates carbohydrates at the expense of PEP and is the subject of this review. The PTS consists of two general proteins, enzyme I and HPr, and a number of carbohydrate-specific enzymes, the enzymes II. PTS proteins are phosphoproteins in which the phospho group is attached to either a histidine residue or, in a number of cases, a cysteine residue. After phosphorylation of enzyme I by PEP, the phospho group is transferred to HPr. The enzymes II are required for the transport of the carbohydrates across the membrane and the transfer of the phospho group from phospho-HPr to the carbohydrates. Biochemical, structural, and molecular genetic studies have shown that the various enzymes II have the same basic structure. Each enzyme II consists of domains for specific functions, e.g., binding of the carbohydrate or phosphorylation. Each enzyme II complex can consist of one to four different polypeptides. The enzymes II can be placed into at least four classes on the basis of sequence similarity. The genetics of the PTS is complex, and the expression of PTS proteins is intricately regulated because of the central roles of these proteins in nutrient acquisition. In addition to classical induction-repression mechanisms involving repressor and activator proteins, other types of regulation, such as antitermination, have been observed in some PTSs. Apart from their role in carbohydrate transport, PTS proteins are involved in chemotaxis toward PTS carbohydrates. Furthermore, the IIAGlc protein, part of the glucose-specific PTS, is a central regulatory protein which in its nonphosphorylated form can bind to and inhibit several non-PTS uptake systems and thus prevent entry of inducers. In its phosphorylated form, P-IIAGlc is involved in the activation of adenylate cyclase and thus in the regulation of gene expression. By sensing the presence of PTS carbohydrates in the medium and adjusting the phosphorylation state of IIAGlc, cells can adapt quickly to changing conditions in the environment. In gram-positive bacteria, it has been demonstrated that HPr can be phosphorylated by ATP on a serine residue and this modification may perform a regulatory function.
Collapse
Affiliation(s)
- P W Postma
- E. C. Slater Institute, University of Amsterdam, The Netherlands
| | | | | |
Collapse
|
25
|
Zeng GQ, De Reuse H, Danchin A. Mutational analysis of the enzyme IIIGlc of the phosphoenolpyruvate phosphotransferase system in Escherichia coli. Res Microbiol 1992; 143:251-61. [PMID: 1333089 DOI: 10.1016/0923-2508(92)90017-i] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The phosphoenolpyruvate phosphotransferase system (PTS) component EIIIGlc is responsible for transport and phosphorylation of glucose via EIIGlc. It also regulates the catabolism of other carbon sources, such as lactose and maltose, by modulating both the intracellular concentrations of the corresponding inducers and of cAMP. Mutational analysis of EIIIGlc was performed in order to identify crucial residues mediating the interactions between EIIIGlc and its target proteins. Such mutations were isolated by in vitro hydroxylamine mutagenesis of the cloned EIIIGlc gene, crr. Five mutated EIIIGlc impaired in the function of inducer exclusion were obtained. However, these mutations did not abolish the function of EIIIGlc in the transport and phosphorylation of glucose, nor in activation of adenylate cyclase. A single amino acid change was found for each mutation, which is located in a restricted area of the polypeptide chain: Gly47-->Ser47 for the HA2 and HA5 mutations, Ala76-->Thr76 for HA4 mutation and Ser78-->Phe78 for HA3 mutation, indicative of quaternary interactions between the corresponding region of EIIIGlc and its target protein(s).
Collapse
Affiliation(s)
- G Q Zeng
- Unité de Régulation de l'Expression génétique, Institut Pasteur, Paris
| | | | | |
Collapse
|
26
|
Deletions affecting hemolytic and toxin activities of Bordetella pertussis adenylate cyclase. Infect Immun 1990; 58:3242-7. [PMID: 2401563 PMCID: PMC313645 DOI: 10.1128/iai.58.10.3242-3247.1990] [Citation(s) in RCA: 100] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The Bordetella pertussis cyaA gene encodes a virulence factor which is a bifunctional protein exhibiting calmodulin-sensitive adenylate cyclase and hemolytic activities (P. Glaser, H. Sakamoto, J. Bellahov, A. Ullmann, and A. Danchin, EMBO J. 7:3997-4004, 1988). We characterized the hemolytic and toxin activities of the 200-kilodalton (kDa) bifunctional (CyaA) protein and showed that, whether cell associated or secreted, the 200-kDa CyaA protein carries hemolytic and toxin functions. The catalytically active 45-kDa form of adenylate cyclase released by proteolytic digestion of the 200-kDa CyaA protein displayed neither hemolytic nor toxin activities. We constructed in-phase deletions in the 3' region of the cyaA gene, which presumably carries the hemolytic determinant, and showed that the resulting proteins exhibited wild-type adenylate cyclase activity and were secreted without processing into culture supernatants. The hemolytic activities of these mutant CyaA proteins were severely reduced, and their toxin activities were abolished. These results suggest that the structural integrity of the 200-kDa CyaA protein is necessary for toxin activity and that distinct structural determinants within the CyaA protein are involved in secretion, pore formation, and entry into target cells.
Collapse
|
27
|
Engelberg D, Poradosu E, Simchen G, Levitzki A. Adenylyl cyclase activity of the fission yeast Schizosaccharomyces pombe is not regulated by guanyl nucleotides. FEBS Lett 1990; 261:413-8. [PMID: 2178979 DOI: 10.1016/0014-5793(90)80605-i] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The adenylyl cyclase activity of the fission yeast Schizosaccharomyces pombe is localized to the plasma membrane of the cell. The enzyme utilizes Mn2+/ATP as substrate and free Mn2+ ions as an effector. Unlike the baker yeast Saccharomyces cerevisiae, S. pombe adenylyl cyclase does not utilize Mg2+/ATP as substrate and the activity is not stimulated by guanyl nucleotides. The optimal pH for the S. pombe adenylyl cyclase activity is 6.0. The activity dependence on ATP is cooperative with a Hill coefficient of 1.68 +/- 0.14.
Collapse
Affiliation(s)
- D Engelberg
- Department of Biological Chemistry, Hebrew University of Jerusalem, Israel
| | | | | | | |
Collapse
|
28
|
Lévy S, Zeng GQ, Danchin A. Cyclic AMP synthesis in Escherichia coli strains bearing known deletions in the pts phosphotransferase operon. Gene 1990; 86:27-33. [PMID: 2155859 DOI: 10.1016/0378-1119(90)90110-d] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A series of isogenic strains harboring known deletions in the pts operon of Escherichia coli have been constructed by reverse genetics. Strains bearing deletions for the whole pts operon failed to grow on maltose or on carbon sources of the same class. In these strains the total cAMP synthesis was significantly lower than in a strain deleted only for the crr gene. This indicated that enzyme I or phosphorylated histidine-containing phosphotransferase protein in addition to its role in phosphorylating enzyme IIIGlc, is involved in adenylate cyclase (AC) activation or cAMP excretion. It was further shown that deletions in the pts operon do not affect synthesis of AC.
Collapse
Affiliation(s)
- S Lévy
- Régulation de l'Expression Génétique, Institut Pasteur, Paris, France
| | | | | |
Collapse
|
29
|
Gaston K, Kolb A, Busby S. Binding of the Escherichia coli cyclic AMP receptor protein to DNA fragments containing consensus nucleotide sequences. Biochem J 1989; 261:649-53. [PMID: 2673223 PMCID: PMC1138872 DOI: 10.1042/bj2610649] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Binding of the Escherichia coli CRP protein to DNA fragments carrying nucleotide sequences closely corresponding to the consensus is very tight with a dissociation time of over 2 h in our conditions. The concentration of cyclic AMP required for this binding is below the physiological range of intracellular cyclic AMP concentrations. Changes in nucleotide sequence at positions that are not well-conserved between different naturally-occurring CRP sites allow a more rapid dissociation of CRP-DNA complexes. There is an inverse correlation between the stability of CRP binding to sites in vitro and the repression by glucose of expression dependent on these sites in vivo: expression that is dependent on the tighter binding sites cannot be repressed by the inclusion of glucose in the growth medium.
Collapse
Affiliation(s)
- K Gaston
- School of Biochemistry, University of Birmingham, U.K
| | | | | |
Collapse
|
30
|
Riba L, Becerril B, Servín-González L, Valle F, Bolivar F. Identification of a functional promoter for the Escherichia coli gdhA gene and its regulation. Gene 1988; 71:233-46. [PMID: 2465204 DOI: 10.1016/0378-1119(88)90040-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Glutamate dehydrogenase (GDH) catalyzes the synthesis of L-glutamate from 2-oxoglutarate and ammonia. The complete nucleotide sequence of the Escherichia coli gdhA gene, as well as its 5' and 3' flanking regions have been previously reported [Valle et al., Gene 23 (1983) 199-209; 27 (1984) 193-199]. In this paper we present data on the GDH specific activities using both excess and limiting concentrations of ammonia as nitrogen sources. Evidence is presented on the regulation of the mRNA levels for this enzyme by the ammonia concentration in the growth medium. We have identified a single and apparently invariant transcript for several metabolic growth conditions. We also report the identification of a functional promoter and the corresponding transcription start point under several growth conditions. Finally, possible regulatory sequences located at the 5' flanking region of the gdhA gene are discussed.
Collapse
Affiliation(s)
- L Riba
- Departamento de Biología Molecular, Universidad Nacional Autónoma de México, Morelos
| | | | | | | | | |
Collapse
|
31
|
Mock M, Labruyère E, Glaser P, Danchin A, Ullmann A. Cloning and expression of the calmodulin-sensitive Bacillus anthracis adenylate cyclase in Escherichia coli. Gene 1988; 64:277-84. [PMID: 2841199 DOI: 10.1016/0378-1119(88)90342-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The adenylate cyclase gene of Bacillus anthracis, encoding the edema factor, a component of anthrax toxin, has been cloned and expressed in Escherichia coli. Clones were selected by their capacity to complement the cyclase deficiency (cya-) of an E. coli strain expressing the eukaryotic protein calmodulin, an essential activator of B. anthracis adenylate cyclase. The protein expressed in E. coli was shown to exhibit adenylate cyclase activity only in the presence of calmodulin. Experiments using a coupled in vitro transcription-translation system revealed that the protein synthesized from the cloned DNA fragment was enzymatically active, upon addition of calmodulin, and could be immunoprecipitated by antibodies directed against purified Bordetella pertussis adenylate cyclase toxin. This indicates that the two calmodulin-dependent adenylate cyclase toxins are immunologically related.
Collapse
Affiliation(s)
- M Mock
- Unité des Antigènes Bactériens, Institut Pasteur, Paris, France
| | | | | | | | | |
Collapse
|
32
|
Ray NG, Vieth WR, Venkatasubramanian K. Regulation oflac operon expression in mixed sugar chemostat cultures. Biotechnol Bioeng 1987; 29:1003-14. [DOI: 10.1002/bit.260290812] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
33
|
Blazy B, Culard F, Maurizot JC. Interaction between the cyclic AMP receptor protein and DNA. Conformational studies. J Mol Biol 1987; 195:175-83. [PMID: 2821269 DOI: 10.1016/0022-2836(87)90334-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The binding of the cyclic adenosine 3',5' monophosphate receptor protein (CRP or CAP) of Escherichia coli to non-specific DNA and to a specific lac recognition sequence has been investigated by circular dichroism (c.d.) spectroscopy. The effect of cAMP and cGMP on the co-operative non-specific binding was also studied. For the non-specific binding in the absence of cAMP a c.d. change (decrease of the intensity of the positive band with a shift of its maximum to longer wavelength) indicates that the DNA undergoes a conformational change upon CRP binding. This change might reflect the formation of the solenoidal coil previously observed by electron microscopy. The amplitude of the c.d. change increases linearly with the degree of saturation of the DNA and does not depend on the size of the clusters of CRP bound. From the variation of the c.d. effect as a function of the ionic strength, the product K omega (K, the intrinsic binding constant and omega, the co-operativity parameter) could be determined. The number of ion pairs involved in complex formation between CRP and DNA was found to be six to seven. Experiments performed with several DNAs, including the alternating polymers poly[d(A-T)] and poly[d(G-C)], demonstrated that the conformational change does not depend on the DNA sequence. However, in the presence of cAMP the c.d. spectrum of the DNA shows only a small variation upon binding CRP. In contrast, in the presence of cGMP the conformational change of the DNA is similar to that observed when non-liganded CRP binds. For the specific lac operon binding, the c.d. change is different from those observed for non-specific binding in the presence or absence of cAMP. These results emphasize the high variability of the DNA structure upon binding the same protein.
Collapse
Affiliation(s)
- B Blazy
- Laboratoire de Biophysique Interactions Moleculaires, Universite Paul Sabatier, Toulouse, France
| | | | | |
Collapse
|
34
|
Unden G, Duchene A. On the role of cyclic AMP and the Fnr protein in Escherichia coli growing anaerobically. Arch Microbiol 1987; 147:195-200. [PMID: 3036034 DOI: 10.1007/bf00415284] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The role of adenosine 3',5'-monophosphate (cAMP) and of the Fnr protein, a transcriptional regulator of anaerobic electron transport, in the expression of anaerobic respiration of Escherichia coli was investigated. Under conditions of fermentation or anaerobic respiration intracellular cAMP was formed in concentrations up to 4.6 nmol/g protein. From the enzymes of the anaerobic electron transfer chain from glycerol-3-P to fumarate only the expression of glycerol-3-P dehydrogenase (Freedberg WB, Lin ECC (1973) J Bacteriol 115:816-823), but not that of fumarate reductase required cAMP. Isolated Fnr protein, which has been suggested to be an additional site of action of cAMP under anaerobic conditions did not bind cAMP. It is concluded that cAMP in anaerobic growth like in aerobic growth acts as the effector of CRP and that catabolite repression plays an important regulatory role in anaerobic catabolism. The Fnr protein was present in constant amounts (0.06 mg/g cellular protein) and in constant molar mass (Mr 30,000) in aerobically and in anaerobically grown bacteria. This result excluded regulation of the activity of the Fnr protein by a change of concentration or by processing of the protein.
Collapse
|
35
|
Daniel J, Danchin A. 2-Ketoglutarate as a possible regulatory metabolite involved in cyclic AMP-dependent catabolite repression in Escherichia coli K12. Biochimie 1986; 68:303-10. [PMID: 3015255 DOI: 10.1016/s0300-9084(86)80027-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
2-Ketoglutarate--unlike any other derivative of the citric acid cycle--was found to strongly repress catabolite-sensitive genes, such as the lactose operon (lac) or the tryptophanase gene (tna), when added to cells grown in glycerol. 2-ketoglutarate affects the expression of these genes by decreasing cyclic AMP synthesis. Such inhibition of cyclic AMP synthesis requires the presence of enzyme III, a component of the phosphoenol pyruvate:sugar phosphotransferase transport system (PTS). Thus, it is proposed that 2-ketoglutarate is one of the catabolite repressors postulated by Magasanik in 1961. In addition, by studying the effect of 2-ketoglutarate in various mutants, we show the existence of a cyclic AMP-independent catabolite repression mechanism whose mediator is synthesized from 2-ketoglutarate.
Collapse
|
36
|
The cya gene region of Erwinia chrysanthemi B374: organisation and gene products. ACTA ACUST UNITED AC 1985. [DOI: 10.1007/bf00397984] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
|
38
|
|
39
|
Transcription of the Escherichia coli adenylate cyclase gene is negatively regulated by cAMP-cAMP receptor protein. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(18)89473-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
40
|
Abstract
cya-lac and crp-lac operon fusions were isolated in Salmonella typhimurium by using the phage Mu d1(lac cts Apr). Both transduction and reversion analyses have indicated that lac expression is controlled by the appropriate promoter, e.g., either crpp or cyap. By using chromosomal mobilization techniques, we found that cya had a clockwise direction of transcription on the standard S. typhimurium map. The cya-lac fusions could be complemented by Escherichia coli F'133, which covers cya, with a resultant 17 to 38% decrease in cya expression. Cyclic AMP was found to be able to repress the expression of the cya-lac fusion ninefold when present at 25 mM. This repression was not seen in crp backgrounds, and hence is mediated by the cAMP receptor protein. Repression of cya was also found upon growth on carbon sources known to elicit high cyclic AMP levels.
Collapse
|
41
|
Regulation of Cellulolytic Activity. ACTA ACUST UNITED AC 1985. [DOI: 10.1016/b978-0-12-040308-0.50010-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2023]
|
42
|
Abstract
Expression of the crp gene was studied in vivo by use of a crp-lacZ gene fusion first constructed on a plasmid and then transferred onto the chromosome. Our in vivo data confirm the in vitro findings that crp is negatively autoregulated via the cyclic AMP-catabolite gene activator protein complex. We present evidence that gene crp is repressed by glucose.
Collapse
|
43
|
Aiba H, Mori K, Tanaka M, Ooi T, Roy A, Danchin A. The complete nucleotide sequence of the adenylate cyclase gene of Escherichia coli. Nucleic Acids Res 1984; 12:9427-40. [PMID: 6393056 PMCID: PMC320471 DOI: 10.1093/nar/12.24.9427] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The complete nucleotide sequence of the cya gene from E. coli was determined. The gene encodes a polypeptide consisting of 848 amino acid residues with a calculated molecular weight of 97,542. The deduced protein structure reveals that cyclase is comprised of two domains, an amino-terminal region exhibiting catalytic activity and a carboxy-terminal region possibly carrying regulatory function. The frequent appearance of rare codons in the beginning of the gene as well as the sequence duplication in the promoter-initiator region suggest possible regulation(s) at the translational level. An unknown gene (cyaX) which seems to code for a very hydrophobic protein was found following the cya gene. Sequence analysis suggests that the cyax is a part of the cya operon.
Collapse
|
44
|
Abstract
The ilvB gene of Salmonella typhimurium encodes the valine-sensitive form of acetohydroxy acid synthase, acetohydroxy acid synthase I, which catalyzes the first step in the parallel biosynthesis of isoleucine and valine. Although nearly all of the other genes involved in this pathway are clustered at minute 83, ilvB was found to lie at minute 80.5. Expression of ilvB was shown to be nearly completely repressed by the end products leucine and valine. Studies in which we used strains with mutations in cya (adenylate cyclase) and crp (cAMP receptor protein) demonstrated that synthesis of acetohydroxy acid synthase I is enhanced by the cAMP-cAMP receptor protein complex. Although no stimulation was achieved by growth on poor carbon sources, introduction of crp on a multicopy plasmid led to markedly increased expression. Strains of S. typhimurium lacking valine-resistant acetohydroxy acid synthase II (ilvG) are like Escherichia coli K-12 in that they are not able to grow in the presence of L-valine owing to a conditional isoleucine auxotrophy. The valine toxicity of these ilvG mutants of S. typhimurium was overcome by increasing the level of acetohydroxy acid synthase I. Enzyme activity could be elevated either by maximally derepressing expression with severe leucine limitation, by introduction of either ilvB or crp on a multicopy plasmid, or by the presence of the ilv-513 mutation. This mutation, which is closely linked to genes encoding the phosphoenol pyruvate:sugar phosphotransferase system (pts), causes highly elevated expression of ilvB that is refractory to repression by leucine and valine, as is the major ilv operon. The response of ilvB to the cAMP-cAMP receptor protein complex was not affected by this lesion. Data obtained by using this mutant led us to propose that the two modes of regulation act independently. We also present some evidence which suggests that ilvB expression may be affected by the phosphoenol pyruvate:sugar phosphotransferase system.
Collapse
|
45
|
Daniel J. A simple method for directly obtaining thermosensitive mutants of non-essential genes: selection of cyatsand crptsmutants in Escherichia coliK-12. FEMS Microbiol Lett 1984. [DOI: 10.1111/j.1574-6968.1984.tb01307.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
46
|
Abstract
A 9500-bp DNA segment containing the adenylate cyclase gene (cya) of Escherichia coli has been isolated and analyzed. Four large proteins are encoded within this fragment - the adenylate cyclase protein (92 kDal), two proteins of unknown function (37 and 32 kDal), and a part of the uvrD-coded protein. Various truncated adenylate cyclase proteins, made from cya genes having as much as 60% of their carboxy-terminal end deleted, are sufficient to complement cya- hosts. When these truncated cya genes are present on a multicopy plasmid in a cya- host, the synthesis of beta-galactosidase is still regulated by glucose. The "maxicell" technique was used to visualize the four proteins encoded by this region and some of the truncated adenylate cyclase proteins.
Collapse
|
47
|
Crenon I, Ullmann A. The role of cyclic AMP excretion in the regulation of enzyme synthesis inEscherichia coli. FEMS Microbiol Lett 1984. [DOI: 10.1111/j.1574-6968.1984.tb00351.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
48
|
Grossman AD, Ullmann A, Burgess RR, Gross CA. Regulation of cyclic AMP synthesis in Escherichia coli K-12: effects of the rpoD800 sigma mutation, glucose, and chloramphenicol. J Bacteriol 1984; 158:110-4. [PMID: 6325382 PMCID: PMC215386 DOI: 10.1128/jb.158.1.110-114.1984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
An immediate 12-fold inhibition in the rate of beta-galactosidase synthesis occurs in Escherichia coli cells containing the mutant sigma allele rpoD800 after a shift to 42 degrees C. In the present study we characterize the nature of the inhibition. The severe inhibition of beta-galactosidase synthesis was partly relieved by cyclic AMP (cAMP). We inferred that the inhibition might be mediated by a decreased intracellular concentration of cAMP. Consistent with this inference, the rate of cAMP accumulation in mutant cells after a temperature upshift was depressed relative to that in wild-type cells. Glucose and chloramphenicol, two agents known to inhibit differentially beta-galactosidase mRNA synthesis, caused a similar inhibition in the rate of cAMP accumulation. Thus, three diverse stimuli, glucose, chloramphenicol, and a temperature-sensitive sigma mutation, appear to affect beta-galactosidase synthesis by regulating the synthesis of cAMP.
Collapse
|
49
|
Daniel J, Joseph E, Danchin A. Role of 2-ketobutyrate as an alarmone in E. coli K12: inhibition of adenylate cyclase activity mediated by the phosphoenolpyruvate: glycose phosphotransferase transport system. MOLECULAR & GENERAL GENETICS : MGG 1984; 193:467-72. [PMID: 6323919 DOI: 10.1007/bf00382085] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
2-ketobutyrate and its analogues were found to inhibit strongly and transiently the rate of beta-galactosidase synthesis in Escherichia coli K12. This effect was ascribed to a strong and transient inhibition of the adenylate cyclase activity. By using pts mutants, we showed, in agreement with our previous results (Daniel et al. 1983), that the likely target of 2-ketobutyrate and its analogues is the phosphoenolpyruvate: glycose phosphotransferase transport system (PTS). Furthermore, evidence for such a cascade effect caused by 2-ketobutyrate and its analogues allowed us to corroborate our previous proposal (Daniel et al. 1983) that 2-ketobutyrate, a precursor of isoleucine, acts as an E. coli alarmone monitoring the passage from anaerobic to aerobic growth conditions.
Collapse
|
50
|
Abstract
Cyclic AMP (cAMP) synthesis in Escherichia coli is altered in cAMP receptor protein mutants and in phosphoenolpyruvate:sugar phosphotransferase transport system mutants. The stimulation of cAMP synthesis observed in cAMP receptor protein-deficient mutants is largely dependent upon enzyme III of the phosphoenolpyruvate:sugar phosphotransferase transport system. The phosphoenolpyruvate:sugar phosphotransferase transport system enzyme I is not required for elevated cAMP synthesis. These results suggest that enzyme III plays an important role in regulating adenylate cyclase activity.
Collapse
|