1
|
Xing X, Karlow JA, Li D, Jang HS, Lee HJ, Wang T. Capture Methylation-Sensitive Restriction Enzyme Sequencing (Capture MRE-Seq) for Methylation Analysis of Highly Degraded DNA Samples. Methods Mol Biol 2023; 2621:73-89. [PMID: 37041441 DOI: 10.1007/978-1-0716-2950-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Understanding the impact of DNA methylation within different disease contexts often requires accurate assessment of these modifications in a genome-wide fashion. Frequently, patient-derived tissues stored in long-term hospital tissue banks have been preserved using formalin-fixation paraffin-embedding (FFPE). While these samples can comprise valuable resources for studying disease, the fixation process ultimately compromises the DNA's integrity and leads to degradation. Degraded DNA can complicate CpG methylome profiling using traditional techniques, particularly when performing methylation-sensitive restriction enzyme sequencing (MRE-seq), yielding high backgrounds and resulting in lowered library complexity. Here, we describe Capture MRE-seq, a new MRE-seq protocol tailored to preserving unmethylated CpG information when using samples with highly degraded DNA. The results using Capture MRE-seq correlate well (0.92) with traditional MRE-seq calls when profiling non-degraded samples, and can recover unmethylated regions in highly degraded samples when traditional MRE-seq fails, which we validate using bisulfite sequencing-based data (WGBS) as well as methylated DNA immunoprecipitation followed by sequencing (MeDIP-seq).
Collapse
Affiliation(s)
- Xiaoyun Xing
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Jennifer A Karlow
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Daofeng Li
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Hyo Sik Jang
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Hyung Joo Lee
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- Pin Pharmaceuticals, South San Francisco, CA, USA
| | - Ting Wang
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
2
|
Abstract
The dramatic re-organization of the cancer cell nucleus creates telltale morphological features critical for pathological staging of tumors. In addition, the changes to the mutational and epigenetic landscape in cancer cells alter the structure and stability of the genome and directly contribute to malignancy. DNA methylation is one of the best studied epigenetic changes in cancer, as nearly every type of cancer studied shows a loss of DNA methylation spread across most of the genome. This global hypomethylation is accompanied by hypermethylation at distinct loci, and much of the work on DNA methylation in cancer has focused on how local changes contribute to gene expression. However, the emerging picture is that the changes to DNA methylation in cancer cells has little direct effect on gene expression but instead impacts the organization of the genome in the nucleus. Several recent studies that take a broad view of the cancer epigenome find that the most profound changes to the cancer methylome are spread across large segments of the genome, and that the focal changes are reflective of a whole reorganization of epigenome. Hallmarks of nuclear reorganization in cancer are found in the long regions of chromatin marked by histone methylation (LOCKs) and nuclear lamina interactions (LADs). In this review, we focus on a novel perspective that DNA methylation changes in cancer impact the global structure of heterochromatin, LADs and LOCKs, and how these global changes, in turn, contribute to gene expression changes and genomic stability.
Collapse
Affiliation(s)
| | - Kirsten C Sadler
- Program in Biology, New York University Abu Dhabi,Abu Dhabi, United Arab Emirates
| |
Collapse
|
3
|
Machczyńska J, Zimny J, Bednarek PT. Tissue culture-induced genetic and epigenetic variation in triticale (× Triticosecale spp. Wittmack ex A. Camus 1927) regenerants. PLANT MOLECULAR BIOLOGY 2015; 89:279-92. [PMID: 26337939 PMCID: PMC4579263 DOI: 10.1007/s11103-015-0368-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 08/22/2015] [Indexed: 05/26/2023]
Abstract
Plant regeneration via in vitro culture can induce genetic and epigenetic variation; however, the extent of such changes in triticale is not yet understood. In the present study, metAFLP, a variation of methylation-sensitive amplified fragment length polymorphism analysis, was used to investigate tissue culture-induced variation in triticale regenerants derived from four distinct genotypes using androgenesis and somatic embryogenesis. The metAFLP technique enabled identification of both sequence and DNA methylation pattern changes in a single experiment. Moreover, it was possible to quantify subtle effects such as sequence variation, demethylation, and de novo methylation, which affected 19, 5.5, 4.5% of sites, respectively. Comparison of variation in different genotypes and with different in vitro regeneration approaches demonstrated that both the culture technique and genetic background of donor plants affected tissue culture-induced variation. The results showed that the metAFLP approach could be used for quantification of tissue culture-induced variation and provided direct evidence that in vitro plant regeneration could cause genetic and epigenetic variation.
Collapse
Affiliation(s)
- Joanna Machczyńska
- Department of Plant Physiology and Biochemistry, Plant Breeding and Acclimatization Institute-National Research Institute, 05-870, Błonie, Radzików, Poland
| | - Janusz Zimny
- Department of Plant Biotechnology and Cytogenetics, Plant Breeding and Acclimatization Institute-National Research Institute, 05-870, Błonie, Radzików, Poland
| | - Piotr Tomasz Bednarek
- Department of Plant Physiology and Biochemistry, Plant Breeding and Acclimatization Institute-National Research Institute, 05-870, Błonie, Radzików, Poland.
| |
Collapse
|
4
|
Liang D, Zhang Z, Wu H, Huang C, Shuai P, Ye CY, Tang S, Wang Y, Yang L, Wang J, Yin W, Xia X. Single-base-resolution methylomes of Populus trichocarpa reveal the association between DNA methylation and drought stress. BMC Genet 2014; 15 Suppl 1:S9. [PMID: 25080211 PMCID: PMC4118614 DOI: 10.1186/1471-2156-15-s1-s9] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Background DNA methylation is an important biological form of epigenetic modification, playing key roles in plant development and environmental responses. Results In this study, we examined single-base resolution methylomes of Populus under control and drought stress conditions using high-throughput bisulfite sequencing for the first time. Our data showed methylation levels of methylated cytosines, upstream 2kp, downstream 2kb, and repeatitive sequences significantly increased after drought treatment in Populus. Interestingly, methylation in 100 bp upstream of the transcriptional start site (TSS) repressed gene expression, while methylations in 100-2000bp upstream of TSS and within the gene body were positively associated with gene expression. Integrated with the transcriptomic data, we found that all cis-splicing genes were non-methylated, suggesting that DNA methylation may not associate with cis-splicing. However, our results showed that 80% of trans-splicing genes were methylated. Moreover, we found 1156 transcription factors (TFs) with reduced methylation and expression levels and 690 TFs with increased methylation and expression levels after drought treatment. These TFs may play important roles in Populus drought stress responses through the changes of DNA methylation. Conclusions These findings may provide valuable new insight into our understanding of the interaction between gene expression and methylation of drought responses in Populus.
Collapse
|
5
|
Charng YC. A one-time inducible transposon to create knockout mutants in rice. Methods Mol Biol 2012; 847:369-377. [PMID: 22351022 DOI: 10.1007/978-1-61779-558-9_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Use of a transposon is an efficient tagging tool for exploring the function of the gene it inserts into or is adjacent to. A few modifications have been applied to the native Ac transposon to allow it to transpose efficiently or spontaneously and stop quickly thereafter. Furthermore, locating the transposon between a constitutive plant promoter and a reporter gene, such as the firefly luciferase gene, allows for nondestructively detecting excision events in vivo. This chapter describes a detailed protocol for one-time inducible transposon tagging of rice cells and their subsequent screening and regeneration into mutant lines.
Collapse
Affiliation(s)
- Yuh-Chyang Charng
- Department of Agronomy, National Taiwan University, Taipei, Taiwan, Republic of China.
| |
Collapse
|
6
|
Groszmann M, Greaves IK, Albert N, Fujimoto R, Helliwell CA, Dennis ES, Peacock WJ. Epigenetics in plants-vernalisation and hybrid vigour. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:427-37. [PMID: 21459171 DOI: 10.1016/j.bbagrm.2011.03.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 03/24/2011] [Accepted: 03/25/2011] [Indexed: 11/26/2022]
Abstract
In this review we have analysed two major biological systems involving epigenetic control of gene activity. In the first system we demonstrate the interplay between genetic and epigenetic controls over the transcriptional activity of FLC, a major repressor of flowering in Arabidopsis. FLC is down-regulated by low temperature treatment (vernalisation) releasing the repressor effect on flowering. We discuss the mechanisms of the reduced transcription and the memory of the vernalisation treatment through vegetative development. We also discuss the resetting of the repressed activity level of the FLC gene, following vernalisation, to the default high activity level and show it occurs during both male and female gametogenesis but with different timing in each. In the second part of the review discussed the complex multigenic system which is responsible for the patterns of gene activity which bring about hybrid vigour in crosses between genetically similar but epigenetically distinct parents. The epigenetic systems that we have identified as contributing to the heterotic phenotype are the 24nt siRNAs and their effects on RNA dependent DNA methylation (RdDM) at the target loci leading to changed expression levels. We conclude that it is likely that epigenetic controls are involved in expression systems in many aspects of plant development and plant function.
Collapse
Affiliation(s)
- Michael Groszmann
- Commonwealth Scientific and Industrial Research Organisation, Plant Industry, Canberra ACT 2601, Australia
| | | | | | | | | | | | | |
Collapse
|
7
|
Peschke VM, Phillips RL, Gengenbach BG. Discovery of transposable element activity among progeny of tissue culture--derived maize plants. Science 2010; 238:804-7. [PMID: 17814708 DOI: 10.1126/science.238.4828.804] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Tissue culture-derived plants of many species have often been observed to possess both genetic and cytogenetic abnormalities. A high frequency of structurally altered chromosomes in maize (Zea mays L.) plants regenerated from tissue culture led to the prediction that newly activated transposable elements could be detected in regenerated plants. Testcrosses of 1200 progeny from 301 regenerated maize plants confirmed that ten regenerated plants from two independent embryo cell lines contained an active Actransposable element. No active Ac elements were present in the explant sources. Recovery of transposable element activity in regenerated plants indicates that some tissue culture-derived genetic variability may be the result of insertion or excision of transposable elements, or both.
Collapse
|
8
|
Vollbrecht E, Duvick J, Schares JP, Ahern KR, Deewatthanawong P, Xu L, Conrad LJ, Kikuchi K, Kubinec TA, Hall BD, Weeks R, Unger-Wallace E, Muszynski M, Brendel VP, Brutnell TP. Genome-wide distribution of transposed Dissociation elements in maize. THE PLANT CELL 2010; 22:1667-85. [PMID: 20581308 PMCID: PMC2910982 DOI: 10.1105/tpc.109.073452] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2009] [Revised: 04/09/2010] [Accepted: 06/09/2010] [Indexed: 05/18/2023]
Abstract
The maize (Zea mays) transposable element Dissociation (Ds) was mobilized for large-scale genome mutagenesis and to study its endogenous biology. Starting from a single donor locus on chromosome 10, over 1500 elements were distributed throughout the genome and positioned on the maize physical map. Genetic strategies to enrich for both local and unlinked insertions were used to distribute Ds insertions. Global, regional, and local insertion site trends were examined. We show that Ds transposed to both linked and unlinked sites and displayed a nonuniform distribution on the genetic map around the donor r1-sc:m3 locus. Comparison of Ds and Mutator insertions reveals distinct target preferences, which provide functional complementarity of the two elements for gene tagging in maize. In particular, Ds displays a stronger preference for insertions within exons and introns, whereas Mutator insertions are more enriched in promoters and 5'-untranslated regions. Ds has no strong target site consensus sequence, but we identified properties of the DNA molecule inherent to its local structure that may influence Ds target site selection. We discuss the utility of Ds for forward and reverse genetics in maize and provide evidence that genes within a 2- to 3-centimorgan region flanking Ds insertions will serve as optimal targets for regional mutagenesis.
Collapse
Affiliation(s)
- Erik Vollbrecht
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Fujino K, Matsuda Y, Sekiguchi H. Transcriptional activity of rice autonomous transposable element Dart. JOURNAL OF PLANT PHYSIOLOGY 2009; 166:1537-43. [PMID: 19410335 DOI: 10.1016/j.jplph.2009.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 03/21/2009] [Accepted: 03/24/2009] [Indexed: 05/15/2023]
Abstract
The rice Dart/nDart transposon system belongs to the hAT superfamily of class II transposons. The nonautonomous element nDart is active in intact rice plants. The autonomous element Dart was identified based on sequence similarity to nDart. Because the rice genome sequence of Nipponbare contains at least 51 Dart elements, it is not clear whether Dart elements are expressed or whether they are transposable. This study characterized for the expression of the predicted ORF of Dart. RNA blotting analysis revealed three transcripts of different lengths. Only the longest transcript (2.5kb) corresponding to the predicted ORF of the Dart element produced a functional TPase. The other transcripts had a frame-shift generating a premature stop codon through alternative splicing. These transcripts were expressed from either of two potentially autonomous Dart elements, Dart01/28 and Dart02. The frequency of alternative splicing differed between the transcripts of the derivative elements. More than 90% of the transcripts from Dart02 were alternatively spliced, compared with only 3% from Dart01/28. The element-specific expression and alternative splicing may control the transposition of nDart.
Collapse
Affiliation(s)
- Kenji Fujino
- Agricultural Research Institute, HOKUREN Federation of Agricultural Cooperatives, Naganuma, 0691317 Hokkaido, Japan.
| | | | | |
Collapse
|
10
|
Abstract
SummaryWe have searched for evidence of historical transpositions ofAc-like sequences in four standard maize lines using the recombinant-inbred mapping technique. Thirty restriction fragments were mapped usingEcoR I,EcoR V, andHindIII. The four inbreds contained 24 fragments which mapped to independent sites within each line; the other 6 fragments probably represented multiple mappings of the same element. Possible allelism between lines reduced this number to a minimum of 15 different sites containingAc-like elements. The distribution of these sequences does not fit the expected Poisson distribution; instead, an unusually large number of these elements were found on chromosome 4. The other sequences were scattered randomly throughout the genome. With few exceptions, each line had sequences in different locations; however, the overall distribution ofAc-like sequences was similar for all lines. The non-random distribution ofAc-like sequences suggests that they have undergone a limited number of transpositions in maize; the distribution is incompatible with either complete immobility or frequent transposition.
Collapse
|
11
|
Epigenetic Phenomena and Epigenomics in Maize. Epigenomics 2008. [DOI: 10.1007/978-1-4020-9187-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
12
|
Conrad LJ, Bai L, Ahern K, Dusinberre K, Kane DP, Brutnell TP. State II dissociation element formation following activator excision in maize. Genetics 2007; 177:737-47. [PMID: 17720925 PMCID: PMC2034639 DOI: 10.1534/genetics.107.075770] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Active Activator (Ac) elements undergo mutations to become nonautonomous Dissociation (Ds) elements at a low frequency. To understand the mechanism of Ds formation, we have developed high-throughput genetic and molecular screens to identify these rare Ds derivatives generated from any Ac insertion in the maize genome. Using these methods we have identified 15 new Ds elements derived from Ac insertions at eight different loci. Approximately half of the Ds elements contain filler DNA inserted at the deletion junction that is derived from sequences within or adjacent to Ac. In contrast to previous reports, several of these Ds elements lack direct repeats flanking the deletion junctions and filler DNA in the donor Ac. To accommodate our findings and those of others, we propose a model of slip mispairing during error-prone repair synthesis to explain the formation of state II Ds elements in maize. We discuss the use of these lines and molecular techniques developed here to capture somatic Ds transposition events in two-component Ac/Ds tagging programs in maize.
Collapse
Affiliation(s)
- Liza J Conrad
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | |
Collapse
|
13
|
Hashida SN, Uchiyama T, Martin C, Kishima Y, Sano Y, Mikami T. The temperature-dependent change in methylation of the Antirrhinum transposon Tam3 is controlled by the activity of its transposase. THE PLANT CELL 2006; 18:104-18. [PMID: 16326924 PMCID: PMC1323487 DOI: 10.1105/tpc.105.037655] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The Antirrhinum majus transposon Tam3 undergoes low temperature-dependent transposition (LTDT). Growth at 15 degrees C permits transposition, whereas growth at 25 degrees C strongly suppresses it. The degree of Tam3 DNA methylation is altered somatically and positively correlated with growth temperature, an exceptional epigenetic system in plants. Using a Tam3-inactive line, we show that methylation change depends on Tam3 activity. Random binding site selection analysis and electrophoretic mobility shift assays revealed that the Tam3 transposase (TPase) binds to the major repeat in the subterminal regions of Tam3, the site showing the biggest temperature-dependent change in methylation state. Methylcytosines in the motif impair the binding ability of the TPase. Proteins in a nuclear extract from plants grown at 15 degrees C but not 25 degrees C bind to this motif in Tam3. The decrease in Tam3 DNA methylation at low temperature also requires cell division. Thus, TPase binding to Tam3 occurs only during growth at low temperature and immediately after DNA replication, resulting in a Tam3-specific decrease in methylation of transposon DNA. Consequently, the Tam3 methylation level in LTDT is regulated by Tam3 activity, which is dependent on the ability of its TPase to bind DNA and affected by growth temperature. Thus, the methylation/demethylation of Tam3 is the consequence, not the cause, of LTDT.
Collapse
Affiliation(s)
- Shin-Nosuke Hashida
- Laboratory of Genetic Engineering, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | |
Collapse
|
14
|
Conrad LJ, Brutnell TP. Ac-immobilized, a stable source of Activator transposase that mediates sporophytic and gametophytic excision of Dissociation elements in maize. Genetics 2005; 171:1999-2012. [PMID: 16143613 PMCID: PMC1456122 DOI: 10.1534/genetics.105.046623] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Accepted: 08/21/2005] [Indexed: 02/05/2023] Open
Abstract
We have identified and characterized a novel Activator (Ac) element that is incapable of excision yet contributes to the canonical negative dosage effect of Ac. Cloning and sequence analysis of this immobilized Ac (Ac-im) revealed that it is identical to Ac with the exception of a 10-bp deletion of sequences at the left end of the element. In screens of approximately 6800 seeds, no germinal transpositions of Ac-im were detected. Importantly, Ac-im catalyzes germinal excisions of a Ds element resident at the r1 locus resulting in the recovery of independent transposed Ds insertions in approximately 4.5% of progeny kernels. Many of these transposition events occur during gametophytic development. Furthermore, we demonstrate that Ac-im transactivates multiple Ds insertions in somatic tissues including those in reporter alleles at bronze1, anthocyaninless1, and anthocyaninless2. We propose a model for the generation of Ac-im as an aberrant transposition event that failed to generate an 8-bp target site duplication and resulted in the deletion of Ac end sequences. We also discuss the utility of Ac-im in two-component Ac/Ds gene-tagging programs in maize.
Collapse
Affiliation(s)
- Liza J Conrad
- Dept. of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
15
|
Chang RY, Chopra S, Peterson PA. Differential excision patterns of the En-transposable element at the A2 locus in maize relate to the insertion site. Mol Genet Genomics 2005; 274:189-95. [PMID: 16034624 DOI: 10.1007/s00438-005-0009-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2004] [Accepted: 05/10/2005] [Indexed: 11/29/2022]
Abstract
Defined mutant alleles with resident transposons display characteristic patterns of germinal and somatic reversion, and heritable changes in the timing and frequency of reversions, which have been termed "change of state" by McClintock, constantly arise. Several mechanisms were proposed to account for these changes. They may be ascribed to the structure and composition of the elements themselves (composition hypothesis) or to their location (position hypothesis). In the current study, insertion positions were determined for three autonomous En-controlled mutable alleles of the A2 locus in maize that show different somatic reversion patterns. A relationship was observed between En insertion positions in the single coding region of the intronless A2 gene and anthocyanin variegation patterns in the aleurone. An insertion in the 5' region of the coding sequence produced a very late somatic variegation pattern, whereas two early variegation patterns were caused by En insertions in the 3' region of the coding sequence.
Collapse
Affiliation(s)
- Ru-Ying Chang
- Department of Agronomy, Iowa State University, Ames, IA 50011-1010, USA
| | | | | |
Collapse
|
16
|
Shan X, Liu Z, Dong Z, Wang Y, Chen Y, Lin X, Long L, Han F, Dong Y, Liu B. Mobilization of the active MITE transposons mPing and Pong in rice by introgression from wild rice (Zizania latifolia Griseb.). Mol Biol Evol 2005; 22:976-90. [PMID: 15647520 DOI: 10.1093/molbev/msi082] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hybridization between different species plays an important role in plant genome evolution, as well as is a widely used approach for crop improvement. McClintock has predicted that plant wide hybridization constitutes a "genomic shock" whereby cryptic transposable elements may be activated. However, direct experimental evidence showing a causal relationship between plant wide hybridization and transposon mobilization has not yet been reported. The miniature-Ping (mPing) is a recently isolated active miniature inverted-repeat transposable element transposon from rice, which is mobilized by tissue culture and gamma-ray irradiation. We show herein that mPing, together with its putative transposase-encoding partner, Pong, is mobilized in three homologous recombinant inbred lines (RILs), derived from hybridization between rice (cultivar Matsumae) and wild rice (Zizania latifolia Griseb.), harboring introgressed genomic DNA from wild rice. In contrast, both elements remain immobile in two lines sharing the same parentage to the RILs but possessing no introgressed DNA. Thus, we have presented direct evidence that is consistent with McClintock's insight by demonstrating a causal link between wide hybridization and transposon mobilization in rice. In addition, we report an atypical behavior of mPing/Pong mobilization in these lines, i.e., the exclusive absence of footprints after excision.
Collapse
Affiliation(s)
- Xiaohui Shan
- Laboratory of Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kato M, Takashima K, Kakutani T. Epigenetic control of CACTA transposon mobility in Arabidopsis thaliana. Genetics 2004; 168:961-9. [PMID: 15514067 PMCID: PMC1448851 DOI: 10.1534/genetics.104.029637] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2004] [Accepted: 06/15/2004] [Indexed: 01/08/2023] Open
Abstract
Epigenetic mutation, heritable developmental variation not based on a change in nucleotide sequence, is widely reported in plants. However, the developmental and evolutionary significance of such mutations remains enigmatic. On the basis of our studies of the endogenous Arabidopsis transposon CACTA, we propose that the inheritance of epigenetic gene silencing over generations can function as a transgenerational genome defense mechanism against deleterious movement of transposons. We previously reported that silent CACTA1 is mobilized by the DNA hypomethylation mutation ddm1 (decrease in DNA methylation). In this study, we report that CACTA activated by the ddm1 mutation remains mobile in the presence of the wild-type DDM1 gene, suggesting that de novo silencing is not efficient for the defense of the genome against CACTA movement. The defense depends on maintenance of transposon silencing over generations. In addition, we show that the activated CACTA1 element transposes throughout the genome in DDM1 plants, as reported previously for ddm1 backgrounds. Furthermore, the CACTA1 element integrated into both the ddm1-derived and the DDM1-derived chromosomal regions in the DDM1 wild-type plants, demonstrating that this class of transposons does not exhibit targeted integration into heterochromatin, despite its accumulation in the pericentromeric regions in natural populations. The possible contribution of natural selection as a mechanism for the accumulation of transposons and evolution of heterochromatin is discussed.
Collapse
Affiliation(s)
- Masaomi Kato
- Department of Integrated Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | | | | |
Collapse
|
18
|
Liu ZL, Han FP, Tan M, Shan XH, Dong YZ, Wang XZ, Fedak G, Hao S, Liu B. Activation of a rice endogenous retrotransposon Tos17 in tissue culture is accompanied by cytosine demethylation and causes heritable alteration in methylation pattern of flanking genomic regions. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2004; 109:200-9. [PMID: 15071728 DOI: 10.1007/s00122-004-1618-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2003] [Accepted: 01/26/2004] [Indexed: 05/22/2023]
Abstract
Tos17 is a copia-like, cryptic retrotransposon of rice, but can be activated by tissue culture. To study possible epigenetic mechanism controlling activity of Tos17, we subjected three rice lines (the parental line cv. Matsumae and two introgression lines, RZ2 and RZ35) that harbor different copies of the element to tissue culture. For each line, we investigated transcription and transposition of Tos17 in seed plants, calli and regenerated plants, cytosine-methylation status at CG and CNG positions within Tos17, effect of 5-azacytidine on methylation status and activity of Tos17, and cytosine-methylation states in genomic regions flanking original and some newly transposed copies of Tos17 in calli and regenerated plants. We found that only in introgression line RZ35 was Tos17 transcriptionally activated and temporarily mobilized by tissue culture, which was followed by repression before or upon plant regeneration. The activity and inactivity of Tos17 in calli and regenerated plants of RZ35 are accompanied by hypo- and hyper-CG methylation and hemi- and full CNG methylation, respectively, within the element, whereas immobilization of the element in the other two lines is concomitant with near-constant, full hypermethylation. Treatment with 5-azacytidine induced both CG and CNG partial hypomethylation of Tos17 in two lines (Matsumae and RZ35), which, however, was not accompanied by activation of Tos17 in any line. Heritable alteration in cytosine-methylation patterns occurred in three of seven genomic regions flanking Tos17 in calli and regenerated plants of RZ35, but in none of the five regions flanking dormant Tos17 in the other two lines.
Collapse
Affiliation(s)
- Z L Liu
- Laboratory of Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, 130024 Changchun, China
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Greco R, Ouwerkerk PBF, De Kam RJ, Sallaud C, Favalli C, Colombo L, Guiderdoni E, Meijer AH, Hoge Dagger JHC, Pereira A. Transpositional behaviour of an Ac/Ds system for reverse genetics in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2003; 108:10-24. [PMID: 14513217 DOI: 10.1007/s00122-003-1416-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2003] [Accepted: 05/31/2003] [Indexed: 05/21/2023]
Abstract
A collection of transposon Ac/ Ds enhancer trap lines is being developed in rice that will contribute to the development of a rice mutation machine for the functional analysis of rice genes. Molecular analyses revealed high transpositional activity in early generations, with 62% of the T0 primary transformants and more than 90% of their T1 progeny lines showing ongoing active transposition. About 10% of the lines displayed amplification of the Ds copy number. However, inactivation of Ds seemed to occur in about 70% of the T2 families and in the T3 generation. Southern blot analyses revealed a high frequency of germinal insertions inherited in the T1 progeny plants, and transmitted preferentially over the many other somatic inserts to later generations. The sequencing of Ds flanking sites in subsets of T1 plants indicated the independence of insertions in different T1 families originating from the same T0 line. Almost 80% of the insertion sites isolated showing homology to the sequenced genome, resided in genes or within a range at which neighbouring genes could be revealed by enhancer trapping. A strategy involving the propagation of a large number of T0 and T1 independent lines is being pursued to ensure the recovery of a maximum number of independent insertions in later generations. The inactive T2 and T3 lines produced will then provide a collection of stable insertions to be used in reverse genetics experiments. The preferential insertion of Ds in gene-rich regions and the use of lines containing multiple Ds transposons will enable the production of a large population of inserts in a smaller number of plants. Additional features provided by the presence of lox sites for site-specific recombination, or the use of different transposase sources and selectable markers, are discussed.
Collapse
Affiliation(s)
- R Greco
- Plant Research International, PO Box 16, 6700 AA, Wageningen, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Hashida SN, Kitamura K, Mikami T, Kishima Y. Temperature shift coordinately changes the activity and the methylation state of transposon Tam3 in Antirrhinum majus. PLANT PHYSIOLOGY 2003; 132:1207-16. [PMID: 12857803 PMCID: PMC167061 DOI: 10.1104/pp.102.017533] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2002] [Revised: 01/20/2003] [Accepted: 03/06/2003] [Indexed: 05/21/2023]
Abstract
The transposition frequency of Tam3 in Antirrhinum majus, unlike that of most other cut-and-paste-type transposons, is tightly controlled by temperature: Tam3 transposes rarely at 25 degrees C, but much more frequently at 15 degrees C. Here, we studied the mechanism of the low-temperature-dependent transposition (LTDT) of Tam3. Our results strongly suggest that LTDT is not likely to be due to either transcriptional regulation or posttranscriptional regulation of the Tam3 TPase gene. We found that temperature shift induced a remarkable change of the methylation state unique to Tam3 sequences in the genome: Higher temperature resulted in hypermethylation, whereas lower temperature resulted in reduced methylation. The methylation state was reversible within a single generation in response to a temperature shift. Although our data demonstrate a close link between LTDT and the methylation of Tam3, they also suggest that secondary factor(s) other than DNA methylation is involved in repression of Tam3 transposition.
Collapse
Affiliation(s)
- Shin-nosuke Hashida
- Laboratories of Genetic Engineering, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | | | | | | |
Collapse
|
21
|
Kato M, Miura A, Bender J, Jacobsen SE, Kakutani T. Role of CG and non-CG methylation in immobilization of transposons in Arabidopsis. Curr Biol 2003; 13:421-6. [PMID: 12620192 DOI: 10.1016/s0960-9822(03)00106-4] [Citation(s) in RCA: 226] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Methylation of cytosine residues in eukaryotic genomes is often associated with repeated sequences including transposons and their derivatives. Methylation has been implicated in control of two potential deleterious effects of these repeats: (1) uncontrolled transcription, which often disturbs proper expression of nearby host genes, and (2) changes in genome structure by transposition and ectopic recombination. Arabidopsis thaliana provides a genetically tractable system to examine these possibilities, since viable mutants in DNA methyltransferases are available. Arabidopsis MET1 (METHYLTRANSFERASE1, ortholog of mammalian DNA methyltransferase Dnmt1) is necessary for maintaining genomic cytosine methylation at 5'-CG-3' sites. Arabidopsis additionally methylates non-CG sites using CHROMOMETHYLASE3 (CMT3). We examined the mobility of endogenous CACTA transposons in met1, cmt3, and cmt3-met1 mutants. High-frequency transposition of CACTA elements was detected in cmt3-met1 double mutants. Single mutants in either met1 or cmt3 were much less effective in mobilization, despite significant induction of CACTA transcript accumulation. These results lead us to conclude that CG and non-CG methylation systems redundantly function for immobilization of transposons. Non-CG methylation in plants may have evolved as an additional epigenetic tag dedicated to transposon control. This view is consistent with the recent finding that CMT3 preferentially methylates transposon-related sequences.
Collapse
Affiliation(s)
- Masaomi Kato
- Department of Integrated Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | | | | | | | | |
Collapse
|
22
|
Kakutani T. Epi-alleles in plants: inheritance of epigenetic information over generations. PLANT & CELL PHYSIOLOGY 2002; 43:1106-11. [PMID: 12407189 DOI: 10.1093/pcp/pcf131] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Epigenetic modification of plant gene and transposon activity, which correlates with their methylation, is often heritable over many generations. Such heritable properties allow conventional genetic linkage analysis to identify the sequences affected in epigenetic variants. Machinery controlling the establishment of the epigenetic state and role of the epigenetic controls in plant development are also discussed.
Collapse
Affiliation(s)
- Tetsuji Kakutani
- National Institute of Genetics, Mishima, Shizuoka, 411-8540 Japan.
| |
Collapse
|
23
|
Georgiev S, Dekova T, Bonchev G, Kitanova M. Plant Tansposable Elements. A Focal Point for Future Studies of the Plant Genomes. BIOTECHNOL BIOTEC EQ 2002. [DOI: 10.1080/13102818.2002.10819181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
24
|
Giedt CD, Weil CF. The maize LAG1-O mutant suggests that reproductive cell lineages show unique gene expression patterns early in vegetative development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2000; 24:815-823. [PMID: 11135115 DOI: 10.1046/j.1365-313x.2000.00919.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Patterns of transposable element activity often provide useful information about how and when organisms regulate gene expression. The maize lowered Ac/Ds germinal reversion 1 (LAG1)-O mutation causes unusually low rates of germinal reversion by Ac/Ds-induced alleles even though these same alleles revert frequently and early in somatic development. LAG1-O suppresses Ds transposition at multiple, unlinked loci, and does not affect Spm elements, indicating that the mutation acts in trans and may be specific to Ac/Ds elements. Our data suggest that LAG1-O suppression gradually reduces Ac/Ds activity in the meristem and newly formed leaves until, by the floral transition, transposition is undetectable even with PCR-based assays. This suppression persists during tassel development and does not appear to be released until some point after meiosis. Competitive RT-PCR results show no difference in Ac transposase mRNA levels between LAG1-O and lag1(+) tassels, suggesting that suppression is post-transcriptional. The pattern of LAG1-O expression is consistent with a model in which at least some gene expression specific to those meristem cells that will ultimately give rise to floral tissue and therefore gametes begins very early in plant development, and then persists throughout development.
Collapse
Affiliation(s)
- C D Giedt
- Department of Biological Sciences, 347 Life Sciences Building, University of Idaho, Moscow, ID 83844-3051, USA
| | | |
Collapse
|
25
|
Xiao YL, Li X, Peterson T. Ac insertion site affects the frequency of transposon-induced homologous recombination at the maize p1 locus. Genetics 2000; 156:2007-17. [PMID: 11102391 PMCID: PMC1461373 DOI: 10.1093/genetics/156.4.2007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The maize p1 gene regulates the production of a red pigment in the kernel pericarp, cob, and other maize floral tissues. Insertions of the transposable element Ac can induce recombination between two highly homologous 5.2-kb direct repeat sequences that flank the p1 gene-coding region. Here, we tested the effects of the Ac insertion site and orientation on the induction of recombination at the p1 locus. A collection of unique p1 gene alleles was used, which carry Ac insertions at different sites in and near the p1 locus, outside of the direct repeats, within the direct repeat sequences, and between the direct repeats, in both orientations. Recombination was scored by the numbers of colorless pericarp sectors (somatic frequency) and heritable mutations (germinal frequency). In both the somatic and germinal tests, the frequency of homologous recombination is significantly higher when Ac is inserted between the direct repeats than when Ac is inserted either within or outside the repeats. In contrast, Ac orientation had no significant effect on recombination frequency. We discuss these results in terms of the possible mechanisms of transposon-induced recombination.
Collapse
Affiliation(s)
- Y L Xiao
- Interdepartmental Genetics Program, Department of Zoology and Genetics, Iowa State University, Ames, Iowa 50011, USA
| | | | | |
Collapse
|
26
|
Finnegan EJ, Peacock WJ, Dennis ES. DNA methylation, a key regulator of plant development and other processes. Curr Opin Genet Dev 2000; 10:217-23. [PMID: 10753779 DOI: 10.1016/s0959-437x(00)00061-7] [Citation(s) in RCA: 196] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Recent research has demonstrated that DNA methylation plays an integral role in regulating the timing of flowering and in endosperm development. The identification of key genes controlling these processes, the expression of which is altered in plants with low methylation, opens the way to understanding how DNA methylation regulates plant development.
Collapse
Affiliation(s)
- E J Finnegan
- Commonwealth Scientific and Industrial Research Organisation, Plant Industry, PO Box 1600, Canberra, 2601, Australia. j.finnegan@pi. csiro.au
| | | | | |
Collapse
|
27
|
Takumi S, Murai K, Mori N, Nakamura C. Variations in the maize Ac transposase transcript level and the Ds excision frequency in transgenic wheat callus lines. Genome 1999; 42:1234-41. [PMID: 10659792 DOI: 10.1139/g99-077] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To investigate the excision of a maize transposable element in wheat cells, plasmid DNAs containing a Dissociation (Ds) element located between a rice actin 1 gene promoter and a beta-glucuronidase (GUS) gene (gus) were introduced into wheat callus lines by microprojectile bombardment, and transient GUS expression was assayed. The gus-expressing cells after Ds excision were detected only when the Activator (Ac) transposase gene was co-transformed. To further examine a relationship between the amount of Ac mRNA and the Ds excision frequency, the Ds-containing plasmids were introduced into 15 independent transgenic callus lines transformed with the Ac transposase gene. Ten lines expressed the Ac transposase gene under the control of either the cauliflower mosaic virus 35S promoter or the Ac native promoter. The gus gene expression that indicated the Ds excision was observed only in the transgenic callus lines stably expressing the Ac transposase gene. The number of blue spots reflecting the frequency of Ds excision was variable among them. Northern-blot analysis also showed a large variability in the amount of Ac transposase transcripts among the lines. It was however noted that the excision frequency was decreased at a high level of the Ac transposase transcripts, supporting the hypothesis that Ds excision is inhibited above a certain level of the Ac transposase as observed in maize and transgenic tobacco.
Collapse
Affiliation(s)
- S Takumi
- Department of Biological and Environmental Science, Faculty of Agriculture, Kobe University, Japan.
| | | | | | | |
Collapse
|
28
|
van Blokland R, Ross S, Corrado G, Scollan C, Meyer P. Developmental abnormalities associated with deoxyadenosine methylation in transgenic tobacco. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1998; 15:543-51. [PMID: 9753779 DOI: 10.1046/j.1365-313x.1998.00238.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
As in other higher eukaryotes, DNA methylation in plants is predominantly found at deoxycytosine residues, while deoxyadenosine residues are not methylated at significant levels. 6mdA methylation has been successfully introduced into yeast and Drosophila via expression of a heterologous methyltransferase, but similar attempts in tobacco had, up until now, proved unsuccessful despite the correct expression of a methyltransferase construct. It was unclear whether this result reflected the failure of heterologous methyltransferases to enter the nucleus, or whether 6mdA methylation, which has been shown to interfere with promoter activity, was toxic for plants. Here we show that 6mdA methylation can be successfully introduced into transgenic tobacco plants via expression of the bacterial dam enzyme. The efficiency of 6mdA methylation was directly proportional to expression levels of the dam construct, and methylation of all GATC sites was observed in a highly expressing line. Increasing expression levels of the enzyme in different plants correlated with increasingly abnormal phenotypes affecting leaf pigmentation, apical dominance, and leaf and floral structure. Whilst introduction of dam-specific methylation does not cause any developmental abnormalities in yeast or Drosophila, our data suggest that methylation of deoxyadenine residues in plants interferes with the expression of genes involved in leaf and floral development.
Collapse
|
29
|
Abstract
Methylation of cytosine residues in DNA provides a mechanism of gene control. There are two classes of methyltransferase in Arabidopsis; one has a carboxy-terminal methyltransferase domain fused to an amino-terminal regulatory domain and is similar to mammalian methyltransferases. The second class apparently lacks an amino-terminal domain and is less well conserved. Methylcytosine can occur at any cytosine residue, but it is likely that clonal transmission of methylation patterns only occurs for cytosines in strand-symmetrical sequences CpG and CpNpG. In plants, as in mammals, DNA methylation has dual roles in defense against invading DNA and transposable elements and in gene regulation. Although originally reported as having no phenotypic consequence, reduced DNA methylation disrupts normal plant development.
Collapse
Affiliation(s)
- E. J. Finnegan
- 1Commonwealth Scientific and Industrial Research Organization, Plant Industry, P.O. Box 1600, Canberra, ACT 2601, Australia, Cooperative Research Centre for Plant Science, P.O. Box 475, Canberra, ACT 2601, Australia; e-mail: , 2Division of Biochemistry and Molecular Biology, Australian National University, Canberra, ACT 0200, Australia
| | | | | | | |
Collapse
|
30
|
Wang L, Kunze R. Transposase binding site methylation in the epigenetically inactivated Ac derivative Ds-cy. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1998; 13:577-582. [PMID: 9714585 DOI: 10.1046/j.1365-313x.1998.00060.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The authors have determined the C-methylation pattern of the non-autonomous transposable element Ds-cy, which is an epigenetically inactivated, transcriptionally silent derivative of the maize Activator (Ac) element. Like Ac, Ds-cy is hypermethylated at the 3-end. However, in Ds-cy the 5-end is also hypermethylated, including all subterminal binding sites for the Ac-encoded transposase protein. As Ds-cy transposes in the presence of an active Ac in the genome, the authors conclude that methylation of the 5-end TPase binding sites does not interfere with transposition, but correlates with inactivity of the Ac promoter. the authors discuss the implications of these results for the chromatid selectivity of Ac/Ds transposition and the mechanism of Ac-induced chromosome breakage events.
Collapse
Affiliation(s)
- L Wang
- Institut für Genetik und Microbiologie, Ludwig-Maximilians-Universität München, Germany
| | | |
Collapse
|
31
|
Abstract
The i locus of the medaka fish, Oryzias latipes, is responsible for tyrosinase expression, and several mutant alleles have been identified. The genotype i1/i1 exhibits a complete albino phenotype, having pale orange-red skin and red eyes. This mutant lacks in vivo tyrosinase activity. The genotype i4/i4, on the other hand, shows a quasi-albino phenotype with skin as bright as that of i1/i1 but with red-wine-colored eyes. At the light microscope level, reduced pigmentation is observed both in the skin and eyes of this mutant. The tyrosinase genes for the i1 and the i4 alleles were cloned and sequenced, and compared with that of the wild-type tyrosinase gene. The i1 allele was found to contain a 1.9-kb transposable element in the 1st exon, and the i4 allele was found to contain a 4.7-kb transposable element in the 5th exon. Both i1 and i4 are alleles that were found in a commercial breeding population. The insertion of a transposable element thus appears to constitute a natural cause of mutations that cause albinism in this organism.
Collapse
Affiliation(s)
- A Koga
- Division of Biological Science, Graduate School of Science, Nagoya University, Japan
| | | |
Collapse
|
32
|
Levy AA, Fridlender M, Rubin UH, Sitrit Y. Binding of Nicotiana nuclear proteins to the subterminal regions of the Ac transposable element. MOLECULAR & GENERAL GENETICS : MGG 1996; 251:436-41. [PMID: 8709947 DOI: 10.1007/bf02172372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Specific binding of Nicotiana nuclear protein(s) to subterminal regions of the Ac transposable element was detected using gel mobility shift assays. A sequence motif (GGTAAA) repeated in both terminal regions of Ac, was identified as the protein binding site. Mutation of two nucleotides in this motif was sufficient to abolish binding. Based on a series of competition assays, it is deduced that there is cooperative binding between two repeats, each similar to the GGTAAA motif. The binding protein is probably similar to a previously characterized maize protein which binds to a GGTAAA-containing motif located in the ends of Mutator. Moreover, we show that DNA from Ds1 competes for protein binding to Ac termini, and we show, by sequence analysis, that GGTAAA binding sites are present in the terminal region of Tgm1, Tpn1, En/Spm, Tam3, and Ds1-like elements. This suggests that the binding protein(s) might be involved in the transposition process.
Collapse
Affiliation(s)
- A A Levy
- Plant Genetics Department, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|
33
|
Becker HA, Kunze R. Binding sites for maize nuclear proteins in the subterminal regions of the transposable element Activator. MOLECULAR & GENERAL GENETICS : MGG 1996; 251:428-35. [PMID: 8709946 DOI: 10.1007/bf02172371] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Genetic data suggest that transposition of the maize element Activator (Ac) is modulated by host factors. Using gel retardation and DNase I protection assays we identified maize proteins which bind to seven subterminal sites in both ends of Ac. Four DNase I-protected sites contain a GGTAAA sequence, the other three include either GATAAA or GTTAAA. The specificity of the maize protein binding to Ac was verified by using a synthetic fragment containing four GGTAAA motifs as probe and competitor in gel retardation assays. All seven binding sites are located within regions required in cis for transposition. A maize protein binding site with the same sequence has previously been identified in the terminal inverted repeats of the maize Mutator element. Thus, the protein, that recognizes this sequence is a good candidate for a regulatory host factor for Ac transposition.
Collapse
Affiliation(s)
- H A Becker
- Institut für Genetik, Universität zu Köln, Germany
| | | |
Collapse
|
34
|
Abstract
Homology-dependent gene silencing phenomena in plants have received considerable attention, especially when it was discovered that the presence of homologous sequences not only affected the stability of transgene expression, but that the activity of endogenous genes could be altered after insertion of homologous transgenes into the genome. Homology-mediated inactivation most likely comprises at least two different molecular mechanisms that induce gene silencing at the transcriptional or posttranscriptional level, respectively. In this review we discuss different mechanistic models for plant-specific inactivation mechanisms and their relationship with repeat-specific silencing phenomena in other species.
Collapse
Affiliation(s)
- P. Meyer
- Max-Delbruck-Laboratorium in der MPG, Carl-von-Linne Weg 10, Koln, D-50829 Germany, Centre for Plant Biochemistry & Biotechnology and Department of Genetics, University of Leeds, Leeds LS2 9JT, United Kingdom, Max-Planck-Institut fur Zuchtungsforschung, Carl-von-Line Weg 10, Koln, D-50829 Germany
| | | |
Collapse
|
35
|
Janousek B, Siroký J, Vyskot B. Epigenetic control of sexual phenotype in a dioecious plant, Melandrium album. MOLECULAR & GENERAL GENETICS : MGG 1996; 250:483-90. [PMID: 8602166 DOI: 10.1007/bf02174037] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Melandrium album (syn. Silene latifolia) is a model dioecious species in which the Y chromosome, present only in heterogametic males, plays both a male-determining and a strict female-suppressing role. We showed that treatment with 5-azacytidine (5-azaC) induces a sex change to androhermaphroditism (an-dromonoecy) in about 21% of male plants, while no apparent phenotypic effect was observed in females. All of these bisexual androhermaphrodites (with the standard male 24, AA + XY karyotype) were mosaics possessing both male and hermaphrodite flowers and, moreover, the hermaphrodite flowers displayed various degrees of gynoecium development and seed setting. Southern hybridization analysis with a repetitive DNA probe showed that the 5-azacytidine-treated plants were significantly hypomethylated in CG doubles, but only to a minor degree in CNG triplets. The bisexual trait was transmitted to two successive generations, but only when androhermaphrodite plants were used as pollen donors. The sex reversal was inherited with incomplete penetrance and varying expressivity. Based on the uniparental inheritance pattern of androhermaphroditism we conclude that it originated either by 5-azaC induced inhibition of Y-linked female-suppressing genes or by a heritable activation of autosomal female-determining/promoting genes which can be reversed, on passage through female meiosis, by a genomic imprinting mechanism. The data presented indicate that female sex suppression in M. album XY males is dependent on methylation of specific DNA sequences and can be heritably modified by hypomethylating drugs.
Collapse
Affiliation(s)
- B Janousek
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | | | | |
Collapse
|
36
|
Affiliation(s)
- J L Bennetzen
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
37
|
Affiliation(s)
- R Kunze
- Institut für Genetik, Universitat zu Köln, Germany
| |
Collapse
|
38
|
Lebel EG, Masson J, Bogucki A, Paszkowski J. Transposable elements as plant transformation vectors for long stretches of foreign DNA. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1995; 91:899-906. [PMID: 24169975 DOI: 10.1007/bf00223898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/1995] [Accepted: 03/24/1995] [Indexed: 06/02/2023]
Abstract
The production of transgenic plants is now routine for most crops. However, using currently available transformation methods it is still difficult and time-consuming to obtain a collection of transformed individuals containing single or low-copy-number, intact transgenic inserts. Here we describe a set of broad-hostrange transformation vectors based on the Ac/Ds transposition system that improve both transformation efficiency and the quality of transgenic loci. These vectors efficiently deliver long stretches of foreign DNA into the genome, leading to transgenic strains containing an intact single-copy insert of 10kb. This type of vector could be an important additional tool for the production of transgenic plants with the well-defined, foreign DNA inserts required for biosafety approval and commercialisation.
Collapse
Affiliation(s)
- E G Lebel
- Friedrich Miescher Institute, PO Box 2543, 4002, Basel, Switzerland
| | | | | | | |
Collapse
|
39
|
Peterson PW, Yoder JI. Amplification of Ac in tomato is correlated with high Ac transposition activity. Genome 1995; 38:265-76. [PMID: 7774799 DOI: 10.1139/g95-033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have assayed the transposition activity of the maize transposable element Ac in transgenic tomato plants that had a single copy of Ac. We found that Ac elements were in either a high or low activity state and that an Ac insertion could cycle from low to high activity within a generation. The different transposition activities were not simply due to the chromosomal position of the element, because the same Ac insertion had different levels of activity in sibling plants. Transposition activity was measured by two methods, one genetic and one physical; both assays gave similar results for each plant studied. Notably, plants with active Ac elements had progeny with amplified Ac copy number, while no amplification was detected in lines containing Ac in a low activity state. Analysis of lines with amplified elements revealed that the elements could be either clustered or dispersed. Our results were consistent with amplification being the result of transposition.
Collapse
Affiliation(s)
- P W Peterson
- Department of Vegetable Crops, University of California at Davis 95616, USA
| | | |
Collapse
|
40
|
Heinlein M. Variegation patterns caused by excision of the maize transposable element Dissociation (Ds) are autonomously regulated by allele-specific Activator (Ac) elements and are not due to trans-acting modifier genes. MOLECULAR & GENERAL GENETICS : MGG 1995; 246:1-9. [PMID: 7823903 DOI: 10.1007/bf00290127] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The Ac elements present in the unstable wx-m7 and wx-m9 alleles of maize trigger different patterns of Ds excision in trans. To determine whether this differential regulation is a feature of the Ac alleles themselves or is mediated by genetically distinct factors, maize plants heterozygous for the wx-m7 and wx-m9 alleles were crossed to tester strains homozygous for Ds reporter alleles. Kernels showing the variegation pattern characteristic for the Ac elements carried in the wx-m7 and wx-m9 alleles were found to be present in the ratios expected from the genetic constitution of the strains. The aleurone variegation caused by excision of the Ds reporter element and the endosperm variegation caused by excision of Ac from the wx-m7 and wx-m9 alleles themselves segregated with the original wx-m alleles. In addition, stable Wx and wx derivatives of wx-m9 that have lost Ac no longer exert any trans effect on the wx-m7 allele (and vice versa). Therefore it is concluded that the observed variegation patterns are autonomously determined by specific trans effects of the particular Ac element.
Collapse
Affiliation(s)
- M Heinlein
- Institut für Genetik, University of Cologne, Germany
| |
Collapse
|
41
|
Affiliation(s)
- P Meyer
- Max-Delbrück-Laboratorium, Max-Planck-Gesellschaft, Köln, Germany
| |
Collapse
|
42
|
Lawson EJ, Scofield SR, Sjodin C, Jones JD, Dean C. Modification of the 5' untranslated leader region of the maize Activator element leads to increased activity in Arabidopsis. MOLECULAR & GENERAL GENETICS : MGG 1994; 245:608-15. [PMID: 7808411 DOI: 10.1007/bf00282223] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In contrast to its behavior in tobacco and tomato, the maize transposable element Ac is relatively inactive in Arabidopsis. We show here that removal of 537 bp within a CpG-rich region of the Ac 5' untranslated leader region significantly increases the excision frequency of the element in Arabidopsis. This increase did not appear to be correlated with the removal of sequences that are methylated in inactive Ac elements in maize, as these sites were not methylated in Ac elements in Arabidopsis transformants. The deletion within the 5' untranslated leader did not increase Ac activity by increasing levels of steady-state transposase mRNA, as assayed by RNase protection experiments. Moreover, there was no correlation between the levels of steady-state transposase mRNA and Ac element activity. This suggests that post-transcriptional regulation of Ac activity occurs in Arabidopsis.
Collapse
Affiliation(s)
- E J Lawson
- Institute of Plant Science Research (ISPR), John Innes Centre and Sainsbury Laboratory, Norwich, UK
| | | | | | | | | |
Collapse
|
43
|
Robbins TP, Jenkin M, Courtney-Gutterson N. Enhanced frequency of transposition of the maize transposable element Activator following excision from T-DNA in Petunia hybrida. MOLECULAR & GENERAL GENETICS : MGG 1994; 244:491-500. [PMID: 8078476 DOI: 10.1007/bf00583900] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Many of the systems currently employed for heterologous transposon tagging in plants rely on an excision assay to monitor transposon activity. We have used the streptomycin phosphotransferase (SPT) reporter system to assay Ac activity in Petunia hybrida. In other species, such as tobacco or Arabidopsis, excision of Ac from the SPT gene in sporogenous tissue gives rise to streptomycin-resistant seedlings in the following generation. The frequency of fully streptomycin-resistant seedlings in petunia was low (0.4%) but molecular analysis of these indicated that the actual excision frequency may be as low as 0.05%. This indicates that the SPT assay is not a reliable selection criterion for germinal excision in petunia. Extensive molecular screening for reinsertion of Ac was consistent with a low primary transposition frequency (0%-0.6%). In contrast to these findings, the progeny of confirmed germinal transpositions for three independent transformants showed frequent transposition to new sites (9.5%-17.0%). This suggests a high frequency of secondary transposition compared with primary transposition from the T-DNA. Segregation analysis indicates that the high transposition activity is closely associated with transposed copies of Ac. No evidence was found for an altered methylation state for Ac following transposition. The implications of these results for heterologous transposon tagging in petunia are discussed in the context of the reliability of excision reporter systems in general.
Collapse
Affiliation(s)
- T P Robbins
- DNA Plant Technology Corporation, Oakland, CA 94608
| | | | | |
Collapse
|
44
|
Meyer P, Heidmann I. Epigenetic variants of a transgenic petunia line show hypermethylation in transgene DNA: an indication for specific recognition of foreign DNA in transgenic plants. MOLECULAR & GENERAL GENETICS : MGG 1994; 243:390-9. [PMID: 8202084 DOI: 10.1007/bf00280469] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We analysed de novo DNA methylation occurring in plants obtained from the transgenic petunia line R101-17. This line contains one copy of the maize A1 gene that leads to the production of brick-red pelargonidin pigment in the flowers. Due to its integration into an unmethylated genomic region the A1 transgene is hypomethylated and transcriptionally active. Several epigenetic variants of line 17 were selected that exhibit characteristic and somatically stable pigmentation patterns, displaying fully coloured, marbled or colourless flowers. Analysis of the DNA methylation patterns revealed that the decrease in pigmentation among the epigenetic variants was correlated with an increase in methylation, specifically of the transgene DNA. No change in methylation of the hypomethylated integration region could be detected. A similar increase in methylation, specifically in the transgene region, was also observed among progeny of R101-17del, a deletion derivative of R101-17 that no longer produces pelargonidin pigments due to a deletion in the A1 coding region. Again de novo methylation is specifically directed to the transgene, while the hypomethylated character of neighbouring regions is not affected. Possible mechanisms for transgene-specific methylation and its consequences for long-term use of transgenic material are discussed.
Collapse
Affiliation(s)
- P Meyer
- Max-Delbrück-Laboratorium in der MPG, Köln, Germany
| | | |
Collapse
|
45
|
Yang CH, Ellis JG, Michelmore RW. Infrequent transposition of Ac in lettuce, Lactuca sativa. PLANT MOLECULAR BIOLOGY 1993; 22:793-805. [PMID: 8395257 DOI: 10.1007/bf00027366] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The maize transposable element Activator (Ac) is being used to develop a transposon mutagenesis system in lettuce, Lactuca sativa. Two constructs containing the complete Ac from the waxy-m7 locus of maize were introduced into lettuce and monitored for activity using Southern analysis and PCR amplification of the excision site. No transposition of Ac was detected in over 32 transgenic R1 plants, although these constructs were known to provide frequent transposition in other species. Also, no transposition was observed in later generations. In subsequent experiments, transposition was detected in lettuce calli using constructs that allowed selection for excision events. In these constructs, the neomycin phosphotransferase II gene was interrupted by either Ac or Ds. Excision was detected as the ability of callus to grow on kanamycin. Synthesis of the transposase from the cDNA of Ac expressed from the T-DNA 2' promoter resulted in more frequent excision of Ds than was observed with the wild-type Ac. No excision was observed with Ds in the absence of the transposase. The excision events were confirmed by amplification of the excision site by PCR followed by DNA sequencing. Excision and reintegration were also confirmed by Southern analysis. Ac/Ds is therefore capable of transposition in at least calli of lettuce.
Collapse
Affiliation(s)
- C H Yang
- Department of Vegetable Crops, University of California, Davis 95616
| | | | | |
Collapse
|
46
|
Finnegan EJ, Lawrence GJ, Dennis ES, Ellis JG. Behaviour of modified Ac elements in flax callus and regenerated plants. PLANT MOLECULAR BIOLOGY 1993; 22:625-633. [PMID: 8393718 DOI: 10.1007/bf00047403] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The Ac element of maize has been modified by deletion of 537 bases (delta NaeAc) from the untranslated leader of the transposase gene. In a second modification the cauliflower mosaic virus 35S promoter has been inserted into the truncated leader of delta NaeAc, 21 bases upstream of the natural translation start. The activity of these modified elements has been compared with that of the unmodified element in transgenic flax. Deletion of sequences in the untranslated leader only marginally increased transposition in callus while insertion of the 35S promoter enhanced transposition frequency 7-8-fold. Increased transposition correlated with increased transcription of the transposase gene. The presence of a 35S promoter upstream of the transposase gene, but outside the Ac element, also enhanced both transcription and transposition.
Collapse
Affiliation(s)
- E J Finnegan
- CSIRO, Division of Plant Industry, Canberra, ACT, Australia
| | | | | | | |
Collapse
|
47
|
Abstract
Three DNA hypomethylation mutants of the flowering plant Arabidopsis thaliana were isolated by screening mutagenized populations for plants containing centromeric repetitive DNA arrays susceptible to digestion by a restriction endonuclease that was sensitive to methylated cytosines. The mutations are recessive, and at least two are alleles of a single locus, designated DDM1 (for decrease in DNA methylation). Amounts of 5-methylcytosine were reduced over 70 percent in ddm1 mutants. Despite this reduction in DNA methylation levels, ddm1 mutants developed normally and exhibited no striking morphological phenotypes. However, the ddm1 mutations are associated with a segregation distortion phenotype. The ddm1 mutations were used to demonstrate that de novo DNA methylation in vivo is slow.
Collapse
Affiliation(s)
- A Vongs
- Cold Spring Harbor Laboratory, NY 11724
| | | | | | | |
Collapse
|
48
|
Samadder P, Evans JA, Chudley AE. Segregation analysis of rare autosomal folate sensitive fragile sites. AMERICAN JOURNAL OF MEDICAL GENETICS 1993; 46:165-71. [PMID: 8484403 DOI: 10.1002/ajmg.1320460213] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have studied 12 families with rare autosomal folate sensitive fragile sites (RAFSFS). Of these, 9 were informative for segregation analysis of fragile sites in order to assess differences in parental transmission. We identified 20 families with RAFSFS from the literature from 1985 to 1989; thirteen of these were informative for segregation analysis. Segregation analysis confirmed that paternal fragile site transmission rates deviated significantly from the expected 50% for a Mendelian co-dominant trait. Sex ratio comparisons showed a significant excess of transmitting females and a significant excess of males among fragile site non-carriers from the literature families. Comparison of the fragile site carriers with non-carriers in the combined data showed a non-significant excess of non-carriers. We confirmed a deficiency of offspring expressing fragile sites when transmission was through fathers, suggesting gametic selection or the phenomenon of parental genomic imprinting.
Collapse
Affiliation(s)
- P Samadder
- Department of Human Genetics, University of Manitoba, Winnipeg, Canada
| | | | | |
Collapse
|
49
|
Finnegan EJ, Brettell RI, Dennis ES. The role of DNA methylation in the regulation of plant gene expression. EXS 1993; 64:218-61. [PMID: 8380350 DOI: 10.1007/978-3-0348-9118-9_11] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- E J Finnegan
- CSIRO, Division of Plant Industry, Canberra, ACT, Australia
| | | | | |
Collapse
|
50
|
Ehrlich M, Ehrlich KC. Effect of DNA methylation on the binding of vertebrate and plant proteins to DNA. EXS 1993; 64:145-68. [PMID: 8418948 DOI: 10.1007/978-3-0348-9118-9_7] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- M Ehrlich
- Department of Biochemistry, Tulane Medical School, New Orleans, LA 70112
| | | |
Collapse
|