1
|
Kim JH, Nagaraja R, Ogurtsov AY, Noskov VN, Liskovykh M, Lee HS, Hori Y, Kobayashi T, Hunter K, Schlessinger D, Kouprina N, Shabalina SA, Larionov V. Comparative analysis and classification of highly divergent mouse rDNA units based on their intergenic spacer (IGS) variability. NAR Genom Bioinform 2024; 6:lqae070. [PMID: 38881577 PMCID: PMC11177557 DOI: 10.1093/nargab/lqae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/20/2024] [Accepted: 06/05/2024] [Indexed: 06/18/2024] Open
Abstract
Ribosomal DNA (rDNA) repeat units are organized into tandem clusters in eukaryotic cells. In mice, these clusters are located on at least eight chromosomes and show extensive variation in the number of repeats between mouse genomes. To analyze intra- and inter-genomic variation of mouse rDNA repeats, we selectively isolated 25 individual rDNA units using Transformation-Associated Recombination (TAR) cloning. Long-read sequencing and subsequent comparative sequence analysis revealed that each full-length unit comprises an intergenic spacer (IGS) and a ∼13.4 kb long transcribed region encoding the three rRNAs, but with substantial variability in rDNA unit size, ranging from ∼35 to ∼46 kb. Within the transcribed regions of rDNA units, we found 209 variants, 70 of which are in external transcribed spacers (ETSs); but the rDNA size differences are driven primarily by IGS size heterogeneity, due to indels containing repetitive elements and some functional signals such as enhancers. Further evolutionary analysis categorized rDNA units into distinct clusters with characteristic IGS lengths; numbers of enhancers; and presence/absence of two common SNPs in promoter regions, one of which is located within promoter (p)RNA and may influence pRNA folding stability. These characteristic features of IGSs also correlated significantly with 5'ETS variant patterns described previously and associated with differential expression of rDNA units. Our results suggest that variant rDNA units are differentially regulated and open a route to investigate the role of rDNA variation on nucleolar formation and possible associations with pathology.
Collapse
Affiliation(s)
- Jung-Hyun Kim
- National Cancer Institute, Developmental Therapeutics Branch, Bethesda, MD, USA
| | - Ramaiah Nagaraja
- National Institute of Aging, Laboratory of Genetics and Genomics, Baltimore, MD, USA
| | - Alexey Y Ogurtsov
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, USA
| | - Vladimir N Noskov
- National Cancer Institute, Developmental Therapeutics Branch, Bethesda, MD, USA
| | - Mikhail Liskovykh
- National Cancer Institute, Developmental Therapeutics Branch, Bethesda, MD, USA
| | - Hee-Sheung Lee
- National Cancer Institute, Developmental Therapeutics Branch, Bethesda, MD, USA
| | - Yutaro Hori
- The University of Tokyo, Laboratory of Genome Regeneration, Tokyo 113-0032, Japan
| | - Takehiko Kobayashi
- The University of Tokyo, Laboratory of Genome Regeneration, Tokyo 113-0032, Japan
| | - Kent Hunter
- National Cancer Institute, Laboratory of Cancer Biology and Genetics, Bethesda, MD, USA
| | - David Schlessinger
- National Institute of Aging, Laboratory of Genetics and Genomics, Baltimore, MD, USA
| | - Natalay Kouprina
- National Cancer Institute, Developmental Therapeutics Branch, Bethesda, MD, USA
| | - Svetlana A Shabalina
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, USA
| | - Vladimir Larionov
- National Cancer Institute, Developmental Therapeutics Branch, Bethesda, MD, USA
| |
Collapse
|
2
|
Agrawal S, Ganley ARD. The conservation landscape of the human ribosomal RNA gene repeats. PLoS One 2018; 13:e0207531. [PMID: 30517151 PMCID: PMC6281188 DOI: 10.1371/journal.pone.0207531] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 11/01/2018] [Indexed: 01/27/2023] Open
Abstract
Ribosomal RNA gene repeats (rDNA) encode ribosomal RNA, a major component of ribosomes. Ribosome biogenesis is central to cellular metabolic regulation, and several diseases are associated with rDNA dysfunction, notably cancer, However, its highly repetitive nature has severely limited characterization of the elements responsible for rDNA function. Here we make use of phylogenetic footprinting to provide a comprehensive list of novel, potentially functional elements in the human rDNA. Complete rDNA sequences for six non-human primate species were constructed using de novo whole genome assemblies. These new sequences were used to determine the conservation profile of the human rDNA, revealing 49 conserved regions in the rDNA intergenic spacer (IGS). To provide insights into the potential roles of these conserved regions, the conservation profile was integrated with functional genomics datasets. We find two major zones that contain conserved elements characterised by enrichment of transcription-associated chromatin factors, and transcription. Conservation of some IGS transcripts in the apes underpins the potential functional significance of these transcripts and the elements controlling their expression. Our results characterize the conservation landscape of the human IGS and suggest that noncoding transcription and chromatin elements are conserved and important features of this unique genomic region.
Collapse
Affiliation(s)
- Saumya Agrawal
- Institute of Natural and Mathematical Sciences, Massey University, Auckland, New Zealand
| | - Austen R. D. Ganley
- Institute of Natural and Mathematical Sciences, Massey University, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
3
|
Fel-Clair F, Catalan J, Lenormand T, Britton-Davidian J. CENTROMERIC INCOMPATIBILITIES IN THE HYBRID ZONE BETWEEN HOUSE MOUSE SUBSPECIES FROM DENMARK: EVIDENCE FROM PATTERNS OF NOR ACTIVITY. Evolution 2017; 52:592-603. [DOI: 10.1111/j.1558-5646.1998.tb01657.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/1997] [Accepted: 01/28/1998] [Indexed: 11/27/2022]
Affiliation(s)
- Fabienne Fel-Clair
- Laboratoire Génétique et Environnement; Institut des Sciences de l'Evolution (UMR5554), Université Montpellier II; cc65, Place E. Bataillon 34095 Montpellier Cedex 5 France
| | - Josette Catalan
- Laboratoire Génétique et Environnement; Institut des Sciences de l'Evolution (UMR5554), Université Montpellier II; cc65, Place E. Bataillon 34095 Montpellier Cedex 5 France
| | - Thomas Lenormand
- Laboratoire Génétique et Environnement; Institut des Sciences de l'Evolution (UMR5554), Université Montpellier II; cc65, Place E. Bataillon 34095 Montpellier Cedex 5 France
| | - Janice Britton-Davidian
- Laboratoire Génétique et Environnement; Institut des Sciences de l'Evolution (UMR5554), Université Montpellier II; cc65, Place E. Bataillon 34095 Montpellier Cedex 5 France
| |
Collapse
|
4
|
Huang S, Xu X, Wang G, Lu G, Xie W, Tao W, Zhang H, Jiang Q, Zhang C. DNA replication initiator Cdc6 also regulates ribosomal DNA transcription initiation. J Cell Sci 2016; 129:1429-40. [PMID: 26872786 DOI: 10.1242/jcs.178723] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 02/06/2016] [Indexed: 01/28/2023] Open
Abstract
RNA-polymerase-I-dependent ribosomal DNA (rDNA) transcription is fundamental to rRNA processing, ribosome assembly and protein synthesis. However, how this process is initiated during the cell cycle is not fully understood. By performing a proteomic analysis of transcription factors that bind RNA polymerase I during rDNA transcription initiation, we identified that the DNA replication initiator Cdc6 interacts with RNA polymerase I and its co-factors, and promotes rDNA transcription in G1 phase in an ATPase-activity-dependent manner. We further showed that Cdc6 is targeted to the nucleolus during late mitosis and G1 phase in a manner that is dependent on B23 (also known as nucleophosmin, NPM1), and preferentially binds to the rDNA promoter through its ATP-binding domain. Overexpression of Cdc6 increases rDNA transcription, whereas knockdown of Cdc6 results in a decreased association of both RNA polymerase I and the RNA polymerase I transcription factor RRN3 with rDNA, and a reduction of rDNA transcription. Furthermore, depletion of Cdc6 impairs the interaction between RRN3 and RNA polymerase I. Taken together, our data demonstrate that Cdc6 also serves as a regulator of rDNA transcription initiation, and indicate a mechanism by which initiation of rDNA transcription and DNA replication can be coordinated in cells.
Collapse
Affiliation(s)
- Shijiao Huang
- The MOE Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Xiaowei Xu
- The MOE Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Guopeng Wang
- The MOE Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Guoliang Lu
- The MOE Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Wenbing Xie
- The MOE Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Wei Tao
- The MOE Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Hongyin Zhang
- Cancer Research Center, Peking University Hospital, Peking University, Beijing 100871, China
| | - Qing Jiang
- The MOE Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Chuanmao Zhang
- The MOE Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
5
|
Agrawal S, Ganley ARD. Complete Sequence Construction of the Highly Repetitive Ribosomal RNA Gene Repeats in Eukaryotes Using Whole Genome Sequence Data. Methods Mol Biol 2016; 1455:161-181. [PMID: 27576718 DOI: 10.1007/978-1-4939-3792-9_13] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The ribosomal RNA genes (rDNA) encode the major rRNA species of the ribosome, and thus are essential across life. These genes are highly repetitive in most eukaryotes, forming blocks of tandem repeats that form the core of nucleoli. The primary role of the rDNA in encoding rRNA has been long understood, but more recently the rDNA has been implicated in a number of other important biological phenomena, including genome stability, cell cycle, and epigenetic silencing. Noncoding elements, primarily located in the intergenic spacer region, appear to mediate many of these phenomena. Although sequence information is available for the genomes of many organisms, in almost all cases rDNA repeat sequences are lacking, primarily due to problems in assembling these intriguing regions during whole genome assemblies. Here, we present a method to obtain complete rDNA repeat unit sequences from whole genome assemblies. Limitations of next generation sequencing (NGS) data make them unsuitable for assembling complete rDNA unit sequences; therefore, the method we present relies on the use of Sanger whole genome sequence data. Our method makes use of the Arachne assembler, which can assemble highly repetitive regions such as the rDNA in a memory-efficient way. We provide a detailed step-by-step protocol for generating rDNA sequences from whole genome Sanger sequence data using Arachne, for refining complete rDNA unit sequences, and for validating the sequences obtained. In principle, our method will work for any species where the rDNA is organized into tandem repeats. This will help researchers working on species without a complete rDNA sequence, those working on evolutionary aspects of the rDNA, and those interested in conducting phylogenetic footprinting studies with the rDNA.
Collapse
Affiliation(s)
- Saumya Agrawal
- Institute of Natural and Mathematical Sciences, Massey University, Private Bag 102-904, Auckland, 0632, New Zealand.
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.
| | - Austen R D Ganley
- Institute of Natural and Mathematical Sciences, Massey University, Private Bag 102-904, Auckland, 0632, New Zealand.
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.
| |
Collapse
|
6
|
Liachko I, Bhaskar A, Lee C, Chung SCC, Tye BK, Keich U. A comprehensive genome-wide map of autonomously replicating sequences in a naive genome. PLoS Genet 2010; 6:e1000946. [PMID: 20485513 PMCID: PMC2869322 DOI: 10.1371/journal.pgen.1000946] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 04/09/2010] [Indexed: 11/19/2022] Open
Abstract
Eukaryotic chromosomes initiate DNA synthesis from multiple replication origins. The machinery that initiates DNA synthesis is highly conserved, but the sites where the replication initiation proteins bind have diverged significantly. Functional comparative genomics is an obvious approach to study the evolution of replication origins. However, to date, the Saccharomyces cerevisiae replication origin map is the only genome map available. Using an iterative approach that combines computational prediction and functional validation, we have generated a high-resolution genome-wide map of DNA replication origins in Kluyveromyces lactis. Unlike other yeasts or metazoans, K. lactis autonomously replicating sequences (KlARSs) contain a 50 bp consensus motif suggestive of a dimeric structure. This motif is necessary and largely sufficient for initiation and was used to dependably identify 145 of the up to 156 non-repetitive intergenic ARSs projected for the K. lactis genome. Though similar in genome sizes, K. lactis has half as many ARSs as its distant relative S. cerevisiae. Comparative genomic analysis shows that ARSs in K. lactis and S. cerevisiae preferentially localize to non-syntenic intergenic regions, linking ARSs with loci of accelerated evolutionary change.
Collapse
Affiliation(s)
- Ivan Liachko
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Anand Bhaskar
- Department of Computer Science, Cornell University, Ithaca, New York, United States of America
| | - Chanmi Lee
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Shau Chee Claire Chung
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Bik-Kwoon Tye
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Uri Keich
- School of Mathematics and Statistics F07, University of Sydney, Sydney, Australia
| |
Collapse
|
7
|
Stem cell–specific epigenetic priming and B cell–specific transcriptional activation at the mouse Cd19 locus. Blood 2008; 112:1673-82. [DOI: 10.1182/blood-2008-02-142786] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Low-level expression of multiple lineage-specific genes is a hallmark of hematopoietic stem cells (HSCs). HSCs predominantly express genes specific for the myeloid or megakaryocytic-erythroid lineages, whereas the transcription of lymphoid specific genes appears to begin after lymphoid specification. It has been demonstrated for a number of genes that epigenetic priming occurs before gene expression and lineage specification; however, little is known about how epigenetic priming of lymphoid genes is regulated. To address the question of how B cell–restricted expression is established, we studied activation of the Cd19 gene during hematopoietic development. We identified a B cell–specific upstream enhancer and showed that the developmental regulation of Cd19 expression involves precisely coordinated alterations in transcription factor binding and chromatin remodeling at Cd19 cis-regulatory elements. In multipotent progenitor cells, Cd19 chromatin is first remodeled at the upstream enhancer, and this remodeling is associated with binding of E2A. This is followed by the binding of EBF and PAX5 during B-cell differentiation. The Cd19 promoter is transcriptionally activated only after PAX5 binding. Our experiments give important mechanistic insights into how widely expressed and B lineage–specific transcription factors cooperate to mediate the developmental regulation of lymphoid genes during hematopoiesis.
Collapse
|
8
|
Tseng H, Chou W, Wang J, Zhang X, Zhang S, Schultz RM. Mouse ribosomal RNA genes contain multiple differentially regulated variants. PLoS One 2008; 3:e1843. [PMID: 18365001 PMCID: PMC2266999 DOI: 10.1371/journal.pone.0001843] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Accepted: 02/12/2008] [Indexed: 11/22/2022] Open
Abstract
Previous cytogenetic studies suggest that various rDNA chromosomal loci are not equally active in different cell types. Consistent with this variability, rDNA polymorphism is well documented in human and mouse. However, attempts to identify molecularly rDNA variant types, which are regulated individually (i.e., independent of other rDNA variants) and tissue-specifically, have not been successful. We report here the molecular cloning and characterization of seven mouse rDNA variants (v-rDNA). The identification of these v-rDNAs was based on restriction fragment length polymorphisms (RFLPs), which are conserved among individuals and mouse strains. The total copy number of the identified variants is less than 100 and the copy number of each individual variant ranges from 4 to 15. Sequence analysis of the cloned v-rDNA identified variant-specific single nucleotide polymorphisms (SNPs) in the transcribed region. These SNPs were used to develop a set of variant-specific PCR assays, which permitted analysis of the v-rDNAs' expression profiles in various tissues. These profiles show that three v-rDNAs are expressed in all tissues (constitutively active), two are expressed in some tissues (selectively active), and two are not expressed (silent). These expression profiles were observed in six individuals from three mouse strains, suggesting the pattern is not randomly determined. Thus, the mouse rDNA array likely consists of genetically distinct variants, and some are regulated tissue-specifically. Our results provide the first molecular evidence for cell-type-specific regulation of a subset of rDNA.
Collapse
Affiliation(s)
- Hung Tseng
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America.
| | | | | | | | | | | |
Collapse
|
9
|
Zellner E, Herrmann T, Schulz C, Grummt F. Site-specific interaction of the murine pre-replicative complex with origin DNA: assembly and disassembly during cell cycle transit and differentiation. Nucleic Acids Res 2007; 35:6701-13. [PMID: 17916579 PMCID: PMC2175324 DOI: 10.1093/nar/gkm555] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Eukaryotic DNA replication initiates at origins of replication by the assembly of the highly conserved pre-replicative complex (pre-RC). However, exact sequences for pre-RC binding still remain unknown. By chromatin immunoprecipitation we identified in vivo a pre-RC-binding site within the origin of bidirectional replication in the murine rDNA locus. At this sequence, ORC1, -2, -4 and -5 are bound in G1 phase and at the G1/S transition. During S phase, ORC1 is released. An ATP-dependent and site-specific assembly of the pre-RC at origin DNA was demonstrated in vitro using partially purified murine pre-RC proteins in electrophoretic mobility shift assays. By deletion experiments the sequence required for pre-RC binding was confined to 119 bp. Nucleotide substitutions revealed that two 9 bp sequence elements, CTCGGGAGA, are essential for the binding of pre-RC proteins to origin DNA within the murine rDNA locus. During myogenic differentiation of C2C12 cells, we demonstrated a reduction of ORC1 and ORC2 by immunoblot analyses. ChIP analyses revealed that ORC1 completely disappears from chromatin of terminally differentiated myotubes, whereas ORC2, -4 and -5 still remain associated.
Collapse
Affiliation(s)
- Elisabeth Zellner
- Institute of Biochemistry, Biocenter at the University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | | | | | | |
Collapse
|
10
|
|
11
|
Nakai H, Wu X, Fuess S, Storm TA, Munroe D, Montini E, Burgess SM, Grompe M, Kay MA. Large-scale molecular characterization of adeno-associated virus vector integration in mouse liver. J Virol 2005; 79:3606-14. [PMID: 15731255 PMCID: PMC1075691 DOI: 10.1128/jvi.79.6.3606-3614.2005] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Recombinant adeno-associated virus (rAAV) vector holds promise for gene therapy. Despite a low frequency of chromosomal integration of vector genomes, recent studies have raised concerns about the risk of rAAV integration because integration occurs preferentially in genes and accompanies chromosomal deletions, which may lead to loss-of-function insertional mutagenesis. Here, by analyzing 347 rAAV integrations in mice, we elucidate novel features of rAAV integration: the presence of hot spots for integration and a strong preference for integrating near gene regulatory sequences. The most prominent hot spot was a harmless chromosomal niche in the rRNA gene repeats, whereas nearly half of the integrations landed near transcription start sites or CpG islands, suggesting the possibility of activating flanking cellular disease genes by vector integration, similar to retroviral gain-of-function insertional mutagenesis. Possible cancer-related genes were hit by rAAV integration at a frequency of 3.5%. In addition, the information about chromosomal changes at 218 integration sites and 602 breakpoints of vector genomes have provided a clue to how vector terminal repeats and host chromosomal DNA are joined in the integration process. Thus, the present study provides new insights into the risk of rAAV-mediated insertional mutagenesis and the mechanisms of rAAV integration.
Collapse
Affiliation(s)
- Hiroyuki Nakai
- Department of Pediatrics, 300 Pasteur Dr., Grant Bldg., Rm. S374, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Cohen SM, Hatada S, Brylawski BP, Smithies O, Kaufman DG, Cordeiro-Stone M. Complementation of replication origin function in mouse embryonic stem cells by human DNA sequences. Genomics 2005; 84:475-84. [PMID: 15498455 DOI: 10.1016/j.ygeno.2004.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2004] [Accepted: 04/14/2004] [Indexed: 11/25/2022]
Abstract
A functional origin of replication was mapped to the transcriptional promoter and exon 1 of the hypoxanthine-guanine phosphoribosyltransferase (HPRT) gene in the mouse and human genomes. This origin was lost in mouse embryonic stem (ES) cells with a spontaneous deletion (approximately 36 kb) at the 5' end of the HPRT locus. Restoration of HPRT activity by homologous recombination with human/mouse chimeric sequences reconstituted replication origin activity in two independent ES cell lines. Quantitative PCR analyses of abundance of genetic markers in size-fractionated nascent DNA indicated that initiation of DNA replication coincided with the site of insertion in the mouse genome of the 335 bp of human DNA containing the HPRT exon 1 and a truncated promoter. The genetic information contained in the human sequence and surrounding mouse DNA was analyzed for cis-acting elements that might contribute to selection and functional activation of a mammalian origin of DNA replication.
Collapse
Affiliation(s)
- Stephanie M Cohen
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7525, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Girard-Reydet C, Grégoire D, Vassetzky Y, Méchali M. DNA replication initiates at domains overlapping with nuclear matrix attachment regions in the xenopus and mouse c-myc promoter. Gene 2004; 332:129-38. [PMID: 15145062 DOI: 10.1016/j.gene.2004.02.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Revised: 02/03/2004] [Accepted: 02/13/2004] [Indexed: 11/18/2022]
Abstract
Only a very few origins have been mapped in different multicellular organisms, and they do not share detectable consensus sequence elements. Moreover, it is not clear if origins are localized at similar positions in the corresponding locus in genomes of different organisms. Here, we have mapped DNA replication origins in the c-myc locus both in Xenopus and mouse, allowing a comparison of the corresponding sites in three different animal species (Xenopus, mouse, human). An origin of DNA replication is present in the three homologous c-myc loci. In Xenopus, a main DNA replication origin was located 3 kilobases (kb) upstream of the active c-myc promoter, whereas, in mouse, we detected an origin 1 kb upstream of the promoter, as previously mapped in human c-myc. We also identified a nuclear matrix attachment region in both Xenopus and mouse, which is localized to two different regions of the c-myc promoter region. However, in both cases, the nuclear matrix attachment sites are close to the DNA replication origin mapped in the locus. These data suggest that global features of chromatin organization in different organisms may contribute to DNA replication origin localization.
Collapse
Affiliation(s)
- Claire Girard-Reydet
- Institute of Human Genetics, CNRS, Genome Dynamics and Development, 141, rue de la Cardonille, 34396 Montpellier Cedex 5, France
| | | | | | | |
Collapse
|
14
|
Grozdanov P, Georgiev O, Karagyozov L. Complete sequence of the 45-kb mouse ribosomal DNA repeat: analysis of the intergenic spacer. Genomics 2004; 82:637-43. [PMID: 14611805 DOI: 10.1016/s0888-7543(03)00199-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
DNA from a single bacterial artificial chromosome clone was used to sequence the mouse ribosomal DNA intergenic spacer from the 3' end of the 45S pre-RNA to the spacer promoter (Accession No. AF441733). This made possible the assembly of a complete mouse ribosomal DNA repeat unit (45309 bp long, TPA Accession No. BK000964). Analysis of the intergenic spacer (IGS) showed a high density of simple sequence repeats and transposable elements. The IGS contains two long sequence blocks, which are repeated tandemly. Some of the sequences in these blocks are also present in other parts of the IGS. A difference in the mutation rate along the mouse IGS was observed. The significance of sequence motifs in the IGS for transcription enhancement, transcription termination, origin of replication, and nucleolar organization is discussed.
Collapse
Affiliation(s)
- Petar Grozdanov
- Cell Biology Department, Institute of Molecular Biology, Acad. G Bonchev Street, Building 21, 1113 Sofia, Bulgaria
| | | | | |
Collapse
|
15
|
Lomonosov M, Anand S, Sangrithi M, Davies R, Venkitaraman AR. Stabilization of stalled DNA replication forks by the BRCA2 breast cancer susceptibility protein. Genes Dev 2003; 17:3017-22. [PMID: 14681210 PMCID: PMC305253 DOI: 10.1101/gad.279003] [Citation(s) in RCA: 191] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
How dividing mammalian cells overcome blocks to DNA replication by DNA damage, depleted nucleotide pools, or template-bound proteins is unclear. Here, we show that the response to blocked replication requires BRCA2, a suppressor of human breast cancer. By using two-dimensional gel electrophoresis, we demonstrate that Y-shaped DNA junctions at stalled replication forks disappear during genome-wide replication arrest in BRCA2-deficient cells, accompanied by double-strand DNA breakage. But activation of the replication checkpoint kinase Chk2 is unaffected, defining an unexpected function for BRCA2 in stabilizing DNA structures at stalled forks. We propose that in BRCA2 deficiency and related chromosomal instability diseases, the breakdown of replication forks, which arrest or pause during normal cell growth, triggers spontaneous DNA breakage, leading to mutability and cancer predisposition.
Collapse
Affiliation(s)
- Mikhail Lomonosov
- University of Cambridge, CR UK Department of Oncology, Hutchison/MRC Research Centre, Cambridge CB2 2XZ, UK
| | | | | | | | | |
Collapse
|
16
|
D'Aiuto L, Barsanti P, Cserpan I, Minardi G, Ciccarese S. A patchwork interspersed sequence is present in a high copy number in the sheep genome. Gene 2003; 303:69-76. [PMID: 12559568 DOI: 10.1016/s0378-1119(02)01103-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have isolated a new interspersed sequence present in a high copy number in the ovine genome. This patchwork sequence, named 3.79 AS1, is part of a larger element encompassing similarities to constant region of reverse transcriptase and to art2 shared with the Bovine Dimer Driven Family (BDDF). The 3.79 AS1 sequence includes homologies to amplification promoting sequences (APS), to a potential origin of bidirectional DNA replication (OBR), to the Alu core sequence motif GGAGGC required for RNA polymerase III promoter function and to the ATGGCTGCCAT sequence that has been shown to be able to induce amplification-dependent transformation in murine cells. Fluorescent in situ hybridization experiments using probes derived from both ends of the 3.79 AS1 sequence showed a widespread signal over all sheep chromosomes, except the Y chromosome. We propose that the structural features of the 3.79 AS1 patchwork sequence, that is likely to be a subfamily of Bov B LINE that invaded the Artiodactyl genome prior to the separation of the Bovidae species, facilitated its massive amplification and dispersion in the ovine genome.
Collapse
Affiliation(s)
- L D'Aiuto
- Dipartimento di Anatomia Patologica e di Genetica, University of Bari, via Amendola 165/A, Italy
| | | | | | | | | |
Collapse
|
17
|
Toledo F, Coquelle A, Svetlova E, Debatisse M. Enhanced flexibility and aphidicolin-induced DNA breaks near mammalian replication origins: implications for replicon mapping and chromosome fragility. Nucleic Acids Res 2000; 28:4805-13. [PMID: 11095694 PMCID: PMC115181 DOI: 10.1093/nar/28.23.4805] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Common fragile sites are chromosomal loci prone to breakage and rearrangement that can be induced by aphidicolin, an inhibitor of DNA polymerases. Within these loci, sites of preferential DNA breaks were proposed to correlate with peaks of enhanced DNA flexibility, the function of which remains elusive. Here we show that mammalian DNA replication origins are enriched in peaks of enhanced flexibility. This finding suggests that the search for these features may help in the mapping of replication origins, and we present evidence supporting this hypothesis. The association of peaks of flexibility with replication origins also suggests that some origins may associate with minor levels of fragility. As shown here, an increased sensitivity to aphidicolin was found near two mammalian DNA replication origins.
Collapse
Affiliation(s)
- F Toledo
- Unité de Génétique Somatique (URA CNRS 1960), Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France.
| | | | | | | |
Collapse
|
18
|
Csonka E, Cserpán I, Fodor K, Holló G, Katona R, Keresö J, Praznovszky T, Szakál B, Telenius A, deJong G, Udvardy A, Hadlaczky G. Novel generation of human satellite DNA-based artificial chromosomes in mammalian cells. J Cell Sci 2000; 113 ( Pt 18):3207-16. [PMID: 10954419 DOI: 10.1242/jcs.113.18.3207] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An in vivo approach has been developed for generation of artificial chromosomes, based on the induction of intrinsic, large-scale amplification mechanisms of mammalian cells. Here, we describe the successful generation of prototype human satellite DNA-based artificial chromosomes via amplification-dependent de novo chromosome formations induced by integration of exogenous DNA sequences into the centromeric/rDNA regions of human acrocentric chromosomes. Subclones with mitotically stable de novo chromosomes were established, which allowed the initial characterization and purification of these artificial chromosomes. Because of the low complexity of their DNA content, they may serve as a useful tool to study the structure and function of higher eukaryotic chromosomes. Human satellite DNA-based artificial chromosomes containing amplified satellite DNA, rDNA, and exogenous DNA sequences were heterochromatic, however, they provided a suitable chromosomal environment for the expression of the integrated exogenous genetic material. We demonstrate that induced de novo chromosome formation is a reproducible and effective methodology in generating artificial chromosomes from predictable sequences of different mammalian species. Satellite DNA-based artificial chromosomes formed by induced large-scale amplifications on the short arm of human acrocentric chromosomes may become safe or low risk vectors in gene therapy.
Collapse
Affiliation(s)
- E Csonka
- Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, H-6701 Szeged, PO Box 521, Hungary
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Phi-van L, Strätling WH. An origin of bidirectional DNA replication is located within a CpG island at the 3" end of the chicken lysozyme gene. Nucleic Acids Res 1999; 27:3009-17. [PMID: 10454594 PMCID: PMC148524 DOI: 10.1093/nar/27.15.3009] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We previously identified a broad initiation zone of DNA replication at the chicken lysozyme gene locus. However, the existence of a highly preferred origin of bidirectional replication (OBR), often found in initiation zones, remained elusive. In order to re-examine this issue we used a competitive PCR assay to determine the abundance of closely spaced genomic segments in a 1 kb size fraction of nascent DNA. A sharp peak of nascent strand abundance occurred at the 3" end of the gene, where initiation events were 17 times more frequent than upstream of the gene. This primary initiation site, active in lysozyme expressing myelomonocytic HD11 cells and non-expressing hepatic DU249 cells, was found to reside within an unusually located CpG island. While most CpG islands are found at the 5" end of genes, the lysozyme gene island extends from the 3" end of the second intron and includes approximately 1.2 kb of 3" flanking DNA. As diagnosed by methylation-sensitive restriction enzymes, the island is largely non-methylated in HD11 cells, DU249 cells and inactive chicken erythrocytes. Furthermore, a DNase I hypersensitive site (HS) that is composed of two subsites separated by approximately 100 bp, was localised very close to the segment with the highest initiation activity. Our results suggest that the non-methylated CpG island and the HS provide an accessible chromatin structure for the lysozyme gene origin of replication.
Collapse
Affiliation(s)
- L Phi-van
- Institut für Tierzucht und Tierverhalten, Bundesforschungsanstalt für Landwirtschaft, Dörnbergstrasse 25-27, 29223 Celle, Germany.
| | | |
Collapse
|
20
|
Grummt I. Regulation of mammalian ribosomal gene transcription by RNA polymerase I. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1999; 62:109-54. [PMID: 9932453 DOI: 10.1016/s0079-6603(08)60506-1] [Citation(s) in RCA: 172] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
All cells, from prokaryotes to vertebrates, synthesize vast amounts of ribosomal RNA to produce the several million new ribosomes per generation that are required to maintain the protein synthetic capacity of the daughter cells. Ribosomal gene (rDNA) transcription is governed by RNA polymerase I (Pol I) assisted by a dedicated set of transcription factors that mediate the specificity of transcription and are the targets of the pleiotrophic pathways the cell uses to adapt rRNA synthesis to cell growth. In the past few years we have begun to understand the specific functions of individual factors involved in rDNA transcription and to elucidate on a molecular level how transcriptional regulation is achieved. This article reviews our present knowledge of the molecular mechanism of rDNA transcriptional regulation.
Collapse
Affiliation(s)
- I Grummt
- Division of Molecular Biology of the Cell II, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
21
|
Abstract
The process by which eukaryotic cells decide when and where to initiate DNA replication has been illuminated in yeast, where specific DNA sequences (replication origins) bind a unique group of proteins (origin recognition complex) next to an easily unwound DNA sequence at which replication can begin. The origin recognition complex provides a platform on which additional proteins assemble to form a pre-replication complex that can be activated at S-phase by specific protein kinases. Remarkably, multicellular eukaryotes, such as frogs, flies, and mammals (metazoa), have counterparts to these yeast proteins that are required for DNA replication. Therefore, one might expect metazoan chromosomes to contain specific replication origins as well, a hypothesis that has long been controversial. In fact, recent results strongly support the view that DNA replication origins in metazoan chromosomes consist of one or more high frequency initiation sites and perhaps several low frequency ones that together can appear as a nonspecific initiation zone. Specific replication origins are established during G1-phase of each cell cycle by multiple parameters that include nuclear structure, chromatin structure, DNA sequence, and perhaps DNA modification. Such complexity endows metazoa with the flexibility to change both the number and locations of replication origins in response to the demands of animal development.
Collapse
Affiliation(s)
- M L DePamphilis
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2753, USA.
| |
Collapse
|
22
|
Kobayashi T, Heck DJ, Nomura M, Horiuchi T. Expansion and contraction of ribosomal DNA repeats in Saccharomyces cerevisiae: requirement of replication fork blocking (Fob1) protein and the role of RNA polymerase I. Genes Dev 1998; 12:3821-30. [PMID: 9869636 PMCID: PMC317266 DOI: 10.1101/gad.12.24.3821] [Citation(s) in RCA: 310] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Saccharomyces cerevisiae carries approximately 150 copies of rDNA in tandem repeats. It was found that the absence of an essential subunit of RNA polymerase I (Pol I) in rpa135 deletion mutants triggers a gradual decrease in rDNA repeat number to about one-half the normal level. Reintroduction of the missing RPA135 gene induced a gradual increase in repeat number back to the normal level. Gene FOB1 was shown to be essential for both the decrease and increase of rDNA repeats. FOB1 was shown previously to be required for replication fork blocking (RFB) activity at RFB site in rDNA and for recombination hot-spot (HOT1) activity. Thus, DNA replication fork blockage appears to stimulate recombination and play an essential role in rDNA expansion/contraction and sequence homogenization, and possibly, in the instability of repeated sequences in general. RNA Pol I, on the other hand, appears to control repeat numbers, perhaps by stabilizing rDNA with the normal repeat numbers as a stable nucleolar structure.
Collapse
MESH Headings
- Blotting, Southern
- Cell Division
- Chromosomes/genetics
- DNA Replication
- DNA, Fungal/genetics
- DNA, Fungal/metabolism
- DNA, Ribosomal/genetics
- DNA, Ribosomal/metabolism
- DNA-Binding Proteins
- Electrophoresis, Gel, Pulsed-Field
- Fungal Proteins/genetics
- Fungal Proteins/physiology
- Gene Amplification/genetics
- Gene Dosage
- Genetic Vectors
- Models, Genetic
- Molecular Weight
- Mutagenesis, Insertional
- RNA Polymerase I/genetics
- RNA Polymerase I/metabolism
- Recombination, Genetic
- Regulatory Sequences, Nucleic Acid
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae Proteins
- Tandem Repeat Sequences
Collapse
Affiliation(s)
- T Kobayashi
- National Institute for Basic Biology, Myodaijicho, Okazaki, 444-8585, Japan
| | | | | | | |
Collapse
|
23
|
Kobayashi T, Rein T, DePamphilis ML. Identification of primary initiation sites for DNA replication in the hamster dihydrofolate reductase gene initiation zone. Mol Cell Biol 1998; 18:3266-77. [PMID: 9584167 PMCID: PMC108908 DOI: 10.1128/mcb.18.6.3266] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mammalian replication origins appear paradoxical. While some studies conclude that initiation occurs bidirectionally from specific loci, others conclude that initiation occurs at many sites distributed throughout large DNA regions. To clarify this issue, the relative number of early replication bubbles was determined at 26 sites in a 110-kb locus containing the dihydrofolate reductase (DHFR)-encoding gene in CHO cells; 19 sites were located within an 11-kb sequence containing ori-beta. The ratio of approximately 0.8-kb nascent DNA strands to nonreplicated DNA at each site was quantified by competitive PCR. Nascent DNA was defined either as DNA that was labeled by incorporation of bromodeoxyuridine in vivo or as RNA-primed DNA that was resistant to lambda-exonuclease. Two primary initiation sites were identified within the 12-kb region, where two-dimensional gel electrophoresis previously detected a high frequency of replication bubbles. A sharp peak of nascent DNA occurred at the ori-beta origin of bidirectional replication where initiation events were 12 times more frequent than at distal sequences. A second peak occurred 5 kb downstream at a previously unrecognized origin (ori-beta'). Thus, the DHFR gene initiation zone contains at least three primary initiation sites (ori-beta, ori-beta', and ori-gamma), suggesting that initiation zones in mammals, like those in fission yeast, consist of multiple replication origins.
Collapse
Affiliation(s)
- T Kobayashi
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-2753, USA
| | | | | |
Collapse
|
24
|
Sanchez JA, Kim SM, Huberman JA. Ribosomal DNA replication in the fission yeast, Schizosaccharomyces pombe. Exp Cell Res 1998; 238:220-30. [PMID: 9457075 DOI: 10.1006/excr.1997.3835] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We have employed genetic and two-dimensional (2D) gel electrophoretic methods to identify replication initiation, pausing, and termination sites in the tandem ribosomal DNA (rDNA) repeats of the fission yeast, Schizosaccharomyces pombe. An autonomously replicating sequence (ARS) element, ars3001, maps to a 2.3-kb restriction fragment spanning the junction between the nontranscribed spacer (NTS) and the external transcribed spacer upstream of the ribosomal RNA genes, and 2D gel analysis shows that replication initiates in the NTS portion of the same fragment. A pause region at the 3' end of the rRNA genes inhibits forks from entering these genes counter to the direction of transcription. Thus, most forks move through the genes in the same direction as transcription. In these respects, fission yeast rDNA replication resembles that in the budding yeast, Saccharomyces cerevisiae, and in multicellular eukaryotic organisms. A feature which, so far, has been detected only in fission yeast is the pausing of replication forks in a broad region near the 5.8S rRNA gene.
Collapse
Affiliation(s)
- J A Sanchez
- Department of Biology, Brandeis University, Waltham, Massachusetts 02254, USA
| | | | | |
Collapse
|
25
|
Scott RS, Truong KY, Vos JM. Replication initiation and elongation fork rates within a differentially expressed human multicopy locus in early S phase. Nucleic Acids Res 1997; 25:4505-12. [PMID: 9358159 PMCID: PMC147096 DOI: 10.1093/nar/25.22.4505] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Replication of the 400 copies of the 43 kb human ribosomal RNA (rDNA) locus spans most of the S phase. To examine the basis for the unusual pattern of rDNA replication, a sensitive strategy was developed to map origins of DNA replication and measure apparent rates of fork progression within a chromosomal locus. This technique, termed differential intragenomic replication timing, revealed that initiation within the actively transcribed rDNA occurred in early S within a 10.7 kb region spanning the promoter and 5' external transcribed spacer. Forks emanating from this early bidirectional origin progressed at an apparent slow rate with the sense and anti-sense forks moving at 0.32 and 0.23 kb/min. Using a photochemical-based technique, the chromatin status of the rDNA repeats was assayed throughout the S phase. Approximately 85% of the rDNA repeats were in a transcriptionally active chromatin structure at the start of S phase. A progressive decrease in the transcription state of the rDNA loci was observed, reaching a minimum between 3 and 6 h in mid S phase. Altogether, the data suggest a link between RNA polymerase I mediated transcription and site-specific initiation of DNA replication within the rDNA multicopy locus.
Collapse
Affiliation(s)
- R S Scott
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | | | | |
Collapse
|
26
|
Abstract
The past decade has witnessed an explosion of new information about the nature of DNA replication in eukaryotic cells. Much of this information has resulted from the advent of novel methods for identifying and characterizing origins of DNA replication in the genomes of viruses, plasmids, and cells. These methods can map with remarkable precision sites where replication begins. In addition, they provide assays for origin activity that can be used to identify the sequence of events leading to the formation and activation of prereplication complexes at specific sites in chromosomal DNA. I summarize briefly the current view of eukaryotic replication origins and the methods that have been used to identify and characterize them. Selected methods that show promise for future applications are then described in detail in subsequent articles.
Collapse
Affiliation(s)
- M L DePamphilis
- National Institute of Child Health and Human Development, Bethesda, Maryland 20892-2753, USA
| |
Collapse
|
27
|
Abstract
The mapping of replication origins by nascent DNA strand length determination is a very sensitive generally applicable method that identifies even single-copy origins in mammalian chromosomes. A major advantage of this procedure is that there is no need for synchronization of cells or treatment with metabolic agents, which allows the origin to be studied under physiological conditions. This technique is based upon the amplification of specific sequence markers on nascent DNA strands that initiated replication within the region of the putative origin. Therefore, this method requires detailed sequence information of the locus to be analyzed. As a first step, nascent DNA of proliferating cells is pulse-labeled with BrdU followed by size fractionation and purification with anti-BrdU antibodies. The position of putative origins can then be determined via identification of the shortest nascent strands that can be amplified by PCR and hybridized to probes homologous to the amplified segments. Here, we give a detailed description of the theory behind the method and a full recipe for its application. Advantages and limitations of the procedure are discussed.
Collapse
Affiliation(s)
- C Staib
- Institute of Biochemistry, University of Würzburg, Germany.
| | | |
Collapse
|
28
|
Gerber JK, Gögel E, Berger C, Wallisch M, Müller F, Grummt I, Grummt F. Termination of mammalian rDNA replication: polar arrest of replication fork movement by transcription termination factor TTF-I. Cell 1997; 90:559-67. [PMID: 9267035 DOI: 10.1016/s0092-8674(00)80515-2] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A replication fork barrier (RFB) at the 3' end of eukaryotic ribosomal RNA genes blocks bidirectional fork progression and limits DNA replication to the same direction as transcription. We have reproduced the RFB in vitro in HeLa cell extracts using 3' terminal murine rDNA fused to an SV40 origin-based vector. The RFB is polar and modularly organized, requiring both the Sal box transcription terminator and specific flanking sequences. Mutations within the terminator element, depletion of the RNA polymerase I-specific transcription termination factor TTF-I, or deletion of the termination domain of TTF-I abolishes RFB activity. Thus, the same factor that blocks elongating RNA polymerase I prevents head-on collision between the DNA replication apparatus and the transcription machinery.
Collapse
Affiliation(s)
- J K Gerber
- Institute of Biochemistry, University of Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
29
|
Längst G, Schätz T, Langowski J, Grummt I. Structural analysis of mouse rDNA: coincidence between nuclease hypersensitive sites, DNA curvature and regulatory elements in the intergenic spacer. Nucleic Acids Res 1997; 25:511-7. [PMID: 9016589 PMCID: PMC146485 DOI: 10.1093/nar/25.3.511] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have analyzed the chromatin structure of mouse ribosomal RNA genes (rDNA) by partial digestion of genomic DNA with micrococcal nuclease (MNase), DNase I and identified hypersensitive sites by indirect end-labeling. This analysis has revealed defined regions of nuclease hypersensitivity in the intergenic spacer which in turn coincide with regulatory elements. Hypersensitive sites map to the transcription initiation site, the enhancer repeats, the spacer promoter and two sequence elements which coincide with amplification-promoting sequences. Analysis of the DNA curvature by computer modeling uncovered a striking correlation between sequence-directed structural features of regulatory regions and the position of nuclease hypersensitive sites. Moreover, we demonstrate that nucleosomes are specifically positioned upstream and downstream of the transcription start site. In vitro studies using chromatin assembled in the presence of Drosophila embryo extracts show that binding of the transcription termination factor TTF-I to the upstream terminator mediates this specific nucleosome positioning at the rDNA promoter in an ATP- dependent fashion.
Collapse
Affiliation(s)
- G Längst
- German Cancer Research Center, Division of Molecular Biology of the Cell II, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
30
|
Rein T, Zorbas H, DePamphilis ML. Active mammalian replication origins are associated with a high-density cluster of mCpG dinucleotides. Mol Cell Biol 1997; 17:416-26. [PMID: 8972222 PMCID: PMC231766 DOI: 10.1128/mcb.17.1.416] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
ori-beta is a well-characterized origin of bidirectional replication (OBR) located approximately 17 kb downstream of the dihydrofolate reductase gene in hamster cell chromosomes. The approximately 2-kb region of ori-beta that exhibits greatest replication initiation activity also contains 12 potential methylation sites in the form of CpG dinucleotides. To ascertain whether DNA methylation might play a role at mammalian replication origins, the methylation status of these sites was examined with bisulfite to chemically distinguish cytosine (C) from 5-methylcytosine (mC). All of the CpGs were methylated, and nine of them were located within 356 bp flanking the minimal OBR, creating a high-density cluster of mCpGs that was approximately 10 times greater than average for human DNA. However, the previously reported densely methylated island in which all cytosines were methylated regardless of their dinucleotide composition was not detected and appeared to be an experimental artifact. A second OBR, located at the 5' end of the RPS14 gene, exhibited a strikingly similar methylation pattern, and the organization of CpG dinucleotides at other mammalian origins revealed the potential for high-density CpG methylation. Moreover, analysis of bromodeoxyuridine-labeled nascent DNA confirmed that active replication origins were methylated. These results suggest that a high-density cluster of mCpG dinucleotides may play a role in either the establishment or the regulation of mammalian replication origins.
Collapse
Affiliation(s)
- T Rein
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-2753, USA.
| | | | | |
Collapse
|