1
|
Shakibi R, Yazdipour F, Abadijoo H, Manoochehri N, Rostami Pouria F, Bajooli T, Simaee H, Abdolmaleki P, Khatibi A, Abdolahad M, Moosavi-Movahhedi AA, Khayamian MA. From resting potential to dynamics: advances in membrane voltage indicators and imaging techniques. Q Rev Biophys 2025; 58:e7. [PMID: 39817368 DOI: 10.1017/s0033583524000210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
The membrane potential is a critical aspect of cellular physiology, essential for maintaining homeostasis, facilitating signal transduction, and driving various cellular processes. While the resting membrane potential (RMP) represents a key physiological parameter, membrane potential fluctuations, such as depolarization and hyperpolarization, are equally vital in understanding dynamic cellular behavior. Traditional techniques, such as microelectrodes and patch-clamp methods, offer valuable insights but are invasive and less suited for high-throughput applications. Recent advances in voltage indicators, including fast and slow dyes, and novel imaging modalities such as second harmonic generation (SHG) and photoacoustic imaging, enable noninvasive, high-resolution measurement of both RMP and membrane potential dynamics. This review explores the mechanisms, development, and applications of these tools, emphasizing their transformative potential in neuroscience and cellular electrophysiology research.
Collapse
Affiliation(s)
- Reyhaneh Shakibi
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
- Integrated Biophysics and Bioengineering Lab (iBL), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
- Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Yazdipour
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
- Integrated Biophysics and Bioengineering Lab (iBL), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Hamed Abadijoo
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
- Integrated Biophysics and Bioengineering Lab (iBL), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
| | - Navid Manoochehri
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
- Integrated Biophysics and Bioengineering Lab (iBL), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
| | - Farshid Rostami Pouria
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
- Integrated Biophysics and Bioengineering Lab (iBL), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
| | - Taraneh Bajooli
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
- Integrated Biophysics and Bioengineering Lab (iBL), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
- School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Hossein Simaee
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
- Integrated Biophysics and Bioengineering Lab (iBL), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Parviz Abdolmaleki
- Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Khatibi
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Mohammad Abdolahad
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
| | | | - Mohammad Ali Khayamian
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
- Integrated Biophysics and Bioengineering Lab (iBL), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
2
|
Martinez KN, Gerstner NC, Yang SJ, Miller EW. Extended voltage imaging in cardiomyocytes with a triplet state quencher-stabilized silicon rhodamine. Bioorg Med Chem Lett 2024; 109:129842. [PMID: 38844174 PMCID: PMC11648968 DOI: 10.1016/j.bmcl.2024.129842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 05/17/2024] [Accepted: 06/02/2024] [Indexed: 06/18/2024]
Abstract
Voltage imaging of cardiac electrophysiology with voltage-sensitive dyes has long been a powerful complement to traditional methods like patch-clamp electrophysiology. Chemically synthesized voltage sensitive fluorophores offer flexibility for imaging in sensitive samples like human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs), since they do not require genetic transformation of the sample. One serious concern for any fluorescent voltage indicator, whether chemically synthesized or genetically encoded, is phototoxicity. We have been exploring self-healing fluorophores that use triplet state quenchers (TSQs) as a means to reduce the already low phototoxicity of VoltageFluor dyes developed in our lab. We previously showed that conjugation of the TSQ cyclooctatetraene (COT) to a fluorescein based VoltageFluor dye substantially reduced phototoxicity. Here, we show that this approach can be applied to far-red Silicon rhodamine dyes. COT-conjugated Si-rhodamines show improved photostability and reduced phototoxicity in hiPSC-CMs compared to the unmodified dye. This enables imaging of hiPSC-CMs for up to 30 min with continuous illumination. We show that this effect is mediated by a combination of reduced singlet oxygen production and lower loading in the cellular membrane. We discuss future applications and avenues of improvement for TSQ-stabilized VoltageFluor dyes.
Collapse
Affiliation(s)
- Kayli N Martinez
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720-1460, USA
| | - Nels C Gerstner
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720-1460, USA
| | - Samantha J Yang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720-1460, USA
| | - Evan W Miller
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720-1460, USA; Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA 94720-1460, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720-1460, USA.
| |
Collapse
|
3
|
Jin Q, Lee KY, Selimi Z, Shimura D, Wang E, Zimmerman JF, Shaw RM, Kucera JP, Parker KK, Saffitz JE, Kleber AG. Determinants of electrical propagation and propagation block in Arrhythmogenic Cardiomyopathy. J Mol Cell Cardiol 2024; 186:71-80. [PMID: 37956903 PMCID: PMC10872523 DOI: 10.1016/j.yjmcc.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/27/2023] [Accepted: 11/06/2023] [Indexed: 11/21/2023]
Abstract
Gap junction and ion channel remodeling occur early in Arrhythmogenic Cardiomyopathy (ACM), but their pathogenic consequences have not been elucidated. Here, we identified the arrhythmogenic substrate, consisting of propagation slowing and conduction block, in ACM models expressing two different desmosomal gene variants. Neonatal rat ventricular myocytes were transduced to express variants in genes encoding desmosomal proteins plakoglobin or plakophilin-2. Studies were performed in engineered cells and anisotropic tissues to quantify changes in conduction velocity, formation of unidirectional propagation, cell-cell electrical coupling, and ion currents. Conduction velocity decreased by 71% and 63% in the two ACM models. SB216763, an inhibitor of glycogen synthase kinase-3 beta, restored conduction velocity to near normal levels. Compared to control, both ACM models showed greater propensity for unidirectional conduction block, which increased further at greater stimulation frequencies. Cell-cell electrical conductance measured in cell pairs was reduced by 86% and 87% in the two ACM models. Computer modeling showed close correspondence between simulated and experimentally determined changes in conduction velocity. The simulation identified that reduced cell-cell electrical coupling was the dominant factor leading to slow conduction, while the combination of reduced cell-cell electrical coupling, reduced sodium current and inward rectifier potassium current explained the development of unidirectional block. Expression of two different ACM variants markedly reduced cell-cell electrical coupling and conduction velocity, and greatly increased the likelihood of developing unidirectional block - both key features of arrhythmogenesis. This study provides the first quantitative analysis of cellular electrophysiological changes leading to the substrate of reentrant arrhythmias in early stage ACM.
Collapse
Affiliation(s)
- Qianru Jin
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
| | - Keel Yong Lee
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
| | - Zoja Selimi
- Department of Physiology, University of Bern, Bern, Switzerland
| | - Daisuke Shimura
- Nora Eccles Harrison Cardiovascular Research and Training Institute, Salt Lake City, UT, USA; Department of Surgery, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Ethan Wang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
| | - John F Zimmerman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
| | - Robin M Shaw
- Nora Eccles Harrison Cardiovascular Research and Training Institute, Salt Lake City, UT, USA
| | - Jan P Kucera
- Department of Physiology, University of Bern, Bern, Switzerland
| | - Kevin Kit Parker
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
| | - Jeffrey E Saffitz
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Andre G Kleber
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Amesz JH, Zhang L, Everts BR, De Groot NMS, Taverne YJHJ. Living myocardial slices: Advancing arrhythmia research. Front Physiol 2023; 14:1076261. [PMID: 36711023 PMCID: PMC9880234 DOI: 10.3389/fphys.2023.1076261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023] Open
Abstract
Living myocardial slices (LMS) are ultrathin (150-400 µm) sections of intact myocardium that can be used as a comprehensive model for cardiac arrhythmia research. The recent introduction of biomimetic electromechanical cultivation chambers enables long-term cultivation and easy control of living myocardial slices culture conditions. The aim of this review is to present the potential of this biomimetic interface using living myocardial slices in electrophysiological studies outlining advantages, disadvantages and future perspectives of the model. Furthermore, different electrophysiological techniques and their application on living myocardial slices will be discussed. The developments of living myocardial slices in electrophysiology research will hopefully lead to future breakthroughs in the understanding of cardiac arrhythmia mechanisms and the development of novel therapeutic options.
Collapse
Affiliation(s)
- Jorik H. Amesz
- Translational Cardiothoracic Surgery Research Lab, Lowlands Institute for Bioelectric Medicine, Department of Cardiothoracic Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
- Translational Electrophysiology, Lowlands Institute for Bioelectric Medicine, Department of Cardiology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Lu Zhang
- Translational Electrophysiology, Lowlands Institute for Bioelectric Medicine, Department of Cardiology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Bian R. Everts
- Translational Cardiothoracic Surgery Research Lab, Lowlands Institute for Bioelectric Medicine, Department of Cardiothoracic Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Natasja M. S. De Groot
- Translational Electrophysiology, Lowlands Institute for Bioelectric Medicine, Department of Cardiology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Yannick J. H. J. Taverne
- Translational Cardiothoracic Surgery Research Lab, Lowlands Institute for Bioelectric Medicine, Department of Cardiothoracic Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
5
|
Ultrafast four-dimensional imaging of cardiac mechanical wave propagation with sparse optoacoustic sensing. Proc Natl Acad Sci U S A 2021; 118:2103979118. [PMID: 34732573 DOI: 10.1073/pnas.2103979118] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2021] [Indexed: 12/25/2022] Open
Abstract
Propagation of electromechanical waves in excitable heart muscles follows complex spatiotemporal patterns holding the key to understanding life-threatening arrhythmias and other cardiac conditions. Accurate volumetric mapping of cardiac wave propagation is currently hampered by fast heart motion, particularly in small model organisms. Here we demonstrate that ultrafast four-dimensional imaging of cardiac mechanical wave propagation in entire beating murine heart can be accomplished by sparse optoacoustic sensing with high contrast, ∼115-µm spatial and submillisecond temporal resolution. We extract accurate dispersion and phase velocity maps of the cardiac waves and reveal vortex-like patterns associated with mechanical phase singularities that occur during arrhythmic events induced via burst ventricular electric stimulation. The newly introduced cardiac mapping approach is a bold step toward deciphering the complex mechanisms underlying cardiac arrhythmias and enabling precise therapeutic interventions.
Collapse
|
6
|
Tadevosyan K, Iglesias-García O, Mazo MM, Prósper F, Raya A. Engineering and Assessing Cardiac Tissue Complexity. Int J Mol Sci 2021; 22:ijms22031479. [PMID: 33540699 PMCID: PMC7867236 DOI: 10.3390/ijms22031479] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 01/14/2023] Open
Abstract
Cardiac tissue engineering is very much in a current focus of regenerative medicine research as it represents a promising strategy for cardiac disease modelling, cardiotoxicity testing and cardiovascular repair. Advances in this field over the last two decades have enabled the generation of human engineered cardiac tissue constructs with progressively increased functional capabilities. However, reproducing tissue-like properties is still a pending issue, as constructs generated to date remain immature relative to native adult heart. Moreover, there is a high degree of heterogeneity in the methodologies used to assess the functionality and cardiac maturation state of engineered cardiac tissue constructs, which further complicates the comparison of constructs generated in different ways. Here, we present an overview of the general approaches developed to generate functional cardiac tissues, discussing the different cell sources, biomaterials, and types of engineering strategies utilized to date. Moreover, we discuss the main functional assays used to evaluate the cardiac maturation state of the constructs, both at the cellular and the tissue levels. We trust that researchers interested in developing engineered cardiac tissue constructs will find the information reviewed here useful. Furthermore, we believe that providing a unified framework for comparison will further the development of human engineered cardiac tissue constructs displaying the specific properties best suited for each particular application.
Collapse
Affiliation(s)
- Karine Tadevosyan
- Regenerative Medicine Program, Bellvitge Institute for Biomedical Research (IDIBELL) and Program for Clinical Translation of Regenerative Medicine in Catalonia (P-CMRC), 08908 L’Hospitalet del Llobregat, Spain;
- Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Olalla Iglesias-García
- Regenerative Medicine Program, Bellvitge Institute for Biomedical Research (IDIBELL) and Program for Clinical Translation of Regenerative Medicine in Catalonia (P-CMRC), 08908 L’Hospitalet del Llobregat, Spain;
- Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Regenerative Medicine Program, Cima Universidad de Navarra, Foundation for Applied Medical Research, 31008 Pamplona, Spain; (M.M.M.); (F.P.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- Correspondence: (O.I.-G.); (A.R.)
| | - Manuel M. Mazo
- Regenerative Medicine Program, Cima Universidad de Navarra, Foundation for Applied Medical Research, 31008 Pamplona, Spain; (M.M.M.); (F.P.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- Hematology and Cell Therapy Area, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Felipe Prósper
- Regenerative Medicine Program, Cima Universidad de Navarra, Foundation for Applied Medical Research, 31008 Pamplona, Spain; (M.M.M.); (F.P.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- Hematology and Cell Therapy Area, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- Center for Networked Biomedical Research on Cancer (CIBERONC), 28029 Madrid, Spain
| | - Angel Raya
- Regenerative Medicine Program, Bellvitge Institute for Biomedical Research (IDIBELL) and Program for Clinical Translation of Regenerative Medicine in Catalonia (P-CMRC), 08908 L’Hospitalet del Llobregat, Spain;
- Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
- Correspondence: (O.I.-G.); (A.R.)
| |
Collapse
|
7
|
Muscular Thin Films for Label-Free Mapping of Excitation Propagation in Cardiac Tissue. Ann Biomed Eng 2020; 48:2425-2437. [PMID: 32314299 DOI: 10.1007/s10439-020-02513-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/11/2020] [Indexed: 01/10/2023]
Abstract
Muscular thin films (MTFs), have already found a variety of applications in cardiac tissue engineering and in building of lab-on-a-chip systems. Here we present a novel approach to label-free mapping of excitation waves in the cardiomyocyte cell cultures with the use of MTFs. Neonatal rat ventricular cardiomyocytes were cultured on polydimethylsiloxane (PDMS) thin films and observed by means of off-axis illumination. Inflexions of the membrane created by the contraction of cardiomyocytes led to formation of patterns of bright and dark areas on the surface of the membrane. These patterns were recorded and analyzed for the monitoring of the contraction propagation. The method was compared with a standard optical mapping technique based on the use of a Ca2+-sensitive fluorescent dye. A good consistency of the results obtained by these two methods was demonstrated. The proposed method is non-toxic and might be of particular interest for the purpose of continuous monitoring in test systems based on human induced pluripotent stem cells.
Collapse
|
8
|
Zoccoler M, de Oliveira PX. METROID: an automated method for robust quantification of subcellular fluorescence events at low SNR. BMC Bioinformatics 2020; 21:332. [PMID: 32709217 PMCID: PMC7379836 DOI: 10.1186/s12859-020-03661-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 07/14/2020] [Indexed: 11/23/2022] Open
Abstract
Background In cell biology, increasing focus has been directed to fast events at subcellular space with the advent of fluorescent probes. As an example, voltage sensitive dyes (VSD) have been used to measure membrane potentials. Yet, even the most recently developed genetically encoded voltage sensors have demanded exhausting signal averaging through repeated experiments to quantify action potentials (AP). This analysis may be further hampered in subcellular signals defined by small regions of interest (ROI), where signal-to-noise ratio (SNR) may fall substantially. Signal processing techniques like blind source separation (BSS) are designed to separate a multichannel mixture of signals into uncorrelated or independent sources, whose potential to separate ROI signal from noise has been poorly explored. Our aims are to develop a method capable of retrieving subcellular events with minimal a priori information from noisy cell fluorescence images and to provide it as a computational tool to be readily employed by the scientific community. Results In this paper, we have developed METROID (Morphological Extraction of Transmembrane potential from Regions Of Interest Device), a new computational tool to filter fluorescence signals from multiple ROIs, whose code and graphical interface are freely available. In this tool, we developed a new ROI definition procedure to automatically generate similar-area ROIs that follow cell shape. In addition, simulations and real data analysis were performed to recover AP and electroporation signals contaminated by noise by means of four types of BSS: Principal Component Analysis (PCA), Independent Component Analysis (ICA), and two versions with discrete wavelet transform (DWT). All these strategies allowed for signal extraction at low SNR (− 10 dB) without apparent signal distortion. Conclusions We demonstrate the great capability of our method to filter subcellular signals from noisy fluorescence images in a single trial, avoiding repeated experiments. We provide this novel biomedical application with a graphical user interface at 10.6084/m9.figshare.11344046.v1, and its code and datasets are available in GitHub at https://github.com/zoccoler/metroid.
Collapse
Affiliation(s)
- Marcelo Zoccoler
- Department of Biomedical Engineering (DEB), School of Electrical and Computer Engineering, University of Campinas, 400, Albert Einstein Avenue, Campinas, SP, 13083-852, Brazil.
| | - Pedro X de Oliveira
- Department of Biomedical Engineering (DEB), School of Electrical and Computer Engineering, University of Campinas, 400, Albert Einstein Avenue, Campinas, SP, 13083-852, Brazil.,Center for Biomedical Engineering (CEB), University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
9
|
Lee P, Quintanilla JG, Alfonso-Almazán JM, Galán-Arriola C, Yan P, Sánchez-González J, Pérez-Castellano N, Pérez-Villacastín J, Ibañez B, Loew LM, Filgueiras-Rama D. In vivo ratiometric optical mapping enables high-resolution cardiac electrophysiology in pig models. Cardiovasc Res 2020; 115:1659-1671. [PMID: 30753358 PMCID: PMC6704389 DOI: 10.1093/cvr/cvz039] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 01/31/2019] [Accepted: 02/06/2019] [Indexed: 11/28/2022] Open
Abstract
Aims Cardiac optical mapping is the gold standard for measuring complex electrophysiology in ex vivo heart preparations. However, new methods for optical mapping in vivo have been elusive. We aimed at developing and validating an experimental method for performing in vivo cardiac optical mapping in pig models. Methods and results First, we characterized ex vivo the excitation-ratiometric properties during pacing and ventricular fibrillation (VF) of two near-infrared voltage-sensitive dyes (di-4-ANBDQBS/di-4-ANEQ(F)PTEA) optimized for imaging blood-perfused tissue (n = 7). Then, optical-fibre recordings in Langendorff-perfused hearts demonstrated that ratiometry permits the recording of optical action potentials (APs) with minimal motion artefacts during contraction (n = 7). Ratiometric optical mapping ex vivo also showed that optical AP duration (APD) and conduction velocity (CV) measurements can be accurately obtained to test drug effects. Secondly, we developed a percutaneous dye-loading protocol in vivo to perform high-resolution ratiometric optical mapping of VF dynamics (motion minimal) using a high-speed camera system positioned above the epicardial surface of the exposed heart (n = 11). During pacing (motion substantial) we recorded ratiometric optical signals and activation via a 2D fibre array in contact with the epicardial surface (n = 7). Optical APs in vivo under general anaesthesia showed significantly faster CV [120 (63–138) cm/s vs. 51 (41–64) cm/s; P = 0.032] and a statistical trend to longer APD90 [242 (217–254) ms vs. 192 (182–233) ms; P = 0.095] compared with ex vivo measurements in the contracting heart. The average rate of signal-to-noise ratio (SNR) decay of di-4-ANEQ(F)PTEA in vivo was 0.0671 ± 0.0090 min−1. However, reloading with di-4-ANEQ(F)PTEA fully recovered the initial SNR. Finally, toxicity studies (n = 12) showed that coronary dye injection did not generate systemic nor cardiac damage, although di-4-ANBDQBS injection induced transient hypotension, which was not observed with di-4-ANEQ(F)PTEA. Conclusions In vivo optical mapping using voltage ratiometry of near-infrared dyes enables high-resolution cardiac electrophysiology in translational pig models.
Collapse
Affiliation(s)
- Peter Lee
- Essel Research and Development Inc., Toronto, 337 Sheppard Ave East, Toronto, Ontario M2N 3B3, Canada
| | - Jorge G Quintanilla
- Spanish National Cardiovascular Research Center, Carlos III (CNIC), Myocardial Pathophysiology Area, Melchor Fernández Almagro, 3, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Av. Monforte de Lemos 3-5, Madrid, Spain.,Arrhythmia Unit, Cardiovascular Institute, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Prof. Martín Lagos s/n, Madrid, Spain
| | - José M Alfonso-Almazán
- Spanish National Cardiovascular Research Center, Carlos III (CNIC), Myocardial Pathophysiology Area, Melchor Fernández Almagro, 3, Madrid, Spain
| | - Carlos Galán-Arriola
- Spanish National Cardiovascular Research Center, Carlos III (CNIC), Myocardial Pathophysiology Area, Melchor Fernández Almagro, 3, Madrid, Spain
| | - Ping Yan
- Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, USA
| | | | - Nicasio Pérez-Castellano
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Av. Monforte de Lemos 3-5, Madrid, Spain.,Arrhythmia Unit, Cardiovascular Institute, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Prof. Martín Lagos s/n, Madrid, Spain
| | - Julián Pérez-Villacastín
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Av. Monforte de Lemos 3-5, Madrid, Spain.,Arrhythmia Unit, Cardiovascular Institute, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Prof. Martín Lagos s/n, Madrid, Spain.,Fundación Interhospitalaria para la Investigación Cardiovascular (FIC), Paseo de San Francisco de Sales 3, Madrid, Spain
| | - Borja Ibañez
- Spanish National Cardiovascular Research Center, Carlos III (CNIC), Myocardial Pathophysiology Area, Melchor Fernández Almagro, 3, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Av. Monforte de Lemos 3-5, Madrid, Spain.,IIS-University Hospital Fundación Jiménez Díaz, Department of Cardiology, Av. Reyes Católicos 2, Madrid, Spain
| | - Leslie M Loew
- Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, USA
| | - David Filgueiras-Rama
- Spanish National Cardiovascular Research Center, Carlos III (CNIC), Myocardial Pathophysiology Area, Melchor Fernández Almagro, 3, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Av. Monforte de Lemos 3-5, Madrid, Spain.,Arrhythmia Unit, Cardiovascular Institute, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Prof. Martín Lagos s/n, Madrid, Spain
| |
Collapse
|
10
|
Johnson LE, Kingsbury JS, Elder DL, Cattolico RA, Latimer LN, Hardin W, De Meulenaere E, Deodato C, Depotter G, Madabushi S, Bigelow NW, Smolarski BA, Hougen TK, Kaminsky W, Clays K, Robinson BH. DANPY (dimethylaminonaphthylpyridinium): an economical and biocompatible fluorophore. Org Biomol Chem 2020; 17:3765-3780. [PMID: 30887974 DOI: 10.1039/c8ob02536c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dyes with nonlinear optical (NLO) properties enable new imaging techniques and photonic systems. We have developed a dye (DANPY-1) for photonics applications in biological substrates such as nucleic acids; however, the design specification also enables it to be used for visualizing biomolecules. It is a prototype dye demonstrating a water-soluble, NLO-active fluorophore with high photostability, a large Stokes shift, and a favorable toxicity profile. A practical and scalable synthetic route to DANPY salts has been optimized featuring: (1) convergent Pd-catalyzed Suzuki coupling with pyridine 4-boronic acid, (2) site-selective pyridyl N-methylation, and (3) direct recovery of crystalline intermediates without chromatography. We characterize the optical properties, biocompatibility, and biological staining behavior of DANPY-1. In addition to stability and solubility across a range of polar media, the DANPY-1 chromophore shows a first hyperpolarizability similar to common NLO dyes such as Disperse Red 1 and DAST, a large two-photon absorption cross section for its size, substantial affinity to nucleic acids in vitro, an ability to stain a variety of cellular components, and strong sensitivity of its fluorescence properties to its dielectric environment.
Collapse
Affiliation(s)
- Lewis E Johnson
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Two-photon excitation of FluoVolt allows improved interrogation of transmural electrophysiological function in the intact mouse heart. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 154:11-20. [PMID: 31492464 PMCID: PMC7322535 DOI: 10.1016/j.pbiomolbio.2019.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/17/2019] [Accepted: 08/15/2019] [Indexed: 11/21/2022]
Abstract
BACKGROUND & AIMS Two-photon excitation of voltage sensitive dyes (VSDs) can measure rapidly changing electrophysiological signals deep within intact cardiac tissue with improved three-dimensional resolution along with reduced photobleaching and photo-toxicity compared to conventional confocal microscopy. Recently, a category of VSDs has emerged which records membrane potentials by photo-induced electron transfer. FluoVolt is a novel VSD in this category which promises fast response and a 25% fractional change in fluorescence per 100 mV, making it an attractive optical probe for action potential (AP) recordings within intact cardiac tissue. The purpose of this study was to characterize the fluorescent properties of FluoVolt as well as its utility for deep tissue imaging. METHODS Discrete tissue layers throughout the left ventricular wall of isolated perfused murine hearts loaded with FluoVolt or di-4-ANEPPS were sequentially excited with two-photon microscopy. RESULTS FluoVolt loaded hearts suffered significantly fewer episodes of atrio-ventricular block compared to di-4-ANEPPS loaded hearts, indicating comparatively low toxicity of FluoVolt in the intact heart. APs recorded with FluoVolt were characterized by a lower signal-to-noise ratio and a higher dynamic range compared to APs recorded with di-4-ANEPPS. Although both depolarization and repolarization parameters were similar in APs recorded with either dye, FluoVolt allowed deeper tissue excitation with improved three-dimensional resolution due to reduced out-of-focus fluorescence generation under two-photon excitation. CONCLUSION Our results demonstrate several advantages of two-photon excitation of FluoVolt in functional studies in intact heart preparations, including reduced toxicity and improved fluorescent properties.
Collapse
|
12
|
Kuhn B, Roome CJ. Primer to Voltage Imaging With ANNINE Dyes and Two-Photon Microscopy. Front Cell Neurosci 2019; 13:321. [PMID: 31379507 PMCID: PMC6646528 DOI: 10.3389/fncel.2019.00321] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/01/2019] [Indexed: 11/24/2022] Open
Abstract
ANNINE-6 and ANNINE-6plus are voltage-sensitive dyes that when combined with two-photon microscopy are ideal for recording of neuronal voltages in vivo, in both bulk loaded tissue and the dendrites of single neurons. Here, we describe in detail but for a broad audience the voltage sensing mechanism of fast voltage-sensitive dyes, with a focus on ANNINE dyes, and how voltage imaging can be optimized with one-photon and two-photon excitation. Under optimized imaging conditions the key strengths of ANNINE dyes are their high sensitivity (0.5%/mV), neglectable bleaching and phototoxicity, a linear response to membrane potential, and a temporal resolution which is faster than the optical imaging devices currently used in neurobiology (order of nanoseconds). ANNINE dyes in combination with two-photon microscopy allow depth-resolved voltage imaging in bulk loaded tissue to study average membrane voltage oscillations and sensory responses. Alternatively, if ANNINE-6plus is applied internally, supra and sub threshold voltage changes can be recorded from dendrites of single neurons in awake animals. Interestingly, in our experience ANNINE-6plus labeling is impressively stable in vivo, such that voltage imaging from single Purkinje neuron dendrites can be performed for 2 weeks after a single electroporation of the neuron. Finally, to maximize their potential for neuroscience studies, voltage imaging with ANNINE dyes and two-photon microscopy can be combined with electrophysiological recording, calcium imaging, and/or pharmacology, even in awake animals.
Collapse
Affiliation(s)
- Bernd Kuhn
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Christopher J Roome
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
13
|
Plasma Membrane Potential of Candida albicans Measured by Di-4-ANEPPS Fluorescence Depends on Growth Phase and Regulatory Factors. Microorganisms 2019; 7:microorganisms7040110. [PMID: 31022974 PMCID: PMC6518178 DOI: 10.3390/microorganisms7040110] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 04/13/2019] [Accepted: 04/22/2019] [Indexed: 11/17/2022] Open
Abstract
The potential of the plasma membrane (Δѱ) regulates the electrochemical potential between the outer and inner sides of cell membranes. The opportunistic fungal pathogen, Candida albicans, regulates the membrane potential in response to environmental conditions, as well as the physiological state of the cell. Here we demonstrate a new method for detection of cell membrane depolarization/permeabilization in C. albicans using the potentiometric zwitterionic dye di-4-ANEPPS. Di-4-ANEPPS measures the changes in the cell Δѱ depending on the phases of growth and external factors regulating Δѱ, such as potassium or calcium chlorides, amiodarone or DM-11 (inhibitor of H+-ATPase). We also demonstrated that di-4-ANEPPS is a good tool for fast measurement of the influence of amphipathic compounds on Δѱ.
Collapse
|
14
|
Optical Recording of Action Potentials in Human Induced Pluripotent Stem Cell-Derived Cardiac Single Cells and Monolayers Generated from Long QT Syndrome Type 1 Patients. Stem Cells Int 2019; 2019:7532657. [PMID: 30956674 PMCID: PMC6431403 DOI: 10.1155/2019/7532657] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/06/2018] [Indexed: 01/08/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) from type 1 long QT (LQT1) patients can differentiate into cardiomyocytes (CMs) including ventricular cells to recapitulate the disease phenotype. Although optical recordings using membrane potential dyes to monitor action potentials (APs) were reported, no study has investigated the disease phenotypes of cardiac channelopathy in association with the cardiac subtype at the single-cell level. We induced iPSC-CMs from three control and three LQT1 patients. Single-cell analysis using a fast-responding dye confirmed that ventricular cells were the dominant subtype (control-iPSC-CMs: 98%, 88%, 91%; LQT1-iPSC-CMs: 95%, 79%, 92%). In addition, LQT1-iPSC-ventricular cells displayed an increased frequency of early afterdepolarizations (pvalue = 0.031). Cardiomyocyte monolayers constituted mostly of ventricular cells derived from LQT1-iPSCs showed prolonged AP duration (APD) (pvalue = 0.000096). High-throughput assays using cardiomyocyte monolayers in 96-well plates demonstrated that IKr inhibitors prolonged APDs in both control- and LQT1-iPSC-CM monolayers. We confirmed that the optical recordings of APs in single cells and monolayers derived from control- and LQT1-iPSC-CMs can be used to assess arrhythmogenicity, supporting the feasibility of membrane potential dye-based high-throughput screening to study ventricular arrhythmias caused by genetic channelopathy or cardiotoxic drugs.
Collapse
|
15
|
Thomas K, Goudy J, Henley T, Bressan M. Optical Electrophysiology in the Developing Heart. J Cardiovasc Dev Dis 2018; 5:E28. [PMID: 29751595 PMCID: PMC6023508 DOI: 10.3390/jcdd5020028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/24/2018] [Accepted: 04/26/2018] [Indexed: 12/16/2022] Open
Abstract
The heart is the first organ system to form in the embryo. Over the course of development, cardiomyocytes with differing morphogenetic, molecular, and physiological characteristics are specified and differentiate and integrate with one another to assemble a coordinated electromechanical pumping system that can function independently of any external stimulus. As congenital malformation of the heart presents the leading class of birth defects seen in humans, the molecular genetics of heart development have garnered much attention over the last half century. However, understanding how genetic perturbations manifest at the level of the individual cell function remains challenging to investigate. Some of the barriers that have limited our capacity to construct high-resolution, comprehensive models of cardiac physiological maturation are rapidly being removed by advancements in the reagents and instrumentation available for high-speed live imaging. In this review, we briefly introduce the history of imaging approaches for assessing cardiac development, describe some of the reagents and tools required to perform live imaging in the developing heart, and discuss how the combination of modern imaging modalities and physiological probes can be used to scale from subcellular to whole-organ analysis. Through these types of imaging approaches, critical insights into the processes of cardiac physiological development can be directly examined in real-time. Moving forward, the synthesis of modern molecular biology and imaging approaches will open novel avenues to investigate the mechanisms of cardiomyocyte maturation, providing insight into the etiology of congenital heart defects, as well as serving to direct approaches for designing stem-cell or regenerative medicine protocols for clinical application.
Collapse
Affiliation(s)
- Kandace Thomas
- Department of Cell Biology and Physiology, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Julie Goudy
- Department of Cell Biology and Physiology, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Trevor Henley
- Department of Cell Biology and Physiology, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Michael Bressan
- Department of Cell Biology and Physiology, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
16
|
Björk S, Ojala EA, Nordström T, Ahola A, Liljeström M, Hyttinen J, Kankuri E, Mervaala E. Evaluation of Optogenetic Electrophysiology Tools in Human Stem Cell-Derived Cardiomyocytes. Front Physiol 2017; 8:884. [PMID: 29163220 PMCID: PMC5673656 DOI: 10.3389/fphys.2017.00884] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/18/2017] [Indexed: 11/25/2022] Open
Abstract
Current cardiac drug safety assessments focus on hERG channel block and QT prolongation for evaluating arrhythmic risks, whereas the optogenetic approach focuses on the action potential (AP) waveform generated by a monolayer of human cardiomyocytes beating synchronously, thus assessing the contribution of several ion channels on the overall drug effect. This novel tool provides arrhythmogenic sensitizing by light-induced pacing in combination with non-invasive, all-optical measurements of cardiomyocyte APs and will improve assessment of drug-induced electrophysiological aberrancies. With the help of patch clamp electrophysiology measurements, we aimed to investigate whether the optogenetic modifications alter human cardiomyocytes' electrophysiology and how well the optogenetic analyses perform against this gold standard. Patch clamp electrophysiology measurements of non-transduced stem cell-derived cardiomyocytes compared to cells expressing the commercially available optogenetic constructs Optopatch and CaViar revealed no significant changes in action potential duration (APD) parameters. Thus, inserting the optogenetic constructs into cardiomyocytes does not significantly affect the cardiomyocyte's electrophysiological properties. When comparing the two methods against each other (patch clamp vs. optogenetic imaging) we found no significant differences in APD parameters for the Optopatch transduced cells, whereas the CaViar transduced cells exhibited modest increases in APD-values measured with optogenetic imaging. Thus, to broaden the screen, we combined optogenetic measurements of membrane potential and calcium transients with contractile motion measured by video motion tracking. Furthermore, to assess how optogenetic measurements can predict changes in membrane potential, or early afterdepolarizations (EADs), cells were exposed to cumulating doses of E-4031, a hERG potassium channel blocker, and drug effects were measured at both spontaneous and paced beating rates (1, 2 Hz). Cumulating doses of E-4031 produced prolonged APDs, followed by EADs and drug-induced quiescence. These observations were corroborated by patch clamp and contractility measurements. Similar responses, although more modest were seen with the IKs potassium channel blocker JNJ-303. In conclusion, optogenetic measurements of AP waveforms combined with optical pacing compare well with the patch clamp gold standard. Combined with video motion contractile measurements, optogenetic imaging provides an appealing alternative for electrophysiological screening of human cardiomyocyte responses in pharmacological efficacy and safety testings.
Collapse
Affiliation(s)
- Susann Björk
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Elina A Ojala
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tommy Nordström
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Antti Ahola
- BioMediTech Institute and Faculty of Biomedical Sciences and Engineering, Tampere University of Technology, Tampere, Finland
| | - Mikko Liljeström
- Department of Anatomy, Faculty of Medicine and HiLIFE, University of Helsinki, Helsinki, Finland
| | - Jari Hyttinen
- BioMediTech Institute and Faculty of Biomedical Sciences and Engineering, Tampere University of Technology, Tampere, Finland
| | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Eero Mervaala
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
17
|
McKeithan WL, Savchenko A, Yu MS, Cerignoli F, Bruyneel AAN, Price JH, Colas AR, Miller EW, Cashman JR, Mercola M. An Automated Platform for Assessment of Congenital and Drug-Induced Arrhythmia with hiPSC-Derived Cardiomyocytes. Front Physiol 2017; 8:766. [PMID: 29075196 PMCID: PMC5641590 DOI: 10.3389/fphys.2017.00766] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 09/19/2017] [Indexed: 12/12/2022] Open
Abstract
The ability to produce unlimited numbers of human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) harboring disease and patient-specific gene variants creates a new paradigm for modeling congenital heart diseases (CHDs) and predicting proarrhythmic liabilities of drug candidates. However, a major roadblock to implementing hiPSC-CM technology in drug discovery is that conventional methods for monitoring action potential (AP) kinetics and arrhythmia phenotypes in vitro have been too costly or technically challenging to execute in high throughput. Herein, we describe the first large-scale, fully automated and statistically robust analysis of AP kinetics and drug-induced proarrhythmia in hiPSC-CMs. The platform combines the optical recording of a small molecule fluorescent voltage sensing probe (VoltageFluor2.1.Cl), an automated high throughput microscope and automated image analysis to rapidly generate physiological measurements of cardiomyocytes (CMs). The technique can be readily adapted on any high content imager to study hiPSC-CM physiology and predict the proarrhythmic effects of drug candidates.
Collapse
Affiliation(s)
- Wesley L McKeithan
- Department of Medicine, Cardiovascular Institute, Stanford University, Stanford, CA, United States.,Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Alex Savchenko
- Department of Medicine, Cardiovascular Institute, Stanford University, Stanford, CA, United States
| | - Michael S Yu
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States.,Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
| | | | - Arne A N Bruyneel
- Department of Medicine, Cardiovascular Institute, Stanford University, Stanford, CA, United States
| | | | - Alexandre R Colas
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Evan W Miller
- Departments of Chemistry, Molecular and Cell Biology, Helen Wills Neuroscience, University of California, Berkeley, Berkeley, CA, United States
| | - John R Cashman
- Human BioMolecular Research Institute, San Diego, CA, United States
| | - Mark Mercola
- Department of Medicine, Cardiovascular Institute, Stanford University, Stanford, CA, United States
| |
Collapse
|
18
|
Greenfield SA, Badin AS, Ferrati G, Devonshire IM. Optical imaging of the rat brain suggests a previously missing link between top-down and bottom-up nervous system function. NEUROPHOTONICS 2017; 4:031213. [PMID: 28573153 PMCID: PMC5443969 DOI: 10.1117/1.nph.4.3.031213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 04/26/2017] [Indexed: 06/07/2023]
Abstract
Optical imaging with voltage-sensitive dyes enables the visualization of extensive yet highly transient coalitions of neurons (assemblies) operating throughout the brain on a subsecond time scale. We suggest that operating at the mesoscale level of brain organization, neuronal assemblies may provide a functional link between "bottom-up" cellular mechanisms and "top-down" cognitive ones within anatomically defined regions. We demonstrate in ex vivo rat brain slices how varying spatiotemporal dynamics of assemblies reveal differences not previously appreciated between: different stages of development in cortical versus subcortical brain areas, different sensory modalities (hearing versus vision), different classes of psychoactive drugs (anesthetics versus analgesics), different effects of anesthesia linked to hyperbaric conditions and, in vivo, depths of anesthesia. The strategy of voltage-sensitive dye imaging is therefore as powerful as it is versatile and as such can now be applied to the evaluation of neurochemical signaling systems and the screening of related new drugs, as well as to mathematical modeling and, eventually, even theories of consciousness.
Collapse
Affiliation(s)
- Susan A. Greenfield
- Neuro-Bio Ltd., Building F5, Culham Science Centre, Abingdon, United Kingdom
| | - Antoine-Scott Badin
- Neuro-Bio Ltd., Building F5, Culham Science Centre, Abingdon, United Kingdom
- University of Oxford, Department of Physiology, Anatomy & Genetics, Oxford, United Kingdom
| | - Giovanni Ferrati
- Neuro-Bio Ltd., Building F5, Culham Science Centre, Abingdon, United Kingdom
| | - Ian M. Devonshire
- Nottingham University Medical School, Queen’s Medical Centre, Nottingham, United Kingdom
| |
Collapse
|
19
|
George SA, Calhoun PJ, Gourdie RG, Smyth JW, Poelzing S. TNFα Modulates Cardiac Conduction by Altering Electrical Coupling between Myocytes. Front Physiol 2017; 8:334. [PMID: 28588504 PMCID: PMC5440594 DOI: 10.3389/fphys.2017.00334] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/08/2017] [Indexed: 12/22/2022] Open
Abstract
Background: Tumor Necrosis Factor α (TNFα) upregulation during acute inflammatory response has been associated with numerous cardiac effects including modulating Connexin43 and vascular permeability. This may in turn alter cardiac gap junctional (GJ) coupling and extracellular volume (ephaptic coupling) respectively. We hypothesized that acute exposure to pathophysiological TNFα levels can modulate conduction velocity (CV) in the heart by altering electrical coupling: GJ and ephaptic. Methods and Results: Hearts were optically mapped to determine CV from control, TNFα and TNFα + high calcium (2.5 vs. 1.25 mM) treated guinea pig hearts over 90 mins. Transmission electron microscopy was performed to measure changes in intercellular separation in the gap junction-adjacent extracellular nanodomain—perinexus (WP). Cx43 expression and phosphorylation were determined by Western blotting and Cx43 distribution by confocal immunofluorescence. At 90 mins, longitudinal and transverse CV (CVL and CVT, respectively) increased with control Tyrode perfusion but TNFα slowed CVT alone relative to control and anisotropy of conduction increased, but not significantly. TNFα increased WP relative to control at 90 mins, without significantly changing GJ coupling. Increasing extracellular calcium after 30 mins of just TNFα exposure increased CVT within 15 mins. TNFα + high calcium also restored CVT at 90 mins and reduced WP to control values. Interestingly, TNFα + high calcium also improved GJ coupling at 90 mins, which along with reduced WP may have contributed to increasing CV. Conclusions: Elevating extracellular calcium during acute TNFα exposure reduces perinexal expansion, increases ephaptic, and GJ coupling, improves CV and may be a novel method for preventing inflammation induced CV slowing.
Collapse
Affiliation(s)
- Sharon A George
- Department of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, United States
| | - Patrick J Calhoun
- Department of Biological Sciences, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, United States
| | - Robert G Gourdie
- Department of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, United States.,Center for Heart and Regenerative Medicine, Virginia Tech Carilion Research InstituteRoanoke, VA, United States
| | - James W Smyth
- Center for Heart and Regenerative Medicine, Virginia Tech Carilion Research InstituteRoanoke, VA, United States
| | - Steven Poelzing
- Department of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, United States.,Center for Heart and Regenerative Medicine, Virginia Tech Carilion Research InstituteRoanoke, VA, United States
| |
Collapse
|
20
|
Abstract
Small-conductance Ca2+-activated potassium (SK) channels are relative newcomers within the field of cardiac electrophysiology. In recent years, an increased focus has been given to these channels because they might constitute a relatively atrial-selective target. This review will give a general introduction to SK channels followed by their proposed function in the heart under normal and pathophysiological conditions. It is revealed how antiarrhythmic effects can be obtained by SK channel inhibition in a number of species in situations of atrial fibrillation. On the contrary, the beneficial effects of SK channel inhibition in situations of heart failure are questionable and still needs investigation. The understanding of cardiac SK channels is rapidly increasing these years, and it is hoped that this will clarify whether SK channel inhibition has potential as a new anti–atrial fibrillation principle.
Collapse
|
21
|
Lopez-Izquierdo A, Warren M, Riedel M, Cho S, Lai S, Lux RL, Spitzer KW, Benjamin IJ, Tristani-Firouzi M, Jou CJ. A near-infrared fluorescent voltage-sensitive dye allows for moderate-throughput electrophysiological analyses of human induced pluripotent stem cell-derived cardiomyocytes. Am J Physiol Heart Circ Physiol 2014; 307:H1370-7. [PMID: 25172899 DOI: 10.1152/ajpheart.00344.2014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Human induced pluripotent stem cell-derived cardiomyocyte (iPSC-CM)-based assays are emerging as a promising tool for the in vitro preclinical screening of QT interval-prolonging side effects of drugs in development. A major impediment to the widespread use of human iPSC-CM assays is the low throughput of the currently available electrophysiological tools. To test the precision and applicability of the near-infrared fluorescent voltage-sensitive dye 1-(4-sulfanatobutyl)-4-{β[2-(di-n-butylamino)-6-naphthyl]butadienyl}quinolinium betaine (di-4-ANBDQBS) for moderate-throughput electrophysiological analyses, we compared simultaneous transmembrane voltage and optical action potential (AP) recordings in human iPSC-CM loaded with di-4-ANBDQBS. Optical AP recordings tracked transmembrane voltage with high precision, generating nearly identical values for AP duration (AP durations at 10%, 50%, and 90% repolarization). Human iPSC-CMs tolerated repeated laser exposure, with stable optical AP parameters recorded over a 30-min study period. Optical AP recordings appropriately tracked changes in repolarization induced by pharmacological manipulation. Finally, di-4-ANBDQBS allowed for moderate-throughput analyses, increasing throughput >10-fold over the traditional patch-clamp technique. We conclude that the voltage-sensitive dye di-4-ANBDQBS allows for high-precision optical AP measurements that markedly increase the throughput for electrophysiological characterization of human iPSC-CMs.
Collapse
Affiliation(s)
- Angelica Lopez-Izquierdo
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah School of Medicine, Salt Lake City, Utah
| | - Mark Warren
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah School of Medicine, Salt Lake City, Utah
| | - Michael Riedel
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin; and
| | - Scott Cho
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah School of Medicine, Salt Lake City, Utah
| | - Shuping Lai
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin; and
| | - Robert L Lux
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah School of Medicine, Salt Lake City, Utah
| | - Kenneth W Spitzer
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah School of Medicine, Salt Lake City, Utah
| | - Ivor J Benjamin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin; and
| | - Martin Tristani-Firouzi
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah School of Medicine, Salt Lake City, Utah; Division of Pediatric Cardiology, University of Utah School of Medicine, Salt Lake City, Utah
| | - Chuanchau J Jou
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah School of Medicine, Salt Lake City, Utah; Division of Pediatric Cardiology, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
22
|
Seo K, Inagaki M, Hidaka I, Fukano H, Sugimachi M, Hisada T, Nishimura S, Sugiura S. Relevance of cardiomyocyte mechano-electric coupling to stretch-induced arrhythmias: optical voltage/calcium measurement in mechanically stimulated cells, tissues and organs. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 115:129-39. [PMID: 25084395 DOI: 10.1016/j.pbiomolbio.2014.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 07/19/2014] [Indexed: 12/27/2022]
Abstract
Stretch-induced arrhythmias are multi-scale phenomena in which alterations in channel activities and/or calcium handling lead to the organ level derangement of the heart rhythm. To understand how cellular mechano-electric coupling (MEC) leads to stretch-induced arrhythmias at the organ level, we developed stretching devices and optical voltage/calcium measurement techniques optimized to each cardiac level. This review introduces these experimental techniques of (1) optical voltage measurement coupled with a carbon-fiber technique for single isolated cardiomyocytes, (2) optical voltage mapping combined with motion tracking technique for myocardial tissue/whole heart preparations and (3) real-time calcium imaging coupled with a laser optical trap technique for cardiomyocytes. Following the overview of each methodology, results are presented. We conclude that individual MEC in cardiomyocytes can be heterogeneous at the ventricular level, especially when moderate amplitude mechanical stretches are applied to the heart, and that this heterogeneous MEC can evoke focal excitation that develops into re-entrant arrhythmias.
Collapse
Affiliation(s)
- Kinya Seo
- Division of Cardiology, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA.
| | - Masashi Inagaki
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center Research Institute, Osaka 565-0873, Japan.
| | - Ichiro Hidaka
- Division of Physical and Health Education, Graduate School of Education, The University of Tokyo, Tokyo 113-0033, Japan.
| | - Hana Fukano
- Department of Human and Engineered Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8563, Japan.
| | - Masaru Sugimachi
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center Research Institute, Osaka 565-0873, Japan.
| | - Toshiaki Hisada
- Department of Human and Engineered Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8563, Japan.
| | - Satoshi Nishimura
- Research Division of Cell and Molecular Medicine, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan; Department of Cardiovascular Medicine, Translational Systems Biology and Medicine Initiative, The University of Tokyo, Tokyo 113-8655, Japan.
| | - Seiryo Sugiura
- Department of Human and Engineered Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8563, Japan.
| |
Collapse
|
23
|
Leyton-Mange JS, Milan DJ. Pluripotent stem cells as a platform for cardiac arrhythmia drug screening. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2014; 16:334. [PMID: 25074263 DOI: 10.1007/s11936-014-0334-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OPINION STATEMENT Since the first demonstrations of the differentiation of pluripotent stem cells to produce functional human cellular models such as cardiomyocytes, the scientific community has been captivated [1, 2••, 3]. In the time since that seminal work, the field has been catapulted forward by the demonstration that adult somatic cells can be reprogrammed to an induced state of pluripotency [4••], and more recently by the development of efficient and sophisticated genome editing tools [5••, 6••, 7], which together afford a theoretically unlimited supply of relevant genetic disease models. In particular, many of the early successes with induced pluripotent stem cell technology have been realized with cardiac arrhythmia syndromes [8••, 9-15]. There is interest in applying stem cell models in large-scale screens to discover novel therapeutics or drug toxicities. This manuscript aims to discuss the potential role of hPSC-derived cardiomyocyte models in therapeutic arrhythmia screens and review recent advances in the field that bring us closer to this reality.
Collapse
|
24
|
Abstract
In the past decade, optical mapping provided crucial mechanistic insight into electromechanical function and the mechanism of ventricular fibrillation. Therefore, to date, optical mapping dominates experimental cardiac electrophysiology. The first cardiac measurements involving optics were done in the early 1900s using the fast cinematograph that later evolved into methods for high-resolution activation and repolarization mapping and stimulation of specific cardiac cell types. The field of "optocardiography," therefore, emerged as the use of light for recording or interfering with cardiac physiology. In this review, we discuss how optocardiography developed into the dominant research technique in experimental cardiology. Furthermore, we envision how optocardiographic methods can be used in clinical cardiology.
Collapse
|
25
|
Comparison of two voltage-sensitive dyes and their suitability for long-term imaging of neuronal activity. PLoS One 2013; 8:e75678. [PMID: 24124505 PMCID: PMC3790875 DOI: 10.1371/journal.pone.0075678] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 08/16/2013] [Indexed: 11/19/2022] Open
Abstract
One of the key approaches for studying neural network function is the simultaneous measurement of the activity of many neurons. Voltage-sensitive dyes (VSDs) simultaneously report the membrane potential of multiple neurons, but often have pharmacological and phototoxic effects on neuronal cells. Yet, to study the homeostatic processes that regulate neural network function long-term recordings of neuronal activities are required. This study aims to test the suitability of the VSDs RH795 and Di-4-ANEPPS for optically recording pattern generating neurons in the stomatogastric nervous system of crustaceans with an emphasis on long-term recordings of the pyloric central pattern generator. We demonstrate that both dyes stain pyloric neurons and determined an optimal concentration and light intensity for optical imaging. Although both dyes provided sufficient signal-to-noise ratio for measuring membrane potentials, Di-4-ANEPPS displayed a higher signal quality indicating an advantage of this dye over RH795 when small neuronal signals need to be recorded. For Di-4-ANEPPS, higher dye concentrations resulted in faster and brighter staining. Signal quality, however, only depended on excitation light strength, but not on dye concentration. RH795 showed weak and slowly developing phototoxic effects on the pyloric motor pattern as well as slow bleaching of the staining and is thus the better choice for long-term experiments. Low concentrations and low excitation intensities can be used as, in contrast to Di-4-ANEPPS, the signal-to-noise ratio was independent of excitation light strength. In summary, RH795 and Di-4-ANEPPS are suitable for optical imaging in the stomatogastric nervous system of crustaceans. They allow simultaneous recording of the membrane potential of multiple neurons with high signal quality. While Di-4-ANEPPS is better suited for short-term experiments that require high signal quality, RH795 is a better candidate for long-term experiments since it has only minor effects on the motor pattern.
Collapse
|
26
|
Grandy TH, Greenfield SA, Devonshire IM. An evaluation of in vivo voltage-sensitive dyes: pharmacological side effects and signal-to-noise ratios after effective removal of brain-pulsation artifacts. J Neurophysiol 2012; 108:2931-45. [DOI: 10.1152/jn.00512.2011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the current study, we investigated pharmacological side effects and signal-to-noise ratios (SNRs) of two commonly used voltage-sensitive dyes (VSDs): the blue dye RH-1691 (1 mg/ml) and the red dye di-4-ANEPPS (0.1 mg/ml), applied in vivo to the rat barrel cortex. Blue dyes are often favored over red dyes in in vivo studies due to their apparent superior SNR, partly because their fluorescence spectrum is farther away from the hemoglobin absorption spectrum, making them less prone to heartbeat-associated brain-pulsation artifacts (BPA). We implemented a previously reported template-based BPA removal algorithm and evaluated its applicability to di-4-ANEPPS before comparing characteristics of the two dyes. Somatosensory-evoked potentials (SEPs) were also recorded. Whereas SEPs recorded before and after application of di-4-ANEPPS failed to exhibit demonstrable differences, RH-1691 caused a significant and prolonged increase in SEP amplitude for several hours. In contrast, neither dye influenced the spontaneous cortical activity as assessed by the spectral content of the EEG. Both dyes turned out to be strikingly similar with respect to changes in fractional fluorescence as a function of SEP response amplitude, as well as regarding shot noise characteristics after removal of the BPA. Thus there is strong evidence that the increased SNR for RH-1691 is a consequence of an artificially increased signal. When applying an appropriate BPA removal algorithm, di-4-ANEPPS has proven to be suitable for single-trial in vivo VSD imaging (VSDI) and produces no detectable neurophysiological changes in the system under investigation. Taken together, our data argue for a careful re-evaluation of pharmacological side effects of RH-1691 and support the applicability of di-4-ANEPPS for stable single-trial in vivo VSDI recordings.
Collapse
Affiliation(s)
- T. H. Grandy
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom; and
- Institute of Neurophysiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - S. A. Greenfield
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom; and
| | - I. M. Devonshire
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom; and
| |
Collapse
|
27
|
Lieu DK, Turnbull IC, Costa KD, Li RA. Engineered human pluripotent stem cell-derived cardiac cells and tissues for electrophysiological studies. ACTA ACUST UNITED AC 2012; 9:e209-e217. [PMID: 29422934 DOI: 10.1016/j.ddmod.2012.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Human cardiomyocytes (CMs) do not proliferate in culture and are difficult to obtain for practical reasons. As such, our understanding of the mechanisms that underlie the physiological and pathophysiological development of the human heart is mostly extrapolated from studies of the mouse and other animal models or heterologus expression of defective gene product(s) in non-human cells. Although these studies provided numerous important insights, much of the exact behavior in human cells remains unexplored given that significant species differences exist. With the derivation of human embryonic stem cells (hESC) and induced pluripotent stem cells (iPSCs) from patients with underlying heart disease, a source of human CMs for disease modeling, cardiotoxicity screening and drug discovery is now available. In this review, we focus our discussion on the use of hESC/ iPSC-derived cardiac cells and tissues for studying various heart rhythm disorders and the associated pro-arrhythmogenic properties in relation to advancements in electrophysiology and tissue engineering.
Collapse
Affiliation(s)
- Deborah K Lieu
- Cardiovascular Research Center, Mount Sinai School of Medicine, New York, NY, United States.,Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, CA, United States
| | - Irene C Turnbull
- Cardiovascular Research Center, Mount Sinai School of Medicine, New York, NY, United States
| | - Kevin D Costa
- Cardiovascular Research Center, Mount Sinai School of Medicine, New York, NY, United States
| | - Ronald A Li
- Cardiovascular Research Center, Mount Sinai School of Medicine, New York, NY, United States.,Stem Cell & Regenerative Medicine Consortium, University of Hong Kong, Pokfulam, Hong Kong.,Department of Medicine, LKS Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong.,Department of Physiology, LKS Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
28
|
Lapid H, Hummel T. Recording odor-evoked response potentials at the human olfactory epithelium. Chem Senses 2012; 38:3-17. [PMID: 22944611 DOI: 10.1093/chemse/bjs073] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Electro-olfactogram (EOG) represents the sum of generator potentials of olfactory receptor neurons in response to an olfactory stimulus. Although this measurement technique has been used extensively in animal research, its use in human olfaction research has been relatively limited. To understand the promises and limitations of this technique, this review provides an overview of the olfactory epithelium structure and function, and summarizes EOG characteristics and conventions. It describes methodological pitfalls and their possible solutions, artifacts, and questions of debate in the field. In summary, EOG measurements provide a rare opportunity of recording neuronal input from the peripheral olfactory system, while simultaneously obtaining psychophysical responses in awake humans.
Collapse
Affiliation(s)
- Hadas Lapid
- Department of Neurobiology, Hebrew University of Jerusalem, Israel.
| | | |
Collapse
|
29
|
Larsen AP, Sciuto KJ, Moreno AP, Poelzing S. The voltage-sensitive dye di-4-ANEPPS slows conduction velocity in isolated guinea pig hearts. Heart Rhythm 2012; 9:1493-500. [PMID: 22537886 DOI: 10.1016/j.hrthm.2012.04.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Indexed: 11/19/2022]
Abstract
BACKGROUND Voltage-sensitive dyes are important tools for mapping electrical activity in the heart. However, little is known about the effects of voltage-sensitive dyes on cardiac electrophysiology. OBJECTIVE To test the hypothesis that the voltage-sensitive dye di-4-ANEPPS modulates cardiac impulse propagation. METHODS Electrical and optical mapping experiments were performed in isolated Langendorff perfused guinea pig hearts. The effect of di-4-ANEPPS on conduction velocity and anisotropy of propagation was quantified. HeLa cells expressing connexin 43 were used to evaluate the effect of di-4-ANEPPS on gap junctional conductance. RESULTS In electrical mapping experiments, di-4-ANEPPS (7.5 μM) was found to decrease both longitudinal and transverse conduction velocities significantly compared with control. No change in the anisotropy of propagation was observed. Similar results were obtained in optical mapping experiments. In these experiments, the effect of di-4-ANEPPS was dose dependent. di-4-ANEPPS had no detectable effect on connexin 43-mediated gap junctional conductance in transfected HeLa cells. CONCLUSION Our results demonstrate that the voltage-sensitive dye di-4-ANEPPS directly and dose-dependently modulates cardiac impulse propagation. The effect is not likely mediated by connexin 43 inhibition. Our results highlight an important caveat that should be taken into account when interpreting data obtained using di-4-ANEPPS in cardiac preparations.
Collapse
Affiliation(s)
- Anders Peter Larsen
- Nora Eccles-Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | | | |
Collapse
|
30
|
Abstract
Cardiac optical mapping has proven to be a powerful technology for studying cardiovascular function and disease. The development and scientific impact of this methodology are well-documented. Because of its relevance in cardiac research, this imaging technology advances at a rapid pace. Here, we review technological and scientific developments during the past several years and look toward the future. First, we explore key components of a modern optical mapping set-up, focusing on: (1) new camera technologies; (2) powerful light-emitting-diodes (from ultraviolet to red) for illumination; (3) improved optical filter technology; (4) new synthetic and optogenetic fluorescent probes; (5) optical mapping with motion and contraction; (6) new multiparametric optical mapping techniques; and (7) photon scattering effects in thick tissue preparations. We then look at recent optical mapping studies in single cells, cardiomyocyte monolayers, atria, and whole hearts. Finally, we briefly look into the possible future roles of optical mapping in the development of regenerative cardiac research, cardiac cell therapies, and molecular genetic advances.
Collapse
Affiliation(s)
- Todd J Herron
- Department of Internal Medicine, Cardiovascular Research Center, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI 48109-2800, USA
| | | | | |
Collapse
|
31
|
Warren M, Spitzer KW, Steadman BW, Rees TD, Venable P, Taylor T, Shibayama J, Yan P, Wuskell JP, Loew LM, Zaitsev AV. High-precision recording of the action potential in isolated cardiomyocytes using the near-infrared fluorescent dye di-4-ANBDQBS. Am J Physiol Heart Circ Physiol 2010; 299:H1271-81. [PMID: 20601458 PMCID: PMC2957348 DOI: 10.1152/ajpheart.00248.2010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 07/01/2010] [Indexed: 11/22/2022]
Abstract
The use of voltage-sensitive fluorescent dyes (VSD) for noninvasive measurement of the action potential (AP) in isolated cells has been hindered by low-photon yield of the preparation, dye toxicity, and photodynamic damage. Here we used a new red-shifted VSD, di-4-ANBDQBS, and a fast electron-multiplied charge-coupled device camera for optical AP (OAP) recording in guinea pig cardiac myocytes. Loading di-4-ANBDQBS did not alter APs recorded with micropipette. With short laser exposures (just enough to record one OAP every 1-5 min), di-4-ANBDQBS yielded fluorescent signals with very high signal-to-background ratios (change in fluorescence on depolarization/fluorescence at resting potential: 19.2 ± 4.1%) and signal-to-noise ratios (40 ± 13.2). Quantum chemical calculations comparing the ANBDQ chromophore to the conventional ANEP chromophore showed that the higher wavelength and the greater voltage sensitivity of the former have the same electro-optical origin: a longer path for electron redistribution in the excited state. OAP closely tracked simultaneously recorded electrical APs, permitting measurement of AP duration within 1% error. Prolonged laser exposure caused progressive AP duration prolongation and instability. However, these effects were alleviated or abolished by reducing the dye concentration and by perfusion with antioxidants. Thus the presented technique provides a unique opportunity for noninvasive AP recording in single cardiomyocytes.
Collapse
Affiliation(s)
- Mark Warren
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112-5000, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Stein W, Andras P. Light-induced effects of a fluorescent voltage-sensitive dye on neuronal activity in the crab stomatogastric ganglion. J Neurosci Methods 2010; 188:290-4. [PMID: 20226813 DOI: 10.1016/j.jneumeth.2010.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 03/01/2010] [Accepted: 03/05/2010] [Indexed: 11/28/2022]
Abstract
Optical imaging being one of the cutting-edge methods for the investigation of neural activity, it is very important to understand the mechanisms of how dye molecules work and the range of side effects that they may induce. In particular, it is very important to reveal potential toxic effects and effects impairing the functioning of the investigated neural system. Here, we investigate the effects of illumination in the presence of the commonly used di-4-ANEPPS voltage-sensitive dye on the rhythmic motor pattern generated by the pyloric central pattern generator in the crab stomatogastric nervous system, a model system for motor pattern generation. We report that the dye allows long recording sessions with little bleaching and no obvious damage to the pyloric rhythm. Yet, exciting illumination induced a temporary and reversible change in the phase relationship of the pyloric motor neurons and a concomitant speed-up of the rhythm. The effect was specific to the excitation wavelength of di-4-ANEPPS and only obtained when the neuropile and cell bodies were illuminated. Thus, di-4-ANEPPS acts as a photo-switch that causes a quick and reversible change in the phase relationship of the motor neurons, but no permanent impairment of neuronal function. It may thus also be used as a means to study the maintenance of phase relationships in rhythmic motor patterns.
Collapse
Affiliation(s)
- Wolfgang Stein
- Institute of Neurobiology, Ulm University, Ulm D-89069, Germany.
| | | |
Collapse
|
33
|
Abstract
The use of stem cells for cardiac regeneration is a revolutionary, emerging research area. For proper function as replacement tissue, stem cell-derived cardiomyocytes (SC-CMs) must electrically couple with the host cardiac tissue. Electrophysiological mapping techniques, including microelectrode array (MEA) and optical mapping, have been developed to study cardiomyocytes and cardiac cell monolayers, and these can be applied to study stem cells and SC-CMs. MEA recordings take extracellular measurements at numerous points across a small area of cell cultures and are used to assess electrical propagation during cell culture. Optical mapping uses fluorescent dyes to monitor electrophysiological changes in cells, most commonly transmembrane potential and intracellular calcium, and can be easily scaled to areas of different sizes. The materials and methods for MEA and optical mapping are presented here, together with detailed notes on their use, design, and fabrication. We also provide examples of voltage and calcium maps of mouse embryonic stem cell-derived cardiomyocytes (mESC-CMs), obtained in our laboratory using optical mapping techniques.
Collapse
Affiliation(s)
- Seth Weinberg
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, USA
| | | | | |
Collapse
|
34
|
Abstract
Neurons in vitro are different from any other cell types in their sensitivity and complexity. Growing, differentiating, transfecting, and recording from single neurons and neuronal networks all present particular challenges. Some of the difficulties arise from the small scale of cellular structures, and have already seen substantial advances due to nanotechnology, particularly highly fluorescent semiconductor nanoparticles. Other issues have less obvious solutions, but the complex and often surprising way that novel nanomaterials react with cells have suggested some revolutionary approaches. We review some of the ways nanomaterials and nanostructures can contribute to in vitro neuroscience, with a particular focus on emphasizing techniques that are widely accessible to many laboratories and on providing references to protocols and methods. The issues of nanotoxicology of greatest interest to cultured neurons are discussed. Finally, we present some future trends and challenges in nano-neuroscience.
Collapse
Affiliation(s)
- Daniel R Cooper
- Department of Biomedical Engineering, McGill University, 3775 Rue University, Montreal, QC H3A 2B4 Canada.
| | | |
Collapse
|
35
|
Uniform action potential repolarization within the sarcolemma of in situ ventricular cardiomyocytes. Biophys J 2009; 96:2532-46. [PMID: 19289075 DOI: 10.1016/j.bpj.2008.12.3896] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 12/05/2008] [Accepted: 12/08/2008] [Indexed: 11/22/2022] Open
Abstract
Previous studies have speculated, based on indirect evidence, that the action potential at the transverse (t)-tubules is longer than at the surface membrane in mammalian ventricular cardiomyocytes. To date, no technique has enabled recording of electrical activity selectively at the t-tubules to directly examine this hypothesis. We used confocal line-scan imaging in conjunction with the fast response voltage-sensitive dyes ANNINE-6 and ANNINE-6plus to resolve action potential-related changes in fractional dye fluorescence (DeltaF/F) at the t-tubule and surface membranes of in situ mouse ventricular cardiomyocytes. Peak DeltaF/F during action potential phase 0 depolarization averaged -21% for both dyes. The shape and time course of optical action potentials measured with the water-soluble ANNINE-6plus were indistinguishable from those of action potentials recorded with intracellular microelectrodes in the absence of the dye. In contrast, optical action potentials measured with the water-insoluble ANNINE-6 were significantly prolonged compared to the electrical recordings obtained from dye-free hearts, suggesting electrophysiological effects of ANNINE-6 and/or its solvents. With either dye, the kinetics of action potential-dependent changes in DeltaF/F during repolarization were found to be similar at the t-tubular and surface membranes. This study provides what to our knowledge are the first direct measurements of t-tubule electrical activity in ventricular cardiomyocytes, which support the concept that action potential duration is uniform throughout the sarcolemma of individual cells.
Collapse
|
36
|
Hardy MEL, Pollard CE, Small BG, Bridgland-Taylor M, Woods AJ, Valentin JP, Abi-Gerges N. Validation of a voltage-sensitive dye (di-4-ANEPPS)-based method for assessing drug-induced delayed repolarisation in beagle dog left ventricular midmyocardial myocytes. J Pharmacol Toxicol Methods 2009; 60:94-106. [PMID: 19414070 DOI: 10.1016/j.vascn.2009.03.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 03/10/2009] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Evaluation of drug candidates in in-vitro assays of action potential duration (APD) is one component of preclinical safety assessment. Current assays are limited by technically-demanding, time-consuming electrophysiological methods. This study aimed to assess whether a voltage-sensitive dye-based assay could be used instead. METHODS Optical APs were recorded using di-4-ANEPPS in electrically field stimulated beagle left ventricular midmyocardial myocytes (LVMMs). Pharmacological properties of di-4-ANEPPS on the main cardiac ion channels that shape the ventricular AP were investigated using IonWorks and conventional electrophysiology. Effects of 9 reference drugs (dofetilide, E4031, D-sotalol, ATXII, cisapride, terfenadine, alfuzosin, diltiazem and pinacidil) with known APD-modulating effects were assessed on optically measured APD at 1 Hz. RESULTS Under optimum conditions, 0.1 microM di-4-ANEPPS could be used to monitor APs paced at 1 Hz during nine, 5 s exposures without altering APD. di-4-ANEPPS had no effect on either hI(ERG), hI(Na), hI(Ks) and hI(to) currents in transfected CHO cells (up to 10 microM) or I(Ca,L) current in LVMMs (at 16 microM). di-4-ANEPPS had no effect on APs recorded with microelectrodes at 1 or 0.5 Hz over a period of 30 min di-4-ANEPPS displayed the sensitivity to record changes in optically measured APD in response to altered pacing frequencies and sequential vehicle additions did not affect the optically measured APD. APD data obtained with 9 reference drugs were as expected except (i) D-sotalol-induced increases in duration were smaller than those caused by other I(Kr) blockers and (ii) increases in APD were not detected using low concentrations of terfenadine. DISCUSSION Early in drug discovery, the di-4-ANEPPS-based method can reliably be used to assess drug effects on APD as part of a cardiac risk assessment strategy.
Collapse
Affiliation(s)
- Matthew E L Hardy
- Safety Pharmacology Department, Safety Assessment UK, AstraZeneca R&D, Alderley Park, Macclesfield, Cheshire SK104TG, UK
| | | | | | | | | | | | | |
Collapse
|
37
|
Masumiya H, Oku Y, Okada Y. Inhomogeneous distribution of action potential characteristics in the rabbit sino-atrial node revealed by voltage imaging. J Physiol Sci 2009; 59:227-41. [PMID: 19340533 PMCID: PMC10717393 DOI: 10.1007/s12576-009-0032-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Accepted: 02/03/2009] [Indexed: 11/25/2022]
Abstract
The sino-atrial node (SAN) is the natural pacemaker of the heart. Mechanisms of the leading pacemaker site generation and dynamic pacemaker shifts in the SAN have been so far studied with an electrophysiological technique, but the detailed spatial distribution of action potential characteristics in the SAN has not been analyzed due to the limited number of simultaneously recorded sites in microelectrode recording. To elucidate the mechanism of leading pacemaker site generation in the SAN, we applied a voltage imaging technique and analyzed the spatial distribution of action potential characteristics in the rabbit SAN. Action potential parameters, i.e., action potential duration at 50% repolarization level, the slope of upstroke, and the slope of the linearly depolarizing early phase of pacemaker activity (phase-4), were calculated from optical signals. Action potential parameter values derived from intracellular recording with a microelectrode and those from optical recording were significantly correlated. The leading pacemaker site occurred in the region of either globally or locally maximum phase-4 slope in 7 of 12 preparations, however, it did not coincide with the region of the early maximum phase-4 slope in the other 5 preparations. Carbenoxolone, a gap junction blocker, changed action potential properties and caused pacemaker shifts. Model simulation, assuming an inhomogeneous distribution of intrinsic properties of SAN cells, reproduced the experimental results. We conclude that the functional structure of the SAN is more inhomogeneous than that dictated by previous models. Besides intrinsic cellular properties, cell-to-cell interaction through gap junctions influences action potential characteristics and leading pacemaker site generation.
Collapse
Affiliation(s)
- Haruko Masumiya
- Division of Physiome, Department of Physiology, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501 Japan
| | - Yoshitaka Oku
- Division of Physiome, Department of Physiology, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501 Japan
| | - Yasumasa Okada
- Department of Medicine, Keio University Tsukigase Rehabilitation Center, Izu, Shizuoka 410-3215 Japan
| |
Collapse
|
38
|
Phillips TP, Nygren A. Comparison of analysis techniques of diabetic cardiac action potential propagation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2009; 2008:581-4. [PMID: 19162722 DOI: 10.1109/iembs.2008.4649219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Diabetes is known to cause a variety of cardiovascular complications. One of the effects of the diabetic state is that the conduction velocity of the action potential front may be delayed in the myocardium. Current methods of measuring this effect have included optical mapping methods, from which the time required for activation of the ventricular surface can be measured. It has been proposed that the same information could be obtained from the ECG. This paper examines whether the current optical methods correlate with the proposed ECG-based method. To do this, an ECG measurement algorithm was written and results compared to those of the optical method. The data suggest that the new ECG method is correlated with the existing optical methods. However, the data also suggest that this correlation is highest when the measurement is made during sinus rhythm, rather than in response to a pacing stimulus.
Collapse
Affiliation(s)
- Trevor P Phillips
- Schulich School of Engineering, University of Calgary, Calgary, AB, Canada.
| | | |
Collapse
|
39
|
Nishimura S, Seo K, Nagasaki M, Hosoya Y, Yamashita H, Fujita H, Nagai R, Sugiura S. Responses of single-ventricular myocytes to dynamic axial stretching. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2008; 97:282-97. [DOI: 10.1016/j.pbiomolbio.2008.02.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Ishimaru T. Optical recording of the intrinsic signal from the human olfactory cleft. Ann Otol Rhinol Laryngol 2007; 116:335-41. [PMID: 17561761 DOI: 10.1177/000348940711600504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES Endoscopy of the human olfactory cleft is important for both research in human olfaction and clinical examination with regard to olfactory disorders. However, endoscopy only provides information on the morphology and functional status of the epithelium, and it does not allow discrimination between respiratory and olfactory mucosa. To obtain information on the functional status of the olfactory mucosa, I used endoscopy to investigate the optical intrinsic signal recording from the human olfactory cleft. METHODS A light-emitting diode (617 nm) light source and a cooled charge-coupled device camera were prepared for endoscopy of the olfactory cleft. Subjects were exposed to various odors presented in front of their nostrils. In addition, blanks were used for control. RESULTS When normosmic subjects sniffed the odors, the intensity of the signal from the olfactory mucosa changed, which was not the case when blank stimuli were presented. Different odors activated different response patterns. A decrease of the oxyhemoglobin level in the activated olfactory epithelium is suspected to be responsible for this observation. CONCLUSIONS The optical intrinsic signals were recorded from the human olfactory cleft with an endoscope. This technique may be applicable to basic research in olfaction and to a clinical test for the assessment of olfactory disorders.
Collapse
Affiliation(s)
- Tadashi Ishimaru
- Smell and Taste Clinic, Department of Otorhinolaryngology, University of Dresden Medical School, Technische Universitaet Dresden, Dresden, Germany
| |
Collapse
|
41
|
Matiukas A, Mitrea BG, Qin M, Pertsov AM, Shvedko AG, Warren MD, Zaitsev AV, Wuskell JP, Wei MD, Watras J, Loew LM. Near-infrared voltage-sensitive fluorescent dyes optimized for optical mapping in blood-perfused myocardium. Heart Rhythm 2007; 4:1441-51. [PMID: 17954405 DOI: 10.1016/j.hrthm.2007.07.012] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Accepted: 07/06/2007] [Indexed: 10/23/2022]
Abstract
BACKGROUND Styryl voltage-sensitive dyes (e.g., di-4-ANEPPS) have been used successfully for optical mapping in cardiac cells and tissues. However, their utility for probing electrical activity deep inside the myocardial wall and in blood-perfused myocardium has been limited because of light scattering and high absorption by endogenous chromophores and hemoglobin at blue-green excitation wavelengths. OBJECTIVE The purpose of this study was to characterize two new styryl dyes--di-4-ANBDQPQ (JPW-6003) and di-4-ANBDQBS (JPW-6033)--optimized for blood-perfused tissue and intramural optical mapping. METHODS Voltage-dependent spectra were recorded in a model lipid bilayer. Optical mapping experiments were conducted in four species (mouse, rat, guinea pig, and pig). Hearts were Langendorff perfused using Tyrode's solution and blood (pig). Dyes were loaded via bolus injection into perfusate. Transillumination experiments were conducted in isolated coronary-perfused pig right ventricular wall preparations. RESULTS The optimal excitation wavelength in cardiac tissues (650 nm) was >70 nm beyond the absorption maximum of hemoglobin. Voltage sensitivity of both dyes was approximately 10% to 20%. Signal decay half-life due to dye internalization was 80 to 210 minutes, which is 5 to 7 times slower than for di-4-ANEPPS. In transillumination mode, DeltaF/F was as high as 20%. In blood-perfused tissues, DeltaF/F reached 5.5% (1.8 times higher than for di-4-ANEPPS). CONCLUSION We have synthesized and characterized two new near-infrared dyes with excitation/emission wavelengths shifted >100 nm to the red. They provide both high voltage sensitivity and 5 to 7 times slower internalization rate compared to conventional dyes. The dyes are optimized for deeper tissue probing and optical mapping of blood-perfused tissue, but they also can be used for conventional applications.
Collapse
Affiliation(s)
- Arvydas Matiukas
- Department of Pharmacology, State University of New York, Upstate Medical University, Syracuse, New York 13210, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Haugan K, Kjølbye AL, Hennan JK, Petersen JS. Rotigaptide (ZP123) reverts established atrial conduction velocity slowing. ACTA ACUST UNITED AC 2007; 12:271-8. [PMID: 16531322 DOI: 10.1080/15419060500514135] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Rotigaptide (ZP123) increases gap junction intercellular communication (GJIC) and prevents stress-induced cardiac conduction velocity (CV) slowing. However, the effect of rotigaptide on established cardiac conduction slowing and the duration of effect on rotigaptide during washout is unknown. Metabolic stress (induced by superfusion with nonoxygenated glucose-free Tyrodes buffer) was associated with a 30% decrease in atrial CV in vehicle-treated rat atria. Rotigaptide treatment initiated after a period of 30 minutes of metabolic stress produced a rapid and significant increase in CV compared to vehicle-treated time controls. During washout of rotigaptide for 30 min (while subjected to metabolic stress), there was a minor decrease in atrial CV; however, this was not significantly different from atrial CV in a rotigaptide-treated time control group. Rotigaptide treatment rapidly normalizes established conduction slowing in atria subjected to metabolic stress. However, the cessation of effect was considerably slower than the onset of action.
Collapse
Affiliation(s)
- Ketil Haugan
- Zealand Pharma A/S, Smedeland 26B, DK-2600, Glostrup, Denmark
| | | | | | | |
Collapse
|
43
|
Amoroso S, Agon VV, Starke-Peterkovic T, McLeod MD, Apell HJ, Sebban P, Clarke RJ. Photochemical behavior and Na+,K+-ATPase sensitivity of voltage-sensitive styrylpyridinium fluorescent membrane probes. Photochem Photobiol 2006; 82:495-502. [PMID: 16613504 DOI: 10.1562/2005-06-08-ra-569] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
RH421 is a widely used voltage-sensitive fluorescent membrane probe. Its exposure to continuous illumination with 577 nm light from an Hg lamp leads, however, to an increase in its steady-state fluorescence level when bound to lipid membranes. The increase occurs on the second time scale at typical light intensities and was found to be due to a single-photon excited-state isomerization. Modifications to the dye structure are, therefore, necessary to increase photochemical stability and allow wider application of such dyes in kinetic studies of ion-transporting membrane proteins. The related probe ANNINE 5, which has a rigid polycyclic structure, shows no observable photochemical reaction when bound to DMPC vesicles on irradiation with 436 nm light. The voltage sensitivity of ANNINE 5 was tested with the use of Na+,K+-ATPase membrane fragments. As long as ANNINE 5 is excited on the far red edge of its visible absorption band, it shows a similar sensitivity to RH421 in detecting charge-translocating reactions triggered by ATP phosphorylation. Unfortunately the wavelengths necessary for ANNINE 5 excitation are in a region where the Hg lamps routinely used in stopped-flow apparatus have no significant lines available for excitation.
Collapse
Affiliation(s)
- Steve Amoroso
- School of Chemistry, University of Sydney, Sydney, Australia
| | | | | | | | | | | | | |
Collapse
|
44
|
Hardy MEL, Lawrence CL, Standen NB, Rodrigo GC. Can optical recordings of membrane potential be used to screen for drug-induced action potential prolongation in single cardiac myocytes? J Pharmacol Toxicol Methods 2006; 54:173-82. [PMID: 16632384 DOI: 10.1016/j.vascn.2006.02.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Accepted: 02/27/2006] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Potential-sensitive dyes have primarily been used to optically record action potentials (APs) in whole heart tissue. Using these dyes to record drug-induced changes in AP morphology of isolated cardiac myocytes could provide an opportunity to develop medium throughout assays for the pharmaceutical industry. Ideally, this requires that the dye has a consistent and rapid response to membrane potential, is insensitive to movement, and does not itself affect AP morphology. MATERIALS AND METHODS We recorded the AP from isolated adult guinea-pig ventricular myocytes optically using di-8-ANEPPS in a single-excitation dual-emission ratiometric system, either separately in electrically field stimulated myocytes, or simultaneously with an electrical AP recorded with a patch electrode in the whole-cell bridge mode. The ratio of di-8-ANEPPS fluorescence signal was calibrated against membrane potential using a switch-clamp to voltage clamp the myocyte. RESULTS Our data show that the ratio of the optical signals emitted at 560/620 nm is linearly related to voltage over the voltage range of an AP, producing a change in ratio of 7.5% per 100 mV, is unaffected by cell movement and is identical to the AP recorded simultaneously with a patch electrode. However, the APD90 recorded optically in myocytes loaded with di-8-ANEPPS was significantly longer than in unloaded myocytes recorded with a patch electrode (355.6+/-13.5 vs. 296.2+/-16.2 ms; p<0.01). Despite this effect, the apparent IC50 for cisapride, which prolongs the AP by blocking IKr, was not significantly different whether determined optically or with a patch electrode (91+/-46 vs. 81+/-20 nM). DISCUSSION These data show that the optical AP recorded ratiometrically using di-8-ANEPPS from a single ventricular myocyte accurately follows the action potential morphology. This technique can be used to estimate the AP prolonging effects of a compound, although di-8-ANEPPS itself prolongs APD90. Optical dyes require less technical skills and are less invasive than conventional electrophysiological techniques and, when coupled to ventricular myocytes, decreases animal usage and facilitates higher throughput assays.
Collapse
Affiliation(s)
- M E L Hardy
- Department of Cell Physiology and Pharmacology, University of Leicester, PO Box 138, Leicester LE1 9HN, UK
| | | | | | | |
Collapse
|
45
|
Schmidt R, Nygren A. Optical mapping system for visualizing arrhythmias in isolated mouse atria. CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2006; 2006:4002-4005. [PMID: 17946214 DOI: 10.1109/iembs.2006.259600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Optical mapping has become an important technique in the study of cardiac electrophysiology, especially in terms of investigating the mechanisms of cardiac arrhythmias. The increasing availability of transgenic mice as models for cardiovascular disease is driving the need for instrumentation suitable for the study of electrical activity in the mouse heart. In this paper we evaluate our optical mapping system's ability to clearly record induced arrhythmic activity in an isolated mouse atrial preparation. Preliminary results indicate that the signal quality is high enough that individual optically recorded action potentials can be discerned in many pixels, even without post-processing for noise removal. The optical mapping video is clear enough for general observations regarding the patterns of electrical propagation during arrhythmic behaviour. The induced arrhythmias appear to have a regular pattern of activity, and are likely best classified as atrial tachycardias.
Collapse
Affiliation(s)
- Robyn Schmidt
- Dept. of Electr. & Comput. Eng., Calgary Univ., Alta.
| | | |
Collapse
|
46
|
Nadeau JL, Clarke SJ, Hollmann CA, Bahcheli DM. Quantum dot-FRET systems for imaging of neuronal action potentials. CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2006; 2006:855-858. [PMID: 17946865 DOI: 10.1109/iembs.2006.259551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Fluorescent semiconductor quantum dots (QDs) can act as energy donors or acceptors with a wide variety of environmentally-sensitive molecules. Conjugation of a single QD to a select number of the selected molecule can optimize the range of sensitivity for a given application, and the relatively large size of the QDs allows them to be tracked individually in cells. Using QDs as FRET acceptors, we have created first-generation sensors for membrane potential which shows good signal to noise and time resolution, but prohibitive toxicity. The challenges of delivery, calibration, and toxicity and plans for improvement of the sensors are presented, in the context of the eventual aim of monitoring membrane potential in a cultured motor neuron model of amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- J L Nadeau
- Department of Biomedical Engineering, McGill University, 3775 Rue University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
47
|
Sharma V, Susil RC, Tung L. Paradoxical loss of excitation with high intensity pulses during electric field stimulation of single cardiac cells. Biophys J 2005; 88:3038-49. [PMID: 15665123 PMCID: PMC1305396 DOI: 10.1529/biophysj.104.047142] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transmembrane potential responses of single cardiac cells stimulated at rest were studied with uniform rectangular field pulses having durations of 0.5-10 ms. Cells were enzymatically isolated from guinea pig ventricles, stained with voltage sensitive dye di-8-ANEPPS, and stimulated along their long axes. Fluorescence signals were recorded with spatial resolution of 17 microm for up to 11 sites along the cell. With 5 and 10 ms pulses, all cells (n = 10) fired an action potential over a broad range of field amplitudes (approximately 3-65 V/cm). With 0.5 and 1 ms pulses, all cells (n = 7) fired an action potential for field amplitudes ranging from the threshold value (approximately 4-8 V/cm) to 50-60 V/cm. However, when the field amplitude was further increased, five of seven cells failed to fire an action potential. We postulated that this paradoxical loss of excitation for higher amplitude field pulses is the result of nonuniform polarization of the cell membrane under conditions of electric field stimulation, and a counterbalancing interplay between sodium current and inwardly rectifying potassium current with increasing field strength. This hypothesis was verified using computer simulations of a field-stimulated guinea pig ventricular cell. In conclusion, we show that for stimulation with short-duration pulses, cells can be excited for fields ranging between a low amplitude excitation threshold and a high amplitude threshold above which the excitation is suppressed. These results can have implications for the mechanistic understanding of defibrillation outcome, especially in the setting of diseased myocardium.
Collapse
Affiliation(s)
- Vinod Sharma
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
48
|
Abstract
Optical techniques have revolutionized the investigation of cardiac cellular physiology and advanced our understanding of basic mechanisms of electrical activity, calcium homeostasis, and metabolism. Although optical methods are widely accepted and have been at the forefront of scientific discoveries, they have been primarily applied at cellular and subcellular levels and considerably less to whole heart organ physiology. Numerous technical difficulties had to be overcome to dynamically map physiological processes in intact hearts by optical methods. Problems of contraction artifacts, cellular heterogeneities, spatial and temporal resolution, limitations of surface images, depth-of-field, and need for large fields of view (ranging from 2x2 mm2 to 3x3 cm2) have all led to the development of new devices and optical probes to monitor physiological parameters in intact hearts. This review aims to provide a critical overview of current approaches, their contributions to the field of cardiac electrophysiology, and future directions of various optical imaging modalities as applied to cardiac physiology at organ and tissue levels.
Collapse
Affiliation(s)
- Igor R Efimov
- Case Western Reserve University, 10900 Euclid Ave, Cleveland, Ohio 44106-7207, USA.
| | | | | |
Collapse
|
49
|
Entcheva E, Kostov Y, Tchernev E, Tung L. Fluorescence imaging of electrical activity in cardiac cells using an all-solid-state system. IEEE Trans Biomed Eng 2004; 51:333-41. [PMID: 14765706 DOI: 10.1109/tbme.2003.820376] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Tracking spatial and temporal determinants of cardiac arrhythmogenesis at the cellular level presents challenges to the optical mapping techniques employed. In this paper, we describe a compact system combining two nontraditional low-cost solutions for excitation light sources and emission filters in fluorescence measurements of transmembrane potentials, Vm, or intracellular calcium, [Ca2+]i in cardiac cell networks. This is the first reported use of high-power blue and green light emitting diodes (LEDs), to excite cell monolayers stained with Vm - (di-8-ANEPPS) or [Ca2+]i - (Fluo-3) sensitive dyes. In addition, we use simple techniques for fabrication of suitable thin emission filters with uniform properties, no auto-fluorescence, high durability and good flexibility for imaging Vm or [Ca2+]i. The battery-operated LEDs and the fabricated emission filters, integrated with a fiber-optic system for contact fluorescence imaging, were used as tools to characterize conduction velocity restitution at the macro-scale. The versatility of the LEDs for illumination is further emphasized through 1) demonstration of their usage for epi-illumination recordings at the single-cell level, and 2) demonstration of their unique high-frequency light modulation ability. The LEDs showed excellent stability as excitation light sources for fluorescence measurements; acceptable signal-to-noise ratio and negligible cell photodamage and indicator dye photobleaching were observed.
Collapse
Affiliation(s)
- Emilia Entcheva
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21250, USA.
| | | | | | | |
Collapse
|
50
|
Peinado A, Calderon DP. Hyperactivation of developing cortical circuits by acetylcholine and the ontogeny of abnormal cognition and emotion: findings and hypothesis. PROGRESS IN BRAIN RESEARCH 2003; 145:131-42. [PMID: 14650912 DOI: 10.1016/s0079-6123(03)45009-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Affiliation(s)
- Alejandro Peinado
- Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA.
| | | |
Collapse
|