1
|
Pokorzynski ND, Groisman EA. How Bacterial Pathogens Coordinate Appetite with Virulence. Microbiol Mol Biol Rev 2023; 87:e0019822. [PMID: 37358444 PMCID: PMC10521370 DOI: 10.1128/mmbr.00198-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023] Open
Abstract
Cells adjust growth and metabolism to nutrient availability. Having access to a variety of carbon sources during infection of their animal hosts, facultative intracellular pathogens must efficiently prioritize carbon utilization. Here, we discuss how carbon source controls bacterial virulence, with an emphasis on Salmonella enterica serovar Typhimurium, which causes gastroenteritis in immunocompetent humans and a typhoid-like disease in mice, and propose that virulence factors can regulate carbon source prioritization by modifying cellular physiology. On the one hand, bacterial regulators of carbon metabolism control virulence programs, indicating that pathogenic traits appear in response to carbon source availability. On the other hand, signals controlling virulence regulators may impact carbon source utilization, suggesting that stimuli that bacterial pathogens experience within the host can directly impinge on carbon source prioritization. In addition, pathogen-triggered intestinal inflammation can disrupt the gut microbiota and thus the availability of carbon sources. By coordinating virulence factors with carbon utilization determinants, pathogens adopt metabolic pathways that may not be the most energy efficient because such pathways promote resistance to antimicrobial agents and also because host-imposed deprivation of specific nutrients may hinder the operation of certain pathways. We propose that metabolic prioritization by bacteria underlies the pathogenic outcome of an infection.
Collapse
Affiliation(s)
- Nick D. Pokorzynski
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Eduardo A. Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
- Yale Microbial Sciences Institute, West Haven, Connecticut, USA
| |
Collapse
|
2
|
Kim J, Tremaine M, Grass JA, Purdy HM, Landick R, Kiley PJ, Reed JL. Systems Metabolic Engineering of Escherichia coli Improves Coconversion of Lignocellulose-Derived Sugars. Biotechnol J 2019; 14:e1800441. [PMID: 31297978 DOI: 10.1002/biot.201800441] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 07/08/2019] [Indexed: 11/10/2022]
Abstract
Currently, microbial conversion of lignocellulose-derived glucose and xylose to biofuels is hindered by the fact that most microbes (including Escherichia coli [E. coli], Saccharomyces cerevisiae, and Zymomonas mobilis) preferentially consume glucose first and consume xylose slowly after glucose is depleted in lignocellulosic hydrolysates. In this study, E. coli strains are developed that simultaneously utilize glucose and xylose in lignocellulosic biomass hydrolysate using genome-scale models and adaptive laboratory evolution. E. coli strains are designed and constructed that coutilize glucose and xylose and adaptively evolve them to improve glucose and xylose utilization. Whole-genome resequencing of the evolved strains find relevant mutations in metabolic and regulatory genes and the mutations' involvement in sugar coutilization is investigated. The developed strains show significantly improved coconversion of sugars in lignocellulosic biomass hydrolysates and provide a promising platform for producing next-generation biofuels.
Collapse
Affiliation(s)
- Joonhoon Kim
- US Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53711, USA.,Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr, Madison, WI, 53711, USA
| | - Mary Tremaine
- US Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53711, USA
| | - Jeffrey A Grass
- US Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53711, USA
| | - Hugh M Purdy
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr, Madison, WI, 53711, USA
| | - Robert Landick
- US Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53711, USA.,Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53711, USA.,Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53711, USA
| | - Patricia J Kiley
- US Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53711, USA.,Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, 53711, USA
| | - Jennifer L Reed
- US Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53711, USA.,Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr, Madison, WI, 53711, USA
| |
Collapse
|
3
|
Baffert C, Kpebe A, Avilan L, Brugna M. Hydrogenases and H 2 metabolism in sulfate-reducing bacteria of the Desulfovibrio genus. Adv Microb Physiol 2019; 74:143-189. [PMID: 31126530 DOI: 10.1016/bs.ampbs.2019.03.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Hydrogen metabolism plays a central role in sulfate-reducing bacteria of the Desulfovibrio genus and is based on hydrogenases that catalyze the reversible conversion of protons into dihydrogen. These metabolically versatile microorganisms possess a complex hydrogenase system composed of several enzymes of both [FeFe]- and [NiFe]-type that can vary considerably from one Desulfovibrio species to another. This review covers the molecular and physiological aspects of hydrogenases and H2 metabolism in Desulfovibrio but focuses particularly on our model bacterium Desulfovibrio fructosovorans. The search of hydrogenase genes in more than 30 sequenced genomes provides an overview of the distribution of these enzymes in Desulfovibrio. Our discussion will consider the significance of the involvement of electron-bifurcation in H2 metabolism.
Collapse
Affiliation(s)
- Carole Baffert
- Aix-Marseille University, CNRS, BIP, 31 Chemin Joseph Aiguier, 13402 Marseille, France
| | - Arlette Kpebe
- Aix-Marseille University, CNRS, BIP, 31 Chemin Joseph Aiguier, 13402 Marseille, France
| | - Luisana Avilan
- Aix-Marseille University, CNRS, BIP, 31 Chemin Joseph Aiguier, 13402 Marseille, France
| | - Myriam Brugna
- Aix-Marseille University, CNRS, BIP, 31 Chemin Joseph Aiguier, 13402 Marseille, France
| |
Collapse
|
4
|
The transport and mediation mechanisms of the common sugars in Escherichia coli. Biotechnol Adv 2014; 32:905-19. [DOI: 10.1016/j.biotechadv.2014.04.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 03/23/2014] [Accepted: 04/18/2014] [Indexed: 11/17/2022]
|
5
|
Cao W, Luo J, Qi B, Zhao J, Qiao C, Ding L, Su Y, Wan Y. β-poly(l-malic acid) production by fed-batch culture ofAureobasidium pullulansipe-1 with mixed sugars. Eng Life Sci 2013. [DOI: 10.1002/elsc.201200189] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Weifeng Cao
- National Key Laboratory of Biochemical Engineering; Institute of Process Engineering, Chinese Academy of Sciences; Beijing P.R. China
| | - Jianquan Luo
- National Key Laboratory of Biochemical Engineering; Institute of Process Engineering, Chinese Academy of Sciences; Beijing P.R. China
- Biological Engineering Department; EA 4297 TIMR, Technological University of Compiegne; Compiegne France
| | - Benkun Qi
- National Key Laboratory of Biochemical Engineering; Institute of Process Engineering, Chinese Academy of Sciences; Beijing P.R. China
| | - Juan Zhao
- Research Center of Modern Analysis Technology; Tianjin University of Science & Technology; Tianjin P.R. China
| | - Changsheng Qiao
- Department of Bioengineering; Tianjin University of Science & Technology; Tianjin P.R. China
| | - Luhui Ding
- Biological Engineering Department; EA 4297 TIMR, Technological University of Compiegne; Compiegne France
| | - Yi Su
- National Key Laboratory of Biochemical Engineering; Institute of Process Engineering, Chinese Academy of Sciences; Beijing P.R. China
| | - Yinhua Wan
- National Key Laboratory of Biochemical Engineering; Institute of Process Engineering, Chinese Academy of Sciences; Beijing P.R. China
| |
Collapse
|
6
|
Kornberg HL, Prior TI. Fructose uptake by Escherichia coli-‘the odd man out’ of the phosphotransferase system. FEMS Microbiol Lett 2013. [DOI: 10.1111/j.1574-6968.1989.tb14116.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
7
|
Postma P, Broekhuizen C, Geerse R. The role of the PEP: carbohydrate phosphotransferase system in the regulation of bacterial metabolism. FEMS Microbiol Lett 2013. [DOI: 10.1111/j.1574-6968.1989.tb14102.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
8
|
Erni B. The bacterial phosphoenolpyruvate: sugar phosphotransferase system (PTS): an interface between energy and signal transduction. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2012. [DOI: 10.1007/s13738-012-0185-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Involvement of the Cra global regulatory protein in the expression of the iscRSUA operon, revealed during studies of tricarballylate catabolism in Salmonella enterica. J Bacteriol 2009; 191:2069-76. [PMID: 19136587 DOI: 10.1128/jb.01577-08] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Salmonella enterica, tricarballylate (Tcb) catabolism requires function of TcuB, a membrane-bound protein that contains [4Fe-4S] clusters and heme. TcuB transfers electrons from reduced flavin adenine dinucleotide in the Tcb dehydrogenase (TcuA) to electron acceptors in the membrane. We recently showed that functions needed to assemble [Fe-S] clusters (i.e., the iscRSUA-hscBA-fdx operon) compensate for the lack of ApbC during growth of an apbC strain on Tcb. ApbC had been linked to [Fe-S] cluster metabolism, and we showed that an apbC strain had decreased TcuB activity. Here we report findings that expand our understanding of the regulation of expression of the iscRSUA genes in Salmonella enterica. We investigated why low levels of glucose or other saccharides restored growth of an apbC strain on Tcb. Here we report the following findings. (i) A < or =1 mM concentration of glucose, fructose, ribose, or glycerol restores growth of an apbC strain on Tcb. (ii) The saccharide effect results in increased levels of TcuB activity. (iii) The saccharide effect depends on the global regulatory protein Cra. (iv) Putative Cra binding sites are present in the regulatory region of the iscRSUA operon. (v) Cra protein binds to all three sites in the iscRSUA promoter region in a concentration-dependent fashion. To our knowledge, this is the first report of the involvement of Cra in [Fe-S] cluster assembly.
Collapse
|
10
|
Deutscher J, Francke C, Postma PW. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev 2007; 70:939-1031. [PMID: 17158705 PMCID: PMC1698508 DOI: 10.1128/mmbr.00024-06] [Citation(s) in RCA: 1038] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The phosphoenolpyruvate(PEP):carbohydrate phosphotransferase system (PTS) is found only in bacteria, where it catalyzes the transport and phosphorylation of numerous monosaccharides, disaccharides, amino sugars, polyols, and other sugar derivatives. To carry out its catalytic function in sugar transport and phosphorylation, the PTS uses PEP as an energy source and phosphoryl donor. The phosphoryl group of PEP is usually transferred via four distinct proteins (domains) to the transported sugar bound to the respective membrane component(s) (EIIC and EIID) of the PTS. The organization of the PTS as a four-step phosphoryl transfer system, in which all P derivatives exhibit similar energy (phosphorylation occurs at histidyl or cysteyl residues), is surprising, as a single protein (or domain) coupling energy transfer and sugar phosphorylation would be sufficient for PTS function. A possible explanation for the complexity of the PTS was provided by the discovery that the PTS also carries out numerous regulatory functions. Depending on their phosphorylation state, the four proteins (domains) forming the PTS phosphorylation cascade (EI, HPr, EIIA, and EIIB) can phosphorylate or interact with numerous non-PTS proteins and thereby regulate their activity. In addition, in certain bacteria, one of the PTS components (HPr) is phosphorylated by ATP at a seryl residue, which increases the complexity of PTS-mediated regulation. In this review, we try to summarize the known protein phosphorylation-related regulatory functions of the PTS. As we shall see, the PTS regulation network not only controls carbohydrate uptake and metabolism but also interferes with the utilization of nitrogen and phosphorus and the virulence of certain pathogens.
Collapse
Affiliation(s)
- Josef Deutscher
- Microbiologie et Génétique Moléculaire, INRA-CNRS-INA PG UMR 2585, Thiverval-Grignon, France.
| | | | | |
Collapse
|
11
|
Abstract
Escherichia coli and Salmonella enterica serovar Typhimurium exhibit a remarkable versatility in the usage of different sugars as the sole source of carbon and energy, reflecting their ability to make use of the digested meals of mammalia and of the ample offerings in the wild. Degradation of sugars starts with their energy-dependent uptake through the cytoplasmic membrane and is carried on further by specific enzymes in the cytoplasm, destined finally for degradation in central metabolic pathways. As variant as the different sugars are, the biochemical strategies to act on them are few. They include phosphorylation, keto-enol isomerization, oxido/reductions, and aldol cleavage. The catabolic repertoire for using carbohydrate sources is largely the same in E. coli and in serovar Typhimurium. Nonetheless, significant differences are found, even among the strains and substrains of each species. We have grouped the sugars to be discussed according to their first step in metabolism, which is their active transport, and follow their path to glycolysis, catalyzed by the sugar-specific enzymes. We will first discuss the phosphotransferase system (PTS) sugars, then the sugars transported by ATP-binding cassette (ABC) transporters, followed by those that are taken up via proton motive force (PMF)-dependent transporters. We have focused on the catabolism and pathway regulation of hexose and pentose monosaccharides as well as the corresponding sugar alcohols but have also included disaccharides and simple glycosides while excluding polysaccharide catabolism, except for maltodextrins.
Collapse
Affiliation(s)
- Christoph Mayer
- Fachbereich Biologie, Universität Konstanz, 78457 Konstanz, Germany
| | | |
Collapse
|
12
|
Perrenoud A, Sauer U. Impact of global transcriptional regulation by ArcA, ArcB, Cra, Crp, Cya, Fnr, and Mlc on glucose catabolism in Escherichia coli. J Bacteriol 2005; 187:3171-9. [PMID: 15838044 PMCID: PMC1082841 DOI: 10.1128/jb.187.9.3171-3179.2005] [Citation(s) in RCA: 218] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2004] [Accepted: 01/21/2005] [Indexed: 01/01/2023] Open
Abstract
Even though transcriptional regulation plays a key role in establishing the metabolic network, the extent to which it actually controls the in vivo distribution of metabolic fluxes through different pathways is essentially unknown. Based on metabolism-wide quantification of intracellular fluxes, we systematically elucidated the relevance of global transcriptional regulation by ArcA, ArcB, Cra, Crp, Cya, Fnr, and Mlc for aerobic glucose catabolism in batch cultures of Escherichia coli. Knockouts of ArcB, Cra, Fnr, and Mlc were phenotypically silent, while deletion of the catabolite repression regulators Crp and Cya resulted in a pronounced slow-growth phenotype but had only a nonspecific effect on the actual flux distribution. Knockout of ArcA-dependent redox regulation, however, increased the aerobic tricarboxylic acid (TCA) cycle activity by over 60%. Like aerobic conditions, anaerobic derepression of TCA cycle enzymes in an ArcA mutant significantly increased the in vivo TCA flux when nitrate was present as an electron acceptor. The in vivo and in vitro data demonstrate that ArcA-dependent transcriptional regulation directly or indirectly controls TCA cycle flux in both aerobic and anaerobic glucose batch cultures of E. coli. This control goes well beyond the previously known ArcA-dependent regulation of the TCA cycle during microaerobiosis.
Collapse
Affiliation(s)
- Annik Perrenoud
- Institute of Biotechnology, ETH Zürich, CH-8093 Zürich, Switzerland
| | | |
Collapse
|
13
|
Affiliation(s)
- Hans L Kornberg
- Department of Biology, Boston University, Massachusetts 02215, USA.
| |
Collapse
|
14
|
Monedero V, Postma PW, Pérez-Martínez G. Suppression of the ptsH mutation in Escherichia coli and Salmonella typhimurium by a DNA fragment from Lactobacillus casei. J Bacteriol 1998; 180:5247-50. [PMID: 9748463 PMCID: PMC107566 DOI: 10.1128/jb.180.19.5247-5250.1998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/1998] [Accepted: 07/24/1998] [Indexed: 11/20/2022] Open
Abstract
A DNA fragment from Lactobacillus casei that restores growth to Escherichia coli and Salmonella typhimurium ptsH mutants on glucose and other substrates of the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) has been isolated. These mutants lack the HPr protein, a general component of the PTS. Sequencing of the cloned fragment revealed the absence of ptsH homologues. Instead, the complementation ability was located in a 120-bp fragment that contained a sequence homologue to the binding site of the Cra regulator from enteric bacteria. Experiments indicated that the reversion of the ptsH phenotype was due to a titration of the Cra protein, which allowed the constitutive expression of the fructose operon.
Collapse
Affiliation(s)
- V Monedero
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos, 46100-Burjassot, Valencia, Spain
| | | | | |
Collapse
|
15
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|
16
|
Crasnier-Mednansky M, Park MC, Studley WK, Saier MH. Cra-mediated regulation of Escherichia coli adenylate cyclase. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 3):785-792. [PMID: 9084162 DOI: 10.1099/00221287-143-3-785] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In Escherichia coli, expression of certain genes and operons, including the fructose operon, is controlled by Cra, the pleiotropic catabolite repressor/activator protein formerly known as FruR. In this study we have demonstrated that cra mutant strains synthesize 10-fold less cAMP than isogenic wild-type strains, specifically when grown in fructose-containing minimal media. The glucose-specific IIA protein (IIAglc) of the phosphotransferase system, which activates adenylate cyclase when phosphorylated, is largely dephosphorylated in cra but not wild-type strains growing under these conditions. Dephosphorylation of IIAglc in cra strains apparently results from enhanced fructose operon transcription and fructose uptake. These conclusions were supported by showing that fructose-grown cra strains possess 2.5-fold higher fructose-1-phosphate kinase activity than fructose-grown wild-type strains. Moreover, artificially increasing fructose operon expression in cells transporting fructose dramatically decreased the activity of adenylate cyclase. The results establish that Cra indirectly regulates the activity of adenylate cyclase by controlling the expression of the fructose operon in cells growing with fructose as the sole carbon source.
Collapse
Affiliation(s)
| | - Maxwell C Park
- University of California at San Diego, Department of Biology, La Jolla, CA 92093-0116, USA
| | - William K Studley
- University of California at San Diego, Department of Biology, La Jolla, CA 92093-0116, USA
| | - Milton H Saier
- University of California at San Diego, Department of Biology, La Jolla, CA 92093-0116, USA
| |
Collapse
|
17
|
Meyer D, Schneider-Fresenius C, Horlacher R, Peist R, Boos W. Molecular characterization of glucokinase from Escherichia coli K-12. J Bacteriol 1997; 179:1298-306. [PMID: 9023215 PMCID: PMC178829 DOI: 10.1128/jb.179.4.1298-1306.1997] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
glk, the structural gene for glucokinase of Escherichia coli, was cloned and sequenced. Overexpression of glk resulted in the synthesis of a cytoplasmic protein with a molecular weight of 35,000. The enzyme was purified, and its kinetic parameters were determined. Its Km values for glucose and ATP were 0.78 and 3.76 mM, respectively. Its Vmax was 158 U/mg of protein. A chromosomal glk-lacZ fusion was constructed and used to monitor glk expression. Under all conditions tested, only growth on glucose reduced the expression of glk by about 50%. A fruR mutation slightly increased the expression of glk-lacZ, whereas the overexpression of plasmid-encoded fruR+ weakly decreased expression. A FruR consensus binding motif was found 123 bp upstream of the potential transcriptional start site of glk. Overexpression of glk interfered with the expression of the maltose system. Repression was strongest in strains that exhibited constitutive mal gene expression due to endogenous induction and, in the absence of a functional MalK protein, the ATP-hydrolyzing subunit of the maltose transport system. It was least effective in wild-type strains growing on maltose or in strains constitutive for the maltose system due to a mutation in malT rendering the mal gene expression independent of inducer. This demonstrates that free internal glucose plays an essential role in the formation of the endogenous inducer of the maltose system.
Collapse
Affiliation(s)
- D Meyer
- Department of Biology, University of Konstanz, Germany
| | | | | | | | | |
Collapse
|
18
|
Abstract
The catabolite repressor-activator (Cra) protein controls the direction of carbon flux through metabolic pathways in enteric bacteria. Cra binds to the control regions of target genes and exerts a negative effect on the expression of genes encoding glycolytic and Entner-Doudoroff enzymes, while exerting a positive effect on genes encoding Krebs cycle, glyoxylate shunt and gluconeogenic enzymes. Cra mediates cyclic AMP-independent catabolite repression of positively Cra-regulated genes and catabolite activation of negatively Cra-controlled genes.
Collapse
Affiliation(s)
- T M Ramseier
- Department of Biology, University of California at San Diego, La Jolla 92093-0116, USA
| |
Collapse
|
19
|
Affiliation(s)
- M H Saier
- Department of Biology, University of California at San Diego, La Jolla, California 92093-0116, USA
| | | |
Collapse
|
20
|
Bledig SA, Ramseier TM, Saier MH. Frur mediates catabolite activation of pyruvate kinase (pykF) gene expression in Escherichia coli. J Bacteriol 1996; 178:280-3. [PMID: 8550429 PMCID: PMC177650 DOI: 10.1128/jb.178.1.280-283.1996] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Expression of a pykF-lacZ fusion was studied as a function of the carbon source in wild-type strains and strains lacking or overproducing the FruR protein of Escherichia coli. FruR controls the response to the carbon source by repressing pykF expression more strongly under gluconeogenic than under glycolytic conditions, a phenomenon we term catabolite activation.
Collapse
Affiliation(s)
- S A Bledig
- Department of Biology, University of California at San Diego, La Jolla 92093-0116, USA
| | | | | |
Collapse
|
21
|
Ramseier TM, Bledig S, Michotey V, Feghali R, Saier MH. The global regulatory protein FruR modulates the direction of carbon flow in Escherichia coli. Mol Microbiol 1995; 16:1157-69. [PMID: 8577250 DOI: 10.1111/j.1365-2958.1995.tb02339.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The Escherichia coli fructose repressor, FruR, is known to regulate expression of several genes concerned with carbon utilization. Using a previously derived consensus sequence for FruR binding, additional potential operators were identified and tested for FruR binding in DNA band migration retardation assays. Operators in the control regions of operons concerned with carbon metabolism bound FruR, while those in operons not concerned with carbon metabolism did not. In vivo assays with transcriptional lacZ fusions showed that FruR controls the expression of FruR operator-containing genes encoding key enzymes of virtually every major pathway of carbon metabolism. Moreover, a fruR null mutation altered the rates of utilization of at least 36 carbon sources. In general, oxidation rates for glycolytic substances were enhanced while those for gluconeogenic substances were depressed. Alignment of FruR operators revealed that the consensus sequence for FruR binding is the same for operons that are activated and repressed by FruR and permitted formulation of a revised FruR-binding consensus sequence. The reported observations indicate that FruR modulates the direction of carbon flow by transcriptional activation of genes encoding enzymes concerned with oxidative and gluconeogenic carbon flow and by repression of those concerned with fermentative carbon flow.
Collapse
Affiliation(s)
- T M Ramseier
- Department of Biology, University of California at San Diego, La Jolla 92093-0116, USA
| | | | | | | | | |
Collapse
|
22
|
van der Vlag J, van't Hof R, van Dam K, Postma PW. Control of glucose metabolism by the enzymes of the glucose phosphotransferase system in Salmonella typhimurium. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 230:170-82. [PMID: 7601098 DOI: 10.1111/j.1432-1033.1995.0170i.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The quantitative role of the phosphoenolpyruvate:glucose phosphotransferase system (glucose phosphotransferase system) in glucose uptake and metabolism, and phosphotransferase-system-mediated regulation of glycerol uptake, was studied in vivo in Salmonella typhimurium. Expression plasmids were constructed which contained the genes encoding enzyme I (ptsI), HP (ptsH), IIAGlc (crr), and IICBGlc (ptsG) of the glucose phosphotransferase system behind inducible promoters. These plasmids allowed the controlled expression of each of the glucose phosphotransferase system proteins from about 30% to about 300% of its wild-type level. When enzyme I, HPr or IIAGlc were modulated between 30% and 300% of their wild-type value, hardly any effects on the growth rate on glucose, the glucose oxidation rate, the rate of methyl alpha-D-glucopyranoside (a glucose analog) uptake or the phosphotransferase-system-mediated inhibition of glycerol uptake by methyl alpha-D-glucopyranoside were observed. Employing the method of metabolic control analysis, it was shown that the enzyme flux control coefficients of these phosphotransferase system components on the different measured processes were close to zero. The enzyme flux control coefficient of IICBGlc on growth on glucose or glucose oxidation was also close to zero. In contrast, the enzyme flux control coefficient of IICBGlc on the flux through the glucose phosphotransferase system (transport and phosphorylation) was 0.72. The experimentally determined enzyme flux control coefficients allowed us to calculate the flux control coefficients of the phosphoenolpyruvate/pyruvate and methyl alpha-D-glucopyranoside/methyl alpha-D-glucopyranoside 6-phosphate couples and the process control coefficients of the phosphotransfer reactions of the glucose phosphotransferase system. We discuss the implications of these values and the possible control points in the glucose phosphotransferase system.
Collapse
Affiliation(s)
- J van der Vlag
- E. C. Slater Instituut, University of Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
23
|
Ryu S, Ramseier TM, Michotey V, Saier MH, Garges S. Effect of the FruR regulator on transcription of the pts operon in Escherichia coli. J Biol Chem 1995; 270:2489-96. [PMID: 7852310 DOI: 10.1074/jbc.270.6.2489] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The promoters of the pts operon of Escherichia coli are controlled by the cyclic AMP receptor protein (CRP) complexed with cAMP (CRP.cAMP). In addition, glucose stimulates pts operon expression in vivo. The pts promoter region has a fructose repressor (FruR)-binding site (the FruR box) that partially overlaps with one of the CRP.cAMP-binding sites. The effects of the pleiotropic transcriptional regulator FruR on pts operon expression were studied to determine whether the in vivo glucose effect on pts operon expression is mediated by FruR. In vitro, FruR can repress P1b transcription, which is activated by CRP.cAMP, and restore P1a transcription, which is repressed by CRP.cAMP. FruR can displace CRP.cAMP from its binding site in the presence of RNA polymerase even though FruR and CRP.cAMP can bind simultaneously to their partially overlapping binding sites in the absence of RNA polymerase. FruR had very little effect on the transcription of the P0 promoter, which is most important for regulation by glucose. Consistent with the in vitro results, pts P0 transcription did not increase as much in cells grown in the presence of fructose or in fruR- mutant cells as in cells grown in the presence of glucose. These results suggest that FruR alone does not mediate the in vivo glucose effect on pts operon expression.
Collapse
Affiliation(s)
- S Ryu
- Laboratory of Molecular Biology, NCI, National Institutes of Health, Bethesda, Maryland 20892-4255
| | | | | | | | | |
Collapse
|
24
|
Velterop JS, Dijkhuizen MA, van 't Hof R, Postma PW. A versatile vector for controlled expression of genes in Escherichia coli and Salmonella typhimurium. Gene 1995; 153:63-5. [PMID: 7883186 DOI: 10.1016/0378-1119(94)00790-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have constructed two expression vectors based on the pJF118HE vector developed for Escherichia coli by Fürste et al. [Gene 48 (1986) 119-131]. The tac promoter (ptac) was exchanged for the trc promoter (ptrc) and an NdeI site was created at the appropriate distance from the ribosome-binding site. The NdeI site permits cloning of a gene at its translation start point without altering the amino-acid sequence of the synthesized protein, while ptrc and the lacIQ gene confer inducible and controlable expression. We have tested these plasmids in E. coli and Salmonella typhimurium.
Collapse
Affiliation(s)
- J S Velterop
- E.C. Slater Institute, BioCentrum Amsterdam, University of Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
25
|
Scarabel M, Penin F, Bonod-Bidaud C, Nègre D, Cozzone AJ, Cortay JC. Overproduction, purification and structural characterization of the functional N-terminal DNA-binding domain of the fru repressor from Escherichia coli K-12. Gene 1995; 153:9-15. [PMID: 7883193 DOI: 10.1016/0378-1119(94)00660-k] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A DNA fragment encoding the DNA-binding domain (amino acids 1-60) of the Escherichia coli fru transcriptional regulator was cloned into the pGEX-KT vector and expressed in frame with the fused gene encoding glutathione S-transferase. The fusion protein was purified to homogeneity by affinity chromatography on immobilized glutathione, and then cleaved with thrombin. After separation by a cation-exchange chromatography step, the DNA-binding domain exhibited proper folding, as shown by proton NMR analysis. Furthermore, it showed specific interaction with the operator region of the ace operon, as checked by gel retardation and DNA methylation-protection experiments.
Collapse
Affiliation(s)
- M Scarabel
- Institut de Biologie et Chimie des Protéines, C.N.R.S., Lyon, France
| | | | | | | | | | | |
Collapse
|
26
|
Reizer J, Reizer A, Kornberg HL, Saier MH. Sequence of the fruB gene of Escherichia coli encoding the diphosphoryl transfer protein (DTP) of the phosphoenolpyruvate: sugar phosphotransferase system. FEMS Microbiol Lett 1994; 118:159-62. [PMID: 8013873 DOI: 10.1111/j.1574-6968.1994.tb06819.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The Escherichia coli genome sequencing project in the 47 to 48 centisome region has resulted in the sequencing of the complete fructose operon (fruBKA). Due to a single base insertion, the presence of the fruB gene went unnoticed. The revised nucleotide sequence of the fruB gene, the deduced amino acid sequence of its protein product, the diphosphoryl transfer protein of the phosphoenolpyruvate: sugar phosphotransferase system, and putative transcriptional regulatory signals of the fru operon of E. coli are here presented and compared with that from Salmonella typhimurium.
Collapse
Affiliation(s)
- J Reizer
- Department of Biology, University of California at San Diego, La Jolla 92093-0116
| | | | | | | |
Collapse
|
27
|
Postma PW, Lengeler JW, Jacobson GR. Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 1993; 57:543-94. [PMID: 8246840 PMCID: PMC372926 DOI: 10.1128/mr.57.3.543-594.1993] [Citation(s) in RCA: 865] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Numerous gram-negative and gram-positive bacteria take up carbohydrates through the phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS). This system transports and phosphorylates carbohydrates at the expense of PEP and is the subject of this review. The PTS consists of two general proteins, enzyme I and HPr, and a number of carbohydrate-specific enzymes, the enzymes II. PTS proteins are phosphoproteins in which the phospho group is attached to either a histidine residue or, in a number of cases, a cysteine residue. After phosphorylation of enzyme I by PEP, the phospho group is transferred to HPr. The enzymes II are required for the transport of the carbohydrates across the membrane and the transfer of the phospho group from phospho-HPr to the carbohydrates. Biochemical, structural, and molecular genetic studies have shown that the various enzymes II have the same basic structure. Each enzyme II consists of domains for specific functions, e.g., binding of the carbohydrate or phosphorylation. Each enzyme II complex can consist of one to four different polypeptides. The enzymes II can be placed into at least four classes on the basis of sequence similarity. The genetics of the PTS is complex, and the expression of PTS proteins is intricately regulated because of the central roles of these proteins in nutrient acquisition. In addition to classical induction-repression mechanisms involving repressor and activator proteins, other types of regulation, such as antitermination, have been observed in some PTSs. Apart from their role in carbohydrate transport, PTS proteins are involved in chemotaxis toward PTS carbohydrates. Furthermore, the IIAGlc protein, part of the glucose-specific PTS, is a central regulatory protein which in its nonphosphorylated form can bind to and inhibit several non-PTS uptake systems and thus prevent entry of inducers. In its phosphorylated form, P-IIAGlc is involved in the activation of adenylate cyclase and thus in the regulation of gene expression. By sensing the presence of PTS carbohydrates in the medium and adjusting the phosphorylation state of IIAGlc, cells can adapt quickly to changing conditions in the environment. In gram-positive bacteria, it has been demonstrated that HPr can be phosphorylated by ATP on a serine residue and this modification may perform a regulatory function.
Collapse
Affiliation(s)
- P W Postma
- E. C. Slater Institute, University of Amsterdam, The Netherlands
| | | | | |
Collapse
|
28
|
Jahreis K, Lengeler JW. Molecular analysis of two ScrR repressors and of a ScrR-FruR hybrid repressor for sucrose and D-fructose specific regulons from enteric bacteria. Mol Microbiol 1993; 9:195-209. [PMID: 8412665 DOI: 10.1111/j.1365-2958.1993.tb01681.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The scr regulon of pUR400 and the chromosomally encoded scr regulon of Klebsiella pneumoniae KAY2026 are both negatively controlled by a specific repressor (ScrR). As deduced from the nucleotide sequences, both scrR genes encode polypeptides of 334 residues (85.5% identical base pairs, 91.3% identical amino acids), containing an N-terminal helix-turn-helix motif. Comparison with other regulatory proteins revealed 30.6% identical amino acids to FruR, 27.0% to Lacl and 28.1% to GalR. Six scrRs super-repressor mutations define the inducer-binding domain. The scr operator sequences were identified by in vivo titration tests of the sucrose repressor and by in vitro electrophoretic mobility shift assays. D-fructose, an intracellular product of sucrose transport and hydrolysis, and D-fructose 1-phosphate were shown to be molecular inducers of both scr regulons. An active ScrR-FruR hybrid repressor protein was constructed with the N-terminal part of the sucrose repressor of K. pneumoniae and the C-terminal part of the fructose repressor of Salmonella typhimurium LT2. Gel retardation assays showed that the hybrid protein bound to scr-specific operators, and that D-fructose 1-phosphate, the inducer for FruR, was the only inducer. In vivo, neither the operators of the fru operon nor of the pps operon, the natural targets for FruR, were recognized, but the scr operators were. These data and the data obtained from the super-repressor alleles confirm previous models on the binding of repressors of the Lacl family to their operators.
Collapse
Affiliation(s)
- K Jahreis
- Arbeitsgruppe Genetik, Universität Osnabrück, Germany
| | | |
Collapse
|
29
|
Patnaik R, Roof WD, Young RF, Liao JC. Stimulation of glucose catabolism in Escherichia coli by a potential futile cycle. J Bacteriol 1992; 174:7527-32. [PMID: 1332936 PMCID: PMC207462 DOI: 10.1128/jb.174.23.7527-7532.1992] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Fifteen-fold overexpression of phosphoenolpyruvate synthase (Pps) (EC 2.7.9.2) in Escherichia coli stimulated oxygen consumption in glucose minimal medium. A further increase in Pps overexpression to 30-fold stimulated glucose consumption by approximately 2-fold and resulted in an increased excretion of pyruvate and acetate. Insertion of two codons at the PvuII site in the pps gene abolished the enzymatic activity and eliminated the above-described effects. Both the active and the inactive proteins were detected at the predicted molecular weight by polyacrylamide gel electrophoresis. Therefore, the observed physiological changes were due to the activity of Pps. The higher specific rates of consumption of oxygen and glucose indicate a potential futile cycle between phosphoenolpyruvate (PEP) and pyruvate. A model for the stimulation of glucose uptake is presented; it involves an increased PEP/pyruvate ratio caused by the overexpressed Pps activity, leading to a stimulation of the PEP:sugar phosphotransferase system.
Collapse
Affiliation(s)
- R Patnaik
- Department of Chemical Engineering, Texas A&M University, College Station 77843
| | | | | | | |
Collapse
|
30
|
Bolshakova TN, Molchanova ML, Erlagaeva RS, Grigorenko YA, Gershanovitch VN. A novel mutation FruS, altering synthesis of components of the phosphoenolpyruvate: fructose phosphotransferase system in Escherichia coli K12. MOLECULAR & GENERAL GENETICS : MGG 1992; 232:394-8. [PMID: 1534139 DOI: 10.1007/bf00266242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A novel mutation, FruS localised in the fru operon was obtained. It uncouples expression of the genes determining synthesis of the fructose-specific transport proteins and fructose-1-phosphate kinase. In FruS bacteria the fruA and fruF genes (coding for Enzyme IIfru and FPr, respectively) are constitutive by expressed while fruK (encoding fructose-1-phosphate kinase) remains inducible. In contrast to other mutations, which render expression of the whole fru operon constitutive, the FruS mutation: (1) does not lead to D-xylitol sensitivity; (2) does not inhibit growth on D-lactate, pyruvate and L-alanine; (3) does not decrease phosphoenolpyruvate (PEP) synthase activity.
Collapse
Affiliation(s)
- T N Bolshakova
- N.F. Gamaleya Institute for Epidemiology and Microbiology, Academy of Medical Sciences, Moscow, USSR
| | | | | | | | | |
Collapse
|
31
|
Erni B. Group translocation of glucose and other carbohydrates by the bacterial phosphotransferase system. INTERNATIONAL REVIEW OF CYTOLOGY 1992; 137:127-48. [PMID: 1428669 DOI: 10.1016/s0074-7696(08)62675-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- B Erni
- Institut für Biochemie, Universität Bern, Switzerland
| |
Collapse
|
32
|
Niersbach M, Kreuzaler F, Geerse RH, Postma PW, Hirsch HJ. Cloning and nucleotide sequence of the Escherichia coli K-12 ppsA gene, encoding PEP synthase. MOLECULAR & GENERAL GENETICS : MGG 1992; 231:332-6. [PMID: 1310524 DOI: 10.1007/bf00279808] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We have cloned and sequenced the Escherichia coli K-12 ppsA gene. The ppsA gene codes for PEP synthase, which converts pyruvate into phosphoenolpyruvate (PEP), an essential step in gluconeogenesis when pyruvate or lactate are used as a carbon source. The open reading frame consists of 792 amino acids and shows homology with other phosphohistidine-containing enzymes that catalyze the conversion between pyruvate and PEP. These enzymes include pyruvate, orthophosphate dikinases from plants and Bacteroides symbiosus and Enzyme I of the bacterial PEP:carbohydrate phosphotransferase system.
Collapse
Affiliation(s)
- M Niersbach
- Institut für Biologie I, Rheinisch-Westfälische Technische Hochschule, Aachen, FRG
| | | | | | | | | |
Collapse
|
33
|
Vartak NB, Reizer J, Reizer A, Gripp JT, Groisman EA, Wu LF, Tomich JM, Saier MH. Sequence and evolution of the FruR protein of Salmonella typhimurium: a pleiotropic transcriptional regulatory protein possessing both activator and repressor functions which is homologous to the periplasmic ribose-binding protein. Res Microbiol 1991; 142:951-63. [PMID: 1805309 DOI: 10.1016/0923-2508(91)90005-u] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The repressor of the fructose (fru) operon of Salmonella typhimurium (FruR) has been implicated in the transcriptional regulation of dozens of genes concerned with central metabolic pathways of carbon utilization. We here report the nucleotide sequence of the gene encoding FruR and analyse both its operator-promoter region and its deduced amino acyl sequence. The FruR protein was overexpressed and was shown to have a molecular weight of about 36 kDa in agreement with the molecular weight deduced from the gene sequence. Sequence analyses revealed that FruR is homologous to 9 distinct bacterial DNA-binding proteins, most of which recognize sugar inducers and all of which possess helix-turn-helix motifs within their N-terminal regions and exhibit sequence identity throughout most of their lengths. FruR is also homologous to the periplasmic ribose-binding protein which serves as a constituent of the ribose transport/chemoreception system. The ribose-binding protein is in turn homologous to binding proteins specific for arabinose and galactose. The periplasmic binding proteins, the structures of some of which have been elucidated in three dimensions, lack the N-terminal helix-turn-helix region, but instead possess N-terminal hydrophobic signal sequences which target them to the periplasm. A phylogenetic tree for the more closely related proteins of this superfamily was constructed, and a signature motif was identified which should facilitate future detection of additional transcriptional regulatory proteins belonging to this family.
Collapse
Affiliation(s)
- N B Vartak
- Department of Biology, University of California at San Diego, La Jolla 92093-0116
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Pries A, Priefert H, Krüger N, Steinbüchel A. Identification and characterization of two Alcaligenes eutrophus gene loci relevant to the poly(beta-hydroxybutyric acid)-leaky phenotype which exhibit homology to ptsH and ptsI of Escherichia coli. J Bacteriol 1991; 173:5843-53. [PMID: 1653223 PMCID: PMC208318 DOI: 10.1128/jb.173.18.5843-5853.1991] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
From genomic libraries of Alcaligenes eutrophus H16 in lambda L47 and in pVK100, we cloned DNA fragments which restored the wild-type phenotype to poly(beta-hydroxybutyric acid) (PHB)-leaky mutants derived from strains H16 and JMP222. The nucleotide sequence analysis of a 4.5-kb region of one of these fragments revealed two adjacent open reading frames (ORF) which are relevant for the expression of the PHB-leaky phenotype. The 1,799-bp ORF1 represented a gene which was referred to as phbI. The amino acid sequence of the putative protein I (Mr, 65,167), which was deduced from phbI, exhibited 38.9% identity with the primary structure of enzyme I of the Escherichia coli phosphoenolpyruvate:carbohydrate phosphotransferase system (PEP-PTS). The upstream 579-bp ORF2 was separated by 50 bp from ORF1. It included the 270-bp phbH gene which encoded protein H (Mr, 9,469). This protein exhibited 34.9% identity to the HPr protein of the E. coli PEP-PTS. Insertions of Tn5 in different PHB-leaky mutants were mapped at eight different positions in phbI and at one position in phbH. Mutants defective in phbH or phbI exhibited no pleiotropic effects and were not altered with respect to the utilization of fructose. However, PHB was degraded at a higher rate in the stationary growth phase. The functions of these HPr- and enzyme I-like proteins in the metabolism of PHB are still unknown. Evidence for the involvement of these proteins in regulation of the metabolism of intracellular PHB was obtained, and a hypothetical model is proposed.
Collapse
Affiliation(s)
- A Pries
- Institut für Mikrobiologie Georg-August-Universität Göttingen, Germany
| | | | | | | |
Collapse
|
35
|
Jahreis K, Postma PW, Lengeler JW. Nucleotide sequence of the ilvH-fruR gene region of Escherichia coli K12 and Salmonella typhimurium LT2. MOLECULAR & GENERAL GENETICS : MGG 1991; 226:332-6. [PMID: 1851954 DOI: 10.1007/bf00273623] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have sequenced the fruR gene and flanking DNA fragments from Escherichia coli K12 and Salmonella typhimurium LT2. The fruR gene codes for a protein that represses the fru operon and activates the pps gene for PEP synthase. The corresponding open reading frame (ORF) FruR consists of 334 amino acid residues. The ORF contains an amino-terminal helix-turn-helix motif, characteristic of DNA-binding proteins and has similarity to known repressor proteins. The sequence is identical to that of the E. coli shl gene (mnemonic for suppressor-H-linked phenotype). It is flanked upstream by the ilvIH genes and downstream by the pbpB gene in both organisms and by orfB, a gene possibly involved in the regulation of cell division.
Collapse
Affiliation(s)
- K Jahreis
- Fachbereich Biologie/Chemie, Universität Osnabrück, Germany
| | | | | |
Collapse
|
36
|
Grübl G, Vogler AP, Lengeler JW. Involvement of the histidine protein (HPr) of the phosphotransferase system in chemotactic signaling of Escherichia coli K-12. J Bacteriol 1990; 172:5871-6. [PMID: 2120191 PMCID: PMC526906 DOI: 10.1128/jb.172.10.5871-5876.1990] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
It is known that in mutants of Escherichia coli lacking the histidine protein (HPr) of the carbohydrate: phosphotransferase system, all substrates of the system can be taken up in the presence of the fructose-regulated HPr-like protein FPr (gene fruF). Although this protein fully substituted for HPr in transport and phosphorylation, we found that it was not able to complement efficiently for HPr in mediating chemotaxis toward phosphotransferase system substrates. Furthermore, transport activity and chemotaxis could be genetically dissected by the exchange of single amino acids in HPr. The results suggest a specific role of HPr in chemotactic signaling. We propose a possible link of signal transduction pathways for phosphotransferase system- and methyl chemotaxis protein-dependent substrates via HPr.
Collapse
Affiliation(s)
- G Grübl
- Fachbereich BiologielChemie, Universität Osnabrück, Federal Republic of Germany
| | | | | |
Collapse
|
37
|
Feldheim DA, Chin AM, Nierva CT, Feucht BU, Cao YW, Xu YF, Sutrina SL, Saier MH. Physiological consequences of the complete loss of phosphoryl-transfer proteins HPr and FPr of the phosphoenolpyruvate:sugar phosphotransferase system and analysis of fructose (fru) operon expression in Salmonella typhimurium. J Bacteriol 1990; 172:5459-69. [PMID: 2203752 PMCID: PMC213213 DOI: 10.1128/jb.172.9.5459-5469.1990] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Mutants of Salmonella typhimurium defective in the proteins of the fructose operon [fruB(MH)KA], the fructose repressor (fruR), the energy-coupling enzymes of the phosphoenolpyruvate:sugar phosphotransferase system (PTS) (ptsH and ptsI), and the proteins of cyclic AMP action (cya and crp) were analyzed for their effects on cellular physiological processes and expression of the fructose operon. The fru operon consists of three structural genes: fruB(MH), which encodes the enzyme IIIFru-modulator-FPr tridomain fusion protein of the PTS; fruK, which encodes fructose-1-phosphate kinase; and fruA, which encodes enzyme IIFru of the PTS. Among the mutants analyzed were Tn10 insertion mutants and lacZ transcriptional fusion mutants. It was found that whereas a fruR::Tn10 insertion mutant, several fruB(MH)::Mu dJ and fruK::Mu dJ fusion mutants, and several ptsHI deletion mutants expressed the fru operon and beta-galactosidase at high constitutive levels, ptsH point mutants and fruA::Mu dJ fusion mutants retained inducibility. Inclusion of the wild-type fru operon in trans did not restore fructose-inducible beta-galactosidase expression in the fru::Mu dJ fusion mutants. cya and crp mutants exhibited reduced basal activities of all fru regulon enzymes, but inducibility was not impaired. Surprisingly, fruB::Mu dJ crp or cya double mutants showed over 10-fold inducibility of the depressed beta-galactosidase activity upon addition of fructose, even though this activity in the fruB::Mu dJ fusion mutants that contained the wild-type cya and crp alleles was only slightly inducible. By contrast, beta-galactosidase activity in a fruK::Mu dJ fusion mutant, which was similarly depressed by introduction of a crp or cya mutation, remained constitutive. Other experiments indicated that sugar uptake via the PTS can utilize either FPr-P or HPr-P as the phosphoryl donor, but that FPr is preferred for fructose uptake whereas HPr is preferred for uptake of the other sugars. Double mutants lacking both proteins were negative for the utilization of all sugar substrates of the PTS, were negative for the utilization of several gluconeogenic carbon sources, exhibited greatly reduced adenylate cyclase activity, and were largely nonmotile. These phenotypic properties are more extreme than those observed for tight ptsH and ptsI mutants, including mutants deleted for these genes. A biochemical explanation for this fact is proposed.
Collapse
Affiliation(s)
- D A Feldheim
- Department of Biology, University of California, San Diego, La Jolla 92093
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Wu LF, Tomich JM, Saier MH. Structure and evolution of a multidomain multiphosphoryl transfer protein. Nucleotide sequence of the fruB(HI) gene in Rhodobacter capsulatus and comparisons with homologous genes from other organisms. J Mol Biol 1990; 213:687-703. [PMID: 2193161 DOI: 10.1016/s0022-2836(05)80256-6] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The gene order of the fructose (fru) operon and nucleotide sequence of the first gene (fruB(HI) of Rhodobacter capsulatus are reported, analyzed and compared with homologous genes from other bacteria, and the gene products are identified. Included within the region reported is a gene encoding a multiphosphoryl transfer protein (MTP) of the phosphoenolpyruvate:sugar phosphotransferase system (PTS). MTP consists of three moieties: a fructose-specific enzyme III (IIIfru)-like N-terminal moiety (residues 1 to 143) followed by an FPr(HPr)-like moiety (residues 157 to 245) and an enzyme I-like moiety (residues 273 to 827). The enzyme III-like moiety closely resembles the N-terminal 143 residues of the IIIfru-FPR fusion protein from Salmonella typhimurium (40.6% identity throughout its length) and the C-terminal 145 residues of the mannitol-specific enzyme II (IImtl) (37.8% identity throughout its length with the IIImtl moiety of IImtl). The FPr-like domain of MTP resembles the S. typhimurium FPr (42.4% identity) and the Escherichia coli or S. typhimurium HPr (38.8% identity). The enzyme I-like moiety resembles the E. coli enzyme I (38.9% identity). Predicted phosphorylation sites within the three functional units of MTP (His62 in the IIIfru-like moiety; His171 in the FPr-like moiety and His457 in the enzyme I-like moiety) were identified on the basis of sequence comparisons with the homologous proteins from enteric bacteria. The three functional domains of MTP are joined by two flexible "linkage" regions, rich in alanine, glycine and proline, which show 47% sequence identity with each other. They also exhibit a high degree of sequence identity with the linkage region of the mannose-specific enzyme III (IIIman) of the E. coli PTS as well as several other proteins of bacterial, eukaryotic and viral origin. At the RNA level, these linker regions formed hairpin structures with high (90%) G + C content. Analyses of the IIIfru-FPr fusion protein of S. typhimurium revealed that between the IIIfru and FPr moieties of this protein is a stretch of 142 amino acids that do not show homology to known PTS proteins. This region and the adjacent FPr-like region contain a sequence of 110 residues exhibiting 59% similarity to the receiver consensus motif defined by Kofoid and Parkinson. Because the Salmonella IIIfru-FPr fusion protein has been implicated in transcriptional regulation, this region of the Salmonella protein may prove to have regulatory significance.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- L F Wu
- Department of Biology, University of California, San Diego, La Jolla 92093
| | | | | |
Collapse
|
39
|
Goldie H, Medina V. Physical and genetic analysis of the phosphoenolpyruvate carboxykinase (pckA) locus from Escherichia coli K12. MOLECULAR & GENERAL GENETICS : MGG 1990; 220:191-6. [PMID: 2183002 DOI: 10.1007/bf00260481] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
An 8 kb BamHI fragment of the Escherichia coli K12 chromosome has been cloned which complemented the pheotype of CRM+ pckA mutants with inactive phosphoenolpyruvate (PEP) carboxykinase. The pckA+ clones expressed levels of enzyme activity elevated up to 30-fold and produced a Mr 55,000 product in maxicells, which co-electrophoresed with purified PEP carboxykinase. The cloned fragment expressed the pckA, ompR and envZ gene products in maxicells. The order of genes on the chromosome inferred from restriction mapping, was (74 min)...pckA envZ ompR...(75 min). Transcription of the pckA gene cloned on multicopy plasmids increased in stationary phase and was also regulated by catabolite repression. The transcriptional control region has been located by genetic fusions to the chloramphenicol acetyltransferase (cat) gene and pckA was transcribed in the direction of envZ (clockwise direction on the chromosome).
Collapse
Affiliation(s)
- H Goldie
- Department of Microbiology, University of Saskatchewan, Saskatoon, Canada
| | | |
Collapse
|
40
|
Smyer JR, Jeter RM. Characterization of phosphoenolpyruvate synthase mutants in Salmonella typhimurium. Arch Microbiol 1989; 153:26-32. [PMID: 2558624 DOI: 10.1007/bf00277536] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The enteric bacteria are able to grow by utilizing three-carbon compounds (pyruvate, lactate, and alanine) as sole carbon sources only if they have a functional phosphoenolpyruvate synthase (PEP synthase). PEP synthase catalyzes the phosphorylation of pyruvate to PEP with the hydrolysis of ATP to AMP. This anaplerotic reaction is needed for the synthesis of carbohydrates and citric acid cycle intermediates that are essential for continued cell growth. Insertion mutants were isolated in Salmonella typhimurium that specifically lack the ability to grow on three-carbon compounds. These mutants also fail to utilize acetate as a sole carbon source. Enzyme assays were performed and the results showed that these mutants contain no PEP synthase activity. By using bacteriophage P22, the pps mutations isolated in this study were found to be contransducible with genetic markers in both the aroD and btuC genes. Three-factor crosses pinpointed the order of these genes and their distances with respect to each other. One of the mutants carries a pps::lac operon fusion. This fusion was used to explore the transcriptional regulation of the pps gene. A functional copy of the pps gene is required for its own induction. The pps gene is also under catabolite repression, but the addition of adenosine 3',5'-cyclic monophosphate (cyclic AMP) to cells grown in the presence of glucose does not relieve this repression. These results indicate that the synthesis of PEP synthase is regulated in a more complex manner than has been previously recognized.
Collapse
Affiliation(s)
- J R Smyer
- Department of Biological Sciences, Texas Tech University, Lubbock 79409-3131
| | | |
Collapse
|
41
|
Geerse RH, van der Pluijm J, Postma PW. The repressor of the PEP:fructose phosphotransferase system is required for the transcription of the pps gene of Escherichia coli. MOLECULAR & GENERAL GENETICS : MGG 1989; 218:348-52. [PMID: 2674659 DOI: 10.1007/bf00331288] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We have cloned the pps gene, coding for PEP synthase, of Escherichia coli. PEP synthase catalyses the ATP-dependent conversion of pyruvate into phosphoenol-pyruvate and is required for gluconeogenesis. The pps gene was cloned by an in vivo cloning method using a mini-Mulac bacteriophage containing a plasmid replicon. Upon expression of the cloned pps gene in the maxicell system a protein with an apparent molecular weight of 84 kDa was synthesized. The position of the pps gene of the plasmid was localized by restriction analysis of isolated transposon insertions and the determination of the PEP synthase activities of the different clones. An operon fusion between the pps gene and the galK gene was constructed. Measurements of the galactokinase activity in Salmonella typhimurium galK and galK fruR mutants showed that the transcription of the pps gene requires the presence of FruR, the repressor of the PEP: fructose phosphotransferase system (PTS) in E. coli and S. typhimurium. To test whether the components of the Fructose PTS, in particular FPr, are involved in the expression of the pps gene, we investigated a S. typhimurium galK strain, containing the fusion plasmid, in which the chromosomal fru operon was inactivated by a transposon insertion. Measurements of the galactokinase activity showed that the absence of the Fructose PTS proteins has no significant influence on the regulation of the pps gene.
Collapse
Affiliation(s)
- R H Geerse
- E.C. Slater Institute for Biochemical Research, University of Amsterdam, The Netherlands
| | | | | |
Collapse
|
42
|
Saier MH. Involvement of the bacterial phosphotransferase system in diverse mechanisms of transcriptional regulation. Res Microbiol 1989; 140:349-52. [PMID: 2616889 DOI: 10.1016/0923-2508(89)90010-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A large number of genes in bacteria appear to be expressed in processes regulated by very different mechanisms dependent on the activities of the proteins of the phosphoenolpyruvate/sugar phosphotransferase system. These mechanisms include protein phosphorylation, antitermination, enhancement, antagonistic repression/activation, sensory detection involving two component systems, and other processes not yet understood.
Collapse
Affiliation(s)
- M H Saier
- Department of Biology, University of California, San Diego, La Jolla, 92093
| |
Collapse
|
43
|
De Reuse H, Lévy S, Zeng G, Danchin A. Genetics of the PTS components in Escherichia coliK-12. FEMS Microbiol Lett 1989. [DOI: 10.1111/j.1574-6968.1989.tb14101.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
44
|
Gershanovitch VN, Bolshakova TN, Molchanova ML, Umyarov AM, Dobrynina OYu, Grigorenko YuA, Erlagaeva RS. Fructose-specific phosphoenolpyruvate dependent phosphotransferase system of Escherichia coli: its alterations and adenylate cyclase activity. FEMS Microbiol Rev 1989; 5:125-33. [PMID: 2699243 DOI: 10.1111/j.1574-6968.1989.tb14108.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- V N Gershanovitch
- N.F. Gamaleya Institute for Epidemiology and Microbiology, Academy of Medical Sciences, Moscow, U.S.S.R
| | | | | | | | | | | | | |
Collapse
|
45
|
Chin AM, Feldheim DA, Saier MH. Altered transcriptional patterns affecting several metabolic pathways in strains of Salmonella typhimurium which overexpress the fructose regulon. J Bacteriol 1989; 171:2424-34. [PMID: 2496106 PMCID: PMC209917 DOI: 10.1128/jb.171.5.2424-2434.1989] [Citation(s) in RCA: 69] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Expression of beta-galactosidase in transcriptional fusions with the pps gene (encoding phosphoenolpyruvate [PEP] synthase), the aceBAK operon (encoding malate synthase, isocitrate lyase, and isocitrate dehydrogenase kinase, respectively), and the phs operon (encoding either thiosulfate reductase or a regulatory protein controlling its expression) was studied in Salmonella typhimurium. beta-Galactosidase synthesis in these strains was repressible either by growth in the presence of glucose or by the presence of a fruR mutation, which resulted in the constitutive expression of the fructose (fru) regulon. Five enzymes of gluconeogenesis (PEP synthase, PEP carboxykinase, isocitrate lyase, malate synthase, and fructose-1,6-diphosphatase) were shown to be repressed either by growth in the presence of glucose or the fruR mutation, while the glycolytic enzymes, enzyme I and enzymes II of the phosphotransferase system as well as phosphofructokinase, were induced either by growth in the presence of glucose or the fruR mutation. Overexpression of the cloned fru regulon genes (not including fruR) resulted in parallel repression of representative gluconeogenic, Krebs cycle, and glyoxylate shunt enzymes. Studies with temperature-sensitive mutants of S. typhimurium which synthesized heat-labile IIIFru proteins provided evidence that this protein plays a role in the regulation of gluconeogenic substrate utilization. Other mutant analyses revealed a complex relationship between fru gene expression and the expression of genes encoding gluconeogenic enzymes. Taken together, the results suggest that a number of genes encoding catabolic, biosynthetic, and amphibolic enzymes in enteric bacteria are transcriptionally regulated by a complex catabolite repression/activation mechanism which may involve enzyme IIIFru of the phosphotransferase system as one component of the regulatory system.
Collapse
Affiliation(s)
- A M Chin
- Department of Biology, University of California, San Diego, La Jolla 92093
| | | | | |
Collapse
|
46
|
Geerse RH, Izzo F, Postma PW. The PEP: fructose phosphotransferase system in Salmonella typhimurium: FPr combines enzyme IIIFru and pseudo-HPr activities. MOLECULAR & GENERAL GENETICS : MGG 1989; 216:517-25. [PMID: 2546043 DOI: 10.1007/bf00334399] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have cloned the fru operon of Salmonella typhimurium, coding for the enzymes of the phosphoenolpyruvate: fructose phosphotransferase system (Fructose PTS). The fruFKA operon consists of three genes: fruF coding for FPr, fruK for fructose 1-phosphate kinase and fruA for Enzyme IIFru. Insertions of Tn5 in the different genes were isolated and the activities of the gene products were measured. Expression of the plasmid-encoded fru operon in the maxicell system resulted in the synthesis of three proteins with molecular weights of 47 kDa (fruA), 39 kDa (fruF) and 32 kDa (fruK). We have sequenced the fruF gene and the regulatory region of the fru operon. In contrast to previously published results, we have found that the fruF gene codes for a 39 kDa protein, FPr, that combines Enzyme IIIFru and pseudo-HPr activities. The N-terminal part of FPr is homologous to the cytoplasmic domain of the Escherichia coli Enzyme IIMtl, as well as several Enzymes IIIMtl from gram-positive bacteria. The C-terminal domain shows homology to HPr of E. coli and several gram-positive organisms. The fru operon is regulated by a repressor, FruR. We have constructed an operon fusion between fru and the galK gene and shown that regulation of the fru operon by FruR takes place at the level of transcription.
Collapse
Affiliation(s)
- R H Geerse
- Laboratory of Biochemistry, University of Amsterdam, The Netherlands
| | | | | |
Collapse
|
47
|
|
48
|
Sutrina SL, Chin AM, Esch F, Saier MH. Purification and characterization of the fructose-inducible HPr-like protein, FPr, and the fructose-specific enzyme III of the phosphoenolpyruvate: sugar phosphotransferase system of Salmonella typhimurium. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)60679-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
49
|
Yamada M, Feucht BU, Saier MH. Regulation of gluconeogenesis by the glucitol enzyme III of the phosphotransferase system in Escherichia coli. J Bacteriol 1987; 169:5416-22. [PMID: 2824435 PMCID: PMC213966 DOI: 10.1128/jb.169.12.5416-5422.1987] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The gut operon was subcloned into various plasmid vectors (M. Yamada and M. H. Saier, Jr., J. Bacteriol. 169:2990-2994, 1987). Constitutive expression of the plasmid-encoded operon prevented utilization of alanine and Krebs cycle intermediates when they were provided as sole sources of carbon for growth. Expression of the gutB gene alone (encoding the glucitol enzyme III), subcloned downstream from either the lactose promoter or the tetracycline resistance promoter, inhibited utilization of the same compounds. On the other hand, overexpression of the gutA gene (encoding the glucitol enzyme II) inhibited the utilization of a variety of sugars as well as alanine and Krebs cycle intermediates by an apparently distinct mechanism. Phosphoenolpyruvate carboxykinase activity was greatly reduced in cells expressing high levels of the cloned gutB gene but was nearly normal in cells expressing high levels of the gutA gene. A chromosomal mutation in the gutR gene, which gave rise to constitutive expression of the chromosomal gut operon, also gave rise to growth inhibition on gluconeogenic substrates as well as reduced phosphoenolpyruvate carboxykinase activity. Phosphoenolpyruvate synthase activity in general varied in parallel with that of phosphoenolpyruvate carboxykinase. These results suggest that high-level expression of the glucitol enzyme III of the phosphotransferase system can negatively regulate gluconeogenesis by repression or inhibition of the two key gluconeogenic enzymes, phosphoenolpyruvate carboxykinase and phosphoenolpyruvate synthase.
Collapse
Affiliation(s)
- M Yamada
- Department of Biology, University of California at San Diego, La Jolla 92093
| | | | | |
Collapse
|
50
|
Meadow ND, Revuelta R, Chen VN, Colwell RR, Roseman S. Phosphoenolpyruvate:glycose phosphotransferase system in species of Vibrio, a widely distributed marine bacterial genus. J Bacteriol 1987; 169:4893-900. [PMID: 3667518 PMCID: PMC213882 DOI: 10.1128/jb.169.11.4893-4900.1987] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The genus Vibrio is one of the most common and widely distributed groups of marine bacteria. Studies on the physiology of marine Vibrio species were initiated by examining 15 species for the bacterial phosphoenolpyruvate:glycose phosphotransferase system (PTS). All species tested contained a PTS analogous to the glucose-specific (IIGlc) system in enteric bacteria. Crude extracts of the cells showed immunological cross-reactivity with antibodies to enzyme I, HPr, and IIIGlc from Salmonella typhimurium when assayed by the rocket-line method. Toluene-permeabilized cells of 11 species were tested and were active in phosphorylating methyl alpha-D-glucoside with phosphoenolpyruvate but not ATP as the phosphoryl donor. Membranes from 10 species were assayed, and they phosphorylated methyl alpha-D-glucoside when supplemented with a phospho-IIIGlc-generating system composed of homogeneous proteins from enteric bacteria. Toluene-permeabilized cells and membranes of seven species were assayed, as were phosphorylated fructose and 2-deoxyglucose. IIIGlc was isolated from Vibrio fluvialis and was active in phosphorylating methyl alpha-D-glucoside when supplemented with a phospho-HPr-generating system composed of homogeneous proteins from Escherichia coli and membranes from either E. coli or V. fluvialis. These results show that the bacterial PTS is widely distributed in the marine environment and that it is likely to have a significant role in marine bacterial physiology and in the marine ecosystem.
Collapse
Affiliation(s)
- N D Meadow
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218
| | | | | | | | | |
Collapse
|