1
|
Hao OJ, Chang CH. Kinetics of growth and phosphate uptake in pure culture studies of Acinetobacter species. Biotechnol Bioeng 2009; 29:819-31. [PMID: 18576527 DOI: 10.1002/bit.260290704] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Acinetobacter has been found to be the major species responsible for mediating biological phosphate removal. The growth kinetics and phosphate uptake were investigated for an isolated Acinetobacter strain growing in a defined medium. The phosphate uptake is dependent on growth rate, temperature, and pH. Polyphosphate granules occurred in a balanced growth stage. The maximum phosphorus content in cells was 4.8% at the dilution rate of 12 day(-1). The specific phosphate uptake rate was found to be a quadratic polynomial function of the dilution rate. Increased calcium (up to 36 mg/L) and magnesium (up to 15 mg/L), and the addition of yeast extract (100 mg/L), primary effluent (20%), and fluoride (10 mg/L) did not affect phosphate uptake. Anaerobic conditioning (N(2) stripping), low pH (CO(2) stripping), and addition of sodium acetate under anaerobic conditions failed to stimulate immediate phosphate release. Nevertheless, After 21-24 h, the phosphate release was ca. 3, 5, and 15 mg P/g cell, respectively, for N(2) purging, the addition of acetate, and CO(2) purging. For two-stage completely stirred reactor operation, there was negligible phosphate overplus at the second reactor when phosphate was added, when the first reactor was subjected to phosphate limitation. When both phosphate and carbon limited the growth in the first reactor, there was slight phosphate accumulation under endogenous respiration conditions in the second reactor.
Collapse
Affiliation(s)
- O J Hao
- Department of Civil Engineering, University of Maryland, College Park Maryland 20742, USA
| | | |
Collapse
|
2
|
Kaminski U, Janke D, Prauser H, Fritsche W. Degradation of aniline and monochloroanilines by Rhodococcus sp. An 117 and a pseudomonad: A comparative study. J Basic Microbiol 2007. [DOI: 10.1002/jobm.19830230405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
3
|
Gentry TJ, Wang G, Rensing C, Pepper IL. Chlorobenzoate-degrading bacteria in similar pristine soils exhibit different community structures and population dynamics in response to anthropogenic 2-, 3-, and 4-chlorobenzoate levels. MICROBIAL ECOLOGY 2004; 48:90-102. [PMID: 15085300 DOI: 10.1007/s00248-003-1048-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2003] [Accepted: 09/21/2003] [Indexed: 05/24/2023]
Abstract
A study was conducted to determine the diversity of 2-, 3-, and 4-chlorobenzoate (CB) degraders in two pristine soils with similar physical and chemical characteristics. Surface soils were collected from forested sites and amended with 500 microg of 2-, 3-, or 4-CB g(-1) soil. The CB levels and degrader numbers were monitored throughout the study. Degraders were isolated, grouped by DNA fingerprints, identified via 16S rDNA sequences, and screened for plasmids. The CB genes in selected degraders were isolated and/or sequenced. In the Madera soil, 2-CB and 4-CB degraded within 11 and 42 d, respectively, but 3-CB did not degrade. In contrast, 3-CB and 4-CB degraded in the Oversite soil within 14 and 28 d, respectively, while 2-CB did not degrade. Approximately 10(7) CFU g(-1) of degraders were detected in the Madera soil with 2-CB, and the Oversite soil with 3- and 4-CB. No degraders were detected in the Madera soil with 4-CB even though the 4-CB degraded. Nearly all of the 2-CB degraders isolated from the Madera soil were identified as a Burkholderia sp. containing chromosomally encoded degradative genes. In contrast, several different 3- and 4-CB degraders were isolated from the Oversite soil, and their populations changed as CB degradation progressed. Most of these 3-CB degraders were identified as Burkholderia spp. while the majority of 4-CB degraders were identified as Bradyrhizobium spp. Several of the 3-CB degraders contained the degradative genes on large plasmids, and there was variation between the plasmids in different isolates. When a fresh sample of Madera soil was amended with 50, 100, or 200 microg 3-CB g(-1), 3-CB degradation occurred, suggesting that 500 microg 3-CB g(-1) was toxic to the degraders. Also, different 3-CB degraders were isolated from the Madera soil at each of the three lower levels of 3-CB. No 2-CB degradation was detected in the Oversite soil even at lower 2-CB levels. These results indicate that the development of 2-, 3-, and 4-CB degrader populations is site-specific and that 2-, 3-, and 4-CB are degraded by different bacterial populations in pristine soils. These results also imply that the microbial ecology of two soils that develop under similar biotic and abiotic environments can be quite different.
Collapse
Affiliation(s)
- T J Gentry
- Department of Soil, Water, and Environmental Science, University of Arizona, Tucson, AZ 85721, USA.
| | | | | | | |
Collapse
|
4
|
van der Woude BJ, Gottschal JC, Prins RA. Degradation of 2,5-dichlorobenzoic acid by Pseudomonas aeruginosa JB2 at low oxygen tensions. Biodegradation 1995; 6:39-46. [PMID: 7765890 DOI: 10.1007/bf00702297] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
From long-term chemostat experiments, variants of Pseudomonas aeruginosa JB2 were obtained which exhibited altered properties with respect to the metabolism of 2,5-dichlorobenzoic acid (2,5-DBA). Thus, unlike the original strain JB2-WT, strain JB2-var1 is able to grow in continuous culture on 2,5-DBA as the sole limiting carbon and energy source. Yet, at a dilution rate of 0.07 h-1 and a dissolved oxygen concentration of < or = 12 microM, even with this strain no steady states with 2,5-DBA alone could be established in continuous cultures. Yet another strain was obtained after prolonged continuous growth of JB2-var1 in the chemostat. It has improved 2,5-DBA degrading capabilities which become apparent only during growth in continuous culture: a lower apparent Km for 2,5-DBA and lowered steady-state residual concentrations of 2,5 DBA. Although with this strain steady states were obtained at oxygen concentrations as low as 11 microM, at further lowered concentrations this was no longer possible. In C-limited continuous cultures of JB2-var1 or JB2-var2, addition of benzoic acid (BA) to the feed reduced the amounts of 2,5-DBA degraded, which was most apparent at low oxygen concentrations (< 30 microM). At higher dissolved oxygen concentrations the addition of BA resulted in increasing cell-densities but did not affect the residual steady state concentration of 2,5-DBA. Indeed, whole cell suspensions from chemostat cultures grown on BA plus 2,5-DBA did show a lower apparent affinity for 2,5-DBA than those from cultures grown on 2,5-DBA alone.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- B J van der Woude
- Department of Microbiology, University of Groningen, Haren, The Netherlands
| | | | | |
Collapse
|
5
|
Abstract
Considerable progress has been made in the last few years in understanding the mechanisms of microbial degradation of halogenated aromatic compounds. Much is already known about the degradation mechanisms under aerobic conditions, and metabolism under anaerobiosis has lately received increasing attention. The removal of the halogen substituent is a key step in degradation of halogenated aromatics. This may occur as an initial step via reductive, hydrolytic or oxygenolytic mechanisms, or after cleavage of the aromatic ring at a later stage of metabolism. In addition to degradation, several biotransformation reactions, such as methylation and polymerization, may take place and produce more toxic or recalcitrant metabolites. Studies with pure bacterial and fungal cultures have given detailed information on the biodegradation pathways of several halogenated aromatic compounds. Several of the key enzymes have been purified or studied in cell extracts, and there is an increasing understanding of the organization and regulation of the genes involved in haloaromatic degradation. This review will focus on the biodegradation and biotransformation pathways that have been established for halogenated phenols, phenoxyalkanoic acids, benzoic acids, benzenes, anilines and structurally related halogenated aromatic pesticides. There is a growing interest in developing microbiological methods for clean-up of soil and water contaminated with halogenated aromatic compounds.
Collapse
Affiliation(s)
- M M Häggblom
- Institute of Environmental Medicine, New York University Medical Center, NY
| |
Collapse
|
6
|
Adriaens P, Focht DD. Cometabolism of 3,4-dichlorobenzoate by Acinetobacter sp. strain 4-CB1. Appl Environ Microbiol 1991; 57:173-9. [PMID: 2036004 PMCID: PMC182680 DOI: 10.1128/aem.57.1.173-179.1991] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
When Acinetobacter sp. strain 4-CB1 was grown on 4-chlorobenzoate (4-CB), it cometabolized 3,4-dichlorobenzoate (3,4-DCB) to 3-chloro-4-hydroxybenzoate (3-C-4-OHB), which could be used as a growth substrate. No cometabolism of 3,4-DCB was observed when Acinetobacter sp. strain 4-CB1 was grown on benzoate. 4-Carboxyl-1,2-benzoquinone was formed as an intermediate from 3,4-DCB and 3-C-4-OHB in aerobic and anaerobic resting-cell incubations and was the major transient intermediate found when cells were grown on 3-C-4-OHB. The first dechlorination step of 3,4-DCB was catalyzed by the 4-CB dehalogenase, while a soluble dehalogenase was responsible for dechlorination of 3-C-4-OHB. Both enzymes were inducible by the respective chlorinated substrates, as indicated by oxygen uptake experiments. The dehalogenase activity on 3-C-4-OHB, observed in crude cell extracts, was 109 and 44 nmol of 3-C-4-OHB min-1 mg of protein-1 under anaerobic and aerobic conditions, respectively. 3-Chloro-4-hydroxybenzoate served as a pseudosubstrate for the 4-hydroxybenzoate monooxygenase by effecting oxygen and NADH consumption without being hydroxylated. Contrary to 4-CB metabolism, the results suggest that 3-C-4-OHB was not metabolized via the protocatechuate pathway. Despite the ability of resting cells grown on 4-CB or 3-C-4-OHB to carry out all of the necessary steps for dehalogenation and catabolism of 3,4-DCB, it appeared that 3,4-DCB was unable to induce the necessary 4-CB dehalogenase for the initial p-dehalogenation step.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- P Adriaens
- Department of Soil and Environmental Sciences, University of California, Riverside 92521
| | | |
Collapse
|
7
|
Hickey WJ, Focht DD. Degradation of mono-, di-, and trihalogenated benzoic acids by Pseudomonas aeruginosa JB2. Appl Environ Microbiol 1990; 56:3842-50. [PMID: 2128010 PMCID: PMC185077 DOI: 10.1128/aem.56.12.3842-3850.1990] [Citation(s) in RCA: 114] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Pseudomonas aeruginosa JB2 was isolated from a polychlorinated biphenyl-contaminated soil by enrichment culture containing 2-chlorobenzoate as the sole carbon source. Strain JB2 was subsequently found also to grow on 3-chlorobenzoate, 2,3- and 2,5-dichlorobenzoates, 2,3,5-trichlorobenzoate, and a wide range of other mono- and dihalogenated benzoic acids. Cometabolism of 2,4-dichlorobenzoate was also observed. Chlorocatechols were the central intermediates of all chlorobenzoate catabolic pathways. Degradation of 2-chlorobenzoate was routed through 3-chlorocatechol, whereas 4-chlorocatechol was identified from the metabolism of both 2,3- and 2,5-dichlorobenzoate. The initial attack on chlorobenzoates was oxygen dependent and most likely mediated by dioxygenases. Although plasmids were not detected in strain JB2, spontaneous mutants were detected in 70% of glycerol-grown colonies. The mutants were all of the following phenotype: benzoate+, 3-chlorobenzoate+, 2-chlorobenzoate-, 2,3-dichlorobenzoate-, 2,5-dichlorobenzoate-. While chlorocatechols were oxidized by the mutants at wild-type levels, oxidation of 2-chloro- and 2,3- and 2,5-dichlorobenzoates was substantially diminished. These findings suggested that strain JB2 possessed, in addition to the benzoate dioxygenase, a halobenzoate dioxygenase that was necessary for the degradation of chlorobenzoates substituted in the ortho position.
Collapse
Affiliation(s)
- W J Hickey
- Department of Soil and Environmental Science, University of California, Riverside 92521
| | | |
Collapse
|
8
|
Savard P, Péloquin L, Sylvestre M. Cloning of Pseudomonas sp. strain CBS3 genes specifying dehalogenation of 4-chlorobenzoate. J Bacteriol 1986; 168:81-5. [PMID: 3759912 PMCID: PMC213422 DOI: 10.1128/jb.168.1.81-85.1986] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The degradation of 4-chlorobenzoate (4-CBA) by Pseudomonas sp. strain CBS3 is thought to proceed first by the dehalogenation of 4-CBA to 4-hydroxybenzoate (4-HBA), which is then metabolized following the protocatechuate branch of the beta-ketoadipate pathway. The cloning of the 4-CBA dehalogenation system was carried out by constructing a gene bank of Pseudomonas sp. strain CBS3 in Pseudomonas putida. Hybrid plasmid pPSA843 contains a 9.5-kilobase-pair fragment derived from the chromosome of Pseudomonas sp. strain CBS3. This plasmid confers on P. putida the ability to dehalogenate 4-CBA and grow on 4-CBA as the only source of carbon. However, pPSA843 did not complement mutants of P. putida unable to grow on 4-HBA (POB-), showing that the genes involved in the metabolism of 4-HBA were not cloned. Subcloning of Pseudomonas sp. strain CBS3 genes revealed that most of the insert is required for the dehalogenation of 4-CBA, suggesting that more than one gene product is involved in this dehalogenation.
Collapse
|
9
|
Kaminski U, Janke D, Prauser H, Fritsche W. Degradation of aniline and monochloroanilines by Rhodococcus sp. An 117 and a pseudomonad: a comparative study. ZEITSCHRIFT FUR ALLGEMEINE MIKROBIOLOGIE 1983; 23:235-46. [PMID: 6613168 DOI: 10.1002/jobm.3630230405] [Citation(s) in RCA: 38] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Two newly isolated aniline-degrading bacterial strains were characterized with regard to their enzyme systems responsible for aniline catabolism. One of them identified as a Rhodococcus sp. metabolized aniline exclusively via the beta-ketoadipate pathway by means of inducible enzymes. The aniline-degrading enzyme system of the second isolate, presumably a pseudomonad, was shown to consist of an inducible aniline-converting enzyme and constitutive meta-pathway enzymes. Both isolates failed to metabolize monochlorinated anilines in the absence of additional carbon sources. To explain this the ring-cleaving enzymes of both isolates were examined for their substrate specificities. Furthermore, the effect of 4-chlorocatechol on the enzymes catalyzing aniline conversion and catechol oxygenation was investigated.
Collapse
|
10
|
Reber HH. Inducibility of benzoate oxidizing cell activities in Acinetobacter calcoaceticus strain Bs 5 by chlorobenzoates as influenced by the position of chlorine atoms and the inducer concentration. ACTA ACUST UNITED AC 1982. [DOI: 10.1007/bf00499521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|