1
|
Wei S, Ying J, Lu M, Li J, Huang Y, Wu Z, Nevill P, Li P, Jin X, Lu Q. Plastome comparison and phylogenomics of Chinese endemic Schnabelia (Lamiaceae): insights into plastome evolution and species divergence. BMC PLANT BIOLOGY 2025; 25:600. [PMID: 40335944 PMCID: PMC12057174 DOI: 10.1186/s12870-025-06647-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Accepted: 04/29/2025] [Indexed: 05/09/2025]
Abstract
BACKGROUND Schnabelia species, herbaceous perennial plants within the Lamiaceae family, possess medicinal value and are endemic to China. While previous studies have focused on morphological classification, molecular systematics, and medicinal components, there has been limited research on phylogenomics. To reveal their plastid genome characteristics and phylogenetic relationships, we sequenced and assembled the plastomes of all five Schnabelia species (S. oligophylla, S. tetrodonta, S. nepetifolia, S. terniflora, S. aureoglandulosa), conducted comparative genomic analyses, and constructed a phylogenetic tree incorporating closely related taxa in subfamily Ajugoideae, as well as conducting divergence time estimation. RESULTS Plastome size of the five species ranged from 155,733 bp to 156,944 bp, encompassing 115 unique genes, with a GC content of 37.8% same for all species. Five intergenic spacer regions (trnH-GUG-psbA, trnK-UUU-matK, petB-petD, ndhD-psaC, ndhA-ndhH) were identified as divergence hotspots. Gene selection pressure analysis demonstrated that all genes were under negative selection. Phylogenetic relationship of Ajugoideae species based on plastomes confirmed the monophyly of Schnabelia. Two clades within Schnabelia were supported, one containing two original species and the other comprising three species transferred from Caryopteris. The stem age of the Schnabelia is estimated to be approximately 30.24 Ma, with the split of two Sections occurring around 12.60 Ma. CONCLUSIONS We revealed plastid genome evolutionary features for five species within the genus Schnabelia. The identified highly variable regions can provide a tool for future identification of these medicinal plants. The diversification of Schnabelia during middle Miocene and the Quaternary suggests that historical geological and climatic shifts facilitated species differentiation. These findings enhance our understanding of Schnabelia's evolution and support future research on chloroplast diversity, aiding conservation and sustainable use.
Collapse
Affiliation(s)
- Shengnan Wei
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jianan Ying
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Mengxia Lu
- Jiashan Lige Ecological Technology Co. Ltd, Jiashan, 314113, China
| | - Jie Li
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yanbo Huang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Zhenming Wu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Paul Nevill
- Minesite Biodiversity Monitoring with eDNA Research Group, Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| | - Pan Li
- Laboratory of Systematic & Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xinjie Jin
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| | - Qixiang Lu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
2
|
Xu P, Xiao Y, Xiao Z, Li J. Developing a genome-wide long sequence-specific tag for sex identification in spotted knifejaw (Oplegnathus punctatus). Mol Genet Genomics 2025; 300:32. [PMID: 40106105 DOI: 10.1007/s00438-025-02240-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 03/03/2025] [Indexed: 03/22/2025]
Abstract
Spotted knifejaw (Oplegnathus punctatus), an economically important species in marine aquaculture, employs a unique sex determination mechanism based on a complex sex chromosome system (X1X1X2X2/X1X2Y). Males (2n = 47) possess one fewer chromosome than females (2n = 48), and their karyotype includes an unusually large neo-Y chromosome. Additionally, a pronounced sexual dimorphism in growth rate is observed, with males exhibiting a faster growth rate than females. In this study, we conducted a comprehensive whole-genome scan, which initially revealed structural variations in the anti-inflammatory itih4 gene between male and female O. punctatus. Additionally, we designed a pair of primers to detect DNA sequence variations within the itih4a/itih4b gene. These variations are located in the intergenic region of the fusion Y chromosome in male O. punctatus, compared to the homologous X chromosome in females. In females without DNA insertions in the itih4a/itih4b intergenic region, a single band of 351 bp is amplified. By contrast, in males with DNA insertions, two bands are amplified (755 bp and 351 bp). The 755 bp band specifically indicates the presence of a DNA insertion in the itih4a/itih4b intergenic region on the Y chromosome, associated with male-specific genetic traits. Our study will facilitate the rapid identification of the genetic sex of both male and female O. punctatus individuals.
Collapse
Affiliation(s)
- Pingrui Xu
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Qingdao, China
| | - Yongshuang Xiao
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China.
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Qingdao, China.
| | - Zhizhong Xiao
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Qingdao, China
| | - Jun Li
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China.
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|
3
|
Sun C, Liu H, Guo Y, Fu X, Zhu X, Liu H, Tang N, Chen Z, Liu Y, Liu X. Comparative chloroplast genome analysis of five widespread species ( Zanthoxylum L.) and development of molecular markers for their discrimination. Front Genet 2024; 15:1495891. [PMID: 39777261 PMCID: PMC11703814 DOI: 10.3389/fgene.2024.1495891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Background Zanthoxylum L., an important genus in the Rutaceae family, has great edible and medical values. However, the high degree of morphological similarity among Zanthoxylum species and the lack of sufficient chloroplast (cp) genomic resources have greatly impeded germplasm identification and phylogenetic analyses of Zanthoxylum. Methods Here we assembled cp genomes of five widespread species (Zanthoxylum bungeanum, Z. armatum, Z. nitidum, Z. ailanthoides and Z. piasezkii) in China as a case study, comparative analysis of these assembled cp genomes. Results Each of them, ranging from 157,231 to 158,728 bp, has a quadripartite structure. Except for one extra gene in Z. piasezkii, 132 genes were identified in each species, including 87 encode protein genes, 37 transfer ribose nucleic acid (tRNA) genes, and eight ribosomal RNA (rRNA) genes. Substantial variation was observed among these five cp genome sequences in the IR/SC boundary regions. Variation in insertions and deletions were observed in the cp genomes of the five species over three different intervals, and a large number of single-nucleotide polymorphism variants were detected in the rps3-rpl22-rps19 region. Phylogenetic analysis of complete cp genome sequences revealed the evolutionary relationships among 23 Zanthoxylum species (29 samples). Conclusion Comparative analysis revealed that rps3-rpl22-rps19 is a highly variable divergent region in Zanthoxylum that could be developed as candidate markers for phylogenetic studies and species identification. This study identified a pair of molecular markers from hypervariable regions that can be used to distinguish between the five Zanthoxylum species and validated their utility. Overall, the results of this study provide new insights into the genetic breeding, germplasm exploration, and phylogeny of Zanthoxylum species.
Collapse
Affiliation(s)
- Chong Sun
- College of Horticulture and Gardening/Spicy Crops Research Institute, Yangtze University, Jingzhou, Hubei, China
- College of Smart Agriculture, Chongqing University of Arts and Sciences, Chongqing, China
| | - Huamin Liu
- College of Smart Agriculture, Chongqing University of Arts and Sciences, Chongqing, China
| | - Yuan Guo
- College of Smart Agriculture, Chongqing University of Arts and Sciences, Chongqing, China
| | - Xueqian Fu
- College of Smart Agriculture, Chongqing University of Arts and Sciences, Chongqing, China
| | - Xinxin Zhu
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China
| | - Han Liu
- College of Smart Agriculture, Chongqing University of Arts and Sciences, Chongqing, China
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Ning Tang
- College of Smart Agriculture, Chongqing University of Arts and Sciences, Chongqing, China
| | - Zexiong Chen
- College of Smart Agriculture, Chongqing University of Arts and Sciences, Chongqing, China
| | - Yiqing Liu
- College of Horticulture and Gardening/Spicy Crops Research Institute, Yangtze University, Jingzhou, Hubei, China
- College of Smart Agriculture, Chongqing University of Arts and Sciences, Chongqing, China
| | - Xia Liu
- College of Smart Agriculture, Chongqing University of Arts and Sciences, Chongqing, China
| |
Collapse
|
4
|
Alshegaihi RM, Mansour H, Alrobaish SA, Al Shaye NA, Abd El-Moneim D. The First Complete Chloroplast Genome of Cordia monoica: Structure and Comparative Analysis. Genes (Basel) 2023; 14:genes14050976. [PMID: 37239336 DOI: 10.3390/genes14050976] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/10/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Cordia monoica is a member of the Boraginaceae family. This plant is widely distributed in tropical regions and has a great deal of medical value as well as economic importance. In the current study, the complete chloroplast (cp) genome of C. monoica was sequenced, assembled, annotated, and reported. This circular chloroplast genome had a size of 148,711 bp, with a quadripartite structure alternating between a pair of repeated inverted regions (26,897-26,901 bp) and a single copy region (77,893 bp). Among the 134 genes encoded by the cp genome, there were 89 protein-coding genes, 37 transfer RNA (tRNA) genes, and 8 ribosomal RNA (rRNA) genes. A total of 1387 tandem repeats were detected, with the hexanucleotides class making up 28 percent of the repeats. Cordia monoica has 26,303 codons in its protein-coding regions, and leucine amino acid was the most frequently encoded amino acid in contrast to cysteine. In addition, 12 of the 89 protein-coding genes were found to be under positive selection. The phyloplastomic taxonomical clustering of the Boraginaceae species provides further evidence that chloroplast genome data are reliable not only at family level but also in deciphering the phylogeny at genus level (e.g., Cordia).
Collapse
Affiliation(s)
- Rana M Alshegaihi
- Department of Biology, College of Science, University of Jeddah, Jeddah 21493, Saudi Arabia
| | - Hassan Mansour
- Department of Biological Sciences, Faculty of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Shouaa A Alrobaish
- Department of Biology, College of Science, Qassim University, Buraydah 52377, Saudi Arabia
| | - Najla A Al Shaye
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Diaa Abd El-Moneim
- Department of Plant Production, (Genetic Branch), Faculty of Environmental Agricultural Sciences, Arish University, El-Arish 45511, Egypt
| |
Collapse
|
5
|
Mao C, Zhang F, Li X, Yang T, Zhao Q, Wu Y. Complete chloroplast genome sequences of Myristicaceae species with the comparative chloroplast genomics and phylogenetic relationships among them. PLoS One 2023; 18:e0281042. [PMID: 36940204 PMCID: PMC10027215 DOI: 10.1371/journal.pone.0281042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 01/14/2023] [Indexed: 03/21/2023] Open
Abstract
BACKGROUND Myristicaceae was widly distributed from tropical Asia to Oceania, Africa, and tropical America. There are 3 genera and 10 species of Myristicaceae present in China, mainly distributed in the south of Yunnan Province. Most research on this family focuses on fatty acids, medicine, and morphology. Based on the morphology, fatty acid chemotaxonomy, and a few of molecular data, the phylogenetic position of Horsfieldia pandurifolia Hu was controversial. RESULTS In this study, the chloroplast genomes of two Knema species, Knema globularia (Lam.) Warb. and Knema cinerea (Poir.) Warb., were characterized. Comparing the genome structure of these two species with those of other eight published species, including three Horsfieldia species, four Knema species, and one Myristica species, it was found that the chloroplast genomes of these species were relatively conserved, retaining the same gene order. Through sequence divergence analysis, there were 11 genes and 18 intergenic spacers were subject to positive selection, which can be used to analyze the population genetic structure of this family. Phylogenetic analysis showed that all Knema species were clustered in the same group and formed a sister clade with Myristica species support by both high maximum likelihood bootstrap values and Bayesian posterior probabilities; among Horsfieldia species, Horsfieldia amygdalina (Wall.) Warb., Horsfieldia kingii (Hook.f.) Warb., Horsfieldia hainanensis Merr. and Horsfieldia tetratepala C.Y.Wu. were grouped together, but H. pandurifolia formed a single group and formed a sister clade with genus Myristica and Knema. Through the phylogenetic analysis, we support de Wilde' view that the H. pandurifolia should be separated from Horsfieldia and placed in the genus Endocomia, namely Endocomia macrocoma subsp. prainii (King) W.J.de Wilde. CONCLUSION The findings of this study provide a novel genetic resources for future research in Myristicaceae and provide a molecular evidence for the taxonomic classification of Myristicaceae.
Collapse
Affiliation(s)
- Changli Mao
- Yunnan Institute of Tropical Crops, Xishuangbanna, China
| | | | - Xiaoqin Li
- Yunnan Institute of Tropical Crops, Xishuangbanna, China
| | - Tian Yang
- Yunnan Institute of Tropical Crops, Xishuangbanna, China
| | - Qi Zhao
- Yunnan Institute of Tropical Crops, Xishuangbanna, China
| | - Yu Wu
- Yunnan Institute of Tropical Crops, Xishuangbanna, China
| |
Collapse
|
6
|
Yao R, Guo R, Liu Y, Kou Z, Shi B. Identification and phylogenetic analysis of the genus Syringa based on chloroplast genomic DNA barcoding. PLoS One 2022; 17:e0271633. [PMID: 35853031 PMCID: PMC9295972 DOI: 10.1371/journal.pone.0271633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 07/05/2022] [Indexed: 11/25/2022] Open
Abstract
DNA barcoding is a supplementary tool in plant systematics that is extensively used to resolve species-level controversies. This study assesses the significance of using two DNA barcoding loci (e.g., psbA-trnH and trnC-petN) in distinguishing 33 plant samples of the genus Syringa. Results showed that the average genetic distance K2P of psbA-trnH DNA marker was 0.0521, which is much higher than that of trnC-petN, which is 0.0171. A neighbor-joining phylogenetic tree based on psbA-trnH and trnC-petN indicated that the identification rate of psbA-trnH and trnC-petN alone were 75% and 62.5%, respectively. The barcode combination of psbA-trnH+trnC-petN could identify 33 samples of the genus Syringa accurately and effectively with an identification rate of 87.5%. The 33 Syringa samples were divided into four groups: Group I is series Syringa represented by Syringa oblata; Group II is series Villosae represented by Syringa villosa; Group III is series Pubescentes represented by Syringa meyeri; and Group IV is section Ligustrina represented by Syringa reticulata subsp. pekinensis. These research results provided strong evidence that the combinatorial barcode of psbA-trnH+trnC-petN had high-efficiency identification ability and application prospects in species of the genus Syringa.
Collapse
Affiliation(s)
- Ruihong Yao
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, P. R. China
| | - Runfang Guo
- Department of Bioengineering, Hebei Agricultural University, Baoding, P. R. China
| | - Yuguang Liu
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, P. R. China
| | - Ziqian Kou
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, P. R. China
| | - Baosheng Shi
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, P. R. China
- * E-mail:
| |
Collapse
|
7
|
The Chloroplast Genome of Wild Saposhnikovia divaricata: Genomic Features, Comparative Analysis, and Phylogenetic Relationships. Genes (Basel) 2022; 13:genes13050931. [PMID: 35627316 PMCID: PMC9141249 DOI: 10.3390/genes13050931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 02/01/2023] Open
Abstract
Saposhnikovia divaricata, a well-known Chinese medicinal herb, is the sole species under the genus Saposhnikovia of the Apiaceae subfamily Apioideae Drude. However, information regarding its genetic diversity and evolution is still limited. In this study, the first complete chloroplast genome (cpDNA) of wild S. divaricata was generated using de novo sequencing technology. Similar to the characteristics of Ledebouriella seseloides, the 147,834 bp-long S. divaricata cpDNA contained a large single copy, a small single copy, and two inverted repeat regions. A total of 85 protein-coding, 8 ribosomal RNA, and 36 transfer RNA genes were identified. Compared with five other species, the non-coding regions in the S. divaricata cpDNA exhibited greater variation than the coding regions. Several repeat sequences were also discovered, namely, 33 forward, 14 reverse, 3 complement, and 49 microsatellite repeats. Furthermore, phylogenetic analysis using 47 cpDNA sequences of Apioideae members revealed that L. seseloides and S. divaricata clustered together with a 100% bootstrap value, thereby supporting the validity of renaming L. seseloides to S. divaricata at the genomic level. Notably, S. divaricata was most closely related to Libanotis buchtormensis, which contradicts previous reports. Therefore, these findings provide a valuable foundation for future studies on the genetic diversity and evolution of S. divaricata.
Collapse
|
8
|
Moreno EMS, Pico GMVDO, Kovalsky IE, Luque JMR, Seijo JG, Neffa VGS. Species diversification in the lowlands of mid-latitude South America: Turnera sidoides subsp. carnea as a case study. AN ACAD BRAS CIENC 2021; 93:e20201067. [PMID: 34468489 DOI: 10.1590/0001-3765202120201067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/27/2020] [Indexed: 11/21/2022] Open
Abstract
The lowlands of mid-latitude South America comprise complex temperate ecoregions characterized by a unique biodiversity. However, the processes responsible for shaping its species diversity are still largely unknown. Turnera sidoides subsp. carnea is a variable subspecies occurring in the lowlands of northeastern Argentina and Uruguay, extending to southern Paraguay and Brazil. It constitutes a good model to perform evolutionary studies. Here we used an integrative approach to understand the process of diversification within this subspecies and to increase the knowledge concerning patterns and processes responsible for shaping the species diversity in the temperate lowlands of South America. The results provided strong evidences that this subspecies is an autopolyploid complex per se, being in an active process of intrasubspecific diversification. Morphological and genetic data show that the diversity of T. sidoides subsp. carnea is in congruence with the great past and present abiotic and biotic variability of the mid-latitude South American lowlands. The evolutionary history of this subspecies is consistent with past fragmentation and allopatric differentiation at diploid level. Geographic isolation and local adaptation would have promoted strong morphological, ecological, and genetic differentiation, resulting in two morphotypes and different genetic groups indicative of incipient speciation.
Collapse
Affiliation(s)
- Ercilia M S Moreno
- Instituto de Botánica del Nordeste (UNNE-CONICET), Sargento Cabral 2131, 3400, Corrientes, Argentina.,Universidad Nacional del Nordeste, Facultad de Ciencias Exactas y Naturales y Agrimensura, Libertad 5460, 3400, Corrientes, Argentina
| | - Gisela M Via DO Pico
- Instituto de Botánica del Nordeste (UNNE-CONICET), Sargento Cabral 2131, 3400, Corrientes, Argentina
| | - Ivana E Kovalsky
- Instituto de Botánica del Nordeste (UNNE-CONICET), Sargento Cabral 2131, 3400, Corrientes, Argentina.,Universidad Nacional del Nordeste, Facultad de Ciencias Exactas y Naturales y Agrimensura, Libertad 5460, 3400, Corrientes, Argentina
| | - Juan M Roggero Luque
- Instituto de Botánica del Nordeste (UNNE-CONICET), Sargento Cabral 2131, 3400, Corrientes, Argentina
| | - José G Seijo
- Instituto de Botánica del Nordeste (UNNE-CONICET), Sargento Cabral 2131, 3400, Corrientes, Argentina.,Universidad Nacional del Nordeste, Facultad de Ciencias Exactas y Naturales y Agrimensura, Libertad 5460, 3400, Corrientes, Argentina
| | - Viviana G Solís Neffa
- Instituto de Botánica del Nordeste (UNNE-CONICET), Sargento Cabral 2131, 3400, Corrientes, Argentina.,Universidad Nacional del Nordeste, Facultad de Ciencias Exactas y Naturales y Agrimensura, Libertad 5460, 3400, Corrientes, Argentina
| |
Collapse
|
9
|
Jiang P, Huang R, Sun T, Chen C, Zuo R, Taoa Y. Complete chloroplast genome of Zingiber mioga by de novo sequencing. Mitochondrial DNA B Resour 2021; 6:1238-1240. [PMID: 33829093 PMCID: PMC8008884 DOI: 10.1080/23802359.2021.1904799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Zingiber mioga (Thunb.) Rosc. (Zingiber mioga) is an important edible species, which also has important medical and natural pigment value. This article is firstly reported the Zingiber mioga's chloroplast genomes which detect by de novo sequencing. The results showed that the length sequence of Zingiber mioga's chloroplast genome was 163,541 bp, and the length of LSC, SSC, and two IR regions was 88,035, 15,886, and 29,810 bp, respectively. Zingiber mioga's chloroplast genome was encoded 135 genes involving 10 rRNA, 38 tRNA, and 87 protein-coding genes. After phylogenetic and cluster analysis, the Zingiber were closest approach to Zingiber mioga, followed by Kaempferia, Curcuma, Hedychium, and Roscoea.
Collapse
Affiliation(s)
- Ping Jiang
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, PR China.,Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Lu'an, PR China
| | - Renshu Huang
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, PR China
| | - Taotao Sun
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, PR China
| | - Cunwu Chen
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, PR China.,Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Lu'an, PR China
| | - Ruihua Zuo
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, PR China
| | - Ying Taoa
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, PR China.,Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Lu'an, PR China
| |
Collapse
|
10
|
Alzahrani DA, Yaradua SS, Albokhari EJ, Abba A. Complete chloroplast genome sequence of Barleria prionitis, comparative chloroplast genomics and phylogenetic relationships among Acanthoideae. BMC Genomics 2020; 21:393. [PMID: 32532210 PMCID: PMC7291470 DOI: 10.1186/s12864-020-06798-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 05/27/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The plastome of medicinal and endangered species in Kingdom of Saudi Arabia, Barleria prionitis was sequenced. The plastome was compared with that of seven Acanthoideae species in order to describe the plastome, spot the microsatellite, assess the dissimilarities within the sampled plastomes and to infer their phylogenetic relationships. RESULTS The plastome of B. prionitis was 152,217 bp in length with Guanine-Cytosine and Adenine-Thymine content of 38.3 and 61.7% respectively. It is circular and quadripartite in structure and constitute of a large single copy (LSC, 83, 772 bp), small single copy (SSC, 17, 803 bp) and a pair of inverted repeat (IRa and IRb 25, 321 bp each). 131 genes were identified in the plastome out of which 113 are unique and 18 were repeated in IR region. The genome consists of 4 rRNA, 30 tRNA and 80 protein-coding genes. The analysis of long repeat showed all types of repeats were present in the plastome and palindromic has the highest frequency. A total number of 98 SSR were also identified of which mostly were mononucleotide Adenine-Thymine and are located at the non coding regions. Comparative genomic analysis among the plastomes revealed that the pair of the inverted repeat is more conserved than the single copy region. In addition high variation is observed in the intergenic spacer region than the coding region. The genes, ycf1and ndhF and are located at the border junction of the small single copy region and IRb region of all the plastome. The analysis of sequence divergence in the protein coding genes indicates that the following genes undergo positive selection (atpF, petD, psbZ, rpl20, petB, rpl16, rps16, rpoC, rps7, rpl32 and ycf3). Phylogenetic analysis indicated sister relationship between Ruellieae and Justcieae. In addition, Barleria, Justicia and Ruellia are paraphyletic, suggesting that Justiceae, Ruellieae, Andrographideae and Barlerieae should be treated as tribes. CONCLUSIONS This study sequenced and assembled the first plastome of the taxon Barleria and reported the basics resources for evolutionary studies of B. prionitis and tools for phylogenetic relationship studies within the core Acanthaceae.
Collapse
Affiliation(s)
- Dhafer A Alzahrani
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Samaila S Yaradua
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia. .,Department of Biology, Umaru Musa Yaradua University, Centre for Biodiversity and Conservation, Katsina, Nigeria.
| | - Enas J Albokhari
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Biological Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abidina Abba
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
11
|
Zhou T, Zhu H, Wang J, Xu Y, Xu F, Wang X. Complete chloroplast genome sequence determination of Rheum species and comparative chloroplast genomics for the members of Rumiceae. PLANT CELL REPORTS 2020; 39:811-824. [PMID: 32221666 DOI: 10.1007/s00299-020-02532-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/13/2020] [Indexed: 05/10/2023]
Abstract
Complete plastomes of Rheum species facilitated to clarify the phylogeny of Polygonaceae, and comparative chloroplast genomics contributed to develop genetic markers for the authentication of Rheum species. Rheum (Polygonaceae) is widely distributed throughout the temperate and subtropical areas of Asian interior. Rheum species are usually perennial herbs, and half of them are endemic to China with important medicinal properties. On account of similar morphological characteristics, species delimitation of Rheum still remains unclear. Chloroplast genomes of eight Rheum species, Rumex crispus and Oxyria digyna were characterized. Based on the comparison of genome structure of these species and the two published Rheum species, it is shown that plastome sequences of these species are relatively conserved with the same gene order, and three Sect. Palmata species remarkably showed high sequence similarities. Some hotspots could be used to discriminate the Rheum species, and 17 plastid genes were subject to positive selection. The phylogenetic analyses indicated that all the Polygonaceae species were clustered in the same group and showed that Rheum species, except for Rheum wittrockii, formed a monophyletic group with high maximum parsimony/maximum likelihood bootstrap support values and Bayesian posterior probabilities. The molecular dating based on plastomes indicated that the divergences within Polygonaceae species were dated to the Upper Cretaceous period [73.86-77.99 million years ago (Ma)]. The divergence of Sect. Palmata species was estimated to have occurred around 1.60 Ma, indicating that its diversification was affected by the repeated climatic fluctuation in the Quaternary.
Collapse
Affiliation(s)
- Tao Zhou
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Qiyao Resources and Anti-Tumor Activities, Shaanxi Administration of Traditional Chinese Medicine, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Honghong Zhu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jian Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yucan Xu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Fusheng Xu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xumei Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China.
- Key Laboratory of Qiyao Resources and Anti-Tumor Activities, Shaanxi Administration of Traditional Chinese Medicine, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
12
|
Phylogeography of western Mediterranean Cymbalaria (Plantaginaceae) reveals two independent long-distance dispersals and entails new taxonomic circumscriptions. Sci Rep 2018; 8:18079. [PMID: 30591708 PMCID: PMC6308241 DOI: 10.1038/s41598-018-36412-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 11/19/2018] [Indexed: 11/24/2022] Open
Abstract
The Balearic Islands, Corsica and Sardinia (BCS) constitute biodiversity hotspots in the western Mediterranean Basin. Oligocene connections and long distance dispersal events have been suggested to cause presence of BCS shared endemic species. One of them is Cymbalaria aequitriloba, which, together with three additional species, constitute a polyploid clade endemic to BCS. Combining amplified fragment length polymorphism (AFLP) fingerprinting, plastid DNA sequences and morphometrics, we inferred the phylogeography of the group and evaluated the species’ current taxonomic circumscriptions. Based on morphometric and AFLP data we propose a new circumscription for C. fragilis to additionally comprise a group of populations with intermediate morphological characters previously included in C. aequitriloba. Consequently, we suggest to change the IUCN category of C. fragilis from critically endangered (CR) to near threatened (NT). Both morphology and AFLP data support the current taxonomy of the single island endemics C. hepaticifolia and C. muelleri. The four species had a common origin in Corsica-Sardinia, and two long-distance dispersal events to the Balearic Islands were inferred. Finally, plastid DNA data suggest that interspecific gene flow took place where two species co-occur.
Collapse
|
13
|
Nardi FD, Dobeš C, Müller D, Grasegger T, Myllynen T, Alonso-Marcos H, Tribsch A. Sexual intraspecific recombination but not de novo origin governs the genesis of new apomictic genotypes in Potentilla puberula (Rosaceae). TAXON 2018; 67:1108-1131. [PMID: 30799883 PMCID: PMC6382066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Apomixis - asexual reproduction via seeds - might arise de novo following polyploidisation events, or via reproductive transfer of apomixis. Both processes can be obtained within species or via hybridisation. We aimed to determine the origin of apomictic genotypes in Potentilla puberula, a rosaceous species showing reproductive differentiation with ploidy: sexual tetraploids and apomictic penta- to octoploids, which regularly co-occur in sympatry. The study is based on 726 individuals, comprising all cytotypes, collected from 138 populations in the Eastern European Alps. We established relationships of cytotypes based on AFLP fingerprinting and cpDNA sequencing to test (1) whether the apomicts are of recurrent allopolyploid origin or originated from within the species via autopolyploidy, and (2) whether there are indications for reproductive transfer versus de novo origin of apomixis. Three principal pathways were identified which explain the origin of new apomictic genotypes, all involving at least one apomictic parent and thus compatible with the idea of reproductive transfer of the apomictic trait to the progeny: (1) self-fertilisation of unreduced egg cells in apomicts; (2) cross-fertilisation among apomicts; and (3) occasionally, heteroploid crosses among sexuals and apomicts. Autopolyploids derived from tetraploid sexuals were repeatedly observed, but did not express apomixis. Finally, our results suggest no role of other species in the origin of extant apomictic genotypes of P. puberula, although local hybrids with P. crantzii were identified. In conclusion, our results show that the formation of new apomictic genotypes required a genetic contribution from at least one apomictic parent. This finding is in accordance with the idea that apomixis is inheritable in P. puberula. On the contrary, lack of apomixis in penta- and hexaploids derived from sexual backgrounds did not support the hypothesis of a de novo origin of apomixis. Relatively high frequency of remnant sexuality in the apomicts involving different cytological pathways of seed formation can explain their high cytological and genotypic diversity. Finally, lack of global introgression from a third taxon is in support of P. puberula as a concise, although highly diverse, species.
Collapse
Affiliation(s)
- Flavia Domizia Nardi
- Austrian Research Centre for Forests, Department of Forest Genetics, Seckendorff-Gudent-Weg 8, 1131 Vienna, Austria
- University of Salzburg, Department of Biosciences, Hellbrunnerstraße 34, 5020 Salzburg, Austria
| | - Christoph Dobeš
- Austrian Research Centre for Forests, Department of Forest Genetics, Seckendorff-Gudent-Weg 8, 1131 Vienna, Austria
| | - Dorothee Müller
- University of Salzburg, Department of Biosciences, Hellbrunnerstraße 34, 5020 Salzburg, Austria
| | - Tobias Grasegger
- University of Salzburg, Department of Biosciences, Hellbrunnerstraße 34, 5020 Salzburg, Austria
| | - Tuuli Myllynen
- Austrian Research Centre for Forests, Department of Forest Genetics, Seckendorff-Gudent-Weg 8, 1131 Vienna, Austria
| | - Henar Alonso-Marcos
- Austrian Research Centre for Forests, Department of Forest Genetics, Seckendorff-Gudent-Weg 8, 1131 Vienna, Austria
| | - Andreas Tribsch
- University of Salzburg, Department of Biosciences, Hellbrunnerstraße 34, 5020 Salzburg, Austria
| |
Collapse
|
14
|
Han K, Wang M, Zhang L, Wang C. Application of Molecular Methods in the Identification of Ingredients in Chinese Herbal Medicines. Molecules 2018; 23:E2728. [PMID: 30360419 PMCID: PMC6222746 DOI: 10.3390/molecules23102728] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 11/16/2022] Open
Abstract
There are several kinds of Chinese herbal medicines originating from diverse sources. However, the rapid taxonomic identification of large quantities of Chinese herbal medicines is difficult using traditional methods, and the process of identification itself is prone to error. Therefore, the traditional methods of Chinese herbal medicine identification must meet higher standards of accuracy. With the rapid development of bioinformatics, methods relying on bioinformatics strategies offer advantages with respect to the speed and accuracy of the identification of Chinese herbal medicine ingredients. This article reviews the applicability and limitations of biochip and DNA barcoding technology in the identification of Chinese herbal medicines. Furthermore, the future development of the two technologies of interest is discussed.
Collapse
Affiliation(s)
- Ke Han
- School of Computer and Information Engineering, Harbin University of Commerce, Harbin 150028, China.
| | - Miao Wang
- Life sciences and Environmental Sciences Development Center, Harbin University of Commerce, Harbin 150010, China.
| | - Lei Zhang
- Life sciences and Environmental Sciences Development Center, Harbin University of Commerce, Harbin 150010, China.
| | - Chunyu Wang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
15
|
Wang X, Zhou T, Bai G, Zhao Y. Complete chloroplast genome sequence of Fagopyrum dibotrys: genome features, comparative analysis and phylogenetic relationships. Sci Rep 2018; 8:12379. [PMID: 30120274 PMCID: PMC6098159 DOI: 10.1038/s41598-018-30398-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 07/30/2018] [Indexed: 12/18/2022] Open
Abstract
Fagopyrum dibotrys, belongs to Polygonaceae family, is one of national key conserved wild plants of China with important medicinal and economic values. Here, the complete chloroplast (cp) genome sequence of F. dibotrys is reported. The cp genome size is 159,919 bp with a typical quadripartite structure and consisting of a pair of inverted repeat regions (30,738 bp) separated by large single copy region (85,134 bp) and small single copy region (13,309 bp). Sequencing analyses indicated that the cp genome encodes 131 genes, including 80 protein-coding genes, 28 tRNA genes and 4 rRNA genes. The genome structure, gene order and codon usage are typical of angiosperm cp genomes. We also identified 48 simple sequence repeats (SSR) loci, fewer of them are distributed in the protein-coding sequences compared to the noncoding regions. Comparison of F. dibotrys cp genome to other Polygonaceae cp genomes indicated the inverted repeats (IRs) and coding regions were more conserved than single copy and noncoding regions, and several variation hotspots were detected. Coding gene sequence divergence analyses indicated that five genes (ndhK, petL rpoC2, ycf1, ycf2) were subject to positive selection. Phylogenetic analysis among 42 species based on cp genomes and 50 protein-coding genes indicated a close relationship between F. dibotrys and F. tataricum. In summary, the complete cp genome sequence of F. dibotrys reported in this study will provide useful plastid genomic resources for population genetics and pave the way for resolving phylogenetic relationships of order Caryophyllales.
Collapse
Affiliation(s)
- Xumei Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Tao Zhou
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Guoqing Bai
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi'an Botanical Garden of Shaanxi Province, Xi'an, 710061, China
| | - Yuemei Zhao
- College of Biopharmaceutical and Food Engineering, Shangluo University, Shangluo, 726000, China
| |
Collapse
|
16
|
Kim HT, Chase MW. Independent degradation in genes of the plastid ndh gene family in species of the orchid genus Cymbidium (Orchidaceae; Epidendroideae). PLoS One 2017; 12:e0187318. [PMID: 29140976 PMCID: PMC5695243 DOI: 10.1371/journal.pone.0187318] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/17/2017] [Indexed: 11/23/2022] Open
Abstract
In this paper, we compare ndh genes in the plastid genome of many Cymbidium species and three closely related taxa in Orchidaceae looking for evidence of ndh gene degradation. Among the 11 ndh genes, there were frequently large deletions in directly repeated or AT-rich regions. Variation in these degraded ndh genes occurs between individual plants, apparently at population levels in these Cymbidium species. It is likely that ndh gene transfers from the plastome to mitochondrial genome (chondriome) occurred independently in Orchidaceae and that ndh genes in the chondriome were also relatively recently transferred between distantly related species in Orchidaceae. Four variants of the ycf1-rpl32 region, which normally includes the ndhF genes in the plastome, were identified, and some Cymbidium species contained at least two copies of that region in their organellar genomes. The four ycf1-rpl32 variants seem to have a clear pattern of close relationships. Patterns of ndh degradation between closely related taxa and translocation of ndh genes to the chondriome in Cymbidium suggest that there have been multiple bidirectional intracellular gene transfers between two organellar genomes, which have produced different levels of ndh gene degradation among even closely related species.
Collapse
Affiliation(s)
- Hyoung Tae Kim
- College of Agriculture and Life Sciences, Kyungpook University, Daegu, Korea
| | - Mark W. Chase
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, United Kingdom
- * E-mail:
| |
Collapse
|
17
|
DNA barcoding analysis and phylogenetic relationships of tree species in tropical cloud forests. Sci Rep 2017; 7:12564. [PMID: 28970548 PMCID: PMC5624878 DOI: 10.1038/s41598-017-13057-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 09/18/2017] [Indexed: 11/08/2022] Open
Abstract
DNA barcoding is a useful tool for species identification and phylogenetic construction. But present studies have far reached a consistent result on the universality of DNA barcoding. We tested the universality of tree species DNA barcodes including rbcL, matK, trnH-psbA and ITS, and examined their abilities of species identification and phylogenetic construction in three tropical cloud forests. Results showed that the success rates of PCR amplification of rbcL, matK, trnH-psbA and ITS were 75.26% ± 3.65%, 57.24% ± 4.42%, 79.28% ± 7.08%, 50.31% ± 6.64%, and the rates of DNA sequencing were 63.84% ± 4.32%, 50.82% ± 4.36%, 72.87% ± 11.37%, 45.15% ± 8.91% respectively, suggesting that both rbcL and trnH-psbA are universal for tree species in the tropical cloud forests. The success rates of species identification of the four fragments were higher than 41.00% (rbcL: 41.50% ± 2.81%, matK: 42.88% ± 2.59%, trnH-psbA: 46.16% ± 5.11% and ITS: 47.20% ± 5.76%), demonstrating that these fragments have potentiality in species identification. When the phylogenetic relationships were built with random fragment combinations, optimal evolutionary tree with high supporting values were established using the combinations of rbcL + matK + trnH-psbA in tropical cloud forests.
Collapse
|
18
|
Cazé ALR, Mäder G, Nunes TS, Queiroz LP, de Oliveira G, Diniz-Filho JAF, Bonatto SL, Freitas LB. Could refuge theory and rivers acting as barriers explain the genetic variability distribution in the Atlantic Forest? Mol Phylogenet Evol 2016; 101:242-251. [DOI: 10.1016/j.ympev.2016.05.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 05/09/2016] [Accepted: 05/10/2016] [Indexed: 11/28/2022]
|
19
|
Gutiérrez-López N, Ovando-Medina I, Salvador-Figueroa M, Molina-Freaner F, Avendaño-Arrazate CH, Vázquez-Ovando A. Unique haplotypes of cacao trees as revealed by trnH-psbA chloroplast DNA. PeerJ 2016; 4:e1855. [PMID: 27076998 PMCID: PMC4830229 DOI: 10.7717/peerj.1855] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 03/06/2016] [Indexed: 11/20/2022] Open
Abstract
Cacao trees have been cultivated in Mesoamerica for at least 4,000 years. In this study, we analyzed sequence variation in the chloroplast DNA trnH-psbA intergenic spacer from 28 cacao trees from different farms in the Soconusco region in southern Mexico. Genetic relationships were established by two analysis approaches based on geographic origin (five populations) and genetic origin (based on a previous study). We identified six polymorphic sites, including five insertion/deletion (indels) types and one transversion. The overall nucleotide diversity was low for both approaches (geographic = 0.0032 and genetic = 0.0038). Conversely, we obtained moderate to high haplotype diversity (0.66 and 0.80) with 10 and 12 haplotypes, respectively. The common haplotype (H1) for both networks included cacao trees from all geographic locations (geographic approach) and four genetic groups (genetic approach). This common haplotype (ancient) derived a set of intermediate haplotypes and singletons interconnected by one or two mutational steps, which suggested directional selection and event purification from the expansion of narrow populations. Cacao trees from Soconusco region were grouped into one cluster without any evidence of subclustering based on AMOVA (FST = 0) and SAMOVA (FST = 0.04393) results. One population (Mazatán) showed a high haplotype frequency; thus, this population could be considered an important reservoir of genetic material. The indels located in the trnH-psbA intergenic spacer of cacao trees could be useful as markers for the development of DNA barcoding.
Collapse
Affiliation(s)
- Nidia Gutiérrez-López
- Instituto de Biociencias, Universidad Autónoma de Chiapas , Tapachula, Chiapas , Mexico
| | - Isidro Ovando-Medina
- Instituto de Biociencias, Universidad Autónoma de Chiapas , Tapachula, Chiapas , Mexico
| | | | - Francisco Molina-Freaner
- Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México , Hermosillo, Sonora , Mexico
| | - Carlos H Avendaño-Arrazate
- Campo Experimental Rosario Izapa, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias , Tuxtla Chico, Chiapas , Mexico
| | | |
Collapse
|
20
|
Turchetto C, Fagundes NJR, Segatto ALA, Kuhlemeier C, Solís Neffa VG, Speranza PR, Bonatto SL, Freitas LB. Diversification in the South American Pampas: the genetic and morphological variation of the widespread Petunia axillaris complex (Solanaceae). Mol Ecol 2015; 23:374-89. [PMID: 24372681 DOI: 10.1111/mec.12632] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 11/20/2013] [Accepted: 11/22/2013] [Indexed: 11/30/2022]
Abstract
Understanding the spatiotemporal distribution of genetic variation and the ways in which this distribution is connected to the ecological context of natural populations is fundamental for understanding the nature and mode of intraspecific and, ultimately, interspecific differentiation. The Petunia axillaris complex is endemic to the grasslands of southern South America and includes three subspecies: P. a. axillaris, P. a. parodii and P. a. subandina. These subspecies are traditionally delimited based on both geography and floral morphology, although the latter is highly variable. Here, we determined the patterns of genetic (nuclear and cpDNA), morphological and ecological (bioclimatic) variation of a large number of P. axillaris populations and found that they are mostly coincident with subspecies delimitation. The nuclear data suggest that the subspecies are likely independent evolutionary units, and their morphological differences may be associated with local adaptations to diverse climatic and/or edaphic conditions and population isolation. The demographic dynamics over time estimated by skyline plot analyses showed different patterns for each subspecies in the last 100 000 years, which is compatible with a divergence time between 35 000 and 107 000 years ago between P. a. axillaris and P. a. parodii, as estimated with the IMa program. Coalescent simulation tests using Approximate Bayesian Computation do not support previous suggestions of extensive gene flow between P. a. axillaris and P. a. parodii in their contact zone.
Collapse
Affiliation(s)
- Caroline Turchetto
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, PoBox 15053, 91501-970, Porto Alegre, RS, Brazil
| | - Nelson J R Fagundes
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, PoBox 15053, 91501-970, Porto Alegre, RS, Brazil
| | - Ana L A Segatto
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, PoBox 15053, 91501-970, Porto Alegre, RS, Brazil
| | - Cris Kuhlemeier
- Institute of Plant Sciences, Altenbergrain 21 CH-3013, Bern, Switzerland
| | - Viviana G Solís Neffa
- Instituto de Botánica del Nordeste (UNNE-CONICET), Sargento Cabral 2131, Corrientes, 3400, Argentina
| | - Pablo R Speranza
- Facultad de Agronomía, Universidad de la República, Av. E. Garzón 780, Montevideo, 12900, Uruguay
| | - Sandro L Bonatto
- Laboratory of Genomic and Molecular Biology, Pontifícia Universidade Católica do Rio Grande do Sul, Ipiranga 6681, Porto Alegre, RS, 90610-001, Brazil
| | - Loreta B Freitas
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, PoBox 15053, 91501-970, Porto Alegre, RS, Brazil
| |
Collapse
|
21
|
Ramos-Fregonezi AMC, Fregonezi JN, Cybis GB, Fagundes NJR, Bonatto SL, Freitas LB. Were sea level changes during the Pleistocene in the South Atlantic Coastal Plain a driver of speciation in Petunia (Solanaceae)? BMC Evol Biol 2015; 15:92. [PMID: 25989835 PMCID: PMC4438590 DOI: 10.1186/s12862-015-0363-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 04/27/2015] [Indexed: 11/26/2022] Open
Abstract
Background Quaternary climatic changes led to variations in sea level and these variations played a significant role in the generation of marine terrace deposits in the South Atlantic Coastal Plain. The main consequence of the increase in sea level was local extinction or population displacement, such that coastal species would be found around the new coastline. Our main goal was to investigate the effects of sea level changes on the geographical structure and variability of genetic lineages from a Petunia species endemic to the South Atlantic Coastal Plain. We employed a phylogeographic approach based on plastid sequences obtained from individuals collected from the complete geographic distribution of Petunia integrifolia ssp. depauperata and its sister group. We used population genetics tests to evaluate the degree of genetic variation and structure among and within populations, and we used haplotype network analysis and Bayesian phylogenetic methods to estimate divergence times and population growth. Results We observed three major genetic lineages whose geographical distribution may be related to different transgression/regression events that occurred in this region during the Pleistocene. The divergence time between the monophyletic group P. integrifolia ssp. depauperata and its sister group (P. integrifolia ssp. integrifolia) was compatible with geological estimates of the availability of the coastal plain. Similarly, the origin of each genetic lineage is congruent with geological estimates of habitat availability. Conclusions Diversification of P. integrifolia ssp. depauperata possibly occurred as a consequence of the marine transgression/regression cycles during the Pleistocene. In periods of high sea level, plants were most likely restricted to a refuge area corresponding to fossil dunes and granitic hills, from which they colonized the coast once the sea level came down. The modern pattern of lineage geographical distribution and population variation was established by a range expansion with serial founder effects conditioned on soil availability. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0363-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aline M C Ramos-Fregonezi
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, P.O. Box 15053, Porto Alegre, Brazil.
| | - Jeferson N Fregonezi
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, P.O. Box 15053, Porto Alegre, Brazil.
| | - Gabriela B Cybis
- Department of Statistics, Universidade Federal do Rio Grande do Sul, P.O. Box 15080, Porto Alegre, Brazil.
| | - Nelson J R Fagundes
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, P.O. Box 15053, Porto Alegre, Brazil.
| | - Sandro L Bonatto
- Genomic and Molecular Biology Laboratory, Pontifícia Universidade Católica do Rio Grande do Sul, Ipiranga 6681, 90610 001, Porto Alegre, RS, Brazil.
| | - Loreta B Freitas
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, P.O. Box 15053, Porto Alegre, Brazil.
| |
Collapse
|
22
|
Evolutionary and demographic history among Maghrebian Medicago species (Fabaceae) based on the nucleotide sequences of the chloroplast DNA barcode trnH-psbA. BIOCHEM SYST ECOL 2014. [DOI: 10.1016/j.bse.2014.03.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
KIM JEONGHEE, HART HENK‘T, MES TEDHM. The phylogenetic position of East AsianSedumspecies (Crassulaceae) based on chloroplast DNA trnL (UAA)-trnF (GAA) intergenic spacer sequence variation. ACTA ACUST UNITED AC 2013. [DOI: 10.1111/j.1438-8677.1996.tb00519.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Segatto ALA, Cazé ALR, Turchetto C, Klahre U, Kuhlemeier C, Bonatto SL, Freitas LB. Nuclear and plastid markers reveal the persistence of genetic identity: a new perspective on the evolutionary history of Petunia exserta. Mol Phylogenet Evol 2013; 70:504-12. [PMID: 24161675 DOI: 10.1016/j.ympev.2013.10.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 09/27/2013] [Accepted: 10/11/2013] [Indexed: 12/01/2022]
Abstract
Recently divergent species that can hybridize are ideal models for investigating the genetic exchanges that can occur while preserving the species boundaries. Petunia exserta is an endemic species from a very limited and specific area that grows exclusively in rocky shelters. These shaded spots are an inhospitable habitat for all other Petunia species, including the closely related and widely distributed species P. axillaris. Individuals with intermediate morphologic characteristics have been found near the rocky shelters and were believed to be putative hybrids between P. exserta and P. axillaris, suggesting a situation where Petunia exserta is losing its genetic identity. In the current study, we analyzed the plastid intergenic spacers trnS/trnG and trnH/psbA and six nuclear CAPS markers in a large sampling design of both species to understand the evolutionary process occurring in this biological system. Bayesian clustering methods, cpDNA haplotype networks, genetic diversity statistics, and coalescence-based analyses support a scenario where hybridization occurs while two genetic clusters corresponding to two species are maintained. Our results reinforce the importance of coupling differentially inherited markers with an extensive geographic sample to assess the evolutionary dynamics of recently diverged species that can hybridize.
Collapse
Affiliation(s)
- Ana Lúcia Anversa Segatto
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil
| | | | | | | | | | | | | |
Collapse
|
25
|
Dyer RJ, Savolainen V, Schneider H. Apomixis and reticulate evolution in the Asplenium monanthes fern complex. ANNALS OF BOTANY 2012; 110:1515-29. [PMID: 22984165 PMCID: PMC3503490 DOI: 10.1093/aob/mcs202] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
BACKGROUND AND AIMS Asexual reproduction is a prominent evolutionary process within land plant lineages and especially in ferns. Up to 10 % of the approx. 10 000 fern species are assumed to be obligate asexuals. In the Asplenium monanthes species complex, previous studies identified two triploid, apomictic species. The purpose of this study was to elucidate the phylogenetic relationships in the A. monanthes complex and to investigate the occurrence and evolution of apomixis within this group. METHODS DNA sequences of three plastid markers and one nuclear single copy gene were used for phylogenetic analyses. Reproductive modes were assessed by examining gametophytic and sporophyte development, while polyploidy was inferred from spore measurements. KEY RESULTS Asplenium monanthes and A. resiliens are confirmed to be apomictic. Asplenium palmeri, A. hallbergii and specimens that are morphologically similar to A. heterochroum are also found to be apomictic. Apomixis is confined to two main clades of taxa related to A. monanthes and A. resiliens, respectively, and is associated with reticulate evolution. Two apomictic A. monanthes lineages, and two putative diploid sexual progenitor species are identified in the A. monanthes clade. CONCLUSIONS Multiple origins of apomixis are inferred, in both alloploid and autoploid forms, within the A. resiliens and A. monanthes clades.
Collapse
Affiliation(s)
- Robert J. Dyer
- Department of Botany, Natural History Museum, London SW7 5BD, UK
- Imperial College London, Silwood Park Campus, Ascot, Berkshire SL5 7PY, UK
- For correspondence. Email , or
| | - Vincent Savolainen
- Imperial College London, Silwood Park Campus, Ascot, Berkshire SL5 7PY, UK
- Royal Botanic Gardens, Kew TW9 3DS, UK
| | - Harald Schneider
- Department of Botany, Natural History Museum, London SW7 5BD, UK
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
- For correspondence. Email , or
| |
Collapse
|
26
|
Sun XQ, Zhu YJ, Guo JL, Peng B, Bai MM, Hang YY. DNA barcoding the Dioscorea in China, a vital group in the evolution of monocotyledon: use of matK gene for species discrimination. PLoS One 2012; 7:e32057. [PMID: 22363795 PMCID: PMC3282793 DOI: 10.1371/journal.pone.0032057] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 01/23/2012] [Indexed: 11/18/2022] Open
Abstract
Background Dioscorea is an important plant genus in terms of food supply and pharmaceutical applications. However, its classification and identification are controversial. DNA barcoding is a recent aid to taxonomic identification and uses a short standardized DNA region to discriminate plant species. In this study, the applicability of three candidate DNA barcodes (rbcL, matK, and psbA-trnH) to identify species within Dioscorea was tested. Methodology/Principal Findings One-hundred and forty-eight individual plant samples of Dioscorea, encompassing 38 species, seven varieties and one subspecies, representing majority species distributed in China of this genus, were collected from its main distributing areas. Samples were assessed by PCR amplification, sequence quality, extent of specific genetic divergence, DNA barcoding gap, and the ability to discriminate between species. matK successfully identified 23.26% of all species, compared with 9.30% for rbcL and 11.63% for psbA-trnH. Therefore, matK is recommended as the best DNA barcoding candidate. We found that the combination of two or three loci achieved a higher success rate of species discrimination than one locus alone. However, experimental cost would be much higher if two or three loci, rather than a single locus, were assessed. Conclusions We conclude that matK is a strong, although not perfect, candidate as a DNA barcode for Dioscorea identification. This assessment takes into account both its ability for species discrimination and the cost of experiments.
Collapse
Affiliation(s)
- Xiao-Qin Sun
- Jiangsu Province Key Laboratory for Plant Ex Situ Conservation, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, People's Republic of China
| | - Ying-Jie Zhu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People's Republic of China
| | - Jian-Lin Guo
- Jiangsu Province Key Laboratory for Plant Ex Situ Conservation, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, People's Republic of China
| | - Bin Peng
- Jiangsu Province Key Laboratory for Plant Ex Situ Conservation, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, People's Republic of China
| | - Ming-Ming Bai
- Jiangsu Province Key Laboratory for Plant Ex Situ Conservation, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, People's Republic of China
| | - Yue-Yu Hang
- Jiangsu Province Key Laboratory for Plant Ex Situ Conservation, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, People's Republic of China
- * E-mail:
| |
Collapse
|
27
|
Liu C, Liang D, Gao T, Pang X, Song J, Yao H, Han J, Liu Z, Guan X, Jiang K, Li H, Chen S. PTIGS-IdIt, a system for species identification by DNA sequences of the psbA-trnH intergenic spacer region. BMC Bioinformatics 2011; 12 Suppl 13:S4. [PMID: 22373238 PMCID: PMC3278844 DOI: 10.1186/1471-2105-12-s13-s4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND DNA barcoding technology, which uses a short piece of DNA sequence to identify species, has wide ranges of applications. Until today, a universal DNA barcode marker for plants remains elusive. The rbcL and matK regions have been proposed as the "core barcode" for plants and the ITS2 and psbA-trnH intergenic spacer (PTIGS) regions were later added as supplemental barcodes. The use of PTIGS region as a supplemental barcode has been limited by the lack of computational tools that can handle significant insertions and deletions in the PTIGS sequences. Here, we compared the most commonly used alignment-based and alignment-free methods and developed a web server to allow the biologists to carry out PTIGS-based DNA barcoding analyses. RESULTS First, we compared several alignment-based methods such as BLAST and those calculating P distance and Edit distance, alignment-free methods Di-Nucleotide Frequency Profile (DNFP) and their combinations. We found that the DNFP and Edit-distance methods increased the identification success rate to ~80%, 20% higher than the most commonly used BLAST method. Second, the combined methods showed overall better success rate and performance. Last, we have developed a web server that allows (1) retrieving various sub-regions and the consensus sequences of PTIGS, (2) annotating novel PTIGS sequences, (3) determining species identity by PTIGS sequences using eight methods, and (4) examining identification efficiency and performance of the eight methods for various taxonomy groups. CONCLUSIONS The Edit distance and the DNFP methods have the highest discrimination powers. Hybrid methods can be used to achieve significant improvement in performance. These methods can be extended to applications using the core barcodes and the other supplemental DNA barcode ITS2. To our knowledge, the web server developed here is the only one that allows species determination based on PTIGS sequences. The web server can be accessed at http://psba-trnh-plantidit.dnsalias.org.
Collapse
Affiliation(s)
- Chang Liu
- The Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, P. R. China
| | - Dong Liang
- School of Computer Science & Engineering, Beihang University, 37 Xueyuan Road, Haidian District, Beijing 100191, P.R.China
| | - Ting Gao
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, P.R. China
| | - Xiaohui Pang
- The Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, P. R. China
| | - Jingyuan Song
- The Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, P. R. China
| | - Hui Yao
- The Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, P. R. China
| | - Jianping Han
- The Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, P. R. China
| | - Zhihua Liu
- The Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, P. R. China
| | - Xiaojun Guan
- Center for BioInformatics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kun Jiang
- Pidit Ltd, 192 West Grant Ave, Edison, NJ 08820, USA
| | - Huan Li
- School of Computer Science & Engineering, Beihang University, 37 Xueyuan Road, Haidian District, Beijing 100191, P.R.China
| | - Shilin Chen
- The Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, P. R. China
| |
Collapse
|
28
|
Absence of pollinator-mediated premating barriers in mixed-ploidy populations of Gymnadenia conopsea s.l. (Orchidaceae). Evol Ecol 2010. [DOI: 10.1007/s10682-010-9356-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
29
|
Ziegelhoffer T, Raasch JA, Austin-Phillips S. Expression of Acidothermus cellulolyticus E1 endo-beta-1,4-glucanase catalytic domain in transplastomic tobacco. PLANT BIOTECHNOLOGY JOURNAL 2009; 7:527-36. [PMID: 19500296 DOI: 10.1111/j.1467-7652.2009.00421.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
As part of an effort to develop transgenic plants as a system for the production of lignocellulose-degrading enzymes, we evaluated the production of the endo-beta-1,4-glucanase E1 catalytic domain (E1cd) of Acidothermus cellulolyticus in transplastomic tobacco. In an attempt to increase the translation efficiency of the E1cd cassette, various lengths of the N-terminus of the psbA gene product were fused to the E1cd protein. The psbA gene of the plastid genome encodes the D1 polypeptide of photosystem II and is known to encode an efficiently translated mRNA. Experiments in an Escherichia coli expression system indicated that the fusion of short (10-22 amino acid) segments of D1 to E1cd resulted in modest increases in E1cd abundance and were compatible with E1cd activity. Plastid expression cassettes encoding unmodified E1cd and a 10-amino-acid D1 fusion (10nE1cd) were used to generate transplastomic tobacco plants. Expression of the E1cd open reading frame in transplastomic tobacco resulted in very low levels of the enzyme. The transplastomic plants accumulated a high level of E1cd mRNA, however, indicating that post-transcriptional processes were probably limiting the production of recombinant protein. The accumulation of 10nE1cd in transplastomic tobacco was approximately 200-fold higher than that of unmodified E1cd, yielding 10nE1cd in excess of 12% of total soluble protein in the extracts of the lower leaves. Most importantly, the active recombinant enzyme was recovered very easily and efficiently from dried plant material and constituted as much as 0.3% of the dry weight of leaf tissue.
Collapse
Affiliation(s)
- Thomas Ziegelhoffer
- Biotechnology Center, University of Wisconsin-Madison, 425 Henry Mall, Madison, WI 53706, USA.
| | | | | |
Collapse
|
30
|
Sun G, Ma X. Nucleotide diversity and minisatellite in chloroplast Asp(GUC)–Thr(GGU) region in Elymus trachycaulus complex, Elymus alaskanus and Elymus caninus. BIOCHEM SYST ECOL 2009. [DOI: 10.1016/j.bse.2008.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Creation of a chloroplast microsatellite reporter for detection of replication slippage in Chlamydomonas reinhardtii. EUKARYOTIC CELL 2008; 7:639-46. [PMID: 18263764 DOI: 10.1128/ec.00447-07] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Microsatellites are composed of short tandem direct repeats; deletions or duplications of those repeats through the process of replication slippage result in microsatellite instability relative to other genomic loci. Variation in repeat number occurs so frequently that microsatellites can be used for genotyping and forensic analysis. However, an accurate assessment of the rates of change can be difficult because the presence of many repeats makes it difficult to determine whether changes have occurred through single or multiple events. The current study was undertaken to experimentally assess the rates of replication slippage that occur in vivo in the chloroplast DNA of Chlamydomonas reinhardtii. A reporter construct was created in which a stretch of AAAG repeats was inserted into a functional gene to allow changes to be observed when they occurred at the synthetic microsatellite. Restoration of the reading frame occurred through replication slippage in 15 of every million viable cells. Since only one-third of the potential insertion/deletion events would restore the reading frame, the frequency of change could be deduced to be 4.5 x 10(-5). Analysis of the slippage events showed that template slippage was the primary event, resulting in deletions rather than duplications. These findings contrasted with events observed in Escherichia coli during maintenance of the plasmid, where duplications were the rule.
Collapse
|
32
|
Moore JP, Farrant JM, Lindsey GG, Brandt WF. The South African and Namibian Populations of the Resurrection Plant Myrothamnus flabellifolius are Genetically Distinct and Display Variation in Their Galloylquinic Acid Composition. J Chem Ecol 2005; 31:2823-34. [PMID: 16365707 DOI: 10.1007/s10886-005-8396-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Revised: 07/22/2005] [Accepted: 08/07/2005] [Indexed: 10/25/2022]
Abstract
The polyphenol contents and compositions in desiccated leaves of Myrothamnus flabellifolius plants collected in various locations in Namibia and South Africa were analyzed using UV spectroscopy and high-performance liquid chromatography-mass spectrometry. A study of the genetic relatedness of these populations was also performed by determination of the DNA sequence of the intergenic spacer region between the psbA and the trnH genes in the chloroplast genome. Namibian M. flabellifolius plants contained significantly more polyphenols than South African plants. Namibian plants essentially contained a single polyphenol, 3,4,5-tri-O-galloylquinic acid, whereas South African plants contained a variety of galloylquinic acids including 3,4,5-tri-O-galloylquinic acid together with higher molecular weight galloylquinic acids. Sequence analysis revealed a 1.4% divergence between Namibian and South African plants corresponding to the separation of these populations of approximately 4 x 10(6) years. The significance of the poly-phenol content and composition to the desiccation tolerance of the two populations is discussed.
Collapse
Affiliation(s)
- John P Moore
- Department of Molecular and Cellular Biology, University of Cape Town, Private Bag, Rondebosch 7701, South Africa
| | | | | | | |
Collapse
|
33
|
Shaw J, Lickey EB, Beck JT, Farmer SB, Liu W, Miller J, Siripun KC, Winder CT, Schilling EE, Small RL. The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. AMERICAN JOURNAL OF BOTANY 2005; 92:142-66. [PMID: 21652394 DOI: 10.3732/ajb.92.1.142] [Citation(s) in RCA: 801] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Chloroplast DNA sequences are a primary source of data for plant molecular systematic studies. A few key papers have provided the molecular systematics community with universal primer pairs for noncoding regions that have dominated the field, namely trnL-trnF and trnK/matK. These two regions have provided adequate information to resolve species relationships in some taxa, but often provide little resolution at low taxonomic levels. To obtain better phylogenetic resolution, sequence data from these regions are often coupled with other sequence data. Choosing an appropriate cpDNA region for phylogenetic investigation is difficult because of the scarcity of information about the tempo of evolutionary rates among different noncoding cpDNA regions. The focus of this investigation was to determine whether there is any predictable rate heterogeneity among 21 noncoding cpDNA regions identified as phylogenetically useful at low levels. To test for rate heterogeneity among the different cpDNA regions, we used three species from each of 10 groups representing eight major phylogenetic lineages of phanerogams. The results of this study clearly show that a survey using as few as three representative taxa can be predictive of the amount of phylogenetic information offered by a cpDNA region and that rate heterogeneity exists among noncoding cpDNA regions.
Collapse
Affiliation(s)
- Joey Shaw
- Department of Botany, 437 Hesler Biology, University of Tennessee, Knoxville, Tennessee 37996 USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Weeks A, Simpson BB. Molecular genetic evidence for interspecific hybridization among endemic Hispaniolan Bursera (Burseraceae). AMERICAN JOURNAL OF BOTANY 2004; 91:976-984. [PMID: 21653453 DOI: 10.3732/ajb.91.6.976] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Historically, genetic introgression among species as well as hybrid origins for species of the diploid tree genus Bursera (Burseraceae) have been proposed based on the supposition that individuals morphologically intermediate between sympatric "parent" species must be derived from hybridization. This study reports the first molecular genetic evidence for both unidirectional and reciprocal interspecific hybridization within Bursera. Phylogenies of hybrids and other species in B. subgenus Bursera are reconstructed based on nuclear and chloroplast sequence data. Compelling evidence supports the hybrid origin of three endemic Hispaniolan species: B. brunea (B. nashii × B. simaruba), B. gracilipes (B. spinescens × B. simaruba), and B. ovata (B. simaruba × B. spinescens). Cloning studies of nuclear markers from B. ovata suggests that this species is an introgressed or later backcross generation hybrid and thus reproduces sexually.
Collapse
Affiliation(s)
- Andrea Weeks
- The University of Texas at Austin, Section of Integrative Biology and Plant Resources Center, Austin, Texas 78712 USA
| | | |
Collapse
|
35
|
Schmitz-Linneweber C, Regel R, Du TG, Hupfer H, Herrmann RG, Maier RM. The plastid chromosome of Atropa belladonna and its comparison with that of Nicotiana tabacum: the role of RNA editing in generating divergence in the process of plant speciation. Mol Biol Evol 2002; 19:1602-12. [PMID: 12200487 DOI: 10.1093/oxfordjournals.molbev.a004222] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The nuclear and plastid genomes of the plant cell form a coevolving unit which in interspecific combinations can lead to genetic incompatibility of compartments even between closely related taxa. This phenomenon has been observed for instance in Atropa-Nicotiana cybrids. We have sequenced the plastid chromosome of Atropa belladonna (deadly nightshade), a circular DNA molecule of 156,688 bp, and compared it with the corresponding published sequence of its relative Nicotiana tabacum (tobacco) to understand how divergence at the level of this genome can contribute to nuclear-plastid incompatibilities and to speciation. It appears that (1) regulatory elements, i.e., promoters as well as translational and replicational signal elements, are well conserved between the two species; (2) genes--including introns--are even more highly conserved, with differences residing predominantly in regions of low functional importance; and (3) RNA editotypes differ between the two species, which makes this process an intriguing candidate for causing rapid reproductive isolation of populations.
Collapse
|
36
|
Mes TH, Kuperus P, Kirschner J, Stepanek J, Oosterveld P, Storchova H, den Nijs JC. Hairpins involving both inverted and direct repeats are associated with homoplasious indels in non-coding chloroplast DNA of Taraxacum (Lactuceae: Asteraceae). Genome 2000; 43:634-41. [PMID: 10984175 DOI: 10.1139/g99-135] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sequence variation in 2.2 kb of non-coding regions of the chloroplast genome of eight dandelions (Taraxacum: Lactuceae) from Asia and Europe is interpreted in the light of the phylogenetic signal of base substitutions vs. indels (insertions-deletions). The four non-coding regions displayed a total of approximately 30 structural mutations of which 9 are potentially phylogenetically informative. Insertions, deletions, and an inversion were found that involved consecutive stretches of up to 172 bases. When compared to phylogenetic relationships of the chloroplast genomes based on nucleotide substitutions only, many homoplasious indels (33%) were detected that differed considerably in length and did not comprise simple sequence repeats typically associated with replication slippage. Though many indels in the intergenic spacers were associated with direct repeats, frequently, the variable stretches participated in inverted repeat stabilized hairpins. In each intergenic spacer or intron examined, nucleotide stretches ranging from 30 to 60 bp were able to fold into stabilized secondary structures. When these indels were homoplasious, they always ranked among the most stabilized hairpins in the non-coding regions. The association of higher order structures that involve both classes of repeats and parallel structural mutations in hot spot regions of the chloroplast genome can be used to differentiate among mutations that differ in phylogenetic reliability.
Collapse
Affiliation(s)
- T H Mes
- Department of Evolutionary Botany, Institute of Systematics and Ecology, University of Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
37
|
|
38
|
Kelchner SA, Clark LG. Molecular evolution and phylogenetic utility of the chloroplast rpl16 intron in Chusquea and the Bambusoideae (Poaceae). Mol Phylogenet Evol 1997; 8:385-97. [PMID: 9417896 DOI: 10.1006/mpev.1997.0432] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Phylogenetic relationships within Chusquea, a diverse genus of neotropical woody bamboos, and among selected members of the Bambusoideae were explored using rpl16 intron sequence data from the chloroplast genome. Mechanisms of mutation, including slipped-strand mispairing, secondary structure, minute inversions, and base substitutions, were examined within the rpl16 intron, and their effects on sequence alignment and phylogenetic analysis were investigated. Thirty-five bamboo sequences were generated and two separate matrices were analyzed using maximum parsimony. In the first, 23 sequences from Chusquea, 1 of Neurolepis, and 3 outgroups were included. Neurolepis was supported as sister to Chusquea, Chusquea was strongly supported as a monophyletic lineage, and three species of Chusquea subg. Rettbergia were resolved as the most basal clade within the genus. In the second analysis, 15 sequences, 14 from across the subfamily and 1 outgroup, were included. A Bambusoideae clade was recovered with the Olyreae/Parianeae (herbaceous bamboos) and the Bambuseae (woody bamboos) each supported as monophyletic. Two clades corresponding to temperate and tropical woody bamboos were derived within the Bambuseae and the tropical taxa were further split into New World and Old World clades. The rpl16 intron in bamboos was found to be susceptible to frequent length mutations of multiple origins, nonindependent character evolution, and regions of high mutability, all of which created difficulties in alignment and phylogenetic analysis; nonetheless the rpl16 intron is phylogenetically informative at the inter- and intrageneric levels in bamboos.
Collapse
Affiliation(s)
- S A Kelchner
- Department of Botany, Iowa State University, Ames 50011-1020, USA
| | | |
Collapse
|
39
|
Johnson DA, Hattori J. Analysis of a hotspot for deletion formation within the intron of the chloroplast trnI gene. Genome 1996; 39:999-1005. [PMID: 8890524 DOI: 10.1139/g96-124] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The chloroplast genomes of higher plants encode several tRNA genes that contain highly conserved type II introns. Using primers specific to conserved 5' and 3' regions within the introns of the genes trnA (tRNA-ala) and trnI (tRNA-ile) we have PCR amplified parts of these introns from 36 plant species representing a wide range of plant families. Deletions were found in the introns of both tRNA genes. Fourteen species had detectable deletions within the intron of trnI and four species within the intron of trnA. The occurrence of these deletions among the various plant families suggests that the events leading to the formation of these deletions occurred independently many times during the evolution of higher plants. Analysis of the amplified PCR products from the trnI intron suggests that these independent deletions may not be random but appear to fall into two size classes. Several members of each class were cloned and sequenced and the end points of the deletions were mapped. The 3' ends of all deletions studied terminate within the same short region. The 5' ends of the deletions map to two different regions, giving rise to the two size classes. These two 5' deletion endpoint regions show some sequence similarity. Only two of the identified deletions contain directly repeated sequences at the deletion endpoints, a feature associated with homologous recombination. Our results suggest that within the trnI intron, there are preferred sites or "hotspots" for deletion formation involving a novel imprecise recombination mechanism. The significance of these sequences and possible mechanisms for deletion formation are discussed.
Collapse
Affiliation(s)
- D A Johnson
- Ottawa-Carleton Institute of Biology, University of Ottawa, ON, Canada
| | | |
Collapse
|
40
|
Liere K, Kestermann M, Müller U, Link G. Identification and characterization of the Arabidopsis thaliana chloroplast DNA region containing the genes psbA, trnH and rps19'. Curr Genet 1995; 28:128-30. [PMID: 8590463 DOI: 10.1007/bf00315778] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A 1887-nucleotide chloroplast-DNA region from Arabidopsis thaliana was analyzed. It contains the conserved genes psbA for the precursor of the D1 reaction-centre protein of photosystem II, trnH for tRNAHis, and rps19' for the 6.8-kDa protein of the small ribosomal subunit. Northern hybridization and RNase protection experiments suggest co-transcription of a minor RNA fraction over the full lengths of psbA and the preceding trnK-UUU gene, but not including downstream trnH sequences. In front of the mapped 5' end of the major 1.2-kb psbA transcript is a DNA region that shows the typical architecture of a psbA promoter, consisting of the prokaryotic-type '-35' and '-10' elements as well as the eukaryotic-type 'TATA' motif. The common 3' end of psbA transcripts seems to be located immediately after a stem-loop structure downstream from the coding region.
Collapse
Affiliation(s)
- K Liere
- University of Bochum, Germany
| | | | | | | |
Collapse
|
41
|
Hipkins VD, Marshall KA, Neale DB, Rottmann WH, Strauss SH. A mutation hotspot in the chloroplast genome of a conifer (Douglas-fir: Pseudotsuga) is caused by variability in the number of direct repeats derived from a partially duplicated tRNA gene. Curr Genet 1995; 27:572-9. [PMID: 7553944 DOI: 10.1007/bf00314450] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We determined the DNA sequence of a 2.7-kb cpDNA XbaI fragment from douglas-fir [Pseudotsuga menziesii (Mirb.) Franco]. RFLPs revealed by the 2.7-kb XbaI clone were observed to vary up to 1 kb among species within the genus Pseudotsuga and up to 200 bp among trees of P. menziesii. The polymerase chain reaction (PCR) allowed the locus of polymorphism to be identified, and the variable region was then sequenced in a second Douglas-fir tree, a single tree of a related species, Japanese Douglas-fir (P. japonica), and in a species lacking a mutation hotspot in the region, Pinus radiata (Monterey pine). The locus of polymorphism is characterized by hundreds of base pairs of imperfect, tandem direct repeats flanked by a partially duplicated and an intact trn Y-GUA gene. The duplication is direct in orientation and consists of 43 bp of the 3' end of trnY and 25 bp of its 3' flanking sequence. Tandem repeats show high sequence similarity to a 27-bp region of the trnY gene that overlaps one end of the duplication. The two trees of Douglas-fir sequenced differed by a single tandem repeat unit, whereas these trees differed from the Japanese Douglas-fir sequenced by approximately 34 repeat units. Repetitive DNA in the Pseudotsuga cpDNA hotspot was most likely generated at the time of the partial trnY gene duplication and these sequences expanded by slipped-strand mispairing and unequal crossing-over.
Collapse
Affiliation(s)
- V D Hipkins
- National Forest Genetic Electrophoresis Laboratory, USDA Forest Service, Camino, CA 95709, USA
| | | | | | | | | |
Collapse
|
42
|
Abstract
Consistent with their postulated origin from endosymbiotic cyanobacteria, chloroplasts of plants and algae have ribosomes whose component RNAs and proteins are strikingly similar to those of eubacteria. Comparison of the secondary structures of 16S rRNAs of chloroplasts and bacteria has been particularly useful in identifying highly conserved regions likely to have essential functions. Comparative analysis of ribosomal protein sequences may likewise prove valuable in determining their roles in protein synthesis. This review is concerned primarily with the RNAs and proteins that constitute the chloroplast ribosome, the genes that encode these components, and their expression. It begins with an overview of chloroplast genome structure in land plants and algae and then presents a brief comparison of chloroplast and prokaryotic protein-synthesizing systems and a more detailed analysis of chloroplast rRNAs and ribosomal proteins. A description of the synthesis and assembly of chloroplast ribosomes follows. The review concludes with discussion of whether chloroplast protein synthesis is essential for cell survival.
Collapse
Affiliation(s)
- E H Harris
- DCMB Group, Department of Botany, Duke University, Durham, North Carolina 27708-1000
| | | | | |
Collapse
|
43
|
Zoubenko OV, Allison LA, Svab Z, Maliga P. Efficient targeting of foreign genes into the tobacco plastid genome. Nucleic Acids Res 1994; 22:3819-24. [PMID: 7937099 PMCID: PMC308375 DOI: 10.1093/nar/22.19.3819] [Citation(s) in RCA: 120] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The pPRV plasmids are vectors for targeted insertion of foreign genes into the tobacco plastid genome (ptDNA). The vectors are based on the pUC119 plasmid which replicates in E. coli but not in plastids. The spectinomycin resistance (aadA) gene and a multiple cloning site (MCS) are flanked by 1.8-kb and 1.2-kb ptDNA sequences. Biolistic delivery of vector DNA, followed by spectinomycin selection, yields plastid transformants at a reproducible frequency, approximately 1 transplastomic line per bombarded sample. The selected aadA gene and linked non-selectable genes cloned into the MCS are incorporated into the ptDNA by two homologous recombination events via the flanking ptDNA sequences. The transplastomes thus generated are stable, and are maternally transmitted to the seed progeny. The pPRV vector series targets insertions between the divergently transcribed trnV gene and the rps12/7 operon. The lack of readthrough transcription of appropriately oriented transgenes makes the vectors an ideal choice for the study of transgene promoter activity.
Collapse
Affiliation(s)
- O V Zoubenko
- Waksman Institute, Rutgers, State University of New Jersey, Piscataway 08855-0759
| | | | | | | |
Collapse
|
44
|
van Ham RC, Hart H, Mes TH, Sandbrink JM. Molecular evolution of noncoding regions of the chloroplast genome in the Crassulaceae and related species. Curr Genet 1994; 25:558-66. [PMID: 8082209 DOI: 10.1007/bf00351678] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Universal primers were used for PCR amplification of three noncoding regions of chloroplast DNA (cpDNA) in order to study sequence-length variation in the Crassulaceae and in related species. Several length mutations were observed that are of diagnostic value for evolutionary relationships in the Crassulaceae and the Saxifragaceae. Length variation and sequence divergence in the intergenic spacer between the trnL (UAA) 3' exon and the trnF (GAA) gene among 15 species were studied in detail by nucleotide-sequence analysis. A total of 50 insertion/deletion mutations were observed, accounting for a spacer-length variation in the range of 228-360 bp. Eighteen short direct repeat motifs (4-11 bp) and two inverted repeat motifs (7-11 bp) were found to be associated with length variation. Phylogenetic analysis of the sequence data indicated a pattern of relationships that was largely consistent with a previous analysis of cpDNA restriction-site variation. Evaluation of the level of homoplasy in insertion/deletion mutations within a phylogenetic framework revealed that only 1 out of 34 length mutations longer than 2 bp must have had multiple origins. The feasibility of the noncoding chloroplast DNA regions for molecular evolutionary studies is discussed.
Collapse
Affiliation(s)
- R C van Ham
- Department of Plant Ecology and Evolutionary Biology, University of Utrecht, The Netherlands
| | | | | | | |
Collapse
|
45
|
Nimzyk R, Schöndorf T, Hachtel W. In-frame length mutations associated with short tandem repeats are located in unassigned open reading frames of Oenothera chloroplast DNA. Curr Genet 1993; 23:265-70. [PMID: 8435856 DOI: 10.1007/bf00351505] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Chloroplast DNAs were compared between two closely related species in the subsection Munzia of the genus Oenothera. A restriction fragment length dimorphism (273 bp) within the large inverted repeats was localized to an unassigned open reading frame that is homologous to ORF 2280 of tobacco chloroplast DNA. This dimorphism is due to different copy numbers of various short tandem repeated sequences, with each repeat unit specifying an in-frame addition or deletion. Other small length mutations were detected within an unassigned reading frame that appears to be homologous to the tobacco ORF 1244, and in the non-coding sequence upstream of that frame. These insertions and/or deletions are all associated with short direct repeats that lie in tandem.
Collapse
Affiliation(s)
- R Nimzyk
- Botanisches Institut, Universität Bonn, Federal Republic of Germany
| | | | | |
Collapse
|
46
|
Ogihara Y, Terachi T, Sasakuma T. Structural analysis of length mutations in a hot-spot region of wheat chloroplast DNAs. Curr Genet 1992; 22:251-8. [PMID: 1339325 DOI: 10.1007/bf00351733] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The hot-spot region related to length mutations in the chloroplast genome of the wheat group was precisely analyzed at the DNA sequence level. This region, located downstream from the rbcL gene, was highly enriched in A + T, and contained a number of direct and inverted repeats. Many deletions/insertions were observed in the region. In most deletions/insertions of multiple nucleotides, short repeated sequences were found at the mutation points. Furthermore, a pair of short repeated sequences was also observed at the border of the translocated gene. A sequence homologous with ORF512 of tobacco cpDNA was truncated in cpDNAs of the wheat group and found only in the mitochondrial DNA of Ae. crassa, suggesting the inter-organellar translocation of this sequence. Mechanisms that could generate structural alterations of the chloroplast genome in the wheat group are discussed.
Collapse
Affiliation(s)
- Y Ogihara
- Kihara Institute for Biological Research, Yokohama City University, Japan
| | | | | |
Collapse
|
47
|
Stein DB, Conant DS, Ahearn ME, Jordan ET, Kirch SA, Hasebe M, Iwatsuki K, Tan MK, Thomson JA. Structural rearrangements of the chloroplast genome provide an important phylogenetic link in ferns. Proc Natl Acad Sci U S A 1992; 89:1856-60. [PMID: 1542683 PMCID: PMC48552 DOI: 10.1073/pnas.89.5.1856] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The chloroplast genome of most land plants is highly conserved. In contrast, physical and gene mapping studies have revealed a highly rearranged chloroplast genome in species representing four families of ferns. In all four, there has been a rare duplication of the psbA gene and the order of the psbA, 16S, and 23S rRNA genes has been inverted. Our analysis shows that the described rearrangement results from a minimum of two inversions within the inverted repeat. This chloroplast DNA structure provides unambiguous evidence that phylogenetically links families of ferns once thought to belong to different major evolutionary lineages.
Collapse
Affiliation(s)
- D B Stein
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA 01075
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
|
49
|
Ogihara Y, Terachi T, Sasakuma T. Molecular analysis of the hot spot region related to length mutations in wheat chloroplast DNAs. I. Nucleotide divergence of genes and intergenic spacer regions located in the hot spot region. Genetics 1991; 129:873-84. [PMID: 1752425 PMCID: PMC1204754 DOI: 10.1093/genetics/129.3.873] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The nucleotide divergence of chloroplast DNAs around the hot spot region related to length mutation in Triticum (wheat) and Aegilops was analyzed. DNA sequences (ca. 4.5 kbp) of three chloroplast genome types of wheat complex were compared with one another and with the corresponding region of other grasses. The sequences region contained rbcL and psaI, two open reading frames, and a pseudogene, rpl23' (pseudogene for ribosomal protein L23) disrupted by AT-rich intergic spacer regions. The evolution of these genes in the closely related wheat complex is characterized by nonbiased nucleotide substitutions in terms of being synonymous/nonsynonymous, having A-T pressure transitions over transversions, and frequent changes at the third codon position, in contrast with the gene evolution among more distant plant groups where biased nucleotide substitutions have frequently occurred. The sequences of these genes had diverged almost in proportion to taxonomic distance. The sequence of the pseudogene rpl23' changed approximately two times faster than that of the coding region. Sequence comparison between the pseudogene and its protein-coding counterpart revealed different degrees of nucleotide homology in wheat, rice and maize, suggesting that the transposition timing of the pseudogene differed and/or that different rates of gene conversion operated on the pseudogene in the cpDNA of the three plant groups in Gramineae. The intergenic spacer regions diverged approximately ten times faster than the genes. The divergence of wheat from barley, and that from rice are estimated based on the nucleotide similarity to be 1.5, 10 and 40 million years, respectively.
Collapse
Affiliation(s)
- Y Ogihara
- Kihara Institute for Biological Research, Yokohama City University, Japan
| | | | | |
Collapse
|
50
|
Sprinzl M, Dank N, Nock S, Schön A. Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res 1991; 19 Suppl:2127-71. [PMID: 2041802 PMCID: PMC331350 DOI: 10.1093/nar/19.suppl.2127] [Citation(s) in RCA: 100] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- M Sprinzl
- Laboratorium für Biochemie, Universität Bayreuth, FRG
| | | | | | | |
Collapse
|