1
|
Long live the worms: methods for maintaining and assessing the viability of intestinal stages of Parascaris spp. in vitro. Parasitology 2018; 146:685-693. [PMID: 30561286 DOI: 10.1017/s0031182018002019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In vitro maintenance of helminth parasites enables a variety of molecular, pharmaceutical and immunological analyses. Currently, the nutritional and environmental in vitro requirements of the equine ascarid parasite, Parascaris spp., have not been determined. Additionally, an objective method for assessing viability of Parascaris spp. intestinal stages does not exist. The purpose of this study was to ascertain the in vitro requirements of intestinal stages of Parascaris spp., and to develop a viability assessment method. A total of 1045 worms were maintained in a total of 212 cultures. Worms obtained from naturally infected foals at necropsy were immediately placed in culture flasks containing 200 mL of culture media. A variety of media types, nutrient supplementation and environmental conditions were examined. A motility-based scoring system was used to assess worm viability. Worms maintained in Roswell Park Memorial Institute-1640 had significantly better viability than any other media (P < 0.0001) and all media types supplemented with any of the nutrients examined (P < 0.0001). The use of a platform rocker also significantly improved viability (P = 0.0305). This is the first study to examine the requirements for maintaining Parascaris spp. intestinal stages in vitro and to evaluate their viability based on movement using an objective scoring system.
Collapse
|
2
|
Deng X, Xu JX, Wang J, Wang GY, Chen QS. Biological modeling the undulatory locomotion of C. elegans using dynamic neural network approach. Neurocomputing 2016. [DOI: 10.1016/j.neucom.2015.12.090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
3
|
Janssen IJI, Krücken J, Demeler J, Basiaga M, Kornaś S, von Samson-Himmelstjerna G. Genetic variants and increased expression of Parascaris equorum P-glycoprotein-11 in populations with decreased ivermectin susceptibility. PLoS One 2013; 8:e61635. [PMID: 23637871 PMCID: PMC3634834 DOI: 10.1371/journal.pone.0061635] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Accepted: 03/12/2013] [Indexed: 11/18/2022] Open
Abstract
Macrocyclic lactones (MLs) represent the major drug class for control of parasitic infections in humans and animals. However, recently reports of treatment failures became more frequent. In addition to human and ruminant parasitic nematodes this also is the case for the horse-nematode Parascaris equorum. Nevertheless, to date the molecular basis of ML resistance is still not understood. Unspecific resistance mechanisms involving transporters such as P-glycoproteins (Pgps) are expected to contribute to ML resistance in nematodes. Here, complete sequences of two P. equorum Pgps were cloned and identified as orthologs of Caenorhabditis elegans Ppg-11 and an unnamed Caenorhabditis briggsae Pgp designated as Pgp-16 using phylogenetic analysis. Quantitative real-time PCR was used to compare expression between tissues. Significantly higher PeqPgp-11 expression was found in the gut for both genders, whereas for PeqPgp-16 the body wall was identified as predominant expression site. Furthermore, Pgps were analyzed regarding their participation in resistance development. Using SeqDoC analyses, Pgp-sequences of P. equorum populations with different ML susceptibility were compared. This approach revealed three single nucleotide polymorphisms (SNPs) causing missense mutations in the PeqPgp-11 sequence which correlated with decreased ML susceptibility. However, no resistance associated differences in mRNA expression levels were detected between embryonated eggs of these populations. In contrast, comparison of two pre-adult groups with different ivermectin (IVM) susceptibility revealed the presence of the three SNPs and in addition statistically significant PeqPgp-11 overexpression in the group of worms with reduced susceptibility. These results indicate that Pgp-11 might be involved in IVM resistance in P. equorum as it shows increased expression in an IVM exposed life-cycle stage of an IVM resistant population as well as occurrence of putatively resistance associated SNPs in populations with reduced IVM susceptibility. These SNPs are promising diagnostic candidates for detection of ML resistance with potential also for other parasitic nematode species.
Collapse
Affiliation(s)
- I. Jana I. Janssen
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Germany
| | - Jürgen Krücken
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Germany
| | - Janina Demeler
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Germany
| | - Marta Basiaga
- Department of Zoology and Ecology, University of Agriculture in Krakow, Poland
| | - Sławomir Kornaś
- Department of Zoology and Ecology, University of Agriculture in Krakow, Poland
| | | |
Collapse
|
4
|
Affiliation(s)
- Qiang Liu
- HHMI/Department of Biology, University of Utah, 257 S 1400 E, Salt Lake City, UT 84112-0840, USA.
| | | |
Collapse
|
5
|
Liu P, Chen B, Wang ZW. Gap junctions synchronize action potentials and Ca2+ transients in Caenorhabditis elegans body wall muscle. J Biol Chem 2011; 286:44285-44293. [PMID: 22033926 PMCID: PMC3243499 DOI: 10.1074/jbc.m111.292078] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 10/25/2011] [Indexed: 11/06/2022] Open
Abstract
The sinusoidal locomotion of Caenorhabditis elegans requires synchronous activities of neighboring body wall muscle cells. However, it is unknown whether the synchrony results from muscle electrical coupling or neural inputs. We analyzed the effects of mutating gap junction proteins and blocking neuromuscular transmission on the synchrony of action potentials (APs) and Ca2+ transients among neighboring body wall muscle cells. In wild-type worms, the percentage of synchronous APs between two neighboring cells varied depending on the anatomical relationship and junctional conductance (Gj) between them, and Ca2+ transients were synchronous among neighboring muscle cells. Compared with the wild type, knock-out of the gap junction gene unc-9 resulted in greatly reduced coupling coefficient and asynchronous APs and Ca2+ transients. Inhibition of unc-9 expression specifically in muscle by RNAi also reduced the synchrony of APs and Ca2+ transients, whereas expression of wild-type UNC-9 specifically in muscle rescued the synchrony defect. Loss of the stomatin-like protein UNC-1, which is a regulator of UNC-9-based gap junctions, similarly impaired muscle synchrony as unc-9 mutant did. The blockade of muscle ionotropic acetylcholine receptors by (+)-tubocurarine decreased the frequencies of APs and Ca2+ transients, whereas blockade of muscle GABAA receptors by gabazine had opposite effects. However, both APs and Ca2+ transients remained synchronous after the application of (+)-tubocurarine and/or gabazine. These observations suggest that gap junctions in C. elegans body wall muscle cells are responsible for synchronizing muscle APs and Ca2+ transients.
Collapse
Affiliation(s)
- Ping Liu
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030
| | - Bojun Chen
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030
| | - Zhao-Wen Wang
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030.
| |
Collapse
|
6
|
Boyle JH, Cohen N. Caenorhabditis elegans body wall muscles are simple actuators. Biosystems 2008; 94:170-81. [PMID: 18619514 DOI: 10.1016/j.biosystems.2008.05.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 10/30/2007] [Accepted: 05/23/2008] [Indexed: 10/21/2022]
Abstract
Over the past four decades, one of the simplest nervous systems across the animal kingdom, that of the nematode worm Caenorhabditis elegans, has drawn increasing attention. This system is the subject of an intensive concerted effort to understand the behaviour of an entire living animal, from the bottom up and the top down. C. elegans locomotion, in particular, has been the subject of a number of models, but there is as yet no general agreement about the key (rhythm generating) elements. In this paper we investigate the role of one component of the locomotion subsystem, namely the body wall muscles, with a focus on the role of inter-muscular gap junctions. We construct a detailed electrophysiological model which suggests that these muscles function, to a first approximation, as mere actuators and have no obvious rhythm generating role. Furthermore, we show that within our model inter-muscular coupling is too weak to have a significant electrical effect. These results rule out muscles as key generators of locomotion, pointing instead to neural activity patterns. More specifically, the results imply that the reduced locomotion velocity observed in unc-9 mutants is likely to be due to reduced neuronal rather than inter-muscular coupling.
Collapse
|
7
|
Liu Q, Chen B, Gaier E, Joshi J, Wang ZW. Low Conductance Gap Junctions Mediate Specific Electrical Coupling in Body-wall Muscle Cells of Caenorhabditis elegans. J Biol Chem 2006; 281:7881-9. [PMID: 16434400 DOI: 10.1074/jbc.m512382200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Invertebrate innexins and their mammalian homologues, the pannexins, are gap junction proteins. Although a large number of such proteins have been identified, few of the gap junctions that they form have been characterized to provide combined information of biophysical properties, coupling pattern, and molecular compositions. We adapted the dual whole cell voltage clamp technique to in situ analysis of electrical coupling in Caenorhabditis elegans body-wall muscle. We found that body-wall muscle cells were electrically coupled in a highly organized and specific pattern. The coupling was characterized by small (350 pS or less) junctional conductance (G(j)), which showed a bell-shaped relationship with junctional potential (V(j)) but was independent of membrane potential (V(m)). Injection of currents comparable to the junctional current (I(j)) into body-wall muscle cells caused significant depolarization, suggesting important functional relevance. The innexin UNC-9 appeared to be a key component of the gap junctions. Both Myc- and green fluorescent protein-tagged UNC-9 was localized to muscle intercellular junctions. G(j) was greatly inhibited in unc-9(fc16), a putative null mutant. Specific inhibition of UNC-9 function in muscle cells reduced locomotion velocity. Despite UNC-9 expression in both motor neurons and body-wall muscle cells, analyses of miniature and evoked postsynaptic currents in the unc-9 mutant showed normal neuromuscular transmission. These analyses provide a relatively detailed description of innexin-based gap junctions in a native tissue and suggest that innexin-based small conductance gap junctions can play an important role in processes such as locomotion.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Neuroscience, University of Connecticut Health Center, Connecticut 06030, USA
| | | | | | | | | |
Collapse
|
8
|
|
9
|
Christ D, Oh J, Saz HJ. Contractions of the filariid Acanthocheilonema viteae induced by potassium chloride. Parasitol Res 1994; 80:449-53. [PMID: 7808993 DOI: 10.1007/bf00932689] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The effects of K+ on muscle contractility were explored in the filarial nematode Acanthocheilonema viteae (Dipetalonema viteae). The parasite was slit open longitudinally and mounted in a smooth muscle chamber that was filled with aerated (95% N2-5% CO2) physiological solution at 37 degrees C. KCl at concentrations ranging from 20 to 100 mM induced a rapid isotonic contraction of the filarial muscle. The maximal response from KCl was similar to the maximal response to acetylcholine chloride (ACh). When KCl was applied for several minutes, tolerance frequently occurred. Contractions were also induced by K2SO4 but not by NaCl, Na2SO4 or sucrose. Nifedipine was more than 10 times as potent in reducing the KCl-induced contraction as in reducing that caused by ACh. The KCl-induced contraction was abolished in a Ca-free physiological medium containing ethyleneglycol-bis-(beta-aminoethyl ether) N, N, N', N'-tetraacetic acid (EGTA, 10(-4) M). Low [Ca2+]/[Mg2+] solutions blocked the spontaneous activity, the KCl-induced contractions, and the ACh-induced contractions. KCl also induced contractions in denervated muscle strips, supporting the hypothesis that K+ acts directly on the muscle cells. These results indicate that K+ can depolarize the muscle membrane and induce a muscle contraction that is dependent on extracellular calcium ions.
Collapse
Affiliation(s)
- D Christ
- South Bend Center for Medical Education, Indiana University School of Medicine, Notre Dame 46556
| | | | | |
Collapse
|
10
|
Abstract
A FMRFamide-like neuropeptide, KHEYLRFamide (Lys-His-Glu-Tyr-Leu-Arg-Phe-amide; AF2) was isolated from a head extract of the nematode Ascaris suum by using a three-step HPLC separation. In a dorsal muscle strip preparation, synthetic AF2 produced multiple effects on muscle tension: a slow relaxation was followed by contraction and rhythmic activity. Sulfated AF2 was no more potent than AF2. The effects on muscle tension were correlated with electrical activity recorded intracellularly from muscle cells. AF2 markedly increased the tension change associated with change in muscle membrane potential.
Collapse
Affiliation(s)
- C Cowden
- Department of Zoology, University of Wisconsin, Madison 53706
| | | |
Collapse
|
11
|
Abstract
Some anthelmintic drugs interfere selectively with nematode neuromuscular transmission. These drugs include: the nicotinic agonists, e.g. levamisole, the gamma-amino butyric acid agonist piperazine, and the avermectins which open Cl- channels. The physiology and pharmacology of neuromuscular transmission in nematodes is reviewed and the actions of antinematodal drugs which interfere with the transmission described. The results of experiments on the large porcine-intestinal nematode parasite, Ascaris suum, form the basis of the account presented but experiments on other nematodes suggest that these observations may be generalized. Results of some experiments on the small free living nematode Caenorhabditis elegans are also included.
Collapse
Affiliation(s)
- R J Martin
- Department of Preclinical Veterinary Sciences, University of Edinburgh, U.K
| |
Collapse
|
12
|
Martin RJ, Pennington AJ, Duittoz AH, Robertson S, Kusel JR. The physiology and pharmacology of neuromuscular transmission in the nematode parasite, Ascaris suum. Parasitology 1991; 102 Suppl:S41-58. [PMID: 1647516 DOI: 10.1017/s0031182000073285] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The organization of Ascaris motoneurones and nervous system is summarized. There is an anterior nerve ring and associated ganglia, main dorsal and ventral nerve cords which run longitudinally, and a small set of posterior ganglia. Cell bodies of motoneurones are found in the ventral nerve cord and occur in 5 repeating 'segments'; each contains 11 motoneurones. Seven morphological types of excitatory or inhibitory motoneurone are recognized. Each Ascaris somatic muscle cell is composed of the contractile spindle; the bag region, containing the nucleus; the arm; and the syncytial region, the location of neuromuscular junctions. The resting membrane potential of muscle is approximately -30 mV and shows regular depolarizing, Ca-dependent 'spike potentials' superimposed on smaller Na(+)- and Ca2(+)-dependent 'slow waves' and even slower 'modulation waves'. The membrane shows high Cl- permeability. Adjacent cells are electrically coupled so that electrical activity in the cells is synchronized. Acetylcholine (ACh) and gamma-aminobutyric acid (GABA) affect the electrical activity. Bath-applied ACh increases membrane cation conductance, depolarizes the cells, alters the frequency and amplitude of spike potentials and produces contraction. Bath-applied GABA increases Cl- conductance, decreases spike activity and causes hyperpolarization and muscle relaxation. The extra-synaptic ACh receptors on the bag region of Ascaris muscle can be regarded as a separate subtype of nicotinic receptor. ACh and anthelmintic agonists (pyrantel, morantel, levamisole) produce a dose-dependent increase in cation conductance and membrane depolarization which is blocked by tubocurarine, mecamylamine but not by hexamethonium. The potency of GABA agonists, with the exception of sulphonic acid derivatives, correlates with the vertebrate GABAa receptor. The potency of antagonists does not. Thus, bicuculline, securinine, pitrazepine, SR95531 and RU5135 are potent vertebrate GABAa antagonists but have little effect on GABA receptors. The potency order of the arylaminopyridazine GABA antagonists: SR95103, SR95132, SR42666, SR95133, SR95531, SR42627 and SR42640 at the Ascaris GABA receptors contrasts with that at vertebrate GABAa receptors. It has been suggested that the receptor is referred to as a GABAn receptor. Patch-clamp studies show that ACh activates a non-selective cation channel which has a main conductance of 40-50pS and apparent mean open time of 1.3 ms; a smaller channel of 20-30 pS with a similar open-time is also activated. Pyrantel and levamisole also produce openings with similar conductances and open-times.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- R J Martin
- Department of Pre-clinical Veterinary Sciences, University of Edinburgh
| | | | | | | | | |
Collapse
|
13
|
Rohrer WH, Esch H, Saz HJ. Neuromuscular electrophysiology of the filarial helminth Dipetalonema viteae. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. C, COMPARATIVE PHARMACOLOGY AND TOXICOLOGY 1988; 91:517-23. [PMID: 2905965 DOI: 10.1016/0742-8413(88)90071-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
1. A body wall preparation is described which permits intracellular recording from the somatic muscle cells of the small filarial nematode, Dipetalonema viteae. Using this preparation, resting membrane potentials were measured and spontaneous muscle depolarizations described. 2. Stimulatory effects noted upon the addition of acetylcholine, or the cholinergic agonists suggest the hypothesis that acetylcholine is the excitatory neurotransmitter. However, in contrast with vertebrate tissues, the cholinergic antagonists, d-tubocurarine, hexamethonium and pentolinium do not inhibit somatic muscle activity of the worm. 3. GABA inhibited somatic muscle depolarizations, suggesting the possibility that it may serve as an inhibitory neurotransmitter. 4. The anthelmintic drug, levamisole, produced a depolarizing block. Effects of other pharmacological agents are described, discussed and compared with effects on vertebrate muscles.
Collapse
Affiliation(s)
- W H Rohrer
- Department of Biological Sciences, University of Notre Dame, IN 46556
| | | | | |
Collapse
|
14
|
Wann KT. The electrophysiology of the somatic muscle cells of Ascaris suum and Ascaridia galli. Parasitology 1987; 94 ( Pt 3):555-66. [PMID: 3614991 DOI: 10.1017/s003118200005589x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The electrophysiological properties of the bag region of the somatic muscle cells of Ascaris suum and Ascaridia galli were studied using intracellular techniques. For Ascaris muscle cells, the mean resting membrane potentials at 20 and 37 degrees C were -29.9 and -33.8 mV respectively, and the average input conductance was 2.12 microS. For the muscle cells of A. galli similar values were obtained. For example, the mean input conductance of these cells was 2.84 microS at 20 degrees C. Healthy Ascaris muscle cells at near physiological temperatures show both spontaneous depolarizing and hyperpolarizing activity and, in cells close to the nerve cords, rhythmic large amplitude (approximately 30 mV) action potentials are observed. Such action potentials, which are very sensitive to temperature variations, originate in the muscle cells. In contrast the muscle cells of Ascaridia are quiescent. The rhythmic action potentials of Ascaris are resistant to tetrodotoxin (TTX) (less than or equal to 10(-6)M), verapamil (10(-4)M) and cinnarizine (10(-4)M), but are blocked irreversibly by 22, 23 dihydroavermectin B1a (10(-7) to 5 X 10(-6) M). GABA, and the GABAA receptor agonists, muscimol and isoguvacine, hyperpolarize and increase the input conductance of both Ascaris and Ascaridia muscle cells. The antagonists + bicuculline and picrotoxin were not effective in modulating the spontaneous hyperpolarizations of Ascaris muscle cells, and picrotoxin (10(-4)M) was not effective in altering the response to GABA (5 X 10(-6)M). The significance of the results is discussed briefly.
Collapse
|
15
|
Kass IS, Stretton AO, Wang CC. The effects of avermectin and drugs related to acetylcholine and 4-aminobutyric acid on neurotransmission in Ascaris suum. Mol Biochem Parasitol 1984; 13:213-25. [PMID: 6096713 DOI: 10.1016/0166-6851(84)90114-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We have examined some aspects of the neuropharmacology of the nematode Ascaris suum using a divided chamber and selective stimulation technique to localize the sites of action of drugs. These techniques enabled us to investigate separately excitatory neuromuscular transmission, inhibitory neuromuscular transmission, and transmission from interneurons to excitatory motorneurons. We find that a curare-sensitive mechanism is involved in the excitation of the excitatory motorneuron via interneurons. The anthelmintic avermectin Bla (AVM) also blocks interneuronal stimulation of excitatory motorneurons. This action of AVM can be reversed by picrotoxin. AVM has no effect on excitatory neuromuscular transmission. Two GABAergic agonists in nematodes, muscimol and piperazine, mimic the effects of AVM when applied ventrally. This suggests that the action of AVM is related to a GABAergic mechanism. Ventral inhibitory neuromuscular transmission is also blocked by AVM, but this action is not reversed by picrotoxin. Thus AVM has two distinct sites of action in A. suum.
Collapse
|
16
|
|
17
|
Lewis JA, Wu CH, Levine JH, Berg H. Levamisole-resistant mutants of the nematode Caenorhabditis elegans appear to lack pharmacological acetylcholine receptors. Neuroscience 1980; 5:967-89. [PMID: 7402460 DOI: 10.1016/0306-4522(80)90180-3] [Citation(s) in RCA: 190] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
18
|
Ionic mechanisms of electrical activity in somatic muscle of the nematodeAscaris lumbricoides. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 1976. [DOI: 10.1007/bf00605526] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|