1
|
Panda VK, Mishra B, Mahapatra S, Swain B, Malhotra D, Saha S, Khanra S, Mishra P, Majhi S, Kumari K, Nath AN, Saha S, Jena S, Kundu GC. Molecular Insights on Signaling Cascades in Breast Cancer: A Comprehensive Review. Cancers (Basel) 2025; 17:234. [PMID: 39858015 PMCID: PMC11763662 DOI: 10.3390/cancers17020234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/27/2024] [Accepted: 01/01/2025] [Indexed: 01/27/2025] Open
Abstract
The complex signaling network within the breast tumor microenvironment is crucial for its growth, metastasis, angiogenesis, therapy escape, stem cell maintenance, and immunomodulation. An array of secretory factors and their receptors activate downstream signaling cascades regulating breast cancer progression and metastasis. Among various signaling pathways, the EGFR, ER, Notch, and Hedgehog signaling pathways have recently been identified as crucial in terms of breast cancer proliferation, survival, differentiation, maintenance of CSCs, and therapy failure. These receptors mediate various downstream signaling pathways such as MAPK, including MEK/ERK signaling pathways that promote common pro-oncogenic signaling, whereas dysregulation of PI3K/Akt, Wnt/β-catenin, and JAK/STAT activates key oncogenic events such as drug resistance, CSC enrichment, and metabolic reprogramming. Additionally, these cascades orchestrate an intricate interplay between stromal cells, immune cells, and tumor cells. Metabolic reprogramming and adaptations contribute to aggressive breast cancer and are unresponsive to therapy. Herein, recent insights into the novel signaling pathways operating within the breast TME that aid in their advancement are emphasized and current developments in practices targeting the breast TME to enhance treatment efficacy are reviewed.
Collapse
Affiliation(s)
- Venketesh K. Panda
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
- School of Applied Sciences, KIIT Deemed to Be University, Bhubaneswar 751024, India
| | - Barnalee Mishra
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Samikshya Mahapatra
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Biswajit Swain
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Diksha Malhotra
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Suryendu Saha
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Sinjan Khanra
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Priyanka Mishra
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Sambhunath Majhi
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Kavita Kumari
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Angitha N. Nath
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Swarnali Saha
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Sarmistha Jena
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Gopal C. Kundu
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
- School of Applied Sciences, KIIT Deemed to Be University, Bhubaneswar 751024, India
- Kalinga Institute of Medical Sciences (KIMS), KIIT Deemed to Be University, Bhubaneswar 751024, India
| |
Collapse
|
2
|
McGrath K, Frain M, Hey G, Rahman M. Complications following laser interstitial thermal therapy: a review. Neurochirurgie 2025; 71:101604. [PMID: 39413572 DOI: 10.1016/j.neuchi.2024.101604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/29/2024] [Accepted: 10/05/2024] [Indexed: 10/18/2024]
Abstract
Laser interstitial thermal therapy (LITT) is being performed more frequently for various lesions within neurosurgery, including epileptic foci, vascular malformations, and tumors. Though this technique generally has an excellent safety profile, it is important to be aware of potential complications. Thermal ablation of tissue leads to disruption of the blood brain barrier as well as an inflammatory response both of which cause the majority of complications from LITT. The most common complications of LITT include cerebral edema, focal neurologic deficits, and intracranial hemorrhage. Few studies have identified factors predicting development of these complications, but many of these are transient and resolve without intervention. Modifications to LITT technique that allows better visualization of patient anatomy along the tract, such as fusing vascular imaging with intraoperative MRI, reduce the risk of complications.
Collapse
Affiliation(s)
- Kyle McGrath
- College of Medicine, University of Florida, Gainesville, FL, United States.
| | - Matthew Frain
- Department of Medical Physics, University of Florida, Gainesville, FL, United States; Brain Tumor Immunotherapy Program, University of Florida, Gainesville, FL, United States
| | - Grace Hey
- College of Medicine, University of Florida, Gainesville, FL, United States
| | - Maryam Rahman
- Brain Tumor Immunotherapy Program, University of Florida, Gainesville, FL, United States; Lillian S Wells Department of Neurosurgery, University of Florida, Gainesville, FL, United States
| |
Collapse
|
3
|
Mo J, Xu X, Ma A, Lu M, Wang X, Rui Q, Zhu J, Wen H, Lin G, Knutsson L, van Zijl P, Wen Z. Dynamic glucose-enhanced MRI of gliomas: A preliminary clinical application. NMR IN BIOMEDICINE 2025; 38:e5265. [PMID: 39500570 PMCID: PMC11604297 DOI: 10.1002/nbm.5265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/11/2024] [Accepted: 09/16/2024] [Indexed: 11/30/2024]
Abstract
The study aimed to investigate the feasibility of dynamic glucose-enhanced (DGE) MRI technology in the clinical application of glioma. Twenty patients with glioma were examined using a preoperative DGE-MRI protocol before clinical intervention. A brief hyperglycemic state was achieved by injecting 50 mL of 50% w/w D-glucose intravenously during the DGE imaging. The total acquisition time for the DGE was 15 min. Area-under-the-curve (AUC) images were calculated using the DGE images. AUC2-7min values of the glioma core, margin area, edema area, and contralateral brain parenchyma were compared using Mann-Whitney U tests. Overall, gray and white matter areas in the AUC images showed relatively low DGE signal change and bilateral symmetry. However, the tumor cores displayed a significant hyperintensity. A high DGE signal change was also seen in the necrotic, cystic, and cerebrospinal areas. These results show that DGE MRI is a feasible technique for the study of brain tumors as part of a clinical exam. Importantly, DGE MRI showed enhancement in areas confirmed histopathologically as tumors, whereas Gd T1w MRI did not show any enhancement in this area. Since the D-glucose molecule is smaller than Gd-based contrast agents, DGE MRI may be more sensitive to subtle blood-brain barrier disruptions, thus potentially providing early information about possible malignancy. These findings provide a new perspective for the further exploration and analysis of D-glucose uptake in brain tumors.
Collapse
Affiliation(s)
- Jianhua Mo
- Department of Radiology, Zhujiang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Xiang Xu
- Icahn School of Medicine at Mount SinaiBioMedical Engineering and Imaging InstituteNew YorkNew YorkUSA
- Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Andong Ma
- Department of Radiology, Zhujiang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Mingjun Lu
- Department of Radiology, Zhujiang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Xianlong Wang
- Department of Radiology, Zhujiang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Qihong Rui
- Department of Radiology, Zhujiang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Jianbin Zhu
- Department of Radiology, Zhujiang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Haitao Wen
- Department of Radiology, Zhujiang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Genyun Lin
- Department of Radiology, Zhujiang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Linda Knutsson
- Department of Medical Radiation PhysicsLund UniversityLundSweden
- F.M. Kirby Research Center for Functional Brain ImagingKennedy Krieger InstituteBaltimoreMarylandUSA
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Peter van Zijl
- Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- F.M. Kirby Research Center for Functional Brain ImagingKennedy Krieger InstituteBaltimoreMarylandUSA
| | - Zhibo Wen
- Department of Radiology, Zhujiang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
4
|
He J, Zhang HP. Research progress and treatment status of malignant ascites. Front Oncol 2024; 14:1390426. [PMID: 39737405 PMCID: PMC11682990 DOI: 10.3389/fonc.2024.1390426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 11/20/2024] [Indexed: 01/01/2025] Open
Abstract
Malignant ascites (MA), a common and serious complication of various cancers in the abdominal cavity, originates from the extensive infiltration, metastasis, and growth of cancer cells in or on the abdominal cavity, leading to abnormal accumulation of fluid in the abdominal cavity and the formation of MA. MA seriously reduces the quality of life of cancer patients, shortens their survival period, and generally has a poor prognosis. Modern medicine has developed various strategies for the treatment of MA, including targeted supportive treatment, diuretic treatment, abdominal paracentesis, surgical intervention, and intraperitoneal administration therapy. Among them, chemotherapy, as one of the important treatment methods, includes both systemic chemotherapy and intraperitoneal chemotherapy, especially pressurized intraperitoneal aerosol chemotherapy (PIPAC), hyperthermic intraperitoneal chemotherapy (HIPEC), and foam-based intraperitoneal chemotherapy (FBIC), providing a new choice for the treatment of MA. In addition, innovative treatment methods such as gas-based intra-abdominal hyperthermia (GIH) combined with dehydration therapy have also shown promising application prospects. This article delves into multiple aspects of MA, including its concept, mechanism of occurrence, clinical manifestations, differential diagnostic methods, and current treatment status and research progress. This comprehensive review aims to provide valuable references for effectively controlling MA, improving cancer patients' quality of life, and prolonging the survival cycle of cancer patients in clinical practice. Malignant ascites (MA) is a common complication of cancer, which originates from the extensive infiltration, metastasis, and growth of cancer cells in the abdominal cavity or peritoneum, leading to abnormal accumulation of peritoneal fluid. It is a common clinical manifestation in the late stage of cancer. Its symptoms are stubborn and recurrent, which can lead to abdominal pain, bloating, poor appetite, fatigue, breathing difficulties, and even multiple organ failure. The median survival time for cancer patients with MA is generally 5 to 6 months. The prognosis is poor, and it is imperative to seek more active and effective treatment plans. This article reviews the research and treatment status of MA, aiming to provide certain value for controlling MA and improving the quality of life of patients.
Collapse
Affiliation(s)
- Jing He
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Dali University, Dali, China
| | - Hui-ping Zhang
- Department of Oncology, Guang’anmen Hospital Jinan Hospital (Jinan Hospital of Traditional Chinese Medicine), Jinan, China
| |
Collapse
|
5
|
Costa M, Lopes Fernandes C, Magalhães H. Perioperative Treatment in Gastric Cancer: A Fast-Changing Field. Cancers (Basel) 2024; 16:4036. [PMID: 39682222 DOI: 10.3390/cancers16234036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/21/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Gastric cancer is the fifth most common cancer worldwide and its incidence is rising. Surgery is the only curative strategy and its association with perioperative chemotherapy is now standard treatment for most resectable tumors. Despite treatment advances, disease relapse is high, even in early stages, and continued improvement in curative treatment is imperative. With deeper knowledge of gastric cancer heterogeneity, molecular subtypes, and the tumor immune microenvironment, new standard treatment strategies may emerge in the near future. This paper provides a comprehensive review of the current treatment landscape in resectable gastric cancer and future perspectives for the next decade regarding new agents such as targeted therapies, immunotherapy, antibody-drug conjugates, and the combination of multiple treatment modalities.
Collapse
Affiliation(s)
- Mafalda Costa
- Medical Oncology Department, Pedro Hispano Hospital, 4464-513 Matosinhos, Portugal
| | | | - Helena Magalhães
- Medical Oncology Department, Pedro Hispano Hospital, 4464-513 Matosinhos, Portugal
| |
Collapse
|
6
|
Ren W, Liang H, Sun J, Cheng Z, Liu W, Wu Y, Shi Y, Zhou Z, Chen C. TNFAIP2 promotes HIF1α transcription and breast cancer angiogenesis by activating the Rac1-ERK-AP1 signaling axis. Cell Death Dis 2024; 15:821. [PMID: 39532855 PMCID: PMC11557851 DOI: 10.1038/s41419-024-07223-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Angiogenesis is well known to play a critical role in breast cancer. We previously reported that TNFAIP2 activates Rac1 to promote triple-negative breast cancer (TNBC) cell proliferation, migration, and chemoresistance. However, the potential contribution of TNFAIP2 to tumor angiogenesis remains unknown. In this study, we demonstrated that TNFAIP2 promotes TNBC angiogenesis by activating the Rac1-ERK-AP1-HIF1α signaling axis. Under hypoxia, TNFAIP2 activates Rac1 and ERK sequentially. Following that, ERK activates the AP-1 (c-Jun/Fra1) transcription factor. By employing chromatin immunoprecipitation and luciferase reporter assays, we showed that AP-1 directly interacts with the HIF1α gene promoter, thereby enhancing its transcription. The combined application of ERK inhibitors, U0126 or trametinib, with the VEGFR inhibitor Apatinib, additively suppresses angiogenesis and tumor growth of HCC1806 in nude mice. These findings provide new therapeutic strategies for TNBC.
Collapse
MESH Headings
- Humans
- Animals
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- rac1 GTP-Binding Protein/metabolism
- rac1 GTP-Binding Protein/genetics
- Female
- Cell Line, Tumor
- Mice, Nude
- Triple Negative Breast Neoplasms/genetics
- Triple Negative Breast Neoplasms/pathology
- Triple Negative Breast Neoplasms/metabolism
- Triple Negative Breast Neoplasms/drug therapy
- Mice
- Signal Transduction
- Transcription Factor AP-1/metabolism
- Pyrimidinones/pharmacology
- Pyridines/pharmacology
- Cell Proliferation
- Gene Expression Regulation, Neoplastic
- Transcription, Genetic/drug effects
- Pyridones/pharmacology
- Mice, Inbred BALB C
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Nitriles/pharmacology
- MAP Kinase Signaling System/drug effects
- Human Umbilical Vein Endothelial Cells/metabolism
- Angiogenesis
Collapse
Affiliation(s)
- Wenlong Ren
- School of Life Science, University of Science & Technology of China, Hefei, Anhui, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Huichun Liang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Jian Sun
- Yunnan Key Laboratory of Breast Cancer Precision Medicine, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Kunming, China
| | - Zhuo Cheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Wenjing Liu
- Yunnan Key Laboratory of Breast Cancer Precision Medicine, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Kunming, China
| | - Yingying Wu
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yujie Shi
- Department of Pathology, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, Henan, China.
| | - Zhongmei Zhou
- The School of Continuing Education, Kunming Medical University, Kunming, China.
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
- Yunnan Key Laboratory of Breast Cancer Precision Medicine, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Kunming, China.
- Yunnan Key Laboratory of Breast Cancer Precision Medicine, Academy of Biomedical Engineering, Kunming Medical University, Kunming, ChinaAcademy of Biomedical Engineering, Kunming Medical University, Kunming, China.
| |
Collapse
|
7
|
Dudley JS, Renfree MB, Wagner GP, Griffith OW. The extension of mammalian pregnancy required taming inflammation: Independent evolution of extended placentation in the tammar wallaby. Proc Natl Acad Sci U S A 2024; 121:e2310047121. [PMID: 39378090 PMCID: PMC11494332 DOI: 10.1073/pnas.2310047121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/24/2024] [Indexed: 10/10/2024] Open
Abstract
In the first live-bearing mammals, pregnancy was likely short and ended with a brief period of inflammatory maternal-fetal interaction. This mode of reproduction has been retained in many marsupials. While inflammation is key to successful implantation in eutherians, a key innovation in eutherians is the ability to switch off this inflammation after it has been initiated. This extended period, in which inflammation is suppressed, likely allowed for an extended period of placentation. Extended placentation has evolved independently in one lineage of marsupials, the macropodids (wallabies and kangaroos), with placentation lasting beyond the 2 to 4 d seen in other marsupial taxa, which allows us to investigate the role of inflammation response after attachment in the extension of placentation in mammals. By comparing gene expression changes at attachment in three marsupial species, the tammar wallaby, opossum, and fat-tailed dunnart, we show that inflammatory attachment is an ancestral feature of marsupial implantation. In contrast to eutherians, where attachment-related (quasi-) inflammatory reaction is even involved in epitheliochorial placentation (e.g., pig), this study found no evidence of a distinct attachment-related reaction in wallabies. Instead, only a small number of inflammatory genes are expressed at distinct points of gestation, including IL6 before attachment, LIF throughout placentation, and prostaglandins before birth. During parturition, a more distinct inflammatory reaction is detectable, likely involved in precipitating the parturition cascade similar to eutherians. We suggest that in wallaby, extended gestation became possible by avoiding an inflammatory attachment reaction, which is a different strategy than seen in eutherians.
Collapse
Affiliation(s)
- Jessica S. Dudley
- Department of Biological Sciences, School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, NSW2109, Australia
| | - Marilyn B. Renfree
- School of BioSciences, University of Melbourne, Melbourne, VIC3010, Australia
| | - Günter P. Wagner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT06520
- Yale Systems Biology Institute, Yale University, West Haven, CT06520
- Department of Evolutionary Biology, University of Vienna, ViennaA-1030, Austria
| | - Oliver W. Griffith
- Department of Biological Sciences, School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, NSW2109, Australia
| |
Collapse
|
8
|
Shetty S, Pereira T, Tamgadge S, Kale S, Kamat P, Kumar S. ENDOGLIN (CD105): A marker of tumour vasculature for assessment of malignant potential of oral submucous fibrosis. J Oral Maxillofac Pathol 2024; 28:589-595. [PMID: 39949694 PMCID: PMC11819617 DOI: 10.4103/jomfp.jomfp_67_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 02/16/2025] Open
Abstract
Background Oral submucous fibrosis (OSMF) is a precancerous condition associated with the use of betel/areca nut in various forms. It is characterized by restricted mouth opening, tongue protrusion and cheek rigidity. Oral submucous fibrosis, is primarily prevalent among the people of the Indian subcontinent and it has been reported that about one third of the OSMF patients develop squamous cell carcinoma.Endoglin (CD-105) is a hypoxia induced protein and a potential marker for activated endothelial cells which signify tumorigenic neoangiogenesis. Aim To determine expression of CD105 and study relation of neoangiogenesis with the clinical staging and histopathological grading of oral submucous fibrosis. Material and Method Immunohistochemical expression of CD105 was evaluated on forty nine (49) paraffin-embedded tissue sections of diagnosed cases of OSF and seven (7) control samples of healthy volunteers. Results There were 13 cases in Stage A, 11 cases in Stage B, 13 cases in Stage C, and 12 cases in Stage D. There were 4 cases in Grade 1 (Very early), 19 cases in Grade 2 (Early), 19 cases in Grade 3 (Moderately advance) and 7 cases in Grade 4 (Advance). Conclusion The present study was first immunohistochemical study to demonstrate MVD, MVP and MVAP with CD105 expression in OSMF cases. However, well-designed studies with larger sample size is required to validate CD105 as a reliable biomarker for malignant transformation in future research.
Collapse
Affiliation(s)
- Subraj Shetty
- Department of Oral and Maxillofacial Pathology and Microbiology, D. Y. PATIL University, School of Dentistry, Navi Mumbai, Maharashtra, India
| | - Treville Pereira
- Department of Oral and Maxillofacial Pathology and Microbiology, D. Y. PATIL University, School of Dentistry, Navi Mumbai, Maharashtra, India
| | - Sandhya Tamgadge
- Department of Oral and Maxillofacial Pathology and Microbiology, D. Y. PATIL University, School of Dentistry, Navi Mumbai, Maharashtra, India
| | - Sandeep Kale
- Department of Oral and Maxillofacial Pathology and Microbiology, D. Y. PATIL University, School of Dentistry, Navi Mumbai, Maharashtra, India
| | - Pooja Kamat
- Department of Oral and Maxillofacial Pathology and Microbiology, D. Y. PATIL University, School of Dentistry, Navi Mumbai, Maharashtra, India
| | - Sourab Kumar
- Department of Oral and Maxillofacial Pathology and Microbiology, D. Y. PATIL University, School of Dentistry, Navi Mumbai, Maharashtra, India
| |
Collapse
|
9
|
Romano A, De Giorgi S, Romano A, Moltoni G, Ascolese AM, Stoppacciaro A, Bozzao A. "Vanishing" glioblastoma: A case report and review of the literature. Radiol Case Rep 2024; 19:3276-3282. [PMID: 38812592 PMCID: PMC11133505 DOI: 10.1016/j.radcr.2024.04.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 05/31/2024] Open
Abstract
Contrast enhancement resolution induced by corticosteroids is a phenomenon primarily associated with primary central nervous system lymphoma, while malignant brain gliomas usually maintain a consistent radiological appearance during systemic steroid treatment. Although rare, a few primary and metastatic intracranial lesions have shown similar radiographic changes following corticosteroid therapy. In the case of glioblastomas, corticosteroid therapy is commonly used to alleviate pressure effects from peritumoral edema, but its impact on contrast enhancement is not well-established. A few reported cases in the literature describe reduced contrast enhancement in glioblastomas after corticosteroid treatment. We present a case of corticosteroid-induced regression on imaging of glioblastoma evaluated at our institutionwith the intention to explore the pathogenesis of this response and discuss the therapeutic and prognostic implications of this discovery.
Collapse
Affiliation(s)
- Allegra Romano
- Neuroradiology Unit, Sant'Andrea Hospital, Department of Neuroscience, Mental Health and Sense Organs (NESMOS), Sapienza University of Rome, Rome, Italy
| | - Sara De Giorgi
- Neuroradiology Unit, Sant'Andrea Hospital, Department of Neuroscience, Mental Health and Sense Organs (NESMOS), Sapienza University of Rome, Rome, Italy
| | - Andrea Romano
- Neuroradiology Unit, Sant'Andrea Hospital, Department of Neuroscience, Mental Health and Sense Organs (NESMOS), Sapienza University of Rome, Rome, Italy
| | - Giulia Moltoni
- Neuroradiology Unit, Sant'Andrea Hospital, Department of Neuroscience, Mental Health and Sense Organs (NESMOS), Sapienza University of Rome, Rome, Italy
| | | | - Antonella Stoppacciaro
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Alessandro Bozzao
- Neuroradiology Unit, Sant'Andrea Hospital, Department of Neuroscience, Mental Health and Sense Organs (NESMOS), Sapienza University of Rome, Rome, Italy
| |
Collapse
|
10
|
Brooks A, Zhang Y, Chen J, Zhao CX. Cancer Metastasis-on-a-Chip for Modeling Metastatic Cascade and Drug Screening. Adv Healthc Mater 2024; 13:e2302436. [PMID: 38224141 DOI: 10.1002/adhm.202302436] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/06/2024] [Indexed: 01/16/2024]
Abstract
Microfluidic chips are valuable tools for studying intricate cellular and cell-microenvironment interactions. Traditional in vitro cancer models lack accuracy in mimicking the complexities of in vivo tumor microenvironment. However, cancer-metastasis-on-a-chip (CMoC) models combine the advantages of 3D cultures and microfluidic technology, serving as powerful platforms for exploring cancer mechanisms and facilitating drug screening. These chips are able to compartmentalize the metastatic cascade, deepening the understanding of its underlying mechanisms. This article provides an overview of current CMoC models, focusing on distinctive models that simulate invasion, intravasation, circulation, extravasation, and colonization, and their applications in drug screening. Furthermore, challenges faced by CMoC and microfluidic technologies are discussed, while exploring promising future directions in cancer research. The ongoing development and integration of these models into cancer studies are expected to drive transformative advancements in the field.
Collapse
Affiliation(s)
- Anastasia Brooks
- School of Chemical Engineering, University of Adelaide, Adelaide, 5005, Australia
| | - Yali Zhang
- School of Chemical Engineering, University of Adelaide, Adelaide, 5005, Australia
| | - Jiezhong Chen
- School of Chemical Engineering, University of Adelaide, Adelaide, 5005, Australia
| | - Chun-Xia Zhao
- School of Chemical Engineering, University of Adelaide, Adelaide, 5005, Australia
| |
Collapse
|
11
|
Mansur A, Radovanovic I. Defining the Role of Oral Pathway Inhibitors as Targeted Therapeutics in Arteriovenous Malformation Care. Biomedicines 2024; 12:1289. [PMID: 38927496 PMCID: PMC11201820 DOI: 10.3390/biomedicines12061289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Arteriovenous malformations (AVMs) are vascular malformations that are prone to rupturing and can cause significant morbidity and mortality in relatively young patients. Conventional treatment options such as surgery and endovascular therapy often are insufficient for cure. There is a growing body of knowledge on the genetic and molecular underpinnings of AVM development and maintenance, making the future of precision medicine a real possibility for AVM management. Here, we review the pathophysiology of AVM development across various cell types, with a focus on current and potential druggable targets and their therapeutic potentials in both sporadic and familial AVM populations.
Collapse
Affiliation(s)
- Ann Mansur
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Laboratory Medicine and Pathobiology, School of Graduate Studies, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ivan Radovanovic
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Laboratory Medicine and Pathobiology, School of Graduate Studies, University of Toronto, Toronto, ON M5S 1A8, Canada
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University Health Network, Toronto, ON M5T 2S8, Canada
| |
Collapse
|
12
|
Luo Y, Li C. Advances in Research Related to MicroRNA for Diabetic Retinopathy. J Diabetes Res 2024; 2024:8520489. [PMID: 38375094 PMCID: PMC10876316 DOI: 10.1155/2024/8520489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/21/2023] [Accepted: 01/27/2024] [Indexed: 02/21/2024] Open
Abstract
Diabetic retinopathy (DR) is a severe microvascular complication of diabetes and is one of the primary causes of blindness in the working-age population in Europe and the United States. At present, no cure is available for DR, but early detection and timely intervention can prevent the rapid progression of the disease. Several treatments for DR are known, primarily ophthalmic treatment based on glycemia, blood pressure, and lipid control, which includes laser photocoagulation, glucocorticoids, vitrectomy, and antivascular endothelial growth factor (anti-VEGF) medications. Despite the clinical efficacy of the aforementioned therapies, none of them can entirely shorten the clinical course of DR or reverse retinopathy. MicroRNAs (miRNAs) are vital regulators of gene expression and participate in cell growth, differentiation, development, and apoptosis. MicroRNAs have been shown to play a significant role in DR, particularly in the molecular mechanisms of inflammation, oxidative stress, and neurodegeneration. The aim of this review is to systematically summarize the signaling pathways and molecular mechanisms of miRNAs involved in the occurrence and development of DR, mainly from the pathogenesis of oxidative stress, inflammation, and neovascularization. Meanwhile, this article also discusses the research progress and application of miRNA-specific therapies for DR.
Collapse
Affiliation(s)
- Yahan Luo
- Shanghai TCM-Integrated Hospital, Shanghai University of TCM, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chunxia Li
- Shanghai TCM-Integrated Hospital, Shanghai University of TCM, Shanghai, China
| |
Collapse
|
13
|
Gaba S, Jain U. Advanced biosensors for nanomaterial-based detection of transforming growth factor alpha and beta, a class of major polypeptide regulators. Int J Biol Macromol 2024; 257:128622. [PMID: 38065462 DOI: 10.1016/j.ijbiomac.2023.128622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/17/2023]
Abstract
Transforming growth factors (TGFs) regulate several cellular processes including, differentiation, growth, migration, extracellular matrix production, and apoptosis. TGF alpha (TGF-α) is a heterogeneous molecule containing 160 amino acid residues. It is a potent angiogenesis promoter that is activated by JAK-STAT signaling. Whereas TGF beta (TGF-β) consists of 390-412 amino acids. Smad and non-Smad signaling both occur in TGF beta. It is linked to immune cell activation, differentiation, and proliferation. It also triggers pre-apoptotic responses and inhibits cell proliferation. Both growth factors have a promising role in the development and homeostasis of tissues. Defects such as autoimmune diseases and cancer develop mechanisms to modulate checkpoints of the immune system resulting in altered growth factors profile. An accurate amount of these growth factors is essential for normal functioning, but an exceed or fall behind the normal level is alarming as it is linked to several disorders. This demands techniques for TGF-α and TGF-β profiling to effectively diagnose diseases, monitor their progression, and assess the efficacy of immunotherapeutic drugs. Quantitative detection techniques including the emergence of biosensing technology seem to accomplish the purpose. Until the present time, few biosensors have been designed in the context of TGF-α and TGF-β for disease detection, analyzing receptor binding, and interaction with carriers. In this paper, we have reviewed the physiology of transforming growth factor alpha and beta, including the types, structure, function, latent/active forms, signaling, and defects caused. It involves the description of biosensors on TGF-α and TGF-β, advances in technology, and future perspectives.
Collapse
Affiliation(s)
- Smriti Gaba
- School of Health Sciences and Technology, UPES, Dehradun 248007, Uttarakhand, India
| | - Utkarsh Jain
- School of Health Sciences and Technology, UPES, Dehradun 248007, Uttarakhand, India.
| |
Collapse
|
14
|
Huang Y, Zou K, Jiang H, Li Z. The complex role of IL-10 in malignant ascites: a review. Cancer Immunol Immunother 2024; 73:32. [PMID: 38279997 PMCID: PMC10821842 DOI: 10.1007/s00262-023-03616-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/05/2023] [Indexed: 01/29/2024]
Abstract
The emergence of malignant ascites (MA) indicates poor prognoses in patients with ovarian, gastrointestinal, breast, and pancreatic cancer. Interleukin-10 (IL-10) is a pleiotropic cytokine with immunoregulatory effects in tumor microenvironment. The level of IL-10 in MA varied across cancer types and patients, influencing cancer progression and outcomes. Originating from various immune and cancer cells, IL-10 contributes to complex signaling pathways in MA. Systemic IL-10 administration, although the evidence of its efficacy on MA is limited, still emerges as a promising therapeutic strategy because it can increase CD8+ T cells cytotoxicity and invigorate exhausted CD8+ tumor infiltration lymphocytes (TILs) directly. IL-10 signaling blockade also demonstrates great potential when combined with other immunotherapies in MA treatment. We reviewed the levels, origins, and functions of IL-10 in malignant ascites and overviewed the current IL-10 signaling targeting therapies, aiming to provide insights for MA treatment.
Collapse
Affiliation(s)
- Yue Huang
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, People's Republic of China
| | - Kangni Zou
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, People's Republic of China
| | - Heng Jiang
- College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Zhengyu Li
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
15
|
Chou CJ, Yang HC, Chang PY, Chen CJ, Wu HM, Lin CF, Lai IC, Peng SJ. Automated identification and quantification of metastatic brain tumors and perilesional edema based on a deep learning neural network. J Neurooncol 2024; 166:167-174. [PMID: 38133789 DOI: 10.1007/s11060-023-04540-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
PURPOSE This paper presents a deep learning model for use in the automated segmentation of metastatic brain tumors and associated perilesional edema. METHODS The model was trained using Gamma Knife surgical data (90 MRI sets from 46 patients), including the initial treatment plan and follow-up images (T1-weighted contrast-enhanced (T1cWI) and T2-weighted images (T2WI)) manually annotated by neurosurgeons to indicate the target tumor and edema regions. A mask region-based convolutional neural network was used to extract brain parenchyma, after which the DeepMedic 3D convolutional neural network was in the segmentation of tumors and edemas. RESULTS Five-fold cross-validation demonstrated the efficacy of the brain parenchyma extraction model, achieving a Dice similarity coefficient of 96.4%. The segmentation models used for metastatic tumors and brain edema achieved Dice similarity coefficients of 71.6% and 85.1%, respectively. This study also presents an intuitive graphical user interface to facilitate the use of these models in clinical analysis. CONCLUSION This paper introduces a deep learning model for the automated segmentation and quantification of brain metastatic tumors and perilesional edema trained using only T1cWI and T2WI. This technique could facilitate further research on metastatic tumors and perilesional edema as well as other intracranial lesions.
Collapse
Affiliation(s)
- Chi-Jen Chou
- Division of Neurosurgery, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Huai-Che Yang
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Po-Yao Chang
- Department of Electrical Engineering, National Central University, Taoyuan, Taiwan
| | - Ching-Jen Chen
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA, 22903, USA
| | - Hsiu-Mei Wu
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chun-Fu Lin
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - I-Chun Lai
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Department of Heavy Particles & Radiation Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Syu-Jyun Peng
- Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, No.250, Wuxing St., Xinyi Dist., Taipei City, 110, Taiwan.
- Clinical Big Data Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
16
|
Golmohammadi M, Zamanian MY, Jalal SM, Noraldeen SAM, Ramírez‐Coronel AA, Oudaha KH, Obaid RF, Almulla AF, Bazmandegan G, Kamiab Z. A comprehensive review on Ellagic acid in breast cancer treatment: From cellular effects to molecular mechanisms of action. Food Sci Nutr 2023; 11:7458-7468. [PMID: 38107139 PMCID: PMC10724635 DOI: 10.1002/fsn3.3699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 10/16/2023] Open
Abstract
Globally, breast cancer (BC) is the leading cause of cancer-related deaths in women. Hence, developing a therapeutic plan to overcome the disease is crucial. Numerous factors such as endogenous hormones and environmental factors may play a role in the pathophysiology of BC. Regarding the multi-modality treatment of BC, natural compounds like ellagic acid (EA) received has received increased interest in antitumor efficacy with lower adverse effects. Based on the results of this comprehensive review, EA has multiple effects on BC cells including (1) suppresses the growth of BC cells by arresting the cell cycle in the G0/G1 phase, (2) suppresses migration, invasion, and metastatic, (3) stimulates apoptosis in MCF-7 cells via TGF-β/Smad3 signaling axis, (4) inhibits CDK6 that is important in cell cycle regulation, (5) binds to ACTN4 and induces its degradation via the ubiquitin-proteasome pathway, inducing decreased cell motility and invasion in BC cells, (6) inhibits the PI3K/AKT pathway, and (7) inhibits angiogenesis-associated activities including proliferation (reduces VEGFR-2 tyrosine kinase activity). In conclusion, EA exhibits anticancer activity through various molecular mechanisms that influence key cellular processes like apoptosis, cell cycle, angiogenesis, and metastasis in BC. However, further researches are essential to fully elucidate its molecular targets and implications for clinical applications.
Collapse
Affiliation(s)
| | - Mohammad Yasin Zamanian
- Department of Physiology, School of MedicineHamadan University of Medical SciencesHamadanIran
- Department of Pharmacology and Toxicology, School of PharmacyHamadan University of Medical SciencesHamadanIran
| | | | | | - Andrés Alexis Ramírez‐Coronel
- Research Group in Educational StatisticsNational University of Education (UNAE)AzoguesEcuador
- Epidemiology and Biostatistics Research GroupCES UniversityMedellínColombia
| | - Khulood H. Oudaha
- Pharmaceutical Chemistry Department, College of PharmacyAl‐Ayen UniversityThi‐OarIraq
| | - Rasha Fadhel Obaid
- Department of Biomedical EngineeringAl‐Mustaqbal University CollegeBabylonIraq
| | - Abbas F. Almulla
- Department of Medical Laboratory Technology, College of Medical TechnologyIslamic UniversityNajafIraq
| | - Gholamreza Bazmandegan
- Physiology‐Pharmacology Research Center, Research Institute of Basic Medical SciencesRafsanjan University of Medical SciencesRafsanjanIran
- Department of Physiology and Pharmacology, School of MedicineRafsanjan University of Medical SciencesRafsanjanIran
| | - Zahra Kamiab
- Clinical Research Development Unit, Ali‐Ibn Abi‐Talib HospitalRafsanjan University of Medical SciencesRafsanjanIran
- Department of Community Medicine, School of MedicineRafsanjan University of Medical SciencesRafsanjanIran
| |
Collapse
|
17
|
Yakubov E, Schmid S, Hammer A, Chen D, Dahlmanns JK, Mitrovic I, Zurabashvili L, Savaskan N, Steiner HH, Dahlmanns M. Ferroptosis and PPAR-gamma in the limelight of brain tumors and edema. Front Oncol 2023; 13:1176038. [PMID: 37554158 PMCID: PMC10406130 DOI: 10.3389/fonc.2023.1176038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/04/2023] [Indexed: 08/10/2023] Open
Abstract
Human malignant brain tumors such as gliomas are devastating due to the induction of cerebral edema and neurodegeneration. A major contributor to glioma-induced neurodegeneration has been identified as glutamate. Glutamate promotes cell growth and proliferation in variety of tumor types. Intriguently, glutamate is also an excitatory neurotransmitter and evokes neuronal cell death at high concentrations. Even though glutamate signaling at the receptor and its downstream effectors has been extensively investigated at the molecular level, there has been little insight into how glutamate enters the tumor microenvironment and impacts on metabolic equilibration until recently. Surprisingly, the 12 transmembrane spanning tranporter xCT (SLC7A11) appeared to be a major player in this process, mediating glutamate secretion and ferroptosis. Also, PPARγ is associated with ferroptosis in neurodegeneration, thereby destroying neurons and causing brain swelling. Although these data are intriguing, tumor-associated edema has so far been quoted as of vasogenic origin. Hence, glutamate and PPARγ biology in the process of glioma-induced brain swelling is conceptually challenging. By inhibiting xCT transporter or AMPA receptors in vivo, brain swelling and peritumoral alterations can be mitigated. This review sheds light on the role of glutamate in brain tumors presenting the conceptual challenge that xCT disruption causes ferroptosis activation in malignant brain tumors. Thus, interfering with glutamate takes center stage in forming the basis of a metabolic equilibration approach.
Collapse
Affiliation(s)
- Eduard Yakubov
- Department of Neurosurgery, Paracelsus Medical University, Nuremberg, Germany
| | - Sebastian Schmid
- Department of Trauma, Orthopaedics, Plastic and Hand Surgery, University Hospital Augsburg, Augsburg, Germany
| | - Alexander Hammer
- Department of Neurosurgery, Paracelsus Medical University, Nuremberg, Germany
- Center for Spine and Scoliosis Therapy, Malteser Waldkrankenhaus St. Marien, Erlangen, Germany
| | - Daishi Chen
- Department of Otorhinolaryngology, Shenzhen People's Hospital, Jinan University, Shenzhen, China
| | - Jana Katharina Dahlmanns
- Institute for Physiology and Pathophysiology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Ivana Mitrovic
- Department of Cardiac Surgery, Bogenhausen Hospital, Munich, Germany
| | | | - Nicolai Savaskan
- Department of Neurosurgery, University Medical School Hospital Universitätsklinikum Erlangen (UKER), Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Department of Public Health Neukölln, District Office Neukölln of Berlin Neukölln, Berlin, Germany
| | | | - Marc Dahlmanns
- Institute for Physiology and Pathophysiology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
18
|
Liu ZL, Chen HH, Zheng LL, Sun LP, Shi L. Angiogenic signaling pathways and anti-angiogenic therapy for cancer. Signal Transduct Target Ther 2023; 8:198. [PMID: 37169756 PMCID: PMC10175505 DOI: 10.1038/s41392-023-01460-1] [Citation(s) in RCA: 408] [Impact Index Per Article: 204.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/20/2023] [Accepted: 04/20/2023] [Indexed: 05/13/2023] Open
Abstract
Angiogenesis, the formation of new blood vessels, is a complex and dynamic process regulated by various pro- and anti-angiogenic molecules, which plays a crucial role in tumor growth, invasion, and metastasis. With the advances in molecular and cellular biology, various biomolecules such as growth factors, chemokines, and adhesion factors involved in tumor angiogenesis has gradually been elucidated. Targeted therapeutic research based on these molecules has driven anti-angiogenic treatment to become a promising strategy in anti-tumor therapy. The most widely used anti-angiogenic agents include monoclonal antibodies and tyrosine kinase inhibitors (TKIs) targeting vascular endothelial growth factor (VEGF) pathway. However, the clinical benefit of this modality has still been limited due to several defects such as adverse events, acquired drug resistance, tumor recurrence, and lack of validated biomarkers, which impel further research on mechanisms of tumor angiogenesis, the development of multiple drugs and the combination therapy to figure out how to improve the therapeutic efficacy. Here, we broadly summarize various signaling pathways in tumor angiogenesis and discuss the development and current challenges of anti-angiogenic therapy. We also propose several new promising approaches to improve anti-angiogenic efficacy and provide a perspective for the development and research of anti-angiogenic therapy.
Collapse
Affiliation(s)
- Zhen-Ling Liu
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China
| | - Huan-Huan Chen
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China
| | - Li-Li Zheng
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China
| | - Li-Ping Sun
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China.
| | - Lei Shi
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China.
| |
Collapse
|
19
|
Chen M, Wang S, Qi Z, Meng X, Hu M, Liu X, Song Y, Deng Y. Deuterated colchicine liposomes based on oligomeric hyaluronic acid modification enhance anti-tumor effect and reduce systemic toxicity. Int J Pharm 2023; 632:122578. [PMID: 36596316 DOI: 10.1016/j.ijpharm.2022.122578] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/07/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023]
Abstract
Deuterated drugs are produced by substituting hydrogen atoms with deuterium atoms at specific sites in a drug molecule to prolong its metabolic cycle and reduce the production of toxic metabolites. Deuterated drugs have recently attracted increasing attention from the pharmaceutical industry. Colchicine exhibits a strong anti-tumor activity but has a short half-life, rapid attenuated drug concentration, narrow treatment window, and lack of tumor-specific targeting in vivo, resulting in toxicity and side effects. In this study, we explored whether deuteration could reduce the toxicity of colchicine. We prepared deuterated colchicine liposomes coated with oligo-hyaluronic acid, which can bind to the tumor-specific CD44 receptor and reduce the clearance of immune cells from the blood, resulting in a long blood circulation time and active targeting. We observed that deuteration of the colchicine B ring reduced drug toxicity and improved the anti-tumor response in 4 T1 breast cancer. Liposomes modified with oligo-hyaluronic acid exhibited increased tumor accumulation, further improving the anti-tumor effect of the drugs. Our results provide a basis for the development and application of deuterated drugs in the field of nano-preparations.
Collapse
Affiliation(s)
- Meng Chen
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Shuo Wang
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Zhaowei Qi
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Xianmin Meng
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Miao Hu
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Xinrong Liu
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Yanzhi Song
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China.
| | - Yihui Deng
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China.
| |
Collapse
|
20
|
Regression of Human Breast Carcinoma in Nude Mice after Ad sflt Gene Therapy Is Mediated by Tumor Vascular Endothelial Cell Apoptosis. Cancers (Basel) 2022; 14:cancers14246175. [PMID: 36551660 PMCID: PMC9777034 DOI: 10.3390/cancers14246175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/25/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Two vascular endothelial growth factor (VEGF) receptors, FLT-1 and KDR, are expressed preferentially in proliferating endothelium. There is increasing evidence that recombinant, soluble VEGF receptor domains interfering with VEGF signaling may inhibit in vivo neoangiogenesis, tumor growth and metastatic spread. We hypothesized that a soluble form of FLT-1 receptor (sFLT-1) could inhibit the growth of pre-established tumors via an anti-angiogenic mechanism. A replication-deficient adenovirus (Ad) vector carrying the sflt-1 cDNA (Adsflt) was used to overexpress the sFLT-1 receptor in a breast cancer animal model. MCF-7 cells, which produce VEGF, were used to establish solid tumors in the mammary fat pads of female nude mice. After six weeks, tumors were injected either with Adsflt or a negative control virus (AdCMV.βgal). After six months, average tumor volume in the Adsflt-infected group (33 ± 22 mm3) decreased by 91% relative to that of the negative control group (388 ± 94 mm3; p < 0.05). Moreover, 10 of 15 Adsflt-infected tumors exhibited complete regression. The vascular density of Adsflt-infected tumors was reduced by 50% relative to that of negative controls (p < 0.05), which is consistent with sFLT-1-mediated tumor regression through an anti-angiogenic mechanism. Moreover, cell necrosis and fibrosis associated with long-term regression of Adsflt−infected tumors were preceded by apoptosis of tumor vascular endothelial cells. Mice treated with Adsflt intratumorally showed no delay in the healing of cutaneous wounds, providing preliminary evidence that Ad-mediated sFLT-1 overexpression may be an effective anti-angiogenic therapy for cancer without the risk of systemic anti-angiogenic effects.
Collapse
|
21
|
Ikeda-Imafuku M, Gao Y, Shaha S, Wang LLW, Park KS, Nakajima M, Adebowale O, Mitragotri S. Extracellular matrix degrading enzyme with stroma-targeting peptides enhance the penetration of liposomes into tumors. J Control Release 2022; 352:1093-1103. [PMID: 36351520 DOI: 10.1016/j.jconrel.2022.11.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 11/21/2022]
Abstract
Various anti-tumor nanomedicines have been developed based on the enhanced permeability and retention effect. However, the dense extracellular matrix (ECM) in tumors remains a major barrier for the delivery and accumulation of nanoparticles into tumors. While ECM-degrading enzymes, such as collagenase, hyaluronidase, and bromelain, have been used to facilitate the accumulation of nanoparticles, serious side effects arising from the current non-tumor-specific delivery methods limit their clinical applications. Here, we report targeted delivery of bromelain into tumor tissues through its covalent attachment to a hyaluronic acid (HA)-peptide conjugate with tumor ECM targeting ability. The ECM targeting peptide, collagen type IV-binding peptide (C4BP), was chosen from six candidate-peptides based on their ability to bind to frozen sections of triple-negative breast cancer, 4T1 tumor ex vivo. The HA- C4BP conjugate showed a significant increase in tumor accumulation in 4T1-bearing mice after intravenous administration compared to unmodified HA. We further demonstrated that the systemic administration of bromelain conjugated C4BP-HA (C4BP-HA-Bro) potentiates the anti-tumor efficacy of liposomal doxorubicin. C4BP-HA-Bro decreased the number and length of collagen fibers and improved the distribution of doxorubicin within the tumor. No infusion reaction was noted after delivery of C4BP-HA-Bro. C4BP-HA thus offers a potential for effective and safe delivery of bromelain for improved intratumoral delivery of therapeutics.
Collapse
Affiliation(s)
- Mayumi Ikeda-Imafuku
- John A. Paulson School of Engineering & Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Cambridge, MA 20138, USA
| | - Yongsheng Gao
- John A. Paulson School of Engineering & Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Cambridge, MA 20138, USA
| | - Suyog Shaha
- John A. Paulson School of Engineering & Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Cambridge, MA 20138, USA
| | - Lily Li-Wen Wang
- John A. Paulson School of Engineering & Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Cambridge, MA 20138, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kyung Soo Park
- John A. Paulson School of Engineering & Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Cambridge, MA 20138, USA
| | - Mayuka Nakajima
- John A. Paulson School of Engineering & Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Cambridge, MA 20138, USA
| | - Omokolade Adebowale
- John A. Paulson School of Engineering & Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Cambridge, MA 20138, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering & Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Cambridge, MA 20138, USA.
| |
Collapse
|
22
|
Wang X, Yang C, Körner H, Ge C. Tumor Necrosis Factor: What Is in a Name? Cancers (Basel) 2022; 14:5270. [PMID: 36358688 PMCID: PMC9656125 DOI: 10.3390/cancers14215270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 12/18/2024] Open
Abstract
Tumor Necrosis Factor was one of the first cytokines described in the literature as a soluble mediator of cytotoxicity to tumors. Over the years, more extensive research that tried to employ Tumor Necrosis Factor in cancer treatments showed nevertheless that it mainly functioned as a proinflammatory cytokine. However, this did not stop the search for the holy grail of cancer research: A cytokine that could act as a one-stop treatment for solid tumors and lymphomas. This review will summarize the long experimental history of Tumor Necrosis Factor that caused the initial observations of a tumor necrotizing cytokine that could serve as a potential cancer treatment and discuss the current state of research into this side of the activities of Tumor Necrosis Factor.
Collapse
Affiliation(s)
- Xinming Wang
- Department of Pharmacy, First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Chunlan Yang
- Department of Pharmacy, First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Heinrich Körner
- Menzies Institute for Medical Research, Liverpool Street, Hobart, TAS 7000, Australia
| | - Chaoliang Ge
- Department of Pharmacy, First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| |
Collapse
|
23
|
Phoenix KN, Yue Z, Yue L, Cronin CG, Liang BT, Hoeppner LH, Claffey KP. PLCβ2 Promotes VEGF-Induced Vascular Permeability. Arterioscler Thromb Vasc Biol 2022; 42:1229-1241. [PMID: 35861069 PMCID: PMC9492642 DOI: 10.1161/atvbaha.122.317645] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Regulation of vascular permeability is critical to maintaining tissue metabolic homeostasis. VEGF (vascular endothelial growth factor) is a key stimulus of vascular permeability in acute and chronic diseases including ischemia reperfusion injury, sepsis, and cancer. Identification of novel regulators of vascular permeability would allow for the development of effective targeted therapeutics for patients with unmet medical need. METHODS In vitro and in vivo models of VEGFA-induced vascular permeability, pathological permeability, quantitation of intracellular calcium release and cell entry, and phosphatidylinositol 4,5-bisphosphate levels were evaluated with and without modulation of PLC (phospholipase C) β2. RESULTS Global knock-out of PLCβ2 in mice resulted in blockade of VEGFA-induced vascular permeability in vivo and transendothelial permeability in primary lung endothelial cells. Further work in an immortalized human microvascular cell line modulated with stable knockdown of PLCβ2 recapitulated the observations in the mouse model and primary cell assays. Additionally, loss of PLCβ2 limited both intracellular release and extracellular entry of calcium following VEGF stimulation as well as reduced basal and VEGFA-stimulated levels of phosphatidylinositol 4,5-bisphosphate compared to control cells. Finally, loss of PLCβ2 in both a hyperoxia-induced lung permeability model and a cardiac ischemia:reperfusion model resulted in improved animal outcomes when compared with wild-type controls. CONCLUSIONS The results implicate PLCβ2 as a key positive regulator of VEGF-induced vascular permeability through regulation of both calcium flux and phosphatidylinositol 4,5-bisphosphate levels at the cellular level. Targeting of PLCβ2 in a therapeutic setting may provide a novel approach to regulating vascular permeability in patients.
Collapse
Affiliation(s)
- Kathryn N. Phoenix
- Center for Vascular Biology, Department of Cell Biology, University of Connecticut Health Center, Farmington, CT
| | - Zhichao Yue
- Pat and Jim Calhoun Cardiology Center, University of Connecticut Health Center, Farmington, CT
| | - Lixia Yue
- Pat and Jim Calhoun Cardiology Center, University of Connecticut Health Center, Farmington, CT
| | - Chunxia G. Cronin
- Pat and Jim Calhoun Cardiology Center, University of Connecticut Health Center, Farmington, CT
| | - Bruce T. Liang
- Pat and Jim Calhoun Cardiology Center, University of Connecticut Health Center, Farmington, CT
| | - Luke H. Hoeppner
- The Hormel Institute, University of Minnesota, Austin, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Kevin P. Claffey
- Center for Vascular Biology, Department of Cell Biology, University of Connecticut Health Center, Farmington, CT
| |
Collapse
|
24
|
Morris K, Schnoor B, Papa AL. Platelet cancer cell interplay as a new therapeutic target. Biochim Biophys Acta Rev Cancer 2022; 1877:188770. [DOI: 10.1016/j.bbcan.2022.188770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 10/16/2022]
|
25
|
Bu L, Yonemura A, Yasuda-Yoshihara N, Uchihara T, Ismagulov G, Takasugi S, Yasuda T, Okamoto Y, Kitamura F, Akiyama T, Arima K, Itoyama R, Zhang J, Fu L, Hu X, Wei F, Arima Y, Moroishi T, Nishiyama K, Sheng G, Mukunoki T, Otani J, Baba H, Ishimoto T. Tumor microenvironmental 15-PGDH depletion promotes fibrotic tumor formation and angiogenesis in pancreatic cancer. Cancer Sci 2022; 113:3579-3592. [PMID: 35848891 PMCID: PMC9530869 DOI: 10.1111/cas.15495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/08/2022] [Accepted: 06/29/2022] [Indexed: 12/24/2022] Open
Abstract
The arachidonic acid cascade is a major inflammatory pathway that produces prostaglandin E2 (PGE2). Although inhibition of 15‐hydroxyprostaglandin dehydrogenase (15‐PGDH) is reported to lead to PGE2 accumulation, the role of 15‐PGDH expression in the tumor microenvironment remains unclear. We utilized Panc02 murine pancreatic cancer cells for orthotopic transplantation into wild‐type and 15‐pgdh+/− mice and found that 15‐pgdh depletion in the tumor microenvironment leads to enhanced tumorigenesis accompanied by an increase in cancer‐associated fibroblasts (CAFs) and the promotion of fibrosis. The fibrotic tumor microenvironment is widely considered to be hypovascular; however, we found that the angiogenesis level is maintained in 15‐pgdh+/− mice, and these changes were also observed in a genetically engineered PDAC mouse model. Further confirmation revealed that fibroblast growth factor 1 (FGF1) is secreted by pancreatic cancer cells after PGE2 stimulation, consequently promoting CAF proliferation and vascular endothelial growth factor A (VEGFA) expression in the tumor microenvironment. Finally, in 15‐pgdh+/−Acta2‐TK mice, depletion of fibroblasts inhibited angiogenesis and cancer cell viability in orthotopically transplanted tumors. These findings highlighted the role of 15‐pgdh downregulation in enhancing PGE2 accumulation in the pancreatic tumor microenvironment and in subsequently maintaining the angiogenesis level in fibrotic tumors along with CAF expansion.
Collapse
Affiliation(s)
- Luke Bu
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Atsuko Yonemura
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - N Yasuda-Yoshihara
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Tomoyuki Uchihara
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Galym Ismagulov
- Developmental Morphogenesis, IRCMS, Kumamoto University, Kumamoto, Japan
| | - Sanae Takasugi
- Application Department, X-ray Division, Bruker Japan K.K., Kanagawa, Japan
| | - Tadahito Yasuda
- Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Yuya Okamoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Fumimasa Kitamura
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Takahiko Akiyama
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Kota Arima
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Rumi Itoyama
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Jun Zhang
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Lingfeng Fu
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Xichen Hu
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Feng Wei
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Yuichiro Arima
- Developmental Cardiology, IRCMS, Kumamoto University, Kumamoto, Japan
| | - Toshiro Moroishi
- Department of Cell Signaling and Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Japan.,Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Koichi Nishiyama
- Laboratory of Vascular and Cellular Dynamics, Department of Medical Sciences, University of Miyazaki, Miyazaki City, Japan
| | - Guojun Sheng
- Developmental Morphogenesis, IRCMS, Kumamoto University, Kumamoto, Japan
| | - Toshifumi Mukunoki
- X-Earth Center, Faculty of Advanced Science and Technology Kumamoto University, Japan
| | - Jun Otani
- X-Earth Center, Faculty of Advanced Science and Technology Kumamoto University, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takatsugu Ishimoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| |
Collapse
|
26
|
Motahari R, Boshagh MA, Moghimi S, Peytam F, Hasanvand Z, Oghabi Bakhshaiesh T, Foroumadi R, Bijanzadeh H, Firoozpour L, Khalaj A, Esmaeili R, Foroumadi A. Design, synthesis and evaluation of novel tetrahydropyridothienopyrimidin-ureas as cytotoxic and anti-angiogenic agents. Sci Rep 2022; 12:9683. [PMID: 35690595 PMCID: PMC9188586 DOI: 10.1038/s41598-022-13515-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 05/25/2022] [Indexed: 11/12/2022] Open
Abstract
The novel derivatives of tetrahydropyridothienopyrimidine-based compounds have been designed and efficiently synthesized with good yields through seven steps reaction. The anticancer activity of compounds 11a-y has been evaluated against MCF-7, PC-3, HEPG-2, SW-480, and HUVEC cell lines by MTT assay. The target compounds showed IC50 values between 2.81–29.6 μg/mL and were compared with sorafenib as a reference drug. Among them, compound 11n showed high cytotoxic activity against four out of five examined cell lines and was 14 times more selective against MRC5. The flow cytometric analysis confirmed the induction of apoptotic cell death by this compound against HUVEC and MCF-7 cells. In addition, 11n caused sub-G1 phase arrest in the cell cycle arrest. Besides, this compound induced anti-angiogenesis in CAM assay and increased the level of caspase-3 by 5.2 fold. The western-blot analysis of the most active compound, 11n, revealed the inhibition of VEGFR-2 phosphorylation. Molecular docking study also showed the important interactions for compound 11n.
Collapse
Affiliation(s)
- Rasoul Motahari
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Boshagh
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Setareh Moghimi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Fariba Peytam
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Zaman Hasanvand
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Roham Foroumadi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Bijanzadeh
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Tehran, Iran
| | - Loghman Firoozpour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Khalaj
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Rezvan Esmaeili
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| | - Alireza Foroumadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran. .,Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
27
|
F12 as a reliable diagnostic and prognostic biomarker associated with immune infiltration in papillary thyroid cancer. Aging (Albany NY) 2022; 14:3687-3704. [PMID: 35483340 PMCID: PMC9085229 DOI: 10.18632/aging.204037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/14/2022] [Indexed: 11/25/2022]
Abstract
Objective: To explore the function of coagulation factor XII (F12) in papillary thyroid cancer (PTC). Materials and Methods: We assessed F12 expression and its relationship with overall survival (OS) in various cancers using TIMER and TISIDB databases. Further, we evaluated the mRNA and protein expression levels of F12 in PTC via different bioinformatics tools. The receiver operating characteristic (ROC) curve was applied to determine the diagnostic value of F12 in PTC. Then, the Kaplan-Meier plotter and Cox regression analyses were performed to examine the prognostic significance of F12. The possible mechanism of F12 in PTC was investigated through enrichment analyses. Finally, the correlation between F12 expression and immune cell infiltration was analyzed using TCGA data. Results: This study revealed the clinical significance of F12 in various cancers. Higher mRNA (P <0.001) and protein expressions of F12 were observed in PTC compared with normal tissues. Besides, F12 expression exhibited high diagnostic performance in PTC and its overexpression served as an independent predictor for the poor OS (P <0.05). Enrichment analyses results showed that F12 was mainly involved in metabolism-associated pathways. Additionally, F12 expression was significantly linked to immune cell infiltration levels, especially macrophage infiltration. Conclusions: F12 might be a reliable diagnostic and prognostic biomarker for PTC. Moreover, F12 expression might affect the OS of PTC patients via regulating metabolic pathways.
Collapse
|
28
|
Shi P, Liu Y, Yang H, Hu B. Breast cancer derived exosomes promoted angiogenesis of endothelial cells in microenvironment via circHIPK3/miR-124-3p/MTDH axis. Cell Signal 2022; 95:110338. [PMID: 35460835 DOI: 10.1016/j.cellsig.2022.110338] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 04/12/2022] [Accepted: 04/17/2022] [Indexed: 11/03/2022]
Abstract
Circular RNAs (circRNAs) are important contents in exosomes, which can regulate peripheral cell functions, thus influencing the tumor microenvironment. This work investigated the mechanisms underlying the angiogenesis in peripheral human endothelial cells (ECs) mediated by the breast cancer (BC) cells derived exosomal circRNAs and aimed to explore the biomarkers for the anti-angiogenesis therapy for BC.The BC cell derived exosomes were extracted and the expression level and the circular formation of HIPK3 enclosed was determined. To examine the impact of this exosomal circRNA on ECs, cell viability and tube formation were determined in recipient cells co-cultured with exosomes or transfected with circHIPK3 and the related controls. Target microRNAs (miRNAs) for circHIPK3 and target genes for miRNAs were predicted and confirmed by multiple assays like dual luciferase reporter assay, western blot, and qPCR assays. The existence of the circHIPK3/miR-124-3p/MTDH axis were further confirmed with rescue experiment in mice xenograft model.HIPK3s were mainly in forms of circRNAs and were highly expressed in the BC cell derived exosomes, which could be absorbed by the recipient ECs. The cell viability and angiogenesis in ECs were enhanced when treated with circHIPK3s and decreased when treated with circHIPK3-si. Furthermore, MTDH was proved to be the responsible gene in this process which was regulated by miR-124-3p, the local miRNA sponged by the exosomal circHIPK3.circHIPK3 enclosed in the BC cell-derived exosomes enhanced MTDH expression in the endothelial cell by sponging miR-124-3p, favoring the tube formation in ECs, which might serve as a therapeutic target for anti-angiogenesis therapy for breast cancer.
Collapse
Affiliation(s)
- Pengfei Shi
- Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430013, People's Republic of China
| | - Yongjun Liu
- Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430013, People's Republic of China
| | - Hua Yang
- Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430013, People's Republic of China.
| | - Bo Hu
- Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430013, People's Republic of China.
| |
Collapse
|
29
|
Pathak C, Vaidya FU, Waghela BN, Chhipa AS, Tiwari BS, Ranjan K. Advanced Glycation End Products-Mediated Oxidative Stress and Regulated Cell Death Signaling in Cancer. HANDBOOK OF OXIDATIVE STRESS IN CANCER: MECHANISTIC ASPECTS 2022:535-550. [DOI: 10.1007/978-981-15-9411-3_44] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
30
|
Sassu CM, Palaia I, Boccia SM, Caruso G, Perniola G, Tomao F, Di Donato V, Musella A, Muzii L. Role of Circulating Biomarkers in Platinum-Resistant Ovarian Cancer. Int J Mol Sci 2021; 22:ijms222413650. [PMID: 34948446 PMCID: PMC8707281 DOI: 10.3390/ijms222413650] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/18/2021] [Accepted: 12/19/2021] [Indexed: 02/07/2023] Open
Abstract
Ovarian cancer (OC) is the second most common cause of death in women with gynecological cancer. Considering the poor prognosis, particularly in the case of platinum-resistant (PtR) disease, a huge effort was made to define new biomarkers able to help physicians in approaching and treating these challenging patients. Currently, most data can be obtained from tumor biopsy samples, but this is not always available and implies a surgical procedure. On the other hand, circulating biomarkers are detected with non-invasive methods, although this might require expensive techniques. Given the fervent hope in their value, here we focused on the most studied circulating biomarkers that could play a role in PtR OC.
Collapse
|
31
|
Novel infection of pericytes by Andes virus enhances endothelial cell permeability. Virus Res 2021; 306:198584. [PMID: 34624404 DOI: 10.1016/j.virusres.2021.198584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/07/2021] [Accepted: 09/26/2021] [Indexed: 11/22/2022]
Abstract
Andes Virus (ANDV) non-lytically infects pulmonary microvascular endothelial cells (PMECs) causing a severe capillary leak syndrome termed Hantavirus Pulmonary Syndrome (HPS). Basolaterally, PMECs are in contact with pericytes which play critical roles in regulating PMEC permeability and immune cell recruitment. We discovered that ANDV persistently infects primary human vascular pericytes for up to 9 days, and that PMEC monolayer permeability was increased by supernatants from ANDV-infected pericytes. Pericyte-directed PMEC permeability was consistent with the high-level secretion of the permeability factor VEGF (vascular endothelial growth factor) elicited by ANDV-infected pericytes. These findings suggest that ANDV infection of pericytes augments PMEC permeability and reveal a novel mechanism of pericyte-directed vascular barrier dysfunction that contributes to HPS and provides new therapeutic targets.
Collapse
|
32
|
Neurovascular regulation in diabetic retinopathy and emerging therapies. Cell Mol Life Sci 2021; 78:5977-5985. [PMID: 34230991 DOI: 10.1007/s00018-021-03893-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/15/2021] [Accepted: 06/25/2021] [Indexed: 12/11/2022]
Abstract
Diabetic retinopathy (DR) is the leading cause of vision loss in working adults in developed countries. The disease traditionally classified as a microvascular complication of diabetes is now widely recognized as a neurovascular disorder resulting from disruption of the retinal neurovascular unit (NVU). The NVU comprising retinal neurons, glia and vascular cells coordinately regulates blood flow, vascular density and permeability to maintain homeostasis. Disturbance of the NVU during DR can lead to vision-threatening clinical manifestations. A limited number of signaling pathways have been identified for intercellular communication within the NVU, including vascular endothelial growth factor (VEGF), the master switch for angiogenesis. VEGF inhibitors are now widely used to treat DR, but their limited efficacy implies that other signaling molecules are involved in the pathogenesis of DR. By applying a novel screening technology called comparative ligandomics, we recently discovered secretogranin III (Scg3) as a unique DR-selective angiogenic and vascular leakage factor with therapeutic potential for DR. This review proposes neuron-derived Scg3 as the first diabetes-selective neurovascular regulator and discusses important features of Scg3 inhibition for next-generation disease-targeted anti-angiogenic therapies of DR.
Collapse
|
33
|
Cui W, Xiao Y, Zhang R, Zhao N, Zhang X, Wang F, Liu Y, Zhang X, Hao J. SOHLH2 Suppresses Angiogenesis by Downregulating HIF1α Expression in Breast Cancer. Mol Cancer Res 2021; 19:1498-1509. [PMID: 34158392 DOI: 10.1158/1541-7786.mcr-20-0771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/21/2021] [Accepted: 06/11/2021] [Indexed: 12/24/2022]
Abstract
SOHLH2 has been demonstrated the downregulation in various cancers and the involvement in tumor growth and metastasis. However, the function of SOHLH2 on tumor angiogenesis and the underlying molecular mechanisms have not been interrogated. IHC staining results revealed that SOHLH2 was negatively associated with microvessel density (MVD), tumor size, histology grade, and metastasis. Overexpression of SOHLH2 inhibited the angiogenic behavior of human umbilical vein endothelial cells (HUVEC) by a tumor cell-mediated paracrine signal, while knockdown of SOHLH2 promoted HUVEC angiogenic behavior. Ectopic SOHLH2 expression remarkably suppressed tumor growth and MVD in xenograft tumors, downregulated the expression of hypoxia inducible factor-1 alpha (HIF1α)-mediated proangiogenic genes in vivo and in vitro, while knockdown of SOHLH2 had an opposite result. Furthermore, we found that upregulation of HIF1α reversed SOHLH2-induced suppression of breast cancer angiogenesis, while KC7F2, the inhibitor of HIF1α, could attenuate the promotion of angiogenesis by SOHLH2 silencing. Using Chromatin immunoprecipitation and luciferase reporter assays, we validated that SOHLH2 could directly bind to HIF1α promoter and repress its transcriptional activity. Collectively, SOHLH2 suppresses breast cancer angiogenesis by downregulating HIF1α transcription and may be a potential biomarker for anti-angiogenesis therapy. IMPLICATIONS: SOHLH2 directly represses HIF1α-mediated angiogenesis and serves as an important inhibitor of angiogenesis in breast cancer.
Collapse
Affiliation(s)
- Weiwei Cui
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Yunling Xiao
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Ruihong Zhang
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Na Zhao
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Xianghong Zhang
- Research platform in School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Fuwu Wang
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Yang Liu
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Xiaoli Zhang
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China.
| | - Jing Hao
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China.
| |
Collapse
|
34
|
Saggam A, Limgaokar K, Borse S, Chavan-Gautam P, Dixit S, Tillu G, Patwardhan B. Withania somnifera (L.) Dunal: Opportunity for Clinical Repurposing in COVID-19 Management. Front Pharmacol 2021; 12:623795. [PMID: 34012390 PMCID: PMC8126694 DOI: 10.3389/fphar.2021.623795] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/30/2021] [Indexed: 12/13/2022] Open
Abstract
As the COVID-19 pandemic is progressing, the therapeutic gaps in conventional management have highlighted the need for the integration of traditional knowledge systems with modern medicine. Ayurvedic medicines, especially Ashwagandha (Withania somnifera (L.) Dunal, WS), may be beneficial in the management of COVID-19. WS is a widely prescribed Ayurvedic botanical known as an immunomodulatory, antiviral, anti-inflammatory, and adaptogenic agent. The chemical profile and pharmacological activities of WS have been extensively reported. Several clinical studies have reported its safety for use in humans. This review presents a research synthesis of in silico, in vitro, in vivo, and clinical studies on Withania somnifera (L.) Dunal (WS) and discusses its potential for prophylaxis and management of COVID-19. We have collated the data from studies on WS that focused on viral infections (HIV, HSV, H1N1 influenza, etc.) and noncommunicable diseases (hypertension, diabetes, cancer, etc.). The experimental literature indicates that WS has the potential for 1) maintaining immune homeostasis, 2) regulating inflammation, 3) suppressing pro-inflammatory cytokines, 4) organ protection (nervous system, heart, lung, liver, and kidney), and 5) anti-stress, antihypertensive, and antidiabetic activities. Using these trends, the review presents a triangulation of Ayurveda wisdom, pharmacological properties, and COVID-19 pathophysiology ranging from viral entry to end-stage acute respiratory distress syndrome (ARDS). The review proposes WS as a potential therapeutic adjuvant for various stages of COVID-19 management. WS may also have beneficial effects on comorbidities associated with the COVID-19. However, systematic studies are needed to realize the potential of WS for improving clinical outcome of patients with COVID-19.
Collapse
Affiliation(s)
- Akash Saggam
- AYUSH Center of Excellence, Center for Complementary and Integrative Health, Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune, India
| | - Kirti Limgaokar
- Division of Biochemistry, Department of Chemistry, Fergusson College (Autonomous), Pune, India
| | - Swapnil Borse
- AYUSH Center of Excellence, Center for Complementary and Integrative Health, Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune, India
| | - Preeti Chavan-Gautam
- AYUSH Center of Excellence, Center for Complementary and Integrative Health, Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune, India
| | | | - Girish Tillu
- AYUSH Center of Excellence, Center for Complementary and Integrative Health, Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune, India
| | - Bhushan Patwardhan
- AYUSH Center of Excellence, Center for Complementary and Integrative Health, Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
35
|
Kisspeptin regulates the development of caprine primordial follicles in vitro. JOURNAL OF ANIMAL REPRODUCTION AND BIOTECHNOLOGY 2021. [DOI: 10.12750/jarb.36.1.51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
36
|
Jiang S, Fu R, Shi J, Wu H, Mai J, Hua X, Chen H, Liu J, Lu M, Li N. CircRNA-Mediated Regulation of Angiogenesis: A New Chapter in Cancer Biology. Front Oncol 2021; 11:553706. [PMID: 33777729 PMCID: PMC7988083 DOI: 10.3389/fonc.2021.553706] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 01/07/2021] [Indexed: 12/15/2022] Open
Abstract
Angiogenesis is necessary for carcinoma progression and is regulated by a variety of pro- and anti-angiogenesis factors. CircRNAs are RNA molecules that do not have a 5'-cap or a 3'-polyA tail and are involved in a variety of biological functions. While circRNA-mediated regulation of tumor angiogenesis has received much attention, the detailed biological regulatory mechanism remains unclear. In this review, we investigated circRNAs in tumor angiogenesis from multiple perspectives, including its upstream and downstream factors. We believe that circRNAs have natural advantages and great potential for the diagnosis and treatment of tumors, which deserves further exploration.
Collapse
Affiliation(s)
- Shaotao Jiang
- Department of HBP SURGERY II, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Rongdang Fu
- Department of Hepatic Surgery, The First People's Hospital of Foshan, Affiliated Foshan Hospital of Sun Yat-sen University, Foshan, China
| | - Jiewei Shi
- Department of General Surgery, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Huijie Wu
- Department of Obstetrics, The First People's Hospital of Foshan, Affiliated Foshan Hospital of Sun Yat-sen University, Foshan, China
| | - Jialuo Mai
- Department of HBP SURGERY II, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xuefeng Hua
- Department of HBP SURGERY II, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Huan Chen
- Department of HBP SURGERY II, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jie Liu
- Department of HBP SURGERY II, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Minqiang Lu
- Department of HBP SURGERY II, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Ning Li
- Department of HBP SURGERY II, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
37
|
Li Y, Liu S, Pan D, Xu B, Xing X, Zhou H, Zhang B, Zhou S, Ning G, Feng S. The potential role and trend of HIF‑1α in intervertebral disc degeneration: Friend or foe? (Review). Mol Med Rep 2021; 23:239. [PMID: 33537810 PMCID: PMC7893690 DOI: 10.3892/mmr.2021.11878] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 11/08/2019] [Indexed: 12/11/2022] Open
Abstract
Lower back pain (LBP) is one of the most common reasons for seeking medical advice in orthopedic clinics. Increasingly, research has shown that symptomatic intervertebral disc degeneration (IDD) is mostly related to LBP. This review first outlines the research and findings of studies into IDD, from the physiological structure of the intervertebral disc (IVD) to various pathological cascades. The vicious cycles of IDD are re-described in relation to the analysis of the relationship among the pathological mechanisms involved in IDD. Interestingly, a ‘chief molecule’ was found, hypoxia-inducible factor-1α (HIF-1α), that may regulate all other mechanisms involved in IDD. When the vicious cycle is established, the low oxygen tension activates the expression of HIF-1α, which subsequently enters into the hypoxia-induced HIF pathways. The HIF pathways are dichotomized as friend and foe pathways according to the oxygen tension of the IVD microenvironment. Combined with clinical outcomes and previous research, the trend of IDD development has been predicted in this paper. Lastly, an early precautionary diagnosis and treatment method is proposed whereby nucleus pulposus tissue for biopsy can be obtained through IVD puncture guided by B-ultrasound when the patient is showing symptoms but MRI imaging shows negative results. The assessment criteria for biopsy and the feasibility, superiority and challenges of this approach have been discussed. Overall, it is clear that HIF-1α is an indispensable reference indicator for the accurate diagnosis and treatment of IDD.
Collapse
Affiliation(s)
- Yongjin Li
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Shen Liu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Dayu Pan
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Baoshan Xu
- Department of Spine Surgery, Tianjin Hospital, Tianjin 300000, P.R. China
| | - Xuewu Xing
- Department of Orthopedic Surgery, First Central Clinical of Tianjin Medical University, Tianjin 300052, P.R. China
| | - Hengxing Zhou
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Bin Zhang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Suzhe Zhou
- Department of Orthopedics, The Affiliated Zhongshan Hospital of Fudan University, Shanghai 200034, P.R. China
| | - Guangzhi Ning
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Shiqing Feng
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
38
|
Zhou X, Liu P, Wang X. Temporal Lobe Necrosis Following Radiotherapy in Nasopharyngeal Carcinoma: New Insight Into the Management. Front Oncol 2021; 10:593487. [PMID: 33552967 PMCID: PMC7859432 DOI: 10.3389/fonc.2020.593487] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/03/2020] [Indexed: 12/13/2022] Open
Abstract
Cerebral radiation necrosis (CRN) is one of the most prominent sequelae following radiation therapy for nasopharyngeal carcinoma (NPC), which might have devastating effects on patients' quality of life (QOL). Advances in histopathology and neuro-radiology have shed light on the management of CRN more comprehensively, yet effective therapeutic interventions are still lacking. CRN was once regarded as progressive and irreversible, however, in the past 20 years, with the application of intensity-modulated radiation therapy (IMRT), both the incidence and severity of CRN have declined. In addition, newly developed medical agents including bevacizumab-a humanized monoclonal antibody against vascular endothelial growth factor (VEGF), nerve growth factor (NGF), monosialotetrahexosylganglioside (GM1), etc., have shown great potency in successfully reversing radiation-induced CRN. As temporal lobes are most frequently compromised in NPC patients, this review will summarize the state-of-the-art progress regarding the incidence, pathophysiology, prevention, treatment, and prognosis of temporal lobe necrosis (TLN) after IMRT in NPC.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Peiyao Liu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaoshen Wang
- Department of Radiation Oncology, Eye and ENT Hospital, Fudan University, Shanghai, China
| |
Collapse
|
39
|
Therapeutic Potential of Rhododendron arboreum Polysaccharides in an Animal Model of Lipopolysaccharide-Inflicted Oxidative Stress and Systemic Inflammation. Molecules 2020; 25:molecules25246045. [PMID: 33371296 PMCID: PMC7767231 DOI: 10.3390/molecules25246045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/19/2022] Open
Abstract
Systemic inflammation results in physiological changes, largely mediated by inflammatory cytokines. The present investigation was performed to determine the effect of Rhododendron arboreum (RAP) on inflammatory parameters in the animal model. The RAP (100 and 200 mg/kg) were pre-treated for animals, given orally for one week, followed by lipopolysaccharide (LPS) injection. Body temperature, burrowing, and open field behavioral changes were assessed. Biochemical parameters (AST, ALT, LDH, BIL, CK, Cr, BUN, and albumin) were done in the plasma after 6 h of LPS challenge. Oxidative stress markers SOD, CAT, and MDA were measured in different organs. Levels of inflammatory markers like tumor necrosis factor-alpha (TNF-α), interleukin-1-beta (IL-1β) and, interleukin-6 (IL-6) as well as VEGF, a specific sepsis marker in plasma, were quantified. The plasma enzymes, antioxidant markers and plasma pro-inflammatory cytokines were significantly restored (p < 0.5) by RAP treatment, thus preventing the multi-organ and tissue damage in LPS induced rats. The protective effect of RAP may be due to its potent antioxidant potential. Thus, RAP can prevent LPS induced oxidative stress, as well as inflammatory and multi-organ damage as reported in histopathological studies in rats when administered to the LPS treated animals. These findings indicate that RAP can benefit in the management of systemic inflammation from LPS and may have implications for a new treatment or preventive therapeutic strategies with an inflammatory component.
Collapse
|
40
|
Riccardi C, Napolitano E, Musumeci D, Montesarchio D. Dimeric and Multimeric DNA Aptamers for Highly Effective Protein Recognition. Molecules 2020; 25:E5227. [PMID: 33182593 PMCID: PMC7698228 DOI: 10.3390/molecules25225227] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/14/2022] Open
Abstract
Multivalent interactions frequently occur in biological systems and typically provide higher binding affinity and selectivity in target recognition than when only monovalent interactions are operative. Thus, taking inspiration by nature, bivalent or multivalent nucleic acid aptamers recognizing a specific biological target have been extensively studied in the last decades. Indeed, oligonucleotide-based aptamers are suitable building blocks for the development of highly efficient multivalent systems since they can be easily modified and assembled exploiting proper connecting linkers of different nature. Thus, substantial research efforts have been put in the construction of dimeric/multimeric versions of effective aptamers with various degrees of success in target binding affinity or therapeutic activity enhancement. The present review summarizes recent advances in the design and development of dimeric and multimeric DNA-based aptamers, including those forming G-quadruplex (G4) structures, recognizing different key proteins in relevant pathological processes. Most of the designed constructs have shown improved performance in terms of binding affinity or therapeutic activity as anti-inflammatory, antiviral, anticoagulant, and anticancer agents and their number is certainly bound to grow in the next future.
Collapse
Affiliation(s)
- Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; (E.N.); (D.M.); (D.M.)
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, via Sergio Pansini, 5, I-80131 Naples, Italy
| | - Ettore Napolitano
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; (E.N.); (D.M.); (D.M.)
| | - Domenica Musumeci
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; (E.N.); (D.M.); (D.M.)
- Institute of Biostructures and Bioimages, CNR, via Mezzocannone 16, I-80134 Naples, Italy
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; (E.N.); (D.M.); (D.M.)
| |
Collapse
|
41
|
Riccardi C, Napolitano E, Platella C, Musumeci D, Melone MAB, Montesarchio D. Anti-VEGF DNA-based aptamers in cancer therapeutics and diagnostics. Med Res Rev 2020; 41:464-506. [PMID: 33038031 DOI: 10.1002/med.21737] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/12/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022]
Abstract
The vascular endothelial growth factor (VEGF) family and its receptors play fundamental roles not only in physiological but also in pathological angiogenesis, characteristic of cancer progression. Aiming at finding putative treatments for several malignancies, various small molecules, antibodies, or protein-based drugs have been evaluated in vitro and in vivo as VEGF inhibitors, providing efficient agents approved for clinical use. Due to the high clinical importance of VEGF, also a great number of anti-VEGF nucleic acid-based aptamers-that is, oligonucleotides able to bind with high affinity and specificity a selected biological target-have been developed as promising agents in anticancer strategies. Notable research efforts have been made in optimization processes of the identified aptamers, searching for increased target affinity and/or bioactivity by exploring structural analogues of the lead compounds. This review is focused on recent studies devoted to the development of DNA-based aptamers designed to target VEGF. Their therapeutic potential as well as their significance in the construction of highly selective biosensors is here discussed.
Collapse
Affiliation(s)
- Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy.,Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and Inter-University Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Ettore Napolitano
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Chiara Platella
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Domenica Musumeci
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy.,Institute of Biostructures and Bioimages, Naples, Italy
| | - Mariarosa A B Melone
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and Inter-University Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, Naples, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
42
|
Doxorubicin exhibits strong and selective association with VEGF Pu 22 G-quadruplex. Biochim Biophys Acta Gen Subj 2020; 1864:129720. [PMID: 32860839 DOI: 10.1016/j.bbagen.2020.129720] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/07/2020] [Accepted: 08/21/2020] [Indexed: 11/21/2022]
Abstract
BACKGROUND Vascular endothelial growth factor (VEGF), is upregulated in tumor cells and thus became a potential therapeutic target for anti-cancer drugs. Recent reports suggested the use of Doxorubicin (Dox) with VEGF-targeting siRNAs for an enhanced decrease in VEGF expression. Besides, VEGF-B gene therapy was found to suppress the cardiotoxicity effects of Dox. On the other hand, even though Dox is a commonly used anti-cancer agent, its mechanism of actions isn't completely mapped out. Herein, the interactions between a G4 structure formed by the VEGF promoter region Pu22 and Dox were investigated. METHODS The Dox-G4 interactions were examined via competition dialysis, UV-vis Absorption, Circular Dichroism (CD) and Fluorescence spectroscopy. RESULTS The results demonstrated that Dox was stabilizing the VEGF Pu22 G4 structure and the calculated association constant for VEGF Pu22-G4 complex (Ka = 7.50 × 106) was very close to the reported Ka values for Dox-dsDNA complexes. Additionally, the competition dialysis experiments revealed the selectivity of Dox to Pu22 compared to other G4 structures formed in telomeric repeats and promoter regions such as BCL-2 and C-myc. CONCLUSIONS Dox exhibits strong and selective association with VEGF Pu22 G4 structure that was comparable to its well-known association with dsDNA. GENERAL SIGNIFICANCE The results presented here might be useful in the general area of antitumor drug-DNA interactions. Doxorubicin's significant affinity to VEGF Pu22 G4 might be one of the plausible mechanisms behind its anti-tumor activity.
Collapse
|
43
|
Simó-Servat O, Hernández C, Simó R. The ERM Complex: A New Player Involved in Diabetes-induced Vascular Leakage. Curr Med Chem 2020; 27:3012-3022. [PMID: 30332939 DOI: 10.2174/0929867325666181016162327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/27/2018] [Accepted: 10/09/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Microvascular complications remain an important cause of morbidity in diabetic patients, and they are associated with a significant economic burden for healthcare systems. Vascular leakage is one of the earlier hallmarks in diabetic microvascular complications. Ezrin, Radixin and Moesin (ERM) proteins have recently been involved in vascular dysfunction under the effect of molecular mediators of diabetes complications. In this review, we will present the available evidence regarding the role of these proteins in vascular leakage and their putative implication in diabetic microvascular complications. METHODS AND RESULTS A comprehensive literature search of the electronic MEDLINE database was performed between November 2017 and January 2018. As a result, 36 articles have been reviewed and discussed. DISCUSSION ERM proteins are cytoskeleton-membrane linkers, and when activated in endothelial cells are able to induce cytoskeleton reorganization in stress fibers leading to the disassembly of focal adhesions and the formation of paracellular gaps which result in an increase of vascular permeability. The activation of these proteins is induced by mediators involved in diabetic complications such as PKC activation, TNF-α, AGEs and oxidative stress. In conclusion, ERMs play an essential role in endothelium homeostasis and can be envisaged as a new therapeutic molecular target for preventing or arresting diabetes-induced vascular leakage.
Collapse
Affiliation(s)
- Olga Simó-Servat
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Barcelona, Spain.,Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ICSIII), Madrid, Spain
| | - Cristina Hernández
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Barcelona, Spain.,Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ICSIII), Madrid, Spain
| | - Rafael Simó
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Barcelona, Spain.,Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ICSIII), Madrid, Spain
| |
Collapse
|
44
|
Sands JM, Daly ME, Lee EQ. Neurologic complications of lung cancer. Cancer 2020; 126:4455-4465. [PMID: 33460079 DOI: 10.1002/cncr.32772] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/06/2019] [Accepted: 12/12/2019] [Indexed: 11/07/2022]
Abstract
Lung cancer and its associated treatments can cause various neurologic complications, including brain and leptomeningeal metastases, epidural spinal cord compression, cerebrovascular events, and treatment-related neurotoxicities. Lung cancer care has significantly changed in the last 5 to 10 years, with novel therapies that have affected aspects of neurologic complication management. Herein, the authors review the potential neurologic complications of lung cancer, including important clinical and therapeutic aspects of care.
Collapse
Affiliation(s)
| | - Megan E Daly
- Department of Radiation Oncology, University of California, Davis, Sacramento, California
| | | |
Collapse
|
45
|
Rajora AK, Ravishankar D, Zhang H, Rosenholm JM. Recent Advances and Impact of Chemotherapeutic and Antiangiogenic Nanoformulations for Combination Cancer Therapy. Pharmaceutics 2020; 12:pharmaceutics12060592. [PMID: 32630584 PMCID: PMC7356724 DOI: 10.3390/pharmaceutics12060592] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/16/2022] Open
Abstract
Traditional chemotherapy, along with antiangiogenesis drugs (combination cancer therapy), has shown reduced tumor recurrence and improved antitumor effects, as tumor growth and metastasis are often dependent on tumor vascularization. However, the effect of combination chemotherapy, including synergism and additive and even antagonism effects, depends on drug combinations in an optimized ratio. Hence, nanoformulations are ideal, demonstrating a great potential for the combination therapy of chemo-antiangiogenesis for cancer. The rationale for designing various nanocarriers for combination therapy is derived from organic (polymer, lipid), inorganic, or hybrid materials. In particular, hybrid nanocarriers that consist of more than one material construct provide flexibility for different modes of entrapment within the same carrier—e.g., physical adsorption, encapsulation, and chemical conjugation strategies. These multifunctional nanocarriers can thus be used to co-deliver chemo- and antiangiogenesis drugs with tunable drug release at target sites. Hence, this review attempts to survey the most recent advances in nanoformulations and their impact on cancer treatment in a combined regimen—i.e., conventional cytotoxic and antiangiogenesis agents. The mechanisms and site-specific co-delivery strategies are also discussed herein, along with future prospects.
Collapse
Affiliation(s)
- Amit Kumar Rajora
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland;
- Correspondence: (A.K.R.); (J.M.R.)
| | - Divyashree Ravishankar
- Bioscience Department, Sygnature Discovery, Bio City, Pennyfoot St, Nottingham NG1 1GR, UK;
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland;
- Turku Bioscience Center, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Jessica M. Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland;
- Correspondence: (A.K.R.); (J.M.R.)
| |
Collapse
|
46
|
Microenvironment remodeled by tumor and stromal cells elevates fibroblast-derived COL1A1 and facilitates ovarian cancer metastasis. Exp Cell Res 2020; 394:112153. [PMID: 32589888 DOI: 10.1016/j.yexcr.2020.112153] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 06/08/2020] [Accepted: 06/21/2020] [Indexed: 01/25/2023]
Abstract
Wide peritoneal metastasis is the cause of the highest lethality of ovarian cancer in gynecologic malignancies. Ascites play a key role in ovarian cancer metastasis, but involved mechanism is uncertain. Here, we performed a quantitative proteomics of ascites, and found that collagen type I alpha 1 (COL1A1) was notably elevated in ascites from epithelial ovarian cancer patients compared to normal peritoneal fluids, and verified that elevated COL1A1 was mainly originated from fibroblasts. COL1A1 promoted migration and invasion of ovarian cancer cells, but such effects were partially eliminated by COL1A1 antibodies. Intraperitoneally injected COL1A1 accelerated intraperitoneal metastasis of ovarian cancer xenograft in NOD/SCID mice. Further, COL1A1 activated downstream AKT phosphorylation by binding to membrane surface receptor integrin β1 (ITGB1). Knockdown or blockage of ITGB1 reversed COL1A1 enhanced migration and invasion in ovarian cancer cells. Conversely, ovarian cancer ascites and fibrinogen promoted fibroblasts to secrete COL1A1. Elevated fibrinogen in ascites might be associated with increased vascular permeability induced by ovarian cancer. Our findings suggest that microenvironment remodeled by tumor cells and stromal cells promotes fibroblasts to secrete COL1A1 and facilitates the metastasis of ovarian cancer, which may provide a new approach for ovarian cancer therapeutics.
Collapse
|
47
|
Chen C, Huang Z, Mo X, Song Y, Li X, Li X, Zhang M. The circular RNA 001971/miR-29c-3p axis modulates colorectal cancer growth, metastasis, and angiogenesis through VEGFA. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:91. [PMID: 32430042 PMCID: PMC7236474 DOI: 10.1186/s13046-020-01594-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/08/2020] [Indexed: 02/06/2023]
Abstract
Background Colorectal cancer (CRC) is one of the most common malignant tumors globally. Angiogenesis is a key event maintaining tumor cell survival and aggressiveness. The expression of vascular endothelial growth factor A (VEGFA), one of the most significant tumor cell-secreted proangiogenic factors, is frequently upregulated in CRC. Methods The MTT assay was used to detect the viability of CRC cells. Transwell assays were performed to detect the invasion capacity of target cells. Relative protein levels were determined by immunoblotting. Pathological characteristics of tissues were detected by H&E staining and immunohistochemical (IHC) staining. A RIP assay was conducted to validate the predicted binding between genes. Results We observed that circ-001971 expression was dramatically increased in CRC tissue samples and cells. Circ-001971 knockdown suppressed the capacity of CRC cells to proliferate and invade and HUVEC tube formation in vitro, as well as tumor growth in mice bearing SW620 cell-derived tumors in vivo. The expression of circ-001971 and VEGFA was dramatically increased whereas the expression of miR-29c-3p was reduced in tumor tissue samples. Circ-001971 relieved miR-29c-3p-induced inhibition of VEGFA by acting as a ceRNA, thereby aggravating the proliferation, invasion and angiogenesis of CRC. Consistent with the above findings, the expression of VEGFA was increased, whereas the expression of miR-29c-3p was decreased in tumor tissue samples. miR-29c-3p had a negative correlation with both circ-001971 and VEGFA, while circ-001971 was positively correlated with VEGFA. Conclusions In conclusion, the circ-001971/miR-29c-3p axis modulated CRC cell proliferation, invasion, and angiogenesis by targeting VEGFA.
Collapse
Affiliation(s)
- Chen Chen
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Zhiguo Huang
- Department of Emergency, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Xiaoye Mo
- Department of Emergency, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yanmin Song
- Department of Emergency, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Xiangmin Li
- Department of Emergency, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Xiaogang Li
- Department of Emergency, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Mu Zhang
- Department of Emergency, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
48
|
Azizi M, Dianat-Moghadam H, Salehi R, Farshbaf M, Iyengar D, Sau S, Iyer AK, Valizadeh H, Mehrmohammadi M, Hamblin MR. Interactions Between Tumor Biology and Targeted Nanoplatforms for Imaging Applications. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1910402. [PMID: 34093104 PMCID: PMC8174103 DOI: 10.1002/adfm.201910402] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Indexed: 05/04/2023]
Abstract
Although considerable efforts have been conducted to diagnose, improve, and treat cancer in the past few decades, existing therapeutic options are insufficient, as mortality and morbidity rates remain high. Perhaps the best hope for substantial improvement lies in early detection. Recent advances in nanotechnology are expected to increase the current understanding of tumor biology, and will allow nanomaterials to be used for targeting and imaging both in vitro and in vivo experimental models. Owing to their intrinsic physicochemical characteristics, nanostructures (NSs) are valuable tools that have received much attention in nanoimaging. Consequently, rationally designed NSs have been successfully employed in cancer imaging for targeting cancer-specific or cancer-associated molecules and pathways. This review categorizes imaging and targeting approaches according to cancer type, and also highlights some new safe approaches involving membrane-coated nanoparticles, tumor cell-derived extracellular vesicles, circulating tumor cells, cell-free DNAs, and cancer stem cells in the hope of developing more precise targeting and multifunctional nanotechnology-based imaging probes in the future.
Collapse
Affiliation(s)
- Mehdi Azizi
- Proteomics Research Centre, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran
| | - Hassan Dianat-Moghadam
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz 5165665621, Iran
| | - Roya Salehi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Golgasht Street, Tabriz 516615731, Iran
| | - Masoud Farshbaf
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 6581151656, Iran
| | - Disha Iyengar
- U-BiND Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Samaresh Sau
- U-BiND Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Arun K Iyer
- U-BiND Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Hadi Valizadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Golgasht Street, Tabriz 516615731, Iran
| | | | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
49
|
Tripathi M, Ahuja CK, Mukherjee KK, Kumar N, Dhandapani S, Dutta P, Kaur R, Rekhapalli R, Batish A, Gurnani J, Kamboj P, Agrahari A, Kataria K. The Safety and Efficacy of Bevacizumab for Radiosurgery - Induced Steroid - Resistant Brain Edema; Not the Last Part in the Ship of Theseus. Neurol India 2020; 67:1292-1302. [PMID: 31744962 DOI: 10.4103/0028-3886.271242] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Background Radiation-induced brain edema (RIBE) is a serious complication of radiation therapy. It may result in dramatic clinico-radiological deterioration. At present, there are no definite guidelines for management of the complication. Corticosteroids are the usual first line of treatment, which frequently fails to provide long-term efficacy in view of its adverse complication profile. Bevacizumab has been reported to show improvement in cases of steroid-resistant radiation injury. The objective of this study is to evaluate the role of Bevacizumab in post-radiosurgery RIBE. Material and Methods Since 2012, 189 out of 1241 patients who underwent radiosurgery at our institution developed post-radiosurgery RIBE, 17 of which did not respond to high-dose corticosteroids. We systematically reviewed these 17 patients of various intracranial pathologies with clinic-radiological evidence of RIBE following gamma knife radiosurgery (GKRS). All patients received protocol-based Bevacizumab therapy. The peer-reviewed literature was evaluated. Results 82 percent of the patients showed improvement after starting Bevacizumab. The majority began to improve after the third cycle started improvement after the third cycle of Bevacizumab. Clinical improvement preceded radiological improvement by an average of eight weeks. The first dose was 5 mg/kg followed by 7.5-10 mg/kg at with two-week intervals. Bevacizumab needs to be administered for an average of seven cycles (range 5-27, median 7) for best response. Steroid therapy could be tapered in most patients by the first follow-up. One patient did not respond to Bevacizumab and needed surgical decompression for palliative care. One noncompliant patient died due to radiation injury. Conclusion Bevacizumab is a effective and safe for treatment of RIBE after GKRS. A protocol-based dose schedule in addition to frequent clinical and radiological evaluations are required. Bevacizumab should be considered as an early treatment option for RIBE.
Collapse
Affiliation(s)
- Manjul Tripathi
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Chirag K Ahuja
- Department of Radiodiagnosis, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Kanchan K Mukherjee
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Narendra Kumar
- Department of Radiotherapy, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sivashanmugam Dhandapani
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Pinaki Dutta
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rupinder Kaur
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rajashekhar Rekhapalli
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Aman Batish
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Jenil Gurnani
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Parwinder Kamboj
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Abhinav Agrahari
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ketan Kataria
- Department of Anaesthesia, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
50
|
Equine hydrallantois is associated with impaired angiogenesis in the placenta. Placenta 2020; 93:101-112. [PMID: 32250734 DOI: 10.1016/j.placenta.2020.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/24/2020] [Accepted: 03/02/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Hydrallantois is the excessive accumulation of fluid in the allantoic cavities during the last trimester of pregnancy, leading to abdominal wall hernias, cardiovascular shock, abortion, and dystocia. It has been postulated that hydrallantois is associated with structural and/or functional changes in the chorioallantoic membrane. In the present study, we hypothesized that angiogenesis is impaired in the hydrallantoic placenta. METHOD Capillary density in the hydrallantoic placenta was evaluated in the chorioallantois via immunohistochemistry for Von Willebrand Factor. Moreover, the expression of angiogenic genes was compared between equine hydrallantois and age-matched, normal placentas. RESULTS In the hydrallantoic samples, edema was the main pathological finding. The capillary density was significantly lower in the hydrallantoic samples than in normal placentas. The reduction in the number of vessels was associated with abnormal expression of a subset of angiogenic and hypoxia-associated genes including VEGF, VEGFR1, VEGFR2, ANGPT1, eNOS and HIF1A. We believe that the capillary density and the abnormal expression of angiogenic genes leads to tissue hypoxia (high expression of HIF1A) and edema. Finally, we identified a lower expression of genes associated with steroidogenic enzyme (CYP19A1) and estrogen receptor signaling (ESR2) in the hydrallantoic placenta. DISCUSSION Based on the presented data, we believe that formation of edema is due to disrupted vascular development (low number of capillaries) and hypoxia in the hydrallantoic placenta. The edema leads to further hypoxia and consequently, causes an increase in vessel permeability which leads to a gradual increase in interstitial fluid accumulation, resulting in an insufficient transplacental exchange rate and accumulation of fluid in the allantoic cavity.
Collapse
|