1
|
Satoh Y, Higuchi K, Nishikawa D, Wakimoto H, Konami M, Sakamoto K, Kitagawa Y, Gotoh B, Jiang DP, Hotta H, Itoh M. M protein of subacute sclerosing panencephalitis virus, synergistically with the F protein, plays a crucial role in viral neuropathogenicity. J Gen Virol 2021; 102. [PMID: 34643483 PMCID: PMC8604190 DOI: 10.1099/jgv.0.001682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Subacute sclerosing panencephalitis (SSPE) is a rare fatal neurodegenerative disease caused by a measles virus (MV) variant, SSPE virus, that accumulates mutations during long-term persistent infection of the central nervous system (CNS). Clusters of mutations identified around the matrix (M) protein in many SSPE viruses suppress productive infectious particle release and accelerate cell–cell fusion, which are features of SSPE viruses. It was reported, however, that these defects of M protein function might not be correlated directly with promotion of neurovirulence, although they might enable establishment of persistent infection. Neuropathogenicity is closely related to the character of the viral fusion (F) protein, and amino acid substitution(s) in the F protein of some SSPE viruses confers F protein hyperfusogenicity, facilitating viral propagation in the CNS through cell–cell fusion and leading to neurovirulence. The F protein of an SSPE virus Kobe-1 strain, however, displayed only moderately enhanced fusion activity and required additional mutations in the M protein for neuropathogenicity in mice. We demonstrated here the mechanism for the M protein of the Kobe-1 strain supporting the fusion activity of the F protein and cooperatively inducing neurovirulence, even though each protein, independently, has no effect on virulence. The occurrence of SSPE has been estimated recently as one in several thousand in children who acquired measles under the age of 5 years, markedly higher than reported previously. The probability of a specific mutation (or mutations) occurring in the F protein conferring hyperfusogenicity and neuropathogenicity might not be sufficient to explain the high frequency of SSPE. The induction of neurovirulence by M protein synergistically with moderately fusogenic F protein could account for the high frequency of SSPE.
Collapse
Affiliation(s)
- Yuto Satoh
- Department of Microbiology, Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Kurara Higuchi
- Department of Microbiology, Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Daichi Nishikawa
- Department of Microbiology, Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Hiroshi Wakimoto
- Department of Microbiology, Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Miho Konami
- Department of Microbiology, Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Kento Sakamoto
- Department of Microbiology, Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Yoshinori Kitagawa
- Division of Microbiology and Infectious Diseases, Department of Pathology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Bin Gotoh
- Division of Microbiology and Infectious Diseases, Department of Pathology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Da-Peng Jiang
- Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan
| | - Hak Hotta
- Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan
- Present address: Faculty of Clinical Nutrition and Dietetics, Konan Women’s University, Kobe, Hyogo, Japan
| | - Masae Itoh
- Department of Microbiology, Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
- *Correspondence: Masae Itoh,
| |
Collapse
|
2
|
Abstract
This review describes the two interrelated and interdependent processes of transcription and replication for measles virus. First, we concentrate on the ribonucleoprotein (RNP) complex, which contains the negative sense genomic template and in encapsidated in every virion. Second, we examine the viral proteins involved in these processes, placing particular emphasis on their structure, conserved sequence motifs, their interaction partners and the domains which mediate these associations. Transcription is discussed in terms of sequence motifs in the template, editing, co-transcriptional modifications of the mRNAs and the phase of the gene start sites within the genome. Likewise, replication is considered in terms of promoter strength, copy numbers and the remarkable plasticity of the system. The review emphasises what is not known or known only by analogy rather than by direct experimental evidence in the MV replication cycle and hence where additional research, using reverse genetic systems, is needed to complete our understanding of the processes involved.
Collapse
Affiliation(s)
- B K Rima
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK.
| | | |
Collapse
|
3
|
Abstract
As measles virus causes subacute sclerosing panencephalitis and measles inclusion body encephalitis due to its ability to establish human persistent infection, without symptoms for the time between the acute infection and the onset of clinical symptoms, it has been the paradigm for a long term persistent as opposed to chronic infection by an RNA virus. We have reviewed the mechanisms of persistence of the virus and discuss specific mutations associated with CNS infection affecting the matrix and fusion protein genes. These are placed in the context of our current understanding of the viral replication cycle. We also consider the proposed mechanisms of persistence of the virus in replicating cell cultures and conclude that no general mechanistic model can be derived from our current state of knowledge. Finally, we indicate how reverse genetics approaches and the use of mouse models with specific knock-out and knock-in modifications can further our understanding of measles virus persistence.
Collapse
Affiliation(s)
- Bertus K Rima
- School of Biology and Biochemistry and Centre for Cancer Research and Cell Biology, The Queen's University of Belfast, Belfast BT9 7BL, Northern Ireland, UK.
| | | |
Collapse
|
4
|
Ayata M, Komase K, Shingai M, Matsunaga I, Katayama Y, Ogura H. Mutations affecting transcriptional termination in the p gene end of subacute sclerosing panencephalitis viruses. J Virol 2002; 76:13062-8. [PMID: 12438633 PMCID: PMC136658 DOI: 10.1128/jvi.76.24.13062-13068.2002] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Numerous mutations are found in subacute sclerosing panencephalitis (SSPE) viruses, and the M gene is the gene most commonly affected. In some SSPE viruses, such as the MF, Osaka-1, Osaka-2, and Yamagata-1 strains, translation of the M protein is complicated by a transcriptional defect that leads to an almost exclusive synthesis of dicistronic P-M mRNA. To understand the molecular mechanisms of this defect, we sequenced the P gene at the P-M gene junction for several virus strains and probed the involvement of several mutations in the readthrough region via their expression in measles virus minigenomes containing different sequences of the P-M gene junction and flanking reporter genes. The deletion of a single U residue in the U tract of the Osaka-1 strain (3'-UAAUAUUUUU-5') compared with the consensus sequence resulted in a marked reduction of the expression of the downstream reporter gene. In addition, the expression of the downstream gene was markedly decreased by (i) the substitution of a C residue in the U tract of the P gene end of the OSA-2/Fr/B strain of the Osaka-2 virus (3'-UGAUAUUCUU-5' compared with the sequence 3'-UGAUAUUUUU-5' from a sibling virus of the same strain, OSA-2/Fr/V), and (ii) the substitution of a G in the sequence of the P gene end of the Yamagata-1 strain at a variable site immediately upstream from the six-U tract (3'-UGAUGUUUUUU-5' instead of 3'-UGAUUUUUUUU-5'). Mutations at the P gene end can account for the readthrough transcription variation at the P-M gene junction, which directly affects M protein expression.
Collapse
Affiliation(s)
- Minoru Ayata
- Department of Virology, Osaka City University Medical School, Asahimachi, Abeno-ku, Osaka 545-8585, Japan.
| | | | | | | | | | | |
Collapse
|
5
|
Ning X, Ayata M, Kimura M, Komase K, Furukawa K, Seto T, Ito N, Shingai M, Matsunaga I, Yamano T, Ogura H. Alterations and diversity in the cytoplasmic tail of the fusion protein of subacute sclerosing panencephalitis virus strains isolated in Osaka, Japan. Virus Res 2002; 86:123-31. [PMID: 12076836 DOI: 10.1016/s0168-1702(02)00042-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We determined the nucleotide sequence of the fusion (F) gene of three strains (Osaka-1, -2, and -3) of nonproductive variants of measles virus (MV). These viral strains were isolated in Osaka, Japan, from brain tissues of patients with subacute sclerosing panencephalitis (SSPE). Phylogenetic analysis revealed a close relationship among the three strains of SSPE virus. The cytoplasmic tail of the F protein, predicted from sequence analysis of the gene, is altered in all three SSPE strains when compared to the MV field strains. However, the extent and mode of alteration are different in each strain. The F protein of the Osaka-1 strain has six nonconservative amino acid substitutions and a 29-residue elongation of its cytoplasmic tail. The F protein of the Osaka-3 strain has two nonconservative substitutions and a 5-residue truncation of its C-terminus. Although the termination codon is not altered in the F protein of the Osaka-2 strain, five or six amino acids are changed in the cytoplasmic tail of the F protein of the two sibling viruses of this strain. The significance of the altered cytoplasmic domain of the SSPE viruses in the SSPE pathogenesis is discussed.
Collapse
Affiliation(s)
- Xiaojun Ning
- Department of Virology, Osaka City University Medical School, Asahimachi, Abeno-ku, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Ayata M, Hayashi K, Seto T, Murata R, Ogura H. The matrix gene expression of subacute sclerosing panencephalitis (SSPE) virus (Osaka-1 strain): a comparison of two sibling viruses isolated from different lobes of an SSPE brain. Microbiol Immunol 1999; 42:773-80. [PMID: 9886150 DOI: 10.1111/j.1348-0421.1998.tb02351.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Fr/V and Oc/V sibling viruses of the Osaka-1 strain of the subacute sclerosing panencephalitis (SSPE) virus were defective in cell-free virus production. By radioimmunoprecipitation assay, the matrix (M) protein was not detected in cells persistently infected with the Osaka-1 strain. This undetectable expression was consistent with the selective reduction of antibody response to the M protein in the patient from whom the Osaka-1 strain was isolated. The sequence of the M gene, however, predicted that the protein could be synthesized because the translational start and stop codons for the protein were not altered. Northern blot hybridization demonstrated the selective defect of the monocistronic mRNAs for the M protein and the phosphoprotein (P) together with the dominant presence of the P-M bicistronic mRNA. This absence of the M mRNA was further confirmed by primer extension analysis. Therefore, the undetectable expression of the M protein in the infected cells was proved to be caused by a transcriptional defect. The two sibling viruses, isolated from remote portions of an SSPE brain, were indistinguishable in their viral characters, including the M gene sequences, which indicates the possibility of clonal expansion of the strain in the brain.
Collapse
Affiliation(s)
- M Ayata
- Department of Virology, Osaka City University Medical School, Osaka, Japan
| | | | | | | | | |
Collapse
|
7
|
Ayata M, Kimoto T, Hayashi K, Seto T, Murata R, Ogura H. Nucleotide sequences of the matrix protein gene of subacute sclerosing panencephalitis viruses compared with local contemporary isolates from patients with acute measles. Virus Res 1998; 54:107-15. [PMID: 9660076 DOI: 10.1016/s0168-1702(98)00012-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Measles viruses isolated from brain cells of patients with subacute sclerosing panencephalitis (SSPE) have numerous mutations, especially in the matrix protein (M) gene. To find whether the M genes of these SSPE viruses were mutated randomly or in a pattern, we sequenced this gene from three strains of defective measles virus isolated in Osaka, Japan. We could deduce the sequence of the possible progenitor measles virus for each patient by comparison of the isolate with measles viruses prevailing at roughly the same time and place as the primary infection. Biased hypermutation affected the M genes of all three SSPE viruses, although the molecular mechanisms for the mutations might be various. Replacements of U with C in the plus strand accounted for 76% of all mutations in two of the strains, but in the other strain, replacements of A with G accounted for 52% of the mutations, and the U residues were unchanged.
Collapse
Affiliation(s)
- M Ayata
- Department of Medical Zoology, Osaka City University Medical School, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
8
|
Kai C, Yamanouchi K, Sakata H, Miyashita N, Takahashi H, Kobune F. Nucleotide sequences of the M gene of prevailing wild measles viruses and a comparison with subacute sclerosing panencephalitis virus. Virus Genes 1996; 12:85-7. [PMID: 8879124 DOI: 10.1007/bf00370004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We determined the nucleotide sequences of the coding region for the M gene in seven strains of measles virus (MV) that were isolated in Japan between 1984 and 1993. The mutation found among the seven differed from those of laboratory strains. Many of these mutations were the same as those that are characteristic of SSPE viruses. Thus, we suggest that the mutations that have been considered specific to SSPE virus are in fact consensus among prevailing MV.
Collapse
Affiliation(s)
- C Kai
- Department of Veterinary Microbiology, University of Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
9
|
Affiliation(s)
- B K Rima
- School of Biology and Biochemistry, Queen's University of Belfast, Northern Ireland, UK
| | | | | | | | | |
Collapse
|
10
|
|
11
|
Suryanarayana K, Baczko K, ter Meulen V, Wagner RR. Transcription inhibition and other properties of matrix proteins expressed by M genes cloned from measles viruses and diseased human brain tissue. J Virol 1994; 68:1532-43. [PMID: 8107216 PMCID: PMC236610 DOI: 10.1128/jvi.68.3.1532-1543.1994] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Ribonucleoprotein (RNP) cores extracted from virions of wild-type (Edmonston strain) measles virus (MV) or obtained from MV-infected cells (cRNP) were shown to be capable of transcribing RNA in vitro but at relatively low efficiency. The tightly bound matrix (M) protein could be effectively removed from virion RNP (vRNP) and from cRNP by exposure to buffers of high ionic strength (0.5 to 1.0 M KCl) but only at pH 8.0 or higher. The vRNP and cRNP cores complexed with M protein exhibited markedly reduced transcriptional activity at increasing concentrations, whereas vRNP and cRNP cores free of M protein exhibited linear and substantially higher transcriptional activity; these data suggest that M protein is the endogenous inhibitor of MV RNP transcription. M-gene cDNA clones derived from three strains of wild-type (wt) MV and 10 clones from mRNAs isolated from the brain tissue of patients who had died from subacute sclerosing panencephalitis (SSPE) and from measles inclusion body encephalitis (MIBE) were recloned in the pTM-1 expression vector driven by the bacteriophage T7 RNA polymerase expressed by a coinfecting vaccinia virus recombinant. All 10 mutant SSPE and MIBE clones expressed in vitro and in vivo M proteins that reacted with monospecific anti-M polyclonal antibody and migrated on polyacrylamide gels to positions identical to or only slightly different from those of the M proteins expressed by wt MV clones. When reconstituted with cRNP cores, the three expressed wt M proteins and 6 of the 10 mutant-expressed M proteins showed equivalent capacity to down-regulate MV transcription. Three of the M proteins from SSPE clones and one from the MIBE clone showed little or no capacity to down-regulate transcription when reconstituted with cRNP cores. The only plausible explanations for loss of transcription inhibition activity by the four SSPE/MIBE M proteins were exceedingly high degrees of hypermutations leading to U-->C transitions and cloning-corrected mutations in the initiator codon (ATG-->ACG) of the four M genes. However, only the hypermutated M protein expressed by the MIBE cDNA clone exhibited virtually no capacity to bind cRNP cores in a reconstitution assay. These experiments provide some preliminary data to support the hypothesis that MV encephalitis may result from certain selective mutations in the M gene.
Collapse
Affiliation(s)
- K Suryanarayana
- Department of Microbiology, University of Virginia Medical School, Charlottesville 22908
| | | | | | | |
Collapse
|
12
|
Haga T, Komase K, Yoshikawa Y, Yamanouchi K. Molecular analysis of virus-producing and non-producing clones derived from a defective SSPE virus Yamagata-1 strain. Microbiol Immunol 1992; 36:257-67. [PMID: 1376393 DOI: 10.1111/j.1348-0421.1992.tb01663.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Two virus clones were isolated from a defective SSPE virus, the Yamagata-1 strain, and designated as the YA and YF clones. The YA clone-infected cells produced neither cell-free virus nor cell-associated virus, whereas the YF clone-infected cells produced both cell-associated and cell-free virus. No difference of epitopes on structural proteins was observed between these two clones. Both clones had hemadsorption activity. Quantitation of structural protein by Western dot blots showed relatively a lower amount of M protein in the YA-infected cells than that in the YF-infected cells. The ratio, P plus M dicistronic/M monocistronic mRNA, in the YA-infected cells was about twice that in the YF-infected cells. Sequence analysis of cDNA corresponding to P plus M dicistronic mRNA revealed that the deduced M protein of the YF virus was smaller than that of the YA virus by five amino acids from the carboxy terminal. These results suggest that abundant production of P plus M dicistronic mRNA is responsible for the reduced amount of M protein in the non-productive YA clone.
Collapse
Affiliation(s)
- T Haga
- Laboratory Animal Research Center, University of Tokyo, Japan
| | | | | | | |
Collapse
|
13
|
Komase K, Haga T, Yoshikawa Y, Yamanouchi K. Complete nucleotide sequence of the phosphoprotein of the Yamagata-1 strain of a defective subacute sclerosing panencephalitis (SSPE) virus. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1129:342-4. [PMID: 1536889 DOI: 10.1016/0167-4781(92)90515-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The complete nucleotide sequence of the phosphoprotein (P) gene of the Yamagata-1 strain of a defective subacute sclerosing panencephalitis (SSPE) virus was determined. Comparison with the P gene of the Edmonston strain of measles virus (MV) revealed 44 differences of which 23 nucleotides substitutions were identical with those revealed between other SSPE viruses and MV (Cattaneo et al. (1989) Virology 173, 415-425). The consensus sequence of the G insertion site was completely conserved, whereas mRNAs with one or three non-templated G residue insertions were found in addition to the mRNA of the exact genome copy. As a result of the frameshift downstream of the site of G insertion, the cysteine-rich V protein was predicted from the one G-inserted mRNA besides the P and C proteins predicted from the genome-copied mRNA.
Collapse
Affiliation(s)
- K Komase
- Department of Technology, Kitasato Institute, Tokyo, Japan
| | | | | | | |
Collapse
|
14
|
Haga T, Yoshikawa Y, Yamanouchi K. Diversity of matrix protein in subacute sclerosing panencephalitis and measles virus-infected cells. Microbiol Immunol 1990; 34:543-50. [PMID: 1699115 DOI: 10.1111/j.1348-0421.1990.tb03170.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Expression of the viral matrix (M) proteins in Vero cells infected with 18 strains of subacute sclerosing panencephalitis (SSPE) virus and measles virus was examined by immunocytochemistry and Western blot analysis using an anti-M monospecific serum and two sera against the M protein specific synthetic peptides. By immunocytochemistry using the anti-M monospecific serum, M protein was detected in all of the virus-infected cells regardless of cell-free virus production. M proteins of the seven non-productive strains were found to vary significantly in their epitope, in their reactivity to different assay systems, and in their molecular weight, whereas M proteins of the other 11 productive strains were detected consistently. These results suggest diversification of M protein of the non-productive strains.
Collapse
Affiliation(s)
- T Haga
- Laboratory Animal Research Center, University of Tokyo
| | | | | |
Collapse
|