1
|
Kanoh S, Noma T, Ito H, Tsureyama M, Funabara D. Myosin light chain of shark fast skeletal muscle exhibits intrinsic urea-resistibility. Sci Rep 2023; 13:4909. [PMID: 36966252 PMCID: PMC10039937 DOI: 10.1038/s41598-023-32228-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 03/24/2023] [Indexed: 03/27/2023] Open
Abstract
Marine elasmobranch fish contain urea, a protein denaturant, in their bodies. The urea-trimethylamine N-oxide (TMAO) counteraction mechanism contributes to urea-resistibility, where TMAO compensates for protein denaturation by urea. However, previous studies revealed that shark fast skeletal muscle myosin exhibits native activity at physiological urea concentrations in the absence of TMAO, suggesting that shark myosin has urea-resistibility. In this study, we compared the urea-resistibility of myosin alkali light chains (A1-LC and A2-LC) from banded houndshark and carp by examining the α-helical content at various urea concentrations. The α-helical content of carp myosin A1-LC and A2-LC gradually decreased as urea concentrations increased to 2 M. In contrast, the α-helical content of banded houndshark A1-LC increased between 0 and 0.5 M urea, and the α-helical content of A2-LC remained constant until 0.5 M urea. We determined the full-length sequences of the banded houndshark myosin light chains (A1-LC, A2-LC and DTNB-LC). Hydrophilicity analysis revealed that the N-terminal region (residues 28-34) of A1-LC from banded houndshark is more hydrophilic than the corresponding region of A1-LC from carp. These findings support the notion that shark myosin exhibits urea-resistibility independent of the urea-TMAO counteraction mechanism.
Collapse
Affiliation(s)
- Satoshi Kanoh
- Graduate School of Bioresources, Mie University, Tsu, Mie, 514-8507, Japan
| | - Takayuki Noma
- Graduate School of Bioresources, Mie University, Tsu, Mie, 514-8507, Japan
- Kogakkan High School, Ise, Mie, 516-8577, Japan
| | - Hirotaka Ito
- Graduate School of Bioresources, Mie University, Tsu, Mie, 514-8507, Japan
- ASGEN Pharmaceutical Co., Ltd., Mizunami, Gifu, 509-6104, Japan
| | - Masatomo Tsureyama
- Graduate School of Bioresources, Mie University, Tsu, Mie, 514-8507, Japan
- Kracie Foods, Ltd., Minato, Tokyo, 108-8080, Japan
| | - Daisuke Funabara
- Graduate School of Bioresources, Mie University, Tsu, Mie, 514-8507, Japan.
| |
Collapse
|
2
|
Al-Ayoubi SR, Schummel PH, Cisse A, Seydel T, Peters J, Winter R. Osmolytes modify protein dynamics and function of tetrameric lactate dehydrogenase upon pressurization. Phys Chem Chem Phys 2019; 21:12806-12817. [PMID: 31165827 DOI: 10.1039/c9cp02310k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We present a study of the combined effects of natural cosolvents (TMAO, glycine, urea) and pressure on the activity of the tetrameric enzyme lactate dehydrogenase (LDH). To this end, high-pressure stopped-flow methodology in concert with fast UV/Vis spectroscopic detection of product formation was applied. To reveal possible pressure effects on the stability and dynamics of the enzyme, FTIR spectroscopic and neutron scattering measurements were carried out. In neat buffer solution, the catalytic turnover number of the enzyme, kcat, increases up to 1000 bar, the pressure range where dissociation of the tetrameric species to dimers sets in. Accordingly, we obtain a negative activation volume, ΔV# = -45.3 mL mol-1. Further, the enzyme substrate complex has a larger volume compared to the enzyme and substrate in the unbound state. The neutron scattering data show that changes in the fast internal dynamics of the enzyme are not responsible for the increase of kcat upon compression. Whereas the magnitude of kcat is similar in the presence of the osmolytes, the pressure of deactivation is modulated by the addition of cosolvents. TMAO and glycine increase the pressure of deactivation, and in accordance with the observed stabilizing effect both cosolvents exhibit against denaturation and/or dissociation of proteins. While urea does not markedly affect the magnitude of the Michaelis constant, KM, both 1 M TMAO and 1 M glycine exhibit smaller KM values of about 0.07 mM and 0.05 mM below about 1 kbar. Such positive effect on the substrate affinity could be rationalized by the effect the two cosolutes impose on the thermodynamic activities of the reactants, which reflect changes in water-mediated intermolecular interactions. Our data show that the intracellular milieu, i.e., the solution conditions that have evolved, may be sufficient to maintain enzymatic activity under extreme environmental conditions, including the whole pressure range encountered on Earth.
Collapse
Affiliation(s)
- Samy R Al-Ayoubi
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44227 Dortmund, Germany.
| | | | | | | | | | | |
Collapse
|
3
|
Graves JE, Somero GN. ELECTROPHORETIC AND FUNCTIONAL ENZYMIC EVOLUTION IN FOUR SPECIES OF EASTERN PACIFIC BARRACUDAS FROM DIFFERENT THERMAL ENVIRONMENTS. Evolution 2017; 36:97-106. [PMID: 28581099 DOI: 10.1111/j.1558-5646.1982.tb05014.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/1980] [Revised: 03/30/1981] [Indexed: 11/30/2022]
Affiliation(s)
- John E Graves
- Marine Biology Research Division (A-002), Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, 92093
| | - George N Somero
- Marine Biology Research Division (A-002), Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, 92093
| |
Collapse
|
4
|
Some of the most interesting things we know, and don't know, about the biochemistry and physiology of elasmobranch fishes (sharks, skates and rays). Comp Biochem Physiol B Biochem Mol Biol 2016; 199:21-28. [DOI: 10.1016/j.cbpb.2016.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/28/2015] [Accepted: 03/07/2016] [Indexed: 11/21/2022]
|
5
|
Yancey PH, Siebenaller JF. Co-evolution of proteins and solutions: protein adaptation versus cytoprotective micromolecules and their roles in marine organisms. ACTA ACUST UNITED AC 2016; 218:1880-96. [PMID: 26085665 DOI: 10.1242/jeb.114355] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Organisms experience a wide range of environmental factors such as temperature, salinity and hydrostatic pressure, which pose challenges to biochemical processes. Studies on adaptations to such factors have largely focused on macromolecules, especially intrinsic adaptations in protein structure and function. However, micromolecular cosolutes can act as cytoprotectants in the cellular milieu to affect biochemical function and they are now recognized as important extrinsic adaptations. These solutes, both inorganic and organic, have been best characterized as osmolytes, which accumulate to reduce osmotic water loss. Singly, and in combination, many cosolutes have properties beyond simple osmotic effects, e.g. altering the stability and function of proteins in the face of numerous stressors. A key example is the marine osmolyte trimethylamine oxide (TMAO), which appears to enhance water structure and is excluded from peptide backbones, favoring protein folding and stability and counteracting destabilizers like urea and temperature. Co-evolution of intrinsic and extrinsic adaptations is illustrated with high hydrostatic pressure in deep-living organisms. Cytosolic and membrane proteins and G-protein-coupled signal transduction in fishes under pressure show inhibited function and stability, while revealing a number of intrinsic adaptations in deep species. Yet, intrinsic adaptations are often incomplete, and those fishes accumulate TMAO linearly with depth, suggesting a role for TMAO as an extrinsic 'piezolyte' or pressure cosolute. Indeed, TMAO is able to counteract the inhibitory effects of pressure on the stability and function of many proteins. Other cosolutes are cytoprotective in other ways, such as via antioxidation. Such observations highlight the importance of considering the cellular milieu in biochemical and cellular adaptation.
Collapse
Affiliation(s)
- Paul H Yancey
- Department of Biology, Whitman College, Walla Walla, WA 99362, USA
| | - Joseph F Siebenaller
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
6
|
Treberg JR, Speers-Roesch B. Does the physiology of chondrichthyan fishes constrain their distribution in the deep sea? J Exp Biol 2016; 219:615-25. [DOI: 10.1242/jeb.128108] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
The deep sea is the largest ecosystem on Earth but organisms living there must contend with high pressure, low temperature, darkness and scarce food. Chondrichthyan fishes (sharks and their relatives) are important consumers in most marine ecosystems but are uncommon deeper than 3000 m and exceedingly rare, or quite possibly absent, from the vast abyss (depths >4000 m). By contrast, teleost (bony) fishes are commonly found to depths of ∼8400 m. Why chondrichthyans are scarce at abyssal depths is a major biogeographical puzzle. Here, after outlining the depth-related physiological trends among chondrichthyans, we discuss several existing and new hypotheses that implicate unique physiological and biochemical characteristics of chondrichthyans as potential constraints on their depth distribution. We highlight three major, and not mutually exclusive, working hypotheses: (1) the urea-based osmoregulatory strategy of chondrichthyans might conflict with the interactive effects of low temperature and high pressure on protein and membrane function at great depth; (2) the reliance on lipid accumulation for buoyancy in chondrichthyans has a unique energetic cost, which might increasingly limit growth and reproductive output as food availability decreases with depth; (3) their osmoregulatory strategy may make chondrichthyans unusually nitrogen limited, a potential liability in the food-poor abyss. These hypotheses acting in concert could help to explain the scarcity of chondrichthyans at great depths: the mechanisms of the first hypothesis may place an absolute, pressure-related depth limit on physiological function, while the mechanisms of the second and third hypotheses may limit depth distribution by constraining performance in the oligotrophic abyss, in ways that preclude the establishment of viable populations or lead to competitive exclusion by teleosts.
Collapse
Affiliation(s)
- Jason R. Treberg
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
- Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | - Ben Speers-Roesch
- Department of Ocean Sciences, Memorial University of Newfoundland, St John's, Newfoundland, Canada A1C 5S7
| |
Collapse
|
7
|
Rahman S, Warepam M, Singh LR, Dar TA. A current perspective on the compensatory effects of urea and methylamine on protein stability and function. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 119:129-36. [PMID: 26095775 DOI: 10.1016/j.pbiomolbio.2015.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 06/16/2015] [Accepted: 06/17/2015] [Indexed: 11/16/2022]
Abstract
Urea is a strong denaturant and inhibits many enzymes but is accumulated intracellularly at very high concentrations (up to 3-4 M) in mammalian kidney and in many marine fishes. It is known that the harmful effects of urea on the macromolecular structure and function is offset by the accumulation of an osmolytic agent called methylamine. Intracellular concentration of urea to methylamines falls in the ratio of 2:1 to 3:2 (molar ratio). At this ratio, the thermodynamic effects of urea and methylamines on protein stability and function are believed to be algebraically additive. The mechanism of urea-methylamine counteraction has been widely investigated on various approaches including, thermodynamic, structural and functional aspects. Recent advances have also revealed atomic level insights of counteraction and various molecular dynamic simulation studies have yielded significant molecular level informations on the interaction between urea and methylamines with proteins. It is worthwhile that urea-methylamine system not only plays pivotal role for the survival and functioning of the renal medullary cells but also is a key osmoregulatory component of the marine elasmobranchs, holocephalans and coelacanths. Therefore, it is important to combine all discoveries and discuss the developments in context to physiology of the mammalian kidney and adaptation of the marine organisms. In this article we have for the first time reviewed all major developments on urea-counteraction systems to date. We have also discussed about other additional urea-counteraction systems discovered so far including urea-NaCl, urea-myoinsoitol and urea-molecular chaperone systems. Insights for the possible future research have also been highlighted.
Collapse
Affiliation(s)
- Safikur Rahman
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110 007, India
| | - Marina Warepam
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110 007, India
| | - Laishram R Singh
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110 007, India
| | - Tanveer Ali Dar
- Clinical Biochemistry, University of Kashmir, Srinagar, Jammu & Kashmir 190006, India.
| |
Collapse
|
8
|
Fields PA, Dong Y, Meng X, Somero GN. Adaptations of protein structure and function to temperature: there is more than one way to ‘skin a cat’. J Exp Biol 2015; 218:1801-11. [DOI: 10.1242/jeb.114298] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
ABSTRACT
Sensitivity to temperature helps determine the success of organisms in all habitats, and is caused by the susceptibility of biochemical processes, including enzyme function, to temperature change. A series of studies using two structurally and catalytically related enzymes, A4-lactate dehydrogenase (A4-LDH) and cytosolic malate dehydrogenase (cMDH) have been especially valuable in determining the functional attributes of enzymes most sensitive to temperature, and identifying amino acid substitutions that lead to changes in those attributes. The results of these efforts indicate that ligand binding affinity and catalytic rate are key targets during temperature adaptation: ligand affinity decreases during cold adaptation to allow more rapid catalysis. Structural changes causing these functional shifts often comprise only a single amino acid substitution in an enzyme subunit containing approximately 330 residues; they occur on the surface of the protein in or near regions of the enzyme that move during catalysis, but not in the active site; and they decrease stability in cold-adapted orthologs by altering intra-molecular hydrogen bonding patterns or interactions with the solvent. Despite these structure–function insights, we currently are unable to predict a priori how a particular substitution alters enzyme function in relation to temperature. A predictive ability of this nature might allow a proteome-wide survey of adaptation to temperature and reveal what fraction of the proteome may need to adapt to temperature changes of the order predicted by global warming models. Approaches employing algorithms that calculate changes in protein stability in response to a mutation have the potential to help predict temperature adaptation in enzymes; however, using examples of temperature-adaptive mutations in A4-LDH and cMDH, we find that the algorithms we tested currently lack the sensitivity to detect the small changes in flexibility that are central to enzyme adaptation to temperature.
Collapse
Affiliation(s)
- Peter A. Fields
- Biology Department, Franklin & Marshall College, Lancaster, PA 17603, USA
| | - Yunwei Dong
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China
| | - Xianliang Meng
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - George N. Somero
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, CA 93940, USA
| |
Collapse
|
9
|
Cramp RL, Hansen MJ, Franklin CE. Osmoregulation by juvenile brown-banded bamboo sharks, Chiloscyllium punctatum, in hypo- and hyper-saline waters. Comp Biochem Physiol A Mol Integr Physiol 2015; 185:107-14. [PMID: 25868436 DOI: 10.1016/j.cbpa.2015.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/30/2015] [Accepted: 04/02/2015] [Indexed: 10/23/2022]
Abstract
While there is a considerable body of work describing osmoregulation by elasmobranchs in brackish and saltwater, far fewer studies have investigated osmoregulation in hypersaline waters. We examined osmo- and ionoregulatory function and plasticity in juvenile brown-banded bamboo sharks, Chiloscyllium punctatum, exposed to three experimental salinities (25, 34 and 40‰) for two weeks. C. punctatum inhabits sheltered coastal areas and bays which can naturally become hypersaline as a consequence of evaporation of water but can also become hyposaline during flood events. We hypothesised that C. punctatum would demonstrate a phenotypically plastic osmoregulatory physiology. Plasma osmolality, urea, Na(+) and Cl(-) levels increased significantly with increasing environmental salinity. Rectal gland and branchial sodium-potassium ATPase (NKA) activities were unaffected by salinity. Using immunohistochemistry and Western Blotting we found evidence for the presence of the key ion-regulatory proteins vacuolar H(+)-ATPase (VHA), pendrin (Cl(-)/HCO₃(-) co-transporter) and the Na(+)-H(+) exchanger isoform 3 (NHE3) in discrete cells within the branchial epithelia. These results indicate that C. punctatum is a partially euryhaline elasmobranch able to maintain osmo- and ionoregulatory function between environmental salinities of 25‰ and 40‰. As suggested for other elasmobranchs, the gills of C. punctatum likely play a limited role in maintaining Na(+) homeostasis over the salinity range studied, but may play an important role in acid-base balance.
Collapse
Affiliation(s)
- R L Cramp
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - M J Hansen
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - C E Franklin
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
10
|
Katzenback BA, Dawson NJ, Storey KB. Purification and characterization of a urea sensitive lactate dehydrogenase from the liver of the African clawed frog, Xenopus laevis. J Comp Physiol B 2014; 184:601-11. [PMID: 24651940 DOI: 10.1007/s00360-014-0824-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 02/27/2014] [Accepted: 03/04/2014] [Indexed: 10/25/2022]
Abstract
The African clawed frog, Xenopus laevis, is able to withstand extremely arid conditions by estivating, in conjunction with dehydration tolerance and urea accumulation. Estivating X. laevis reduce their metabolic rate and recruit anaerobic glycolysis, driven by lactate dehydrogenase (LDH; E.C. 1.1.1.27) enzymes that reversibly convert pyruvate and NADH to lactate and NAD(+), to meet newly established ATP demands. The present study investigated purified LDH from the liver of dehydrated and control X. laevis. LDH from dehydrated liver showed a significantly higher K m for L-lactate (1.74 fold), NAD(+) (2.41 fold), and pyruvate (1.78 fold) in comparison to LDH from the liver of control frogs. In the presence of physiological levels of urea found in dehydrated animals, the K m values obtained for dehydrated LDH all returned to control LDH K m values. Dot blot analysis showed post-translational modifications may be responsible for the kinetic modification as the dehydrated form of LDH showed more phosphorylated serine residues (1.54 fold), less methylated lysine residues (0.43 fold), and a higher level of ubiquitination (1.90 fold) in comparison to control LDH. The physiological consequence of dehydration-induced LDH modification appears to adjust LDH function in conjunction with urea levels in dehydrated frogs. When urea levels are high during dehydration, LDH retains its normal function. Yet, as urea levels drop during rehydration, LDH function is reduced, possibly shunting pyruvate to the TCA cycle.
Collapse
Affiliation(s)
- Barbara A Katzenback
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada,
| | | | | |
Collapse
|
11
|
Guffey SC, Goss GG. Time course of the acute response of the North Pacific spiny dogfish shark (Squalus suckleyi) to low salinity. Comp Biochem Physiol A Mol Integr Physiol 2014; 171:9-15. [PMID: 24518388 DOI: 10.1016/j.cbpa.2014.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 01/23/2014] [Accepted: 02/04/2014] [Indexed: 10/25/2022]
Abstract
Dogfish are considered stenohaline sharks but are known to briefly enter estuaries. The acute response of North Pacific spiny dogfish (Squalus suckleyi) to lowered salinity was tested by exposing sharks to 21‰ salinity for 48 h. Temporal trends in blood pH, plasma osmolality, CO2, HCO3(-), Na(+), Cl(-), K(+), and urea concentrations, and in the rates of urea efflux and O2 consumption, were quantified. The rate of O2 consumption exhibited cyclic variation and was significantly depressed by lowered salinity. After 9 h, plasma [Cl(-)] stabilized at 9% below initial levels, while plasma [Na(+)] decreased by more than 20% within the first 12 h. Plasma [urea] dropped by 15% between 4 and 6 h, and continued to decrease. The rate of urea efflux increased over time, peaking after 36 h at 72% above the initial rate. Free-swimming sharks subjected to the same salinity challenge survived over 96 h and differed from cannulated sharks with respect to patterns of Na(+) and urea homeostasis. This high-resolution study reveals that dogfish exposed to 21‰ salinity can maintain homeostasis of Cl(-) and pH, but Na(+) and urea continue to be lost, likely accounting for the inability of the dogfish to fully acclimate to reduced salinity.
Collapse
Affiliation(s)
- Samuel C Guffey
- Department of Biological Sciences, CW405 Biological Sciences Bldg, University of Alberta, Edmonton, AB T6G 2E9, Canada; Bamfield Marine Sciences Centre, 100 Pachena Road, Bamfield, BC V0R 1B0, Canada.
| | - Greg G Goss
- Department of Biological Sciences, CW405 Biological Sciences Bldg, University of Alberta, Edmonton, AB T6G 2E9, Canada; Bamfield Marine Sciences Centre, 100 Pachena Road, Bamfield, BC V0R 1B0, Canada.
| |
Collapse
|
12
|
Khan S, Bano Z, Singh LR, Hassan MI, Islam A, Ahmad F. Testing the ability of non-methylamine osmolytes present in kidney cells to counteract the deleterious effects of urea on structure, stability and function of proteins. PLoS One 2013; 8:e72533. [PMID: 24039776 PMCID: PMC3767660 DOI: 10.1371/journal.pone.0072533] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 07/11/2013] [Indexed: 11/18/2022] Open
Abstract
Human kidney cells are under constant urea stress due to its urine concentrating mechanism. It is believed that the deleterious effect of urea is counteracted by methylamine osmolytes (glycine betaine and glycerophosphocholine) present in kidney cells. A question arises: Do the stabilizing osmolytes, non-methylamines (myo-inositol, sorbitol and taurine) present in the kidney cells also counteract the deleterious effects of urea? To answer this question, we have measured structure, thermodynamic stability (ΔG D (o)) and functional activity parameters (K m and k cat) of different model proteins in the presence of various concentrations of urea and each non-methylamine osmolyte alone and in combination. We observed that (i) for each protein myo-inositol provides perfect counteraction at 1∶2 ([myo-inositol]:[urea]) ratio, (ii) any concentration of sorbitol fails to refold urea denatured proteins if it is six times less than that of urea, and (iii) taurine regulates perfect counteraction in a protein specific manner; 1.5∶2.0, 1.2∶2.0 and 1.0∶2.0 ([taurine]:[urea]) ratios for RNase-A, lysozyme and α-lactalbumin, respectively.
Collapse
Affiliation(s)
- Sheeza Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Zehra Bano
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Laishram R. Singh
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
- * E-mail:
| |
Collapse
|
13
|
|
14
|
Somero GN, Yancey PH. Osmolytes and Cell‐Volume Regulation: Physiological and Evolutionary Principles. Compr Physiol 2011. [DOI: 10.1002/cphy.cp140110] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
15
|
Ballantyne JS, Robinson JW. Freshwater elasmobranchs: a review of their physiology and biochemistry. J Comp Physiol B 2010; 180:475-93. [DOI: 10.1007/s00360-010-0447-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 01/13/2010] [Accepted: 01/14/2010] [Indexed: 10/19/2022]
|
16
|
Dowd WW, Harris BN, Cech JJ, Kültz D. Proteomic and physiological responses of leopard sharks (Triakis semifasciata) to salinity change. J Exp Biol 2010; 213:210-24. [DOI: 10.1242/jeb.031781] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
SUMMARY
Partially euryhaline elasmobranchs may tolerate physiologically challenging, variable salinity conditions in estuaries as a trade-off to reduce predation risk or to gain access to abundant food resources. To further understand these trade-offs and to evaluate the underlying mechanisms, we examined the responses of juvenile leopard sharks to salinity changes using a suite of measurements at multiple organizational levels: gill and rectal gland proteomes (using 2-D gel electrophoresis and tandem mass spectrometry), tissue biochemistry (Na+/K+-ATPase, caspase 3/7 and chymotrypsin-like proteasome activities), organismal physiology (hematology, plasma composition, muscle moisture) and individual behavior. Our proteomics results reveal coordinated molecular responses to low salinity – several of which are common to both rectal gland and gill – including changes in amino acid and inositol (i.e. osmolyte) metabolism, energy metabolism and proteins related to transcription, translation and protein degradation. Overall, leopard sharks employ a strategy of maintaining plasma urea, ion concentrations and Na+/K+-ATPase activities in the short-term, possibly because they rarely spend extended periods in low salinity conditions in the wild, but the sharks osmoconform to the surrounding conditions by 3 weeks. We found no evidence of apoptosis at the time points tested, while both tissues exhibited proteomic changes related to the cytoskeleton, suggesting that leopard sharks remodel existing osmoregulatory epithelial cells and activate physiological acclimatory responses to solve the problems posed by low salinity exposure. The behavioral measurements reveal increased activity in the lowest salinity in the short-term, while activity decreased in the lowest salinity in the long-term. Our data suggest that physiological/behavioral trade-offs are involved in using estuarine habitats, and pathway modeling implicates tumor necrosis factor α (TNFα) as a key node of the elasmobranch hyposmotic response network.
Collapse
Affiliation(s)
- W. W. Dowd
- Physiological Genomics Group, Department of Animal Science, University of California, Davis, 1 Shields Avenue, Davis, CA 95616, USA
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, 1 Shields Avenue, Davis, CA 95616, USA
| | - B. N. Harris
- Department of Biology, 3386 Spieth Hall, University of California, Riverside, CA 92521, USA
| | - J. J. Cech
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, 1 Shields Avenue, Davis, CA 95616, USA
| | - D. Kültz
- Physiological Genomics Group, Department of Animal Science, University of California, Davis, 1 Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
17
|
|
18
|
Fields PA, Strothers CM, Mitchell MA. Function of muscle-type lactate dehydrogenase and citrate synthase of the Galápagos marine iguana, Amblyrhynchus cristatus, in relation to temperature. Comp Biochem Physiol B Biochem Mol Biol 2008; 150:62-73. [DOI: 10.1016/j.cbpb.2008.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 01/28/2008] [Accepted: 01/29/2008] [Indexed: 11/24/2022]
|
19
|
Singh LR, Ali Dar T, Haque I, Anjum F, Moosavi-Movahedi AA, Ahmad F. Testing the paradigm that the denaturing effect of urea on protein stability is offset by methylamines at the physiological concentration ratio of 2:1 (urea:methylamines). BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1774:1555-62. [DOI: 10.1016/j.bbapap.2007.09.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Revised: 09/14/2007] [Accepted: 09/17/2007] [Indexed: 11/27/2022]
|
20
|
Fields PA, Rudomin EL, Somero GN. Temperature sensitivities of cytosolic malate dehydrogenases from native and invasive species of marine mussels (genus Mytilus): sequence-function linkages and correlations with biogeographic distribution. ACTA ACUST UNITED AC 2006; 209:656-67. [PMID: 16449560 DOI: 10.1242/jeb.02036] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The blue mussel Mytilus galloprovincialis, a native of the Mediterranean Sea, has invaded the west coast of North America in the past century, displacing the native blue mussel, Mytilus trossulus, from most of its former habitats in central and southern California. The invasive success of M. galloprovincialis is conjectured to be due, in part, to physiological adaptations that enable it to outperform M. trossulus at high temperatures. We have examined the structure and function of the enzyme cytosolic malate dehydrogenase (cMDH) from these species, as well as from the more distantly related ribbed mussel, Mytilus californianus, to characterize the effects of temperature on kinetic properties thought to exhibit thermal adaptation. The M. trossulus cMDH ortholog differs from the other cMDHs in a direction consistent with cold adaptation, as evidenced by a higher and more temperature-sensitive Michaelis-Menten constant for the cofactor NADH (Km(NADH)). This difference results from minor changes in sequence: the M. trossulus ortholog differs from the M. galloprovincialis ortholog by only two substitutions in the 334 amino acid monomer, and the M. californianus and M. trossulus orthologs differ by five substitutions. In each case, only one of these substitutions is non-conservative. To test the effects of individual substitutions on kinetic properties, we used site-directed mutagenesis to create recombinant cMDHs. Recombinant wild-type M. trossulus cMDH (rWT) has high Km(NADH) compared with mutants incorporating the non-conservative substitutions found in M. californianus and M. galloprovincialis - V114H and V114N, respectively - demonstrating that these mutations are responsible for the differences found in substrate affinity. Turnover number (kcat) is also higher in rWT compared with the two mutants, consistent with cold adaptation in the M. trossulus ortholog. Conversely, rWT and V114H appear more thermostable than V114N. Based on a comparison of Km(NADH) and kcat values among the orthologs, we propose that immersion temperatures are of greater selective importance in adapting kinetic properties than the more extreme temperatures that occur during emersion. The relative warm adaptation of M. galloprovincialis cMDH may be one of a suite of physiological characters that enhance the competitive ability of this invasive species in warm habitats.
Collapse
Affiliation(s)
- Peter A Fields
- Biology Department, Franklin and Marshall College, Lancaster, PA 17604-3003, USA.
| | | | | |
Collapse
|
21
|
Fields PA, Wahlstrand BD, Somero GN. Intrinsic versus extrinsic stabilization of enzymes: the interaction of solutes and temperature on A4-lactate dehydrogenase orthologs from warm-adapted and cold-adapted marine fishes. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:4497-505. [PMID: 11502210 DOI: 10.1046/j.1432-1327.2001.02374.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We examined the effects of temperature and stabilizing solutes on A4-lactate dehydrogenase (A4-LDH) from warm- and cold-adapted fishes, to determine how extrinsic stabilizers affect orthologs with different intrinsic stabilities. Conformational changes during substrate binding are rate-limiting for A4-LDH, thus stabilization due to intrinsic or extrinsic factors leads to decreased activity. A4-LDH from a warm-temperate goby (Gillichthys mirabilis), which has lower values for kcat and the Michaelis constant for pyruvate ( K m PYR), was intrinsically more stable than the orthologs of the cold-adapted Antarctic notothenioids Parachaenichthys charcoti and Chionodraco rastrospinosus, as shown by a higher apparent transition ('melting') temperature (Tm(APP)). We used four solutes, glycerol, sucrose, trimethylamine-N-oxide and poly(ethylene glycol) 8000, which stabilize proteins through different modes of preferential exclusion, to study temperature-solute interactions of the three orthologs. Changes in Tm(APP) were similar for all orthologs in each solute tested, but the catalytic rate of G. mirabilis A4-LDH was decreased most by solutes and increased most by temperature. In contrast, the K m PYR values of the Antarctic orthologs were more affected than that of the goby by both solutes and temperature. We conclude that (a) preferential exclusion of solutes functions within the native state of A4-LDH to favor conformational microstates with minimal surface area; (b) the varied effects of the different solutes on the kinetic properties are due to the interaction between this nonspecific stabilization and the differing intrinsic stabilities of the orthologs; (c) the catalytic rates of A4-LDH orthologs are equally affected by stabilizing solutes, if measurements are made at physiologically appropriate temperatures; and (d) global stability and localized flexibility of these A4-LDH orthologs may evolve independently.
Collapse
Affiliation(s)
- P A Fields
- Hopkins Marine Station, Department of Biological Sciences, Stanford University, Pacific Grove, California 93950-3094, USA.
| | | | | |
Collapse
|
22
|
Kanoh S, Niwa E, Osaka Y, Watabe S. Effects of urea on actin-activated Mg2+-ATPase of requiem shark myosin. Comp Biochem Physiol B Biochem Mol Biol 1999. [DOI: 10.1016/s0305-0491(99)00025-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
23
|
Baskakov I, Wang A, Bolen DW. Trimethylamine-N-oxide counteracts urea effects on rabbit muscle lactate dehydrogenase function: a test of the counteraction hypothesis. Biophys J 1998; 74:2666-73. [PMID: 9591690 PMCID: PMC1299606 DOI: 10.1016/s0006-3495(98)77972-x] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Trimethylamine-N-oxide (TMAO) in the cells of sharks and rays is believed to counteract the deleterious effects of the high intracellular concentrations of urea in these animals. It has been hypothesized that TMAO has the generic ability to counteract the effects of urea on protein structure and function, regardless of whether that protein actually evolved in the presence of these two solutes. Rabbit muscle lactate dehydrogenase (LDH) did not evolve in the presence of either solute, and it is used here to test the validity of the counteraction hypothesis. With pyruvate as substrate, results show that its Km and the combined Km of pyruvate and NADH are increased by urea, decreased by TMAO, and in 1:1 and 2:1 mixtures of urea:TMAO the Km values are essentially equivalent to the Km values obtained in the absence of the two solutes. In contrast, values of k(cat) and the Km for NADH as a substrate are unperturbed by urea, TMAO, or urea:TMAO mixtures. All of these effects are consistent with TMAO counteraction of the effects of urea on LDH kinetic parameters, supporting the premise that counteraction is a property of the solvent system and is independent of the evolutionary history of the protein.
Collapse
Affiliation(s)
- I Baskakov
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston 77555-1052, USA
| | | | | |
Collapse
|
24
|
Baskakov I, Bolen DW. Time-dependent effects of trimethylamine-N-oxide/urea on lactate dehydrogenase activity: an unexplored dimension of the adaptation paradigm. Biophys J 1998; 74:2658-65. [PMID: 9591689 PMCID: PMC1299605 DOI: 10.1016/s0006-3495(98)77971-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Given that enzymes in urea-rich cells are believed to be just as sensitive to urea effects as enzymes in non-urea-rich cells, it is argued that time-dependent inactivation of enzymes by urea could become a factor of overriding importance in the biology of urea-rich cells. Time-independent parameters (e.g. Tm, k(cat), and Km) involving protein stability and enzyme function have generally been the focus of inquiries into the efficacy of naturally occurring osmolytes like trimethylamine-N-oxide (TMAO), to offset the deleterious effects of urea on the intracellular proteins in the urea-rich cells of elasmobranchs. However, using urea concentrations found in urea-rich cells of elasmobranches, we have found time-dependent effects on lactate dehydrogenase activity which indicate that TMAO plays the important biological role of slowing urea-induced dissociation of multimeric intracellular proteins. TMAO greatly diminishes the rate of lactate dehydrogenase dissociation and affords significant protection of the enzyme against urea-induced time-dependent inactivation. The effects of TMAO on enzyme inactivation by urea adds a temporal dimension that is an important part of the biology of the adaptation paradigm.
Collapse
Affiliation(s)
- I Baskakov
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston 77555-1052, USA
| | | |
Collapse
|
25
|
Bedford JJ, Harper JL, Leader JP, Yancey PH, Smith RA. Betaine is the principal counteracting osmolyte in tissues of the elephant fish, Callorhincus millii (Elasmobranchii, Holocephali). Comp Biochem Physiol B Biochem Mol Biol 1998. [DOI: 10.1016/s0305-0491(98)00013-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Ballantyne JS. Jaws: The Inside Story. The Metabolism of Elasmobranch Fishes. Comp Biochem Physiol B Biochem Mol Biol 1997. [DOI: 10.1016/s0305-0491(97)00272-1] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
|
28
|
Gillett MB, Suko JR, Santoso FO, Yancey PH. Elevated levels of trimethylamine oxide in muscles of deep-sea gadiform teleosts: A high-pressure adaptation? ACTA ACUST UNITED AC 1997. [DOI: 10.1002/(sici)1097-010x(19971101)279:4<386::aid-jez8>3.0.co;2-k] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
29
|
Fuery CJ, Attwood PV, Withers PC, Yancey PH, Baldwin J, Guppy M. Effects of urea on M4-lactate dehydrogenase from elasmobranchs and urea-accumulating Australian desert frogs. Comp Biochem Physiol B Biochem Mol Biol 1997; 117:143-50. [PMID: 9180022 DOI: 10.1016/s0305-0491(96)00287-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We measured the effect of urea on M4-lactate dehydrogenase (M4-LDH) from elasmobranchs and Australian desert frogs (urea accumulators) and from two animals that do not accumulate urea, the axolotl and the rabbit. An analysis of the effect of urea on the Kd(NADH), V, V/K(m(prr)) and V/K(m(NADH)) shows that in all cases the major effect of urea was on the binding of pyruvate, which fits with data in the literature that show that urea acts as a competitive inhibitor of LDH. The characteristics of the elasmobranch enzymes are consistent with a proposed adaptation model, but the situation for the enzymes from the aestivating frogs is equivocal. Urea (400 mM) had less effect on the K(m(prr)) of M4-LDH from the urea accumulators than it did on the non-accumulators, suggesting a general adaptation and that the enzyme produced by the aestivating frogs (urea accumulators) is kinetically different from that of non-aestivating frogs (non-accumulators). A new approach is used to characterize the overall pattern of adaptation to urea. The pattern is similar in an enzyme from an elasmobranch and an aestivating frog despite the temporary presence of urea in the latter and the phylogenetic difference between these animals.
Collapse
Affiliation(s)
- C J Fuery
- Department of Biochemistry, University of Western Australia, Nedlands, Australia
| | | | | | | | | | | |
Collapse
|
30
|
Nunez S, Trant JM. Isolation of the putative cDNA encoding cholesterol side chain cleavage cytochrome P450 (CYP11A) of the southern stingray (Dasyatis americana). Gene 1997; 187:123-9. [PMID: 9073075 DOI: 10.1016/s0378-1119(96)00734-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cholesterol side chain cleavage cytochrome P450 (P450scc; CYP11A) catalyzes the first step in the production of steroid hormones. By utilizing degenerate oligonucleotide primers in a reverse transcriptase-coupled polymerase chain reaction (RT-PCR), a specific 252 bp fragment of the putative P450scc was amplified from RNA of interrenal tissue (the adrenal cortex homolog) from the southern stingray (Dasyatis americana), blacktip shark (Carcharhinus limbatus), and the spiny dogfish shark (Squalus acanthias). The amino-acid sequences predicted by these PCR products were 73-90% identical to each other. Using the homologous PCR-generated probe, five positive clones were isolated from a cDNA library constructed from interrenal mRNA of the southern stingray. The longest clone (4619 bp) contained the 3'-untranslated region, including four putative polyadenylation signals. Northern blot analysis of stingray interrenal RNA revealed a single transcript of 4.2 kb in length. The incomplete amino-acid sequence predicted by the open reading frame of the cDNA (514 residues in length) is 48% homologous to the trout form and 39-40% homologous to mammalian forms. Even though the stingray P450scc contains an amino terminus longer than the other forms of P450scc, no translation initiation signal (ATG) was evident within the open reading frame. This report presents the first sequence of cytochrome P450scc from this evolutionary unique taxon of vertebrates.
Collapse
Affiliation(s)
- S Nunez
- Department of Zoology and Physiology, Louisiana State University, Baton Rouge 70803, USA
| | | |
Collapse
|
31
|
Grundy JE, Storey KB. Urea and salt effects on enzymes from estivating and non-estivating amphibians. Mol Cell Biochem 1994; 131:9-17. [PMID: 8047069 DOI: 10.1007/bf01075719] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The effects of urea, cations (K+,NH4,Na+,Cs+,Li+), and trimethylamines on the maximal activities and kinetic properties of pyruvate kinase (PK) and phosphofructokinase (PFK) from skeletal muscle were analyzed in two anuran amphibians, an estivating species, the spadefoot toad Scaphiopus couchii, and a semi-aquatic species, the leopard frog Rana pipiens. Urea, which accumulates naturally to levels of 200-300 mM during estivation in toads, had only minor effects on the Vmax, kinetic constants and pH curves of PK from either species and no effects on PFK Vmax or kinetic constants. Trimethylamine oxide neither affected enzyme activity directly or changed enzyme response to urea. By contrast, high KCl (200 mM) lowered the Vmax of toad PFK and of PK from both species and altered the Km values for both substrates of frog PFK. Other cations were even more inhibitory; for example, the Vmax of PK from either species was reduced by more than 80% by the addition of 200 mM NH4Cl, NaCl, CsCi, or LiCl. High KCl also significantly changed the Km values for substrates of toad lactate dehydrogenase and strongly reduced the Vmax of glutamate dehydrogenase and NAD-dependent isocitrate dehydrogenase in both species whereas 300 mM urea had relatively little effect on these enzymes. The perturbing effect of urea on enzymes and the counteracting effect of trimethylamines that has been reported for elasmobranch fishes (that maintain high concentrations of both solutes naturally) does not appear to apply to amphibian enzymes.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J E Grundy
- Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | | |
Collapse
|
32
|
Hartmann JX, Bissoon LM, Poyer JC. Routine establishment of primary elasmobranch cell cultures. IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY : JOURNAL OF THE TISSUE CULTURE ASSOCIATION 1992; 28A:77-9. [PMID: 1537754 DOI: 10.1007/bf02631008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
33
|
Guppies, toadfish, lungfish, coelacanths and frogs: a scenario for the evolution of urea retention in fishes. ACTA ACUST UNITED AC 1991. [DOI: 10.1007/978-94-011-3194-0_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
34
|
Coppes ZL, Somero GN. Temperature-adaptive differences between the M4 lactate dehydrogenases of stenothermal and eurythermal sciaenid fishes. ACTA ACUST UNITED AC 1990. [DOI: 10.1002/jez.1402540203] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
35
|
Mashino T, Fridovich I. Effects of urea and trimethylamine-N-oxide on enzyme activity and stability. Arch Biochem Biophys 1987; 258:356-60. [PMID: 3674879 DOI: 10.1016/0003-9861(87)90355-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The interactions of urea, trimethylamine-N-oxide (TMAO), and related solutes on a number of enzymes were examined. Urea inhibited enzymatic activity and accelerated the thermal inactivation of catalase, whereas TMAO activated some enzymes but inhibited others. The effects of urea and of TMAO, whether parallel or in opposition, were exerted independently. Thus, in those cases where TMAO increases enzymatic activity, it did so to the same relative degree, whether or not urea was present. TMAO markedly decreased the rate of thermal inactivation of catalase, indicating that it does favor compact protein structures. The assumption that TMAO factors compaction of protein structure, whereas urea has the contrary effect, does not lead to the expectation that TMAO must always oppose the effect of urea on enzymatic activity, since the most compact form of an enzyme may not always be the most active form.
Collapse
Affiliation(s)
- T Mashino
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710
| | | |
Collapse
|
36
|
Yancey PH, Siebenaller JF. Coenzyme binding ability of homologs of M4-lactate dehydrogenase in temperature adaptation. BIOCHIMICA ET BIOPHYSICA ACTA 1987; 924:483-91. [PMID: 3593764 DOI: 10.1016/0304-4165(87)90164-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Temperature effects on dissociation constants (Kd), binding enthalpies and apparent Michaelis constants (Km) for NADH, plus Arrhenius activation energies (Ea), substrate turnover numbers (kcat), and NADH 'on' constants (k1) were measured or calculated for M4-lactate dehydrogenase homologs from deep-sea, midwater, shallow-water temperate, and shallow-water tropical teleost fishes, and a mammal. At any single measurement temperature, Km and kcat values were significantly higher for groups adapted to lower temperatures. This pattern of Km values and temperature illustrates a strong evolutionary conservation of Km of NADH. When determined at the average body temperature of each species, the Km values are very similar, resulting in the preservation of the catalytic capacity and regulatory properties of these enzyme homologs at their in situ temperatures. In contrast, Kd values, while varying considerably among species, are not significantly different among the different groups at any one temperature. The ratio of Km to Kd tends to follow a phylogenetic pattern rather than a pattern of environmental adaptation. Thus, evolutionary adjustments in Km are not directly the result of changes in cofactor binding. All the rate constants involved in determining the Km and Kd of NADH (kcat, k1 and k-1) can be modified.
Collapse
|
37
|
Wieser W, Lackner R, Hinterleitner S, Platzer U. Distribution and properties of lactate dehydrogenase isoenzymes in red and white muscle of freshwater fish. FISH PHYSIOLOGY AND BIOCHEMISTRY 1987; 3:151-162. [PMID: 24233443 DOI: 10.1007/bf02180417] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The distribution and kinetics of LDH isoenzymes in red and white muscles of 5 species of salmonids, 4 species of cyprinids and one coregonid species were studied. In all species the white muscles are characterized by the occurrence of only the most cathodic isoenzymes, or groups of isoenzymes. The red muscles contained either the full set of isoenzymes (cyprinids) or a selection in which the anodic forms dominated (salmonids, coregonid). The most striking difference between the two types of muscle was met inCoregonus sp. The temperature profiles of pyruvate affinity are similar in all species of fish studied. On the other hand, Km(pyr) values and degree of pyruvate inhibition are closely related and vary greatly with temperature, with the taxonomic position (and thus biology) of the species, and with electrophoresic mobility of the isoenzyme. Highest affinity and strongest inhibition occurred in the anodic (H4) isoenzymes of cyprinids at low temperature; lowest affinity and zero inhibition in the cathodic isoenzymes (Mα4 → Mβ4) of salmonids and coregonids at high temperature. In salmonids the more recently duplicated loci of the M-group of isoenzymes possess identical Km values at all temperatures, whereas the two older M and H loci differ greatly in this respect. Thus the more recent duplication of LDH loci in salmonids and coregonids may be seen as a mechanism by which the tetramers required for LDH activity can be constructed from more closely related subunits than are provided by the older M and H loci.Some problems in connection with the determination of the kinetic constants of the lactate oxidase reaction are discussed and it is suggested that an alkaline, pyruvate trapping system provides conditions which are more realistic than those of other assay systems. The Km(lactate) values found are in the biological range and, at 20°C, provide further circumstantial evidence that the red muscles of fish should be capable of oxidizing the lactate produced by the white muscles during strenuous exercise. At 4°C the Km(lactate) values are abnormally high in all muscle preparations and thus are not correlated with the Km(pyruvate) values which are lowest at this temperature.
Collapse
Affiliation(s)
- W Wieser
- Institut für Zoologie, Abteilung Zoophysiologie, Universität Innsbruck, Technikerstraβe 25, A-6020, Innsbruck, Austria
| | | | | | | |
Collapse
|
38
|
Moyes CD, Moon TW. Solute effects on the glycine cleavage system of two osmoconformers (Raja erinacea andMya arenaria) and an osmoregulator (Pseudopleuronectes americanus). ACTA ACUST UNITED AC 1987. [DOI: 10.1002/jez.1402420102] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
39
|
Shankar RA, Anderson PM. Purification and properties of glutamine synthetase from liver of Squalus acanthias. Arch Biochem Biophys 1985; 239:248-59. [PMID: 2860871 DOI: 10.1016/0003-9861(85)90833-1] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Ammonia assimilation for urea synthesis by liver mitochondria in marine elasmobranchs involves, initially, formation of glutamine which is subsequently utilized for mitochondrial carbamoyl phosphate synthesis [P. M. Anderson and C. A. Casey (1984) J. Biol. Chem. 259, 456-462]. The purpose of this study was to determine if the glutamine synthetase catalyzing this first step in urea synthesis has properties uniquely related to this function. Glutamine synthetase has been highly purified from isolated liver mitochondria of Squalus acanthias, a representative elasmobranch. The purified enzyme has a molecular weight of approximately 400,000 in the presence of Mg2+, MgATP, and L-glutamate, but dissociates reversibly to a species with a molecular weight of approximately 200,000 in the absence of MgATP and L-glutamate. Association with the glutamine- and acetylglutamate-dependent carbamoyl phosphate synthetase, also located in the mitochondria, could not be demonstrated. The subunit molecular weight is approximately 46,000. The pH optimum of the biosynthesis reaction is 7.1-7.4. The purified enzyme is stabilized by MgATP and glutamate and by ethylene glycol, and is activated by 5-10% ethylene glycol. The apparent Km values for MgATP, L-glutamate, and ammonia (NH4+-NH3) are 0.7, 11.0, and 0.015 mM, respectively. Mg2+ in excess of that required to complex ATP as MgATP is required for maximal activity; Mn2+ cannot replace Mg2+. The enzyme is activated by low concentrations of chloride, bromide, or iodide; this effect appears to be related to decreases in the apparent Km for glutamate. The enzyme is inhibited by physiological concentrations of urea, but is not significantly affected by physiological concentrations of trimethylamine-N-oxide. Except for activation by halogen anions and the very low apparent Km for ammonia, this elasmobranch glutamine synthetase has properties similar to those reported for mammalian and avian glutamine synthetases. The very low apparent Km for ammonia may be specifically related to the unique role of this glutamine synthetase in mitochondrial assimilation of ammonia for urea synthesis.
Collapse
|
40
|
Intracellular pH, Buffering Substances and Proteins: Imidazole Protonation and the Conservation of Protein Structure and Function. ACTA ACUST UNITED AC 1985. [DOI: 10.1007/978-3-642-70613-4_38] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
41
|
|
42
|
Hand SC, Somero GN. Influence of osmolytes, thin filaments, and solubility state on elasmobranch phosphofructokinase in vitro. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 1984; 231:297-302. [PMID: 6237173 DOI: 10.1002/jez.1402310216] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Skeletal muscle phosphofructokinase (PFK) purified from the thornback ray is rapidly inactivated by urea concentrations as low as 50 mM at pH values below 7.0. Urea-induced loss of PFK activity is not offset by trimethylamine-N-oxide. Protection against urea-inactivation in vivo, where urea concentration may approach 0.5 M, may be due to two effects. Filamentous (F) actin and muscle thin filaments moderately reduce the urea-induced loss of PFK activity. The binding of PFK to F-actin and to thin filaments is shown by ultracentrifugation experiments. PFK activity in vivo also may be stabilized in this species by the formation of a particulate enzyme form which is totally resistant to inactivation by physiological concentrations of urea.
Collapse
|
43
|
Dubach JM, Hageman JH. Kinetics of cytoplasmic aspartate aminotransferase from three genotypes of the deer mouse (Peromyscus maniculatus). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. B, COMPARATIVE BIOCHEMISTRY 1984; 78:691-9. [PMID: 6478801 DOI: 10.1016/0305-0491(84)90120-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Three genotypic forms of the cytoplasmic enzyme, aspartate aminotransferase from the deer mouse (Peromyscus maniculatus) were each analyzed kinetically after partial purification. Kmapp and Vmax for aspartate decreased in value as temperature changed from 37.9 to 15 degrees C for all three forms. For the AA genotype, the binding enthalpies were highest at 37.9 degrees C and lowest at 25 degrees C, while for the A'A' form, they were lowest at 37.9 degrees and highest at 25 degrees C. Results for the heterozygote were generally intermediate reflecting the properties of both subunits. Inhibition by glyceraldehyde-3-phosphate was of a non-competitive type for all three genotypes.
Collapse
|
44
|
Place AR, Powers DA. Purification and characterization of the lactate dehydrogenase (LDH-B4) allozymes of Fundulus heteroclitus. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(17)43603-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
45
|
Weber RE. TMAO (trimethylamine oxide)-independence of oxygen affinity and its urea and ATP sensitivities in an elasmobranch hemoglobin. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 1983; 228:551-4. [PMID: 6663264 DOI: 10.1002/jez.1402280315] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Urea and trimethylamine oxide (TMAO), the major osmolytes in the body fluids of marine elasmobranch fishes, are known to exert counteracting effects on the functions of a variety of enzymes and other proteins of vertebrates (cf. Yancey et al., '82). Although urea raises the O2 affinity of the hemoglobin (Hb) of Squalus acanthias and reduces its sensitivity to the major allosteric cofactor, ATP, the oxygenation reactions of the Hb are insensitive to TMAO, reflecting the absence of urea-TMAO counteraction in the absence or in the presence of the phosphate.
Collapse
|
46
|
Bedford JJ. The composition of the fluid compartments of two chondrichthyans, Callorhyncus millii and Squalus acanthias. ACTA ACUST UNITED AC 1983. [DOI: 10.1016/0300-9629(83)90295-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
Somero GN. Environmental adaptation of proteins: strategies for the conservation of critical functional and structural traits. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. A, COMPARATIVE PHYSIOLOGY 1983; 76:621-33. [PMID: 6139233 DOI: 10.1016/0300-9629(83)90464-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Comparative studies of lactate dehydrogenases (LDHs) and skeletal muscle actins from vertebrates adapted to widely different temperatures and hydrostatic pressures reveal major conservative trends in protein evolution and adaptation. For enzymes, ligand binding, as estimated by apparent Michaelis constant (Km) values, is strongly conserved at physiological temperatures, pressures, intracellular pH values and osmotic compositions of different organisms. The catalytic rate constants (kcat values) of enzyme homologues are highest for enzymes of low-body-temperature organisms, a trend that can be interpreted in terms of temperature compensation of metabolism. For skeletal muscle actins, the enthalpy and entropy changes accompanying the assembly of filamentous (F) actin from globular (G) actin are highest in high-body-temperature species and especially low in polar and deep-sea fishes. The thermal stability of G-actin is positively correlated with adaptation temperature, except in the case of actins of deep-sea fishes, which are also highly heat stable. Hydrophobic interactions between actin subunits may be of reduced importance in low-body-temperature animals and, especially, in deep-sea fishes. The differences in enthalpy and entropy changes during the G-to-F transformation favor a close conservation of the equilibrium constant for actin assembly under physiological conditions of temperature and pressure for different species. These adaptive patterns in enzymes and actin are likely to reflect changes in protein primary structure. The appropriate values for protein traits such as ligand binding abilities and catalytic rates are also shown to be established by the composition of the low molecular weight constituents of the cytosol. For example, the use of a combination of urea and methylamine solutes for osmoregulation by marine elasmobranchs is shown to be a mechanism which permits the conservation of key protein traits at high osmolarities. The methylamine solutes such as trimethylamine-N-oxide have effects on proteins opposite to those of urea, and at the approximately 2:1 concentration ratio of urea to methylamines, these counteracting effects are virtually complete. Regulation of hydrogen ion activity (pH) also is shown to play a major role in the conservation of critical protein traits. The importance of temperature-dependent pH in ectotherms is discussed in terms of stabilizing binding abilities and maintaining correct regulatory and structural sensitivities of proteins. The buffering capacity of tissues reflects the potential of the tissue for generating acidic end-products during anaerobic metabolism. Skeletal muscle, especially white locomotory muscle of fishes, is highly buffered relative to red locomotory muscle and heart muscle.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
48
|
Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN. Living with water stress: evolution of osmolyte systems. Science 1982; 217:1214-22. [PMID: 7112124 DOI: 10.1126/science.7112124] [Citation(s) in RCA: 2294] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Striking convergent evolution is found in the properties of the organic osmotic solute (osmolyte) systems observed in bacteria, plants, and animals. Polyhydric alcohols, free amino acids and their derivatives, and combinations of urea and methylamines are the three types of osmolyte systems found in all water-stressed organisms except the halobacteria. The selective advantages of the organic osmolyte systems are, first, a compatibility with macromolecular structure and function at high or variable (or both) osmolyte concentrations, and, second, greatly reduced needs for modifying proteins to function in concentrated intracellular solutions. Osmolyte compatibility is proposed to result from the absence of osmolyte interactions with substrates and cofactors, and the nonperturbing or favorable effects of osmolytes on macromolecular-solvent interactions.
Collapse
|
49
|
Jones RM. Urea synthesis and osmotic stress in the terrestrial anurans Bufo woodhousei and Hyla cadaverina. ACTA ACUST UNITED AC 1982. [DOI: 10.1016/0300-9629(82)90402-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
50
|
Purification and properties of the glutamine- and N-acetyl-L-glutamate-dependent carbamoyl phosphate synthetase from liver of Squalus acanthias. J Biol Chem 1981. [DOI: 10.1016/s0021-9258(18)43258-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|