1
|
Toplu N, Oğuzoğlu TÇ. Caprine arthritis encephalitis virus-induced apoptosis associated with brain lesions in naturally infected kids. J Comp Pathol 2023; 206:36-43. [PMID: 37797470 DOI: 10.1016/j.jcpa.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/19/2023] [Accepted: 08/31/2023] [Indexed: 10/07/2023]
Abstract
Acute demyelinating leucoencephalomyelitis was the most conspicuous microscopic change in the brain and spinal cord of kids infected with caprine arthritis encephalitis virus (CAEV). TUNEL positivity and labelling of anti-bax and anti-caspases-3, -8 and -9 were found in a distinct population of glial cells, mainly at the edges of the demyelinated plaques and perivascular areas and, to a lesser extent, in neurons. Double labelling revealed that most of these apoptotic cells in the demyelinated plaques were astrocytes and a few were oligodendroglia. In contrast, expression of bcl-2, an anti-apoptotic protein, was found mainly in neurons of the brainstem and cerebellum and motor neurons of the spinal cord, but was restricted in glial cells. These results suggest that apoptosis plays an important role in the pathogenesis of CAE demyelinating encephalitis.
Collapse
Affiliation(s)
- Nihat Toplu
- Department of Pathology, Faculty of Veterinary Medicine, University of Aydın Adnan Menderes, 09016-Isikli, Aydin, Turkiye.
| | - Tuba Ç Oğuzoğlu
- Department of Virology, Faculty of Veterinary Medicine, University of Ankara, Diskapi, 06110 Ankara, Turkiye
| |
Collapse
|
2
|
Ferguson JM, González-González A, Kaiser JA, Winzer SM, Anast JM, Ridenhour B, Miura TA, Parent CE. Hidden variable models reveal the effects of infection from changes in host survival. PLoS Comput Biol 2023; 19:e1010910. [PMID: 36812266 PMCID: PMC9987815 DOI: 10.1371/journal.pcbi.1010910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/06/2023] [Accepted: 02/01/2023] [Indexed: 02/24/2023] Open
Abstract
The impacts of disease on host vital rates can be demonstrated using longitudinal studies, but these studies can be expensive and logistically challenging. We examined the utility of hidden variable models to infer the individual effects of infectious disease from population-level measurements of survival when longitudinal studies are not possible. Our approach seeks to explain temporal deviations in population-level survival after introducing a disease causative agent when disease prevalence cannot be directly measured by coupling survival and epidemiological models. We tested this approach using an experimental host system (Drosophila melanogaster) with multiple distinct pathogens to validate the ability of the hidden variable model to infer per-capita disease rates. We then applied the approach to a disease outbreak in harbor seals (Phoca vituline) that had data on observed strandings but no epidemiological data. We found that our hidden variable modeling approach could successfully detect the per-capita effects of disease from monitored survival rates in both the experimental and wild populations. Our approach may prove useful for detecting epidemics from public health data in regions where standard surveillance techniques are not available and in the study of epidemics in wildlife populations, where longitudinal studies can be especially difficult to implement.
Collapse
Affiliation(s)
- Jake M. Ferguson
- Department of Biology, University of Hawaiʻi at Mānoa, Honolulu, Hawaii, United States of America
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, Idaho, United States of America
| | - Andrea González-González
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, Idaho, United States of America
- Department of Biology, University of Florida, Gainesville, Florida, United States of America
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Johnathan A. Kaiser
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Sara M. Winzer
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Justin M. Anast
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Ben Ridenhour
- Department of Mathematics, University of Idaho, Moscow, Idaho, United States of America
| | - Tanya A. Miura
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, Idaho, United States of America
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Christine E. Parent
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, Idaho, United States of America
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, Idaho, United States of America
| |
Collapse
|
3
|
Phenotypic and Transcriptional Changes of Pulmonary Immune Responses in Dogs Following Canine Distemper Virus Infection. Int J Mol Sci 2022; 23:ijms231710019. [PMID: 36077417 PMCID: PMC9456005 DOI: 10.3390/ijms231710019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/25/2022] Open
Abstract
Canine distemper virus (CDV), a morbillivirus within the family Paramyxoviridae, is a highly contagious infectious agent causing a multisystemic, devastating disease in a broad range of host species, characterized by severe immunosuppression, encephalitis and pneumonia. The present study aimed at investigating pulmonary immune responses of CDV-infected dogs in situ using immunohistochemistry and whole transcriptome analyses by bulk RNA sequencing. Spatiotemporal analysis of phenotypic changes revealed pulmonary immune responses primarily driven by MHC-II+, Iba-1+ and CD204+ innate immune cells during acute and subacute infection phases, which paralleled pathologic lesion development and coincided with high viral loads in CDV-infected lungs. CD20+ B cell numbers initially declined, followed by lymphoid repopulation in the advanced disease phase. Transcriptome analysis demonstrated an increased expression of transcripts related to innate immunity, antiviral defense mechanisms, type I interferon responses and regulation of cell death in the lung of CDV-infected dogs. Molecular analyses also revealed disturbed cytokine responses with a pro-inflammatory M1 macrophage polarization and impaired mucociliary defense in CDV-infected lungs. The exploratory study provides detailed data on CDV-related pulmonary immune responses, expanding the list of immunologic parameters potentially leading to viral elimination and virus-induced pulmonary immunopathology in canine distemper.
Collapse
|
4
|
Groch KR, Díaz-Delgado J, Santos-Neto EB, Ikeda JMP, Carvalho RR, Oliveira RB, Guari EB, Flach L, Sierra E, Godinho AI, Fernández A, Keid LB, Soares RM, Kanamura CT, Favero C, Ferreira-Machado E, Sacristán C, Porter BF, Bisi TL, Azevedo AF, Lailson-Brito J, Catão-Dias JL. The Pathology of Cetacean Morbillivirus Infection and Comorbidities in Guiana Dolphins During an Unusual Mortality Event (Brazil, 2017-2018). Vet Pathol 2020; 57:845-857. [PMID: 32964811 DOI: 10.1177/0300985820954550] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cetacean morbillivirus (CeMV; Paramyxoviridae) is the most significant pathogen of cetaceans worldwide. The novel "multi-host" Guiana dolphin (Sotalia guianensis; GD)-CeMV strain is reported in South American waters and infects Guiana dolphins and southern right whales (Eubalaena australis). This study aimed to describe the pathologic findings, GD-CeMV viral antigen distribution and detection by RT-PCR (reverse transcriptase polymerase chain reaction), and infectious comorbidities in 29 Guiana dolphins that succumbed during an unusual mass-mortality event in Rio de Janeiro state, Brazil, between November 2017 and March 2018. The main gross findings were lack of ingesta, pulmonary edema, ascites, icterus, hepatic lipidosis, multicentric lymphadenomegaly, as well as pneumonia, polyserositis, and multiorgan vasculitis caused by Halocercus brasiliensis. Microscopically, the primary lesions were bronchointerstitial pneumonia and multicentric lymphoid depletion. The severity and extent of the lesions paralleled the distribution and intensity of morbilliviral antigen. For the first time in cetaceans, morbilliviral antigen was detected in salivary gland, optic nerve, heart, diaphragm, parietal and visceral epithelium of glomeruli, vulva, and thyroid gland. Viral antigen within circulating leukocytes suggested this as a mechanism of dissemination within the host. Comorbidities included disseminated toxoplasmosis, mycosis, ciliated protozoosis, and bacterial disease including brucellosis. These results provide strong evidence for GD-CeMV as the main cause of this unusual mass-mortality event.
Collapse
Affiliation(s)
| | - Josué Díaz-Delgado
- 28133University of São Paulo, São Paulo, Brazil.,67283Texas A&M University, College Station, TX, USA
| | | | - Joana M P Ikeda
- 28130Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafael R Carvalho
- 28130Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raissa B Oliveira
- 28130Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Emi B Guari
- 28130Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonardo Flach
- Instituto Boto Cinza, Mangaratiba, Rio de Janeiro, Brazil
| | - Eva Sierra
- 16750University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Ana I Godinho
- 16750University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Antonio Fernández
- 16750University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Lara B Keid
- 28133University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | - Tatiana L Bisi
- 28130Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
5
|
Klemens J, Ciurkiewicz M, Chludzinski E, Iseringhausen M, Klotz D, Pfankuche VM, Ulrich R, Herder V, Puff C, Baumgärtner W, Beineke A. Neurotoxic potential of reactive astrocytes in canine distemper demyelinating leukoencephalitis. Sci Rep 2019; 9:11689. [PMID: 31406213 PMCID: PMC6690900 DOI: 10.1038/s41598-019-48146-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 07/25/2019] [Indexed: 12/20/2022] Open
Abstract
Canine distemper virus (CDV) causes a fatal demyelinating leukoencephalitis in young dogs resembling human multiple sclerosis. Astrocytes are the main cellular target of CDV and undergo reactive changes already in pre-demyelinating brain lesions. Based on their broad range of beneficial and detrimental effects in the injured brain reactive astrogliosis is in need of intensive investigation. The aim of the study was to characterize astrocyte plasticity during the course of CDV-induced demyelinating leukoencephalitis by the aid of immunohistochemistry, immunofluorescence and gene expression analysis. Immunohistochemistry revealed the presence of reactive glial fibrillary acidic protein (GFAP)+ astrocytes with increased survivin and reduced aquaporin 4, and glutamine synthetase protein levels, indicating disturbed blood brain barrier function, glutamate homeostasis and astrocyte maladaptation, respectively. Gene expression analysis revealed 81 differentially expressed astrocyte-related genes with a dominance of genes associated with neurotoxic A1-polarized astrocytes. Accordingly, acyl-coA synthetase long-chain family member 5+/GFAP+, and serglycin+/GFAP+ cells, characteristic of A1-astrocytes, were found in demyelinating lesions by immunofluorescence. In addition, gene expression revealed a dysregulation of astrocytic function including disturbed glutamate homeostasis and altered immune function. Observed findings indicate an astrocyte polarization towards a neurotoxic phenotype likely contributing to lesion initiation and progression in canine distemper leukoencephalitis.
Collapse
Affiliation(s)
- J Klemens
- Department of Pathology, University of Veterinary Medicine Hanover, Hannover, Germany
| | - M Ciurkiewicz
- Department of Pathology, University of Veterinary Medicine Hanover, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - E Chludzinski
- Department of Pathology, University of Veterinary Medicine Hanover, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - M Iseringhausen
- Department of Pathology, University of Veterinary Medicine Hanover, Hannover, Germany
| | - D Klotz
- Department of Pathology, University of Veterinary Medicine Hanover, Hannover, Germany
| | - V M Pfankuche
- Department of Pathology, University of Veterinary Medicine Hanover, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - R Ulrich
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald, Insel Riems, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - V Herder
- Department of Pathology, University of Veterinary Medicine Hanover, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - C Puff
- Department of Pathology, University of Veterinary Medicine Hanover, Hannover, Germany
| | - W Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hanover, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - A Beineke
- Department of Pathology, University of Veterinary Medicine Hanover, Hannover, Germany.
- Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
6
|
Song K, Wu ZM, Peng LY, Yuan M, Huang JN, Zhang CL, Fu BD, Yi PF, Shen HQ. Canine distemper virus increased the differentiation of CD4 +CD8 + T cells and mRNA expression of inflammatory cytokines in peripheral blood lymphocyte from canine. Microb Pathog 2019; 131:254-258. [PMID: 30999020 DOI: 10.1016/j.micpath.2019.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/12/2019] [Accepted: 04/12/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Canine distemper virus (CDV) can cause a highly contagious disease to canid. However, how CDV affects peripheral blood lymphocyte (PBL) remains unclear. METHODS In this study, CDV infected PBL was cultured to investigate the effect of CDV on the differentiation of lymphocytes and the mRNA expression of inflammatory cytokines in PBL. RESULTS The results showed that CDV changed the phenotype of lymphocytes and increased the percentage of CD4+CD8+ T cells. To explore the effect of immune response of lymphocytes to CDV, the mRNA expression of pro- and anti-inflammatory cytokines was examined. Interleukin (IL-6, IL-12B), and tumor necrosis factor (TNF)-α mRNA expression was significantly increased at 12-48 h after CDV infection. IL-10 mRNA expression was dramatically enhanced at 12-36 h after CDV infection. However, IL-4 and transforming growth factor (TGF-β) were not response to CDV infection. These results indicated that PBL differentiated intoCD4+CD8+ T cells and improved the inflammatory response to CDV infection. CONCLUSIONS After CDV infection, PBL differentiated into CD4+CD8+ T cells and initiated inflammatory response.
Collapse
Affiliation(s)
- Ke Song
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Zong-Mei Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Lu-Yuan Peng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Meng Yuan
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Jiang-Ni Huang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Chun-Lei Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Ben-Dong Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin 130062, China.
| | - Peng-Fei Yi
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Hai-Qing Shen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin 130062, China.
| |
Collapse
|
7
|
Spitzbarth I, Lempp C, Kegler K, Ulrich R, Kalkuhl A, Deschl U, Baumgärtner W, Seehusen F. Immunohistochemical and transcriptome analyses indicate complex breakdown of axonal transport mechanisms in canine distemper leukoencephalitis. Brain Behav 2016; 6:e00472. [PMID: 27247850 PMCID: PMC4864272 DOI: 10.1002/brb3.472] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 02/24/2016] [Accepted: 03/11/2016] [Indexed: 12/03/2022] Open
Abstract
INTRODUCTION CDV-DL (Canine distemper virus-induced demyelinating leukoencephalitis) represents a spontaneously occurring animal model for demyelinating disorders. Axonopathy represents a key pathomechanism in this disease; however, its underlying pathogenesis has not been addressed in detail so far. This study aimed at the characterization of axonal cytoskeletal, transport, and potential regenerative changes with a parallel focus upon Schwann cell remyelination. METHODS Immunohistochemistry of canine cerebellar tissue as well as a comparative analysis of genes from an independent microarray study were performed. RESULTS Increased axonal immunoreactivity for nonphosphorylated neurofilament was followed by loss of cytoskeletal and motor proteins. Interestingly, a subset of genes encoding for neurofilament subunits and motor proteins was up-regulated in the chronic stage compared to dogs with subacute CDV-DL. However, immunohistochemically, hints for axonal regeneration were restricted to up-regulated axonal positivity of hypoxia-inducible factor 1 alpha, while growth-associated protein 43, erythropoietin and its receptor were not or even down-regulated. Periaxin-positive structures, indicative of Schwann cell remyelination, were only detected within few advanced lesions. CONCLUSIONS The present findings demonstrate a complex sequence of axonal cytoskeletal breakdown mechanisms. Moreover, though sparse, this is the first report of Schwann cell remyelination in CDV-DL. Facilitation of these very limited endogenous regenerative responses represents an important topic for future research.
Collapse
Affiliation(s)
- Ingo Spitzbarth
- Department of Pathology University of Veterinary Medicine Hannover Foundation Bünteweg 17 30559 Hannover Germany; Center for Systems Neuroscience Bünteweg 2 30559 Hannover Germany
| | - Charlotte Lempp
- Department of Pathology University of Veterinary Medicine Hannover Foundation Bünteweg 17 30559 Hannover Germany
| | - Kristel Kegler
- Department of Pathology University of Veterinary Medicine Hannover Foundation Bünteweg 17 30559 Hannover Germany; Center for Systems Neuroscience Bünteweg 2 30559 Hannover Germany
| | - Reiner Ulrich
- Department of Pathology University of Veterinary Medicine Hannover Foundation Bünteweg 17 30559 Hannover Germany; Center for Systems Neuroscience Bünteweg 2 30559 Hannover Germany
| | - Arno Kalkuhl
- Department of Non-Clinical Drug Safety Boehringer Ingelheim Pharma GmbH & Co KG Biberach (Riß) Germany
| | - Ulrich Deschl
- Department of Non-Clinical Drug Safety Boehringer Ingelheim Pharma GmbH & Co KG Biberach (Riß) Germany
| | - Wolfgang Baumgärtner
- Department of Pathology University of Veterinary Medicine Hannover Foundation Bünteweg 17 30559 Hannover Germany; Center for Systems Neuroscience Bünteweg 2 30559 Hannover Germany
| | - Frauke Seehusen
- Department of Pathology University of Veterinary Medicine Hannover Foundation Bünteweg 17 30559 Hannover Germany
| |
Collapse
|
8
|
Kabak YB, Sozmen M, Yarim M, Guvenc T, Karayigit MO, Gulbahar MY. Immunohistochemical detection of autophagy-related microtubule-associated protein 1 light chain 3 (LC3) in the cerebellums of dogs naturally infected with canine distemper virus. Biotech Histochem 2015; 90:601-7. [PMID: 26179070 DOI: 10.3109/10520295.2015.1064999] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We investigated the expression of microtubule-associated protein 1 light chain 3 (LC3) protein in the cerebellums of dogs infected with canine distemper virus (CDV) using immunohistochemistry to detect autophagy. The cerebellums of 20 dogs infected with CDV were used. Specimens showing demyelination of white matter were considered to have an acute infection, whereas specimens showing signs of severe perivascular cuffing and demyelination of white matter were classified as having chronic CDV. Cerebellar sections were immunostained with CDV and LC3 antibodies. The cytoplasm of Purkinje cells, granular layer cells, motor neurons in large cerebellar ganglia and some neurons in white matter were positive for the LC3 antibody in both the control and CDV-infected dogs. In the infected cerebellums, however, white matter was immunostained more intensely, particularly the neurons and gemistocytic astrocytes in the demyelinated areas, compared to controls. Autophagy also was demonstrated in CDV-positive cells using double immunofluorescence staining. Our findings indicate that increased autophagy in the cerebellum of dogs naturally infected with CDV may play a role in transferring the virus from cell to cell.
Collapse
Affiliation(s)
- Y B Kabak
- a Department of Pathology , Faculty of Veterinary Medicine, Ondokuz Mayis University , Samsun , Turkey
| | - M Sozmen
- a Department of Pathology , Faculty of Veterinary Medicine, Ondokuz Mayis University , Samsun , Turkey
| | - M Yarim
- a Department of Pathology , Faculty of Veterinary Medicine, Ondokuz Mayis University , Samsun , Turkey
| | - T Guvenc
- a Department of Pathology , Faculty of Veterinary Medicine, Ondokuz Mayis University , Samsun , Turkey
| | - M O Karayigit
- b Department of Pathology , Faculty of Veterinary Medicine, Erciyes University , Kayseri , Turkey
| | - M Y Gulbahar
- a Department of Pathology , Faculty of Veterinary Medicine, Ondokuz Mayis University , Samsun , Turkey
| |
Collapse
|
9
|
Duignan PJ, Van Bressem MF, Baker JD, Barbieri M, Colegrove KM, De Guise S, de Swart RL, Di Guardo G, Dobson A, Duprex WP, Early G, Fauquier D, Goldstein T, Goodman SJ, Grenfell B, Groch KR, Gulland F, Hall A, Jensen BA, Lamy K, Matassa K, Mazzariol S, Morris SE, Nielsen O, Rotstein D, Rowles TK, Saliki JT, Siebert U, Waltzek T, Wellehan JF. Phocine distemper virus: current knowledge and future directions. Viruses 2014; 6:5093-134. [PMID: 25533658 PMCID: PMC4276944 DOI: 10.3390/v6125093] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 12/05/2014] [Accepted: 12/11/2014] [Indexed: 11/16/2022] Open
Abstract
Phocine distemper virus (PDV) was first recognized in 1988 following a massive epidemic in harbor and grey seals in north-western Europe. Since then, the epidemiology of infection in North Atlantic and Arctic pinnipeds has been investigated. In the western North Atlantic endemic infection in harp and grey seals predates the European epidemic, with relatively small, localized mortality events occurring primarily in harbor seals. By contrast, PDV seems not to have become established in European harbor seals following the 1988 epidemic and a second event of similar magnitude and extent occurred in 2002. PDV is a distinct species within the Morbillivirus genus with minor sequence variation between outbreaks over time. There is now mounting evidence of PDV-like viruses in the North Pacific/Western Arctic with serological and molecular evidence of infection in pinnipeds and sea otters. However, despite the absence of associated mortality in the region, there is concern that the virus may infect the large Pacific harbor seal and northern elephant seal populations or the endangered Hawaiian monk seals. Here, we review the current state of knowledge on PDV with particular focus on developments in diagnostics, pathogenesis, immune response, vaccine development, phylogenetics and modeling over the past 20 years.
Collapse
Affiliation(s)
- Pádraig J. Duignan
- Department of Ecosystem and Public Health, University of Calgary, Calgary, AB T2N 4Z6, Canada; E-Mails: (P.D.); (K.L.)
| | - Marie-Françoise Van Bressem
- Cetacean Conservation Medicine Group (CMED), Peruvian Centre for Cetacean Research (CEPEC), Pucusana, Lima 20, Peru; E-Mail:
| | - Jason D. Baker
- Pacific Islands Fisheries Science Center, National Marine Fisheries Service, NOAA, 1845 WASP Blvd., Building 176, Honolulu, Hawaii 96818, USA; E-Mails: (J.D.B.); (M.B.)
| | - Michelle Barbieri
- Pacific Islands Fisheries Science Center, National Marine Fisheries Service, NOAA, 1845 WASP Blvd., Building 176, Honolulu, Hawaii 96818, USA; E-Mails: (J.D.B.); (M.B.)
- The Marine Mammal Centre, Sausalito, CA 94965, USA; E-Mail:
| | - Kathleen M. Colegrove
- Zoological Pathology Program, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Maywood, IL 60153, USA; E-Mail:
| | - Sylvain De Guise
- Department of Pathobiology and Veterinary Science, and Connecticut Sea Grant College Program, University of Connecticut, Storrs, CT 06269, USA; E-Mail:
| | - Rik L. de Swart
- Department of Viroscience, Erasmus MC, 3015 CN Rotterdam, The Netherlands; E-Mail:
| | - Giovanni Di Guardo
- Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy; E-Mail:
| | - Andrew Dobson
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544-2016, USA; E-Mails: (A.D.); (B.G.); (S.E.M.)
| | - W. Paul Duprex
- Department of Microbiology, Boston University School of Medicine, Boston University, 620 Albany Street, Boston, MA 02118, USA; E-Mail:
| | - Greg Early
- Greg Early, Integrated Statistics, 87 Water St, Woods Hole, MA 02543, USA; E-Mail:
| | - Deborah Fauquier
- National Marine Fisheries Service/National Oceanographic and Atmospheric Administration, Marine Mammal Health and Stranding Response Program, Silver Spring, MD 20910, USA; E-Mails: (D.F.); (T.K.R.)
| | - Tracey Goldstein
- One Health Institute, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; E-Mail:
| | - Simon J. Goodman
- School of Biology, University of Leeds, Leeds LS2 9JT, UK; E-Mail:
| | - Bryan Grenfell
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544-2016, USA; E-Mails: (A.D.); (B.G.); (S.E.M.)
- Fogarty International Center, National Institutes of Health, Bethesda, MD 20892-2220, USA
| | - Kátia R. Groch
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil; E-Mail:
| | - Frances Gulland
- The Marine Mammal Centre, Sausalito, CA 94965, USA; E-Mail:
- Marine Mammal Commission, 4340 East-West Highway, Bethesda, MD 20814, USA
| | - Ailsa Hall
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St. Andrews, St. Andrews, Fife KY16 8LB, UK; E-Mail:
| | - Brenda A. Jensen
- Department of Natural Sciences, Hawai’i Pacific University, Kaneohe, HI 96744, USA; E-Mail:
| | - Karina Lamy
- Department of Ecosystem and Public Health, University of Calgary, Calgary, AB T2N 4Z6, Canada; E-Mails: (P.D.); (K.L.)
| | - Keith Matassa
- Keith Matassa, Pacific Marine Mammal Center, 20612 Laguna Canyon Road, Laguna Beach, CA 92651, USA; E-Mail:
| | - Sandro Mazzariol
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro Padua, Italy; E-Mail:
| | - Sinead E. Morris
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544-2016, USA; E-Mails: (A.D.); (B.G.); (S.E.M.)
| | - Ole Nielsen
- Department of Fisheries and Oceans Canada, Central and Arctic Region, 501 University Crescent, Winnipeg, MB R3T 2N6, Canada; E-Mail:
| | - David Rotstein
- David Rotstein, Marine Mammal Pathology Services, 19117 Bloomfield Road, Olney, MD 20832, USA; E-Mail:
| | - Teresa K. Rowles
- National Marine Fisheries Service/National Oceanographic and Atmospheric Administration, Marine Mammal Health and Stranding Response Program, Silver Spring, MD 20910, USA; E-Mails: (D.F.); (T.K.R.)
| | - Jeremy T. Saliki
- Athens Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Georgia, GA 30602, USA; E-Mail:
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover 30173, Germany; E-Mail:
| | - Thomas Waltzek
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, FL 32611, USA; E-Mail:
| | - James F.X. Wellehan
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, FL 32610, USA; E-Mail:
| |
Collapse
|
10
|
Spitzbarth I, Baumgärtner W, Beineke A. The role of pro- and anti-inflammatory cytokines in the pathogenesis of spontaneous canine CNS diseases. Vet Immunol Immunopathol 2012; 147:6-24. [PMID: 22542984 DOI: 10.1016/j.vetimm.2012.04.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 04/02/2012] [Accepted: 04/03/2012] [Indexed: 11/16/2022]
Abstract
Dogs are comparatively frequently affected by various spontaneously occurring inflammatory and degenerative central nervous system (CNS) conditions, and immunopathological processes are a hallmark of the associated neuropathology. Due to the low regenerative capacity of the CNS a sophisticated understanding of the underlying molecular basis for disease initiation, progression and remission in canine CNS diseases represents a prerequisite for the development of novel therapeutical approaches. In addition, as many spontaneous canine CNS diseases share striking similarities with their human counterpart, knowledge about the immune pathogenesis may in part be translated for a better understanding of certain human diseases. In addition to cytokine-driven differentiation of peripheral leukocytes including different subsets of T cells recent research suggests a pivotal role of these mediators also in phenotype polarization of resident glial cells. Cytokines thus represent the key mediators of the local and systemic immune response in CNS diseases and their orchestration significantly decides on either lesion progression or remission. The aim of the present review is to summarize the growing number of data focusing on the molecular basis of the immune response during spontaneous canine CNS diseases and to detail the effect of cytokines on the immune pathogenesis of selected idiopathic, infectious, and traumatic canine CNS diseases. Steroid-responsive meningitis arteritis (SRMA) represents a unique idiopathic disease of leptomeningeal blood vessels characterized by excessive IgA secretion into the cerebrospinal fluid. Recent reports have given sophisticated insights into the cytokine-driven, immune-mediated pathogenesis of SRMA that is characterized by a biased T helper 2 cell response. Canine distemper associated leukoencephalitis represents an important spontaneously occurring disease that allows investigations on the basic pathogenesis of immune-mediated myelin loss. It is characterized by an early virus-induced up-regulation of pro-inflammatory cytokines with chronic bystander immune-mediated demyelinating processes. Lastly, canine spinal cord injury (SCI) shares many similarities with the human counterpart and most commonly results from intervertebral disk disease. The knowledge of its pathogenesis is largely restricted to experimental studies in rodents, and the impact of immune processes that accompany secondary injury is discussed controversially. Recent investigations on canine SCI highlight the pivotal role of pro-inflammatory cytokine expression that is paralleled by a dominating reaction of microglia/macrophages potentially indicating a polarization of these immune cells into a neurotoxic and harmful phenotype. This report will review the role of cytokines in the immune processes of the mentioned representative canine CNS diseases and highlight the importance of cytokine/cytokine interaction as a useful therapeutic target in canine CNS diseases.
Collapse
Affiliation(s)
- I Spitzbarth
- Department of Pathology, University of Veterinary Medicine, Bünteweg 17, 30559 Hannover, Germany
| | | | | |
Collapse
|
11
|
Silva MC, Fighera RA, Mazzanti A, Brum JS, Pierezan F, Barros CS. Neuropatologia da cinomose canina: 70 casos (2005-2008). PESQUISA VETERINARIA BRASILEIRA 2009. [DOI: 10.1590/s0100-736x2009000800008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Este estudo teve como objetivo realizar uma investigação anátomo-patológica detalhada das lesões e sua distribuição no sistema nervoso central (SNC) de cães com cinomose. Foram avaliadas secções padronizadas do encéfalo e da medula espinhal de 70 cães. Os casos foram agrupados de acordo com a idade dos cães e classificados conforme a evolução das lesões. Os resultados permitem concluir que: (1) encefalomielite induzida pelo vírus da cinomose canina é mais prevalente em filhotes e adultos; (2) lesões macroscópicas no SNC ocorrem com baixa freqüência; (3) o encéfalo é mais acometido do que a medula espinhal; (4) as cinco regiões anatômicas mais afetadas do encéfalo são, em ordem decrescente de freqüência, o cerebelo, o diencéfalo, o lobo frontal, a ponte e o mesencéfalo; (5) a região anatômica mais afetada da medula espinhal é o segmento cervical cranial (C1-C5); (6) lesões subagudas e crônicas são mais comuns do que lesões agudas; (7) desmielinização é a lesão mais prevalente e ocorre principalmente no cerebelo, na ponte e no diencéfalo, quase sempre acompanhada de astrogliose e inflamação não-supurativa; (8) na maior parte dos casos em que há astrogliose, observam-se astrócitos gemistocíticos, freqüentemente com formação de sincícios; (9) leptomeningite não-supurativa, malacia e necrose cortical laminar são lesões relativamente freqüentes no encéfalo, mas não na medula espinhal; (10) corpúsculos de inclusão no encéfalo são muito comuns, ocorrem principalmente em astrócitos e com freqüência menor em neurônios; no entanto, independentemente da célula afetada, são vistos predominantemente no núcleo; (11) uma classificação da encefalite na cinomose com base em síndromes clínicas relacionadas com a idade do cão é imprecisa.
Collapse
|
12
|
Bhaiyat MI, Ochiai K, Itakura C, Islam MA, Kida H. Brain lesions in young broiler chickens naturally infected with a mesogenic strain of Newcastle disease virus. Avian Pathol 2009; 23:693-708. [PMID: 18671135 DOI: 10.1080/03079459408419038] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Thirty-nine 4- to 5-week-old broiler chickens from an outbreak of Newcastle disease (ND) in Japan were examined pathologically. The causative agent was identified as a mesogenic strain of ND virus. Predominant gross lesions included haemorrhage in the lungs, congestion of the trachea, splenomegaly, atrophy of the thymus and bursa of Fabricius, and whitish discolouration of the brain. Microscopically, there was mild haemorrhagic pneumonia, catarrhal tracheitis, lymphoid necrosis in the spleen, thymus, bursa of Fabricius and caecum and diffuse non-suppurative encephalitis. Lesions associated with encephalitis were characterized by multifocal perivascular cuffing, malacia, demyelination and proliferative vasculitis. Malacic lesions occurred in the hyperstriatum, neostriatum, subleptomeningeal and periventricular regions of the cerebrum, whereas demyelination was seen mainly in the brain stem. The morphological changes that occurred in the brain in these cases were distinctive and the lesions in the lymphoid tissues were related to concurrent infection with infectious bursal disease virus.
Collapse
Affiliation(s)
- M I Bhaiyat
- Departments of Comparative Pathology, Hokkaido University, Sapporo, Japan
| | | | | | | | | |
Collapse
|
13
|
Griffin DE, Oldstone MBA, von Messling V. Ferrets as a model for morbillivirus pathogenesis, complications, and vaccines. Curr Top Microbiol Immunol 2009; 330:73-87. [PMID: 19203105 PMCID: PMC7121116 DOI: 10.1007/978-3-540-70617-5_4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The ferret is a standard laboratory animal that can be accommodated in most animal facilities. While not susceptible to measles, ferrets are a natural host of canine distemper virus (CDV), the closely related carnivore morbillivirus. CDV infection in ferrets reproduces all clinical signs associated with measles in humans, including the typical rash, fever, general immunosuppression, gastrointestinal and respiratory involvement, and neurological complications. Due to this similarity, experimental CDV infection of ferrets is frequently used to assess the efficacy of novel vaccines, and to characterize pathogenesis mechanisms. In addition, direct intracranial inoculation of measles isolates from subacute sclerosing panencephalitis (SSPE) patients results in an SSPE-like disease in animals that survive the acute phase. Since the advent of reverse genetics systems that allow the targeted manipulation of viral genomes, the model has been used to evaluate the contribution of the accessory proteins C and V, and signalling lymphocyte activation molecule (SLAM)-binding to immunosuppression and overall pathogenesis. Similarly produced green fluorescent protein-expressing derivatives that maintain parental virulence have been instrumental in the direct visualization of systemic dissemination and neuroinvasion. As more immunological tools become available for this model, its contribution to our understanding of morbillivirus-host interactions is expected to increase.
Collapse
Affiliation(s)
- Diane E. Griffin
- grid.21107.350000000121719311Department of Molecular Microbiology, Johns Hopkins University School of Hygiene and Public Health, 615 N. Wolfe Street, Baltimore, MD 21205 USA
| | - Michael B. A. Oldstone
- grid.214007.00000000122199231Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 N. Torrey Pines, La Jolla, CA 92037 USA
| | | |
Collapse
|
14
|
Beineke A, Puff C, Seehusen F, Baumgärtner W. Pathogenesis and immunopathology of systemic and nervous canine distemper. Vet Immunol Immunopathol 2008; 127:1-18. [PMID: 19019458 DOI: 10.1016/j.vetimm.2008.09.023] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 09/17/2008] [Accepted: 09/18/2008] [Indexed: 10/21/2022]
Abstract
Canine distemper is a worldwide occurring infectious disease of dogs, caused by a morbillivirus, closely related to measles and rinderpest virus. The natural host range comprises predominantly carnivores. Canine distemper virus (CDV), an enveloped, negative-sense RNA virus, infects different cell types, including epithelial, mesenchymal, neuroendocrine and hematopoietic cells of various organs and tissues. CDV infection of dogs is characterized by a systemic and/or nervous clinical course and viral persistence in selected organs including the central nervous system (CNS) and lymphoid tissue. Main manifestations include respiratory and gastrointestinal signs, immunosuppression and demyelinating leukoencephalomyelitis (DL). Impaired immune function, associated with depletion of lymphoid organs, consists of a viremia-associated loss of lymphocytes, especially of CD4+ T cells, due to lymphoid cell apoptosis in the early phase. After clearance of the virus from the peripheral blood an assumed diminished antigen presentation and altered lymphocyte maturation cause an ongoing immunosuppression despite repopulation of lymphoid organs. The early phase of DL is a sequel of a direct virus-mediated damage and infiltrating CD8+ cytotoxic T cells associated with an up-regulation of pro-inflammatory cytokines such as interleukin (IL)-6, IL-8, tumor necrosis factor (TNF)-alpha and IL-12 and a lacking response of immunomodulatory cytokines such as IL-10 and transforming growth factor (TGF)-beta. A CD4+-mediated delayed type hypersensitivity and cytotoxic CD8+ T cells contribute to myelin loss in the chronic phase. Additionally, up-regulation of interferon-gamma and IL-1 may occur in advanced lesions. Moreover, an altered balance between matrix metalloproteinases and their inhibitors seems to play a pivotal role for the pathogenesis of DL. Summarized, DL represents a biphasic disease process consisting of an initial direct virus-mediated process and immune-mediated plaque progression. Immunosuppression is due to early virus-mediated lymphocytolysis followed by still poorly understood mechanisms affecting antigen presentation and lymphocyte maturation.
Collapse
Affiliation(s)
- A Beineke
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
| | | | | | | |
Collapse
|
15
|
Martella V, Elia G, Buonavoglia C. Canine distemper virus. Vet Clin North Am Small Anim Pract 2008; 38:787-97, vii-viii. [PMID: 18501278 DOI: 10.1016/j.cvsm.2008.02.007] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Vaccine-based prophylaxis has greatly helped to keep distemper disease under control. Notwithstanding, the incidence of canine distemper virus (CDV)-related disease in canine populations throughout the world seems to have increased in the past decades, and several episodes of CDV disease in vaccinated animals have been reported, with nation-wide proportions in some cases. Increasing surveillance should be pivotal to identify new CDV variants and to understand the dynamics of CDV epidemiology. In addition, it is important to evaluate whether the efficacy of the vaccine against these new strains may somehow be affected.
Collapse
Affiliation(s)
- Vito Martella
- Department of Animal Health and Wellbeing, Faculty of Veterinary Medicine, University of Bari, Strada per Casamassima km 3, 70010 Valenzano, Bari, Italy
| | | | | |
Collapse
|
16
|
Seehusen F, Orlando EA, Wewetzer K, Baumgärtner W. Vimentin-positive astrocytes in canine distemper: a target for canine distemper virus especially in chronic demyelinating lesions? Acta Neuropathol 2007; 114:597-608. [PMID: 17965866 DOI: 10.1007/s00401-007-0307-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Revised: 10/01/2007] [Accepted: 10/01/2007] [Indexed: 12/11/2022]
Abstract
In canine distemper demyelinating leukoencephalitis (DL), caused by canine distemper virus (CDV), astrocytes represent the main virus target. In these cells, glial fibrillary acidic protein (GFAP) is the main intermediate filament, whereas vimentin occurs early in the astrocytic lineage and is replaced gradually by GFAP. To further characterize the role of astrocytic infection in dogs with DL, an animal model for multiple sclerosis, formalin-fixed paraffin-embedded cerebella were investigated immunohistochemically and by immunofluorescence. The expression and morphological alterations of these intermediate filaments were also determined by immunofluorescence studies of CDV-infected canine mixed brain cell cultures. In acute distemper lesions, the astrocytic response was mainly composed of GFAP- and CDV-positive cells. In contrast, vimentin-positive astrocyte-like cells were present in advanced lesions, which represented the main cell type harboring the pathogen, indicating a change in cell tropism and/or susceptibility of glial cells during lesion progression in CDV encephalomyelitis. Canine cell cultures were composed of GFAP-positive astrocytes, vimentin-positive cells and other glial cells. Following infection with the CDV-R252 strain, GFAP-positive astrocytes, especially multinucleated syncytial giant cells, displayed a disrupted cytoskeleton, whereas vimentin-positive cells though more frequently infected did not show any alteration in the filament network. This indicates increased vulnerability of mature GFAP-positive astrocytes compared to immature, vimentin-positive astrocytes. The latter, however, exhibited increased susceptibility to CDV. To conclude, the present findings indicate a change in cell tropism of CDV and/or the occurrence of less differentiated astrocytes representing a permanent source for virus infection and spread in advanced lesions of DL.
Collapse
|
17
|
Sips GJ, Chesik D, Glazenburg L, Wilschut J, De Keyser J, Wilczak N. Involvement of morbilliviruses in the pathogenesis of demyelinating disease. Rev Med Virol 2007; 17:223-44. [PMID: 17410634 DOI: 10.1002/rmv.526] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Two members of the morbillivirus genus of the family Paramyxoviridae, canine distemper virus (CDV) and measles virus (MV), are well-known for their ability to cause a chronic demyelinating disease of the CNS in their natural hosts, dogs and humans, respectively. Both viruses have been studied for their potential involvement in the neuropathogenesis of the human demyelinating disease multiple sclerosis (MS). Recently, three new members of the morbillivirus genus, phocine distemper virus (PDV), porpoise morbillivirus (PMV) and dolphin morbillivirus (DMV), have been discovered. These viruses have also been shown to induce multifocal demyelinating disease in infected animals. This review focuses on morbillivirus-induced neuropathologies with emphasis on aetiopathogenesis of CNS demyelination. The possible involvement of a morbillivirus in the pathogenesis of multiple sclerosis is discussed.
Collapse
Affiliation(s)
- G J Sips
- Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
18
|
Griot C, Vandevelde M, Schobesberger M, Zurbriggen A. Canine distemper, a re-emerging morbillivirus with complex neuropathogenic mechanisms. Anim Health Res Rev 2003; 4:1-10. [PMID: 12885204 DOI: 10.1079/ahrr20047] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Paramyxoviruses are responsible for a wide variety of diseases both in humans and in animals. Common to many paramyxoviruses is the fact that they can cause neurological symptoms in their final host. Newly discovered paramyxoviruses, such as the Hendra and Nipah viruses, show the same pattern of pathogenesis as that of the paramyxoviruses already known. Canine distemper virus (CDV) is a well-studied member of the genus Morbillivirus. Study of the neuropathogenesis of CDV might give insight into disease mechanisms and suggest approaches for the prevention of other recently discovered paramyxovirus infections.
Collapse
Affiliation(s)
- Christian Griot
- Institute of Virology and Immunoprophylaxis, Swiss Federal Veterinary Office, 3147 Mittelhäusern, Switzerland.
| | | | | | | |
Collapse
|
19
|
Koutinas AF, Polizopoulou ZS, Baumgaertner W, Lekkas S, Kontos V. Relation of clinical signs to pathological changes in 19 cases of canine distemper encephalomyelitis. J Comp Pathol 2002; 126:47-56. [PMID: 11814321 DOI: 10.1053/jcpa.2001.0521] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In an attempt to associate the clinical neurological syndromes with the neuropathological features of canine distemper (CD), 19 spontaneous cases with neurological involvement were examined, before and after euthanasia. Seventeen dogs were less than one year of age and all except two (89.4%) were unvaccinated against CD. Various extraneural signs associated with CD encephalomyelitis (CDE) were seen in 15 dogs. Generalized or localized myoclonus was the most common sign observed (13/19). Seventeen of the dogs presented with signs suggestive of one neuroanatomical location of lesions. Of these animals, seven had signs of cerebral, two of cerebellar, four of cervical, one of cervicothoracic, two of thoracolumbar and two of lumbosacral syndrome. The diagnosis of CD was confirmed immunohistochemically (detection of CD viral antigen), serologically (neutralizing serum antibody titre > or = 16) and histopathologically (CDV inclusion bodies, type of central nervous system lesions). An association of the neuroanatomical lesion location and the histopathological findings was noted in 14 out of 17 dogs (82.3%). Myoclonus could be attributed to lower motor neuron damage in eight out of 13 dogs (61.5%).
Collapse
Affiliation(s)
- A F Koutinas
- Clinic of Companion Animal Medicine, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, Stavrou Voutyra 11, Thessaloniki, GR-54627, Greece
| | | | | | | | | |
Collapse
|
20
|
Tipold A, Vandevelde M, Wittek R, Moore P, Summerfield A, Zurbriggen A. Partial protection and intrathecal invasion of CD8(+) T cells in acute canine distemper virus infection. Vet Microbiol 2001; 83:189-203. [PMID: 11574169 DOI: 10.1016/s0378-1135(01)00422-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Initial non-inflammatory demyelination in canine distemper virus infection (CDV) develops against a background of severe immunosuppression and is therefore, thought to be virus-induced. However, recently we found a marked invasion of T cells throughout the central nervous system (CNS) in dogs with acute distemper despite drastic damage to the immune system. In the present study, this apparent paradox was further investigated by immunophenotyping of lymphocytes, following experimental CDV challenge in vaccinated and non-vaccinated dogs. In contrast to CDV infected, unprotected dogs, vaccinated dogs did not become immunosuppressed and exhibited a strong antiviral immune response following challenge with virulent CDV. In unprotected dogs rapid and drastic lymphopenia was initially due to depletion of T cells. In peripheral blood, CD4(+) T cells were more sensitive and depleted earlier and for a longer time than CD8(+) cells which recovered soon. In the cerebrospinal fluid (CSF) we could observe an increase in the T cell to B cell and CD8(+) to CD4(+) ratios. Thus, partial protection of the CD8(+) cell population could explain why part of the immune function in acute distemper is preserved. As found earlier, T cells invaded the CNS parenchyma in these dogs but also in the protected challenged dogs, which did not develop any CNS disease at all. Since markers of T cell activation were upregulated in both groups of animals, this phenomenon could in part be related to non-specific penetration of activated T cells through the blood brain barrier. However, in diseased animals much larger numbers of T cells were found in the CNS than in the protected dogs, suggesting that massive invasion of T cells in the brain requires CDV expression in the CNS.
Collapse
Affiliation(s)
- A Tipold
- Institute of Animal Neurology, University of Bern, Bern, Switzerland.
| | | | | | | | | | | |
Collapse
|
21
|
Wünschmann A, Alldinger S, Kremmer E, Baumgärtner W. Identification of CD4+ and CD8+ T cell subsets and B cells in the brain of dogs with spontaneous acute, subacute-, and chronic-demyelinating distemper encephalitis. Vet Immunol Immunopathol 1999; 67:101-16. [PMID: 10077417 DOI: 10.1016/s0165-2427(98)00216-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
CD4 and CD8 antigen expression of T cells as well as B cell and canine distemper virus (CDV) antigen distribution were immunohistologically examined in the cerebellum of dogs with spontaneous distemper encephalitis. Cellular and viral antigen expression were evaluated at intralesional and extralesional sites and in the perivascular space. Histologically, acute and subacute non-inflammatory encephalitis and subacute inflammatory and chronic plaques were distinguished. Demyelination was a feature of all subacute and chronic lesions, although the majority of plaques exhibited no or only a low level of active demyelination as demonstrated by single macrophages with luxol fast blue positive material in their cytoplasm. CDV antigen expression, observed in all distemper brains, was reduced in chronic plaques. CD4+, CD8+, and B cells were absent in controls and in some brains with acute encephalitis. A mild infiltration of CD8+ cells was noticed in the neuropil of the remaining brains with acute and all brains with subacute non-inflammatory encephalitis. Single CD4+ cells were found in two brains with acute and in all brains with subacute non-inflammatory encephalitis. Numerous CD8+ and CD4+ cells and few B cells, with a preponderance of CD8+ cells, were detected in subacute inflammatory and chronic lesions. In contrast, in perivascular infiltrates (PVI) of subacute and chronic lesions a dominance of CD4+ cells was detected. The dominating CD8+ cells in acute and subacute non-inflammatory encephalitis might be involved in viral clearance or contribute as antibody-independent cytotoxic T cells to early lesion development. In subacute inflammatory and chronic lesions CD8+ cells may function as cytotoxic effector cells and CD4+ cells by initiating a delayed-type hypersensitivity reaction. The simultaneous occurrence of perivascular B and CD4+ cells indicated that an antibody-mediated cytotoxicity could synergistically enhance demyelination. Summarized, temporal and spatial distribution of CD4+, CD8+ and B cells and virus antigen in early and late lesions support the hypothesis of a heterogeneous in part immune-mediated plaque pathogenesis in distemper demyelination.
Collapse
Affiliation(s)
- A Wünschmann
- Institut für Veterinär-Pathologie, Justus-Liebig-Universität, Giessen, Germany
| | | | | | | |
Collapse
|
22
|
|
23
|
Müller CF, Fatzer RS, Beck K, Vandevelde M, Zurbriggen A. Studies on canine distemper virus persistence in the central nervous system. Acta Neuropathol 1995; 89:438-45. [PMID: 7618441 DOI: 10.1007/bf00307649] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Chronic progressive demyelination in canine distemper virus (CDV) infection is associated with persistence of the virus in the nervous system. We studied persistence by examining expression of CDV mRNA corresponding to all genes of the virus as well as genomic CDV RNA in brain sections of dogs with acute and chronic demyelinating disease. All virus mRNAs were expressed in acute demyelinating lesions in a way similar to that seen in lymphoid tissues, the primary replication site of CDV. Their distribution corresponded very well with immunohistochemical detection of virus protein. In contrast, much more CDV mRNA than virus protein was found in gray matter areas suggesting that translation of CDV can be impaired in nervous distemper. Virus protein and RNA were cleared from chronic inflammatory demyelinating lesions. mRNA corresponding to the distal genes (F; H; L) of CDV disappeared first in inflammatory lesions for technical reasons associated with the particular mode of transcription of morbilliviruses. CDV RNA and protein persisted in chronically ill dogs in other areas of the CNS in which inflammation had not occurred. Our results suggest that persistence of CDV is favored by non-cytolytic spread of the virus and restricted infection of certain cells with reduced viral protein expression. Both tend to delay immune recognition of the virus.
Collapse
Affiliation(s)
- C F Müller
- Institute of Animal Neurology, University of Berne, Switzerland
| | | | | | | | | |
Collapse
|
24
|
Abstract
Canine distemper virus (CDV) invades the nervous system and replicates in neurons and glial cell of the white matter during a period of severe viral induced immunosuppression. Demyelination occurs in infected white matter areas in the absence of inflammation. The mechanism of demyelination is not apparent because there is no ultrastructural evidence of viral replication in the oligodendrocytes, the myelin producing cells. However, brain tissue culture studies have shown that oligodendrocytes support transcription of all CDV genes and later on degenerate, although no viral proteins can be found in these cells. It remains to be shown how such a restricted infection leads to demyelination. Concomitant with immunologic recovery during the further course of the disease, inflammation occurs in the demyelinating lesions with progression of the lesions in some animals. A series of experiments in vitro suggested that chronic demyelination is due to a bystander mechanism associated with the virus-induced immune response in which antibody dependent cell-mediated reactions play an important role. The progressive, or even relapsing, course of the disease is associated with viral persistence in the nervous system. Persistence of CDV in the brain appears to be due to non-cytolytic selective spread of the virus with very limited budding. In this way CDV escaped immune surveillance.
Collapse
Affiliation(s)
- M Vandevelde
- Institute of Animal Neurology, University of Bern, Switzerland
| | | |
Collapse
|
25
|
|
26
|
Abstract
Demyelination is a component of several viral diseases of humans. The best known of these are subacute sclerosing panencephalitis (SSPE) and progressive multifocal leukoencephalopathy (PML). There are a number of naturally occurring virus infections of animals that involve demyelination and many of these serve as instructive models for human demyelinating diseases. In addition to the naturally occurring diseases, many viruses have been shown to be capable of producing demyelination in experimental situations. In discussing virus-associated demyelinating disease, the chapter reviews the architecture and functional organization of the CNS and considers what is known of the interaction of viruses with CNS cells. It also discusses the immunology of the CNS that differs in several important aspects from that of the rest of the body. Experimental models of viral-induced demyelination have also been considered. Viruses capable of producing demyelinating disease have no common taxonomic features; they include both DNA and RNA viruses, enveloped and nonenveloped viruses. The chapter attempts to summarize the important factors influencing viral demyelination, their common features, and possible mechanisms.
Collapse
Affiliation(s)
- J K Fazakerley
- Department of Pathology, University of Cambridge, England
| | | |
Collapse
|
27
|
Tipold A, Vandevelde M, Jaggy A. Neurological manifestations of canine distemper virus infection. J Small Anim Pract 1992. [DOI: 10.1111/j.1748-5827.1992.tb01024.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Abstract
Animals with meningomyelitis have clinical neurologic signs that typically range from paraspinal discomfort to tetraplegia; however, most affected animals also show evidence of multifocal CNS involvement with brain stem and cerebral cortical structures being affected most commonly. The cause, duration, and host response to the disease process will determine the clinical signs in individual animals. Confirmation of a specific causative agent is difficult, but CSF analysis and immunotesting of serum and CSF yield the most rewarding diagnostic results. Successful treatment is based on formulation of an appropriate and aggressive therapeutic regimen. In some diseases, no effective treatment is available, and some animals may develop permanent neurologic disabilities.
Collapse
Affiliation(s)
- D C Sorjonen
- Department of Small Animal Surgery and Medicine, Auburn University College of Veterinary Medicine, Alabama
| |
Collapse
|
29
|
Abstract
Accurate interpretation of cerebrospinal fluid (CSF) changes can only be made in the context of the differential diagnosis for each case. The routine analysis of CSF cell number and type as well as CSF total protein can provide information that suggests a specific mechanism or disease, but is often inconclusive. Further information obtained from CSF protein electrophoresis and immunoglobulin determination and calculation of an albumin quota and IgG index can lend additional support for the suspected mechanism of disease. Paired serum and CSF antibody titers for specific organisms can be useful to confirm the presence of a systemic or nervous system infection. Current research on detecting antibodies against nervous tissue components in CSF should result in better diagnostic capabilities and understanding of the pathophysiology of certain disorders in the future.
Collapse
Affiliation(s)
- C L Chrisman
- Department of Small Animal Clinical Sciences, University of Florida College of Veterinary Medicine, Gainesville
| |
Collapse
|
30
|
Mitchell WJ, Summers BA, Appel MJ. Viral expression in experimental canine distemper demyelinating encephalitis. J Comp Pathol 1991; 104:77-87. [PMID: 2019678 DOI: 10.1016/s0021-9975(08)80090-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have characterized the relationship between the expression of canine distemper virus (CDV) and demyelinating lesions in the white matter of the cerebellum of experimentally infected dogs. In animals which had demyelinating lesions, CDV proteins (N, P, F and H) were expressed and infectious virus could be recovered from brain tissue. Viral proteins (N, P, F and H) were detected by monoclonal antibodies and immunocytochemistry within demyelinating lesions as well as in scattered glial cells in areas of the white matter which lacked detectable lesions. Many cell types, including astrocytes, neurons, ependymal cells, choroid plexus cells, meningeal cells and perivascular inflammatory cells were labelled for viral antigen. We conclude from our results that the mechanism of demyelination in canine distemper virus-induced encephalitis involves expression of viral gene products at the lesion site.
Collapse
Affiliation(s)
- W J Mitchell
- J. A. Baker Institute for Animal Health, Department of Microbiology, Cornell University, Ithaca, NY
| | | | | |
Collapse
|
31
|
Griot C, Bürge T, Vandevelde M, Peterhans E. Antibody-induced generation of reactive oxygen radicals by brain macrophages in canine distemper encephalitis: a mechanism for bystander demyelination. Acta Neuropathol 1989; 78:396-403. [PMID: 2782050 DOI: 10.1007/bf00688176] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The mechanism of inflammatory demyelination in canine distemper encephalitis (CDE) is uncertain but macrophages are thought to play an important effector role in this lesion. Serum and cerebrospinal fluid (CSF), containing anti-canine distemper virus and anti-myelin antibodies from dogs with CDE were tested for their ability to generate reactive oxygen species (ROS) in macrophages in primary dog brain cell cultures using a chemiluminescence (CL) assay. The majority of serum samples and several CSF samples from animals with inflammatory demyelination elicited a CL signal in infected dog brain cell cultures. In contrast, none of these samples induced a positive response in uninfected cultures which contained large numbers of myelin antigen-presenting cells, although defined anti-myelin antibodies lead to a marked secretion of ROS in this system. It was concluded that antiviral antibody-induced secretion of ROS, known to be highly toxic for brain tissue, may play an important role in white matter damage in inflammatory lesions supporting a previous hypothesis of bystander demyelination in CDE. No evidence was found for a similar antibody-dependent cellular cytotoxicity-like mechanism mediated by anti-myelin antibodies in CDE, which does not support the concept of autoimmunity in this disease.
Collapse
Affiliation(s)
- C Griot
- Institute of Animal Neurology, University of Berne, Switzerland
| | | | | | | |
Collapse
|
32
|
Higgins RJ, Child G, Vandevelde M. Chronic relapsing demyelinating encephalomyelitis associated with persistent spontaneous canine distemper virus infection. Acta Neuropathol 1989; 77:441-4. [PMID: 2711831 DOI: 10.1007/bf00687381] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This is the first report of spontaneous canine distemper virus (CDV) infection in a dog associated with chronic progressive multiphasic neurological disease. Initial neurological deficits in the pelvic limbs progressed rapidly to paraplegia with almost complete remission after 9 weeks. Then another acute episode occurred with severe thoracic limb deficits and cerebellar dysfunction and progressive neurological deterioration over 3 months with rising serum neutralizing (SN) anti-CDV titers in the serum and cerebrospinal fluid (CSF). Three neuropathologically distinct lesions of spinal cystic necrosis, chronic demyelinating foci in the cerebellum and acute demyelinating encephalitis in the pons were identified. Persistent CDV antigen was demonstrated immunocytochemically only in acute lesions and atypically restricted to neurons. However, the immunological mechanism associated with the distinct remissions and exacerbations and CDV antigen clearance from chronic demyelinating lesions but persistence in acute lesions, despite a vigorous anti-CDV serologic response, was not defined.
Collapse
Affiliation(s)
- R J Higgins
- School of Veterinary Medicine, University of California, Davis 95616
| | | | | |
Collapse
|
33
|
Dörries R, Liebert UG, ter Meulen V. Comparative analysis of virus-specific antibodies and immunoglobulins in serum and cerebrospinal fluid of subacute measles virus-induced encephalomyelitis (SAME) in rats and subacute sclerosing panencephalitis (SSPE). J Neuroimmunol 1988; 19:339-52. [PMID: 3262624 PMCID: PMC7119893 DOI: 10.1016/0165-5728(88)90014-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The intrathecal humoral immune response was analysed in patients with subacute sclerosing panencephalitis (SSPE) and Lewis rats with subacute measles virus (MV)-induced encephalomyelitis (SAME). SSPE patients as well as SAME rats revealed oligoclonal, intrathecal antibody synthesis with MV specificity. SAME rats synthesized MV-specific antibodies intracerebrally to a higher extent than SSPE patients. Although a restricted isoelectric pattern of MV-specific antibodies was detected in the cerebrospinal fluid (CSF) of SSPE patients as well as of SAME rats, the heterogeneity within clusters of immunoglobulin bands was higher in the rat specimens. Increase in the blood-brain barrier permeability for albumin was exclusively detected in SAME rats but not in SSPE patients. These data suggest that the rat model offers excellent opportunities to study the initial humoral events in MV-induced encephalitides.
Collapse
Affiliation(s)
- R Dörries
- Institut für Virologie und Immunbiologie der Universität, Würzburg, F.R.G
| | | | | |
Collapse
|
34
|
Allen IV, Cosby SL, Kirk J, Martin SJ, Dinsmore S. Neuropathology and neurovirulence of canine distemper virus plaque isolates in the hamster. Neuropathol Appl Neurobiol 1987; 13:349-69. [PMID: 3683747 DOI: 10.1111/j.1365-2990.1987.tb00191.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The relationship between neuropathological abnormalities, antibody response and neurovirulence of plaque isolates has been studied in an experimental model of canine distemper in the hamster. Genetic virus variance influenced neurovirulence and the experimental evidence supports the hypothesis that the mechanism of this effect may be through the modulating effect of circulating antibody. Large plaque virus (LPV) produced severe encephalitis with little early antibody response and a high degree of pathological abnormality. Small plaque virus (SPV) produced mild chronic encephalitis and early antibody response. Microscopically, histological abnormalities in this group were qualitatively similar to those seen with LPV but generally of lesser degree. Immunosuppression in SPV infected animals increased the severity of the encephalitis, reflected by the increase in inflammation and inclusion formation. Combined SPV and LPV infection produced high antibody levels and less severe disease than LPV infection alone with an intermediate pattern of histological abnormality.
Collapse
Affiliation(s)
- I V Allen
- Multiple Sclerosis Research Laboratory, Queen's University of Belfast
| | | | | | | | | |
Collapse
|
35
|
Summers BA, Whitaker JN, Appel MJ. Demyelinating canine distemper encephalomyelitis: measurement of myelin basic protein in cerebrospinal fluid. J Neuroimmunol 1987; 14:227-33. [PMID: 2434527 DOI: 10.1016/0165-5728(87)90057-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Beagle dogs were experimentally infected with the Cornell A75-17 strain of canine distemper virus. At three time points post-infection (PI), immunoreactive myelin basic protein (MBP) was measured in cerebrospinal fluid (CSF). Levels were correlated with neuropathological findings, interferon in CSF and virus isolation from the brain. CSF from animals inoculated with Cornell A75-17 strain often showed detectable immunoreactive MBP late in the disease course. As anticipated from earlier morphological studies, CSF drawn around day 20 PI lacked MBP while subsequent samples were positive. Dogs with severe demyelination had elevated values of immunoreactive MBP while dogs with only mild inflammation had little or none. Release of MBP or MBP peptides into CSF of dogs with canine distemper may be a valuable laboratory test in studies of the natural history of this disease and in assessing the response to treatment. Whether an immune response to MBP plays an immunopathogenic role in the chronic, demyelinating phase of canine distemper encephalitis remains to be determined.
Collapse
|
36
|
Abstract
In MS, there are many mechanisms by which viruses can produce demyelinating diseases in humans and experimental demyelinating infections in animals.
Collapse
|
37
|
|
38
|
Vandevelde M, Zurbriggen A, Higgins RJ, Palmer D. Spread and distribution of viral antigen in nervous canine distemper. Acta Neuropathol 1985; 67:211-8. [PMID: 4050335 DOI: 10.1007/bf00687803] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Canine distemper virus (CDV) antigen was demonstrated immunocytochemically in the central nervous system (CNS) of 19 dogs killed from 16 to 170 days after infection. In the earliest lesions, infection of glial cells preceded demyelination, and the degree of myelin destruction correlated with the amount of viral antigen in the tissue. It was concluded that initial demyelination in distemper is directly viral-induced, but the nature of the infected glial cells remains uncertain. Ependymal infection and spread of virus in the subependymal white matter was often seen, suggesting invasion of CDV into the CNS along the CSF pathways. Inflammation during the latter stages of the infection appeared to be associated with viral clearance from the CNS in most dogs. In two dogs with chronic progressive neurologic distemper, viral antigen was still present in the brain suggesting that viral persistence and associated immunologic reactions may contribute to further myelin damage. With the exception of one dog that survived for 6 months after infection, viral antigen was no longer detected in the dogs that had recovered.
Collapse
|
39
|
Summers BA, Greisen HA, Appel MJ. Canine distemper and experimental allergic encephalomyelitis in the dog: comparative patterns of demyelination. J Comp Pathol 1984; 94:575-89. [PMID: 6512029 DOI: 10.1016/0021-9975(84)90062-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The pattern of virus-induced and allergic demyelinating encephalomyelitis in the dog were compared. The predominant pattern of myelin loss in canine distemper (CD) infection was focal, periventricular and was initially noninflammatory. In contrast, sensitization to myelin produced a uniform pattern of central nervous system (CNS) myelinolysis which was disseminated, inflammatory and perivascular. Ultrastructurally, virus-infected neuroglia participated in the demyelination in CD, whereas infiltrating haematogenous mononuclear cells predominated in the lesions of experimental allergic encephalomyelitis (EAE). Areas of predilection within the CNS differed, being influenced by viral spread in CD and by vascular factors in EAE. In CD, the paramyxovirus appears to play a central role in the process of demyelination. In contrast to EAE, however, these studies do not support the view that autoreactivity to myelin contributes to the pathogenesis of CD demyelinating encephalomyelitis.
Collapse
|
40
|
Wege H, Watanabe R, ter Meulen V. Relapsing subacute demyelinating encephalomyelitis in rats during the course of coronavirus JHM infection. J Neuroimmunol 1984; 6:325-36. [PMID: 6086712 PMCID: PMC7119698 DOI: 10.1016/0165-5728(84)90022-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Temperature-sensitive mutants of the murine coronavirus JHM induced a subacute demyelinating encephalomyelitis (SDE) in young rats. Neurological symptoms were associated with marked lesions of primary demyelination in the white matter of the central nervous system (CNS), and developing after an incubation time of several weeks to months. Many rats survived this infection and recovered completely from this CNS disease. Among 43 survivors of SDE, 9 rats developed a relapse 27-153 days after onset of the first attack. Neuropathological examination of these animals revealed areas of fresh demyelination together with old remyelinated lesions. Viral antigens were detectable in the neighbourhood of fresh lesions and in some cases infectious virus was re-isolated from rats revealing low antibody titers to JHM virus. These results demonstrate that mutants of JHM virus can induce a relapsing demyelinating disease process, associated with a persistent infection, which possesses some similarities to chronic experimental allergic encephalomyelitis.
Collapse
|
41
|
Steck AJ, Vandevelde M. Immunological studies in demyelinating encephalitis associated with vaccinia virus and canine distemper virus infection. PROGRESS IN BRAIN RESEARCH 1983; 59:275-9. [PMID: 6198680 DOI: 10.1016/s0079-6123(08)63872-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
42
|
Vandevelde M, Bichsel P, Cerruti-Sola S, Steck A, Kristensen F, Higgins RJ. Glial proteins in canine distemper virus-induced demyelination. A sequential immunocytochemical study. Acta Neuropathol 1983; 59:269-76. [PMID: 6191513 PMCID: PMC7086711 DOI: 10.1007/bf00691492] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A temporal series of demyelinating lesions in experimental canine distemper virus (CDV) infection was examined with immunohistological techniques demonstrating myelin basic protein (MBP), myelin-associated glycoprotein (MAG), and glial fibrillary acidic protein (GFAP) on serial sections. The earliest lesions were characterized by decreased MBP and MAG and increased GFAP. During the further progression of the disease, MBP and MAG losses continued to match each other. There was no indication of MAG loss preceding the disappearance of MBP. In the more advanced lesions there was a marked decrease of GFAP positive cells. Since these findings differed considerably from similar immunohistochemical studies in progressive multifocal leukoencephalopathy (PML) where demyelination results from oligodendroglial infection, it was concluded that the oligodendroglial cell body is not the primary target of CDV. The marked astroglial changes were also considered to contribute to demyelination in CDV infection but the mechanism by which this happens remains unknown.
Collapse
|
43
|
Vandevelde M, Higgins RJ, Kristensen B, Kristensen F, Steck AJ, Kihm U. Demyelination in experimental canine distemper virus infection: immunological, pathologic, and immunohistological studies. Acta Neuropathol 1982; 56:285-93. [PMID: 7090737 DOI: 10.1007/bf00691260] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|