1
|
Davin M, Colinet G, Fauconnier ML. Targeting the right parameters in PAH remediation studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 278:116857. [PMID: 33711627 DOI: 10.1016/j.envpol.2021.116857] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 02/17/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
Contaminated land burdens the economy of many countries and must be dealt with. Researchers have published thousands of documents studying and developing soil and sediment remediation treatments. Amongst the targeted pollutants are the polycyclic aromatic hydrocarbons (PAHs), described as a class of persistent organic compounds, potentially harmful to ecosystems and living organisms. The present paper reviews and discusses three scientific trends that are leading current PAH-contaminated soil/sediment remediation studies and management. First, the choice of compounds that are being studied and targeted in the scientific literature is discussed, and we suggest that the classical 16 US-EPA PAH compounds might no longer be sufficient to meet current environmental challenges. Second, we discuss the choice of experimental material in remediation studies. Using bibliometric measures, we show the lack of PAH remediation trials based on co-contaminated or aged-contaminated material. Finally, the systematic use of the recently validated bioavailability measurement protocol (ISO/TS 16751) in remediation trials is discussed, and we suggest it should be implemented as a tool to improve remediation processes and management strategies.
Collapse
Affiliation(s)
- Marie Davin
- Soil-Water-Plant Exchanges, University of Liège, Gembloux Agro-Bio Tech, 2 Passage des Déportés, 5030, Gembloux, Belgium; Laboratory of Chemistry of Natural Molecules, University of Liège, Gembloux Agro-Bio Tech, 2 Passage des Déportés, 5030, Gembloux, Belgium.
| | - Gilles Colinet
- Soil-Water-Plant Exchanges, University of Liège, Gembloux Agro-Bio Tech, 2 Passage des Déportés, 5030, Gembloux, Belgium.
| | - Marie-Laure Fauconnier
- Laboratory of Chemistry of Natural Molecules, University of Liège, Gembloux Agro-Bio Tech, 2 Passage des Déportés, 5030, Gembloux, Belgium.
| |
Collapse
|
2
|
Bozorg A, Gates ID, Sen A. Real time monitoring of biofilm development under flow conditions in porous media. BIOFOULING 2012; 28:937-951. [PMID: 22963147 DOI: 10.1080/08927014.2012.723204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Biofilm growth can impact the effectiveness of industrial processes that involve porous media. To better understand and characterize how biofilms develop and affect hydraulic properties in porous media, both spatial and temporal development of biofilms under flow conditions was investigated in a translucent porous medium by using Pseudomonas fluorescens HK44, a bacterial strain genetically engineered to luminesce in the presence of an induction agent. Real-time visualization of luminescent biofilm growth patterns under constant pressure conditions was captured using a CCD camera. Images obtained over 8 days revealed that variations in bioluminescence intensity could be correlated to biofilm cell density and hydraulic conductivity. These results were used to develop a real-time imaging method to study the dynamic behavior of biofilm evolution in a porous medium, thereby providing a new tool to investigate the impact of biological fouling in porous media under flow conditions.
Collapse
Affiliation(s)
- Ali Bozorg
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | | | | |
Collapse
|
3
|
Draft genome sequence of the polycyclic aromatic hydrocarbon-degrading, genetically engineered bioluminescent bioreporter Pseudomonas fluorescens HK44. J Bacteriol 2011; 193:5009-10. [PMID: 21742869 DOI: 10.1128/jb.05530-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas fluorescens strain HK44 (DSM 6700) is a genetically engineered lux-based bioluminescent bioreporter. Here we report the draft genome sequence of strain HK44. Annotation of ∼6.1 Mb of sequence indicates that 30% of the traits are unique and distributed over five genomic islands, a prophage, and two plasmids.
Collapse
|
4
|
Afzal M, Yousaf S, Reichenauer TG, Kuffner M, Sessitsch A. Soil type affects plant colonization, activity and catabolic gene expression of inoculated bacterial strains during phytoremediation of diesel. JOURNAL OF HAZARDOUS MATERIALS 2011; 186:1568-75. [PMID: 21216097 DOI: 10.1016/j.jhazmat.2010.12.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 12/09/2010] [Indexed: 05/06/2023]
Abstract
The combined use of plants and associated microorganisms has great potential for cleaning up soils contaminated with petroleum hydrocarbons. Apart from environmental conditions the physicochemical properties of the soil are the main factors influencing the survival and activity of an inoculated strain as well as the growth of plants. This study examined the effect of different soil types (sandy, loamy sand and loam) on the survival, gene abundance and catabolic gene expression of two inoculated strains (Pseudomonas sp. strain ITRI53 and Pantoea sp. strain BTRH79) in the rhizosphere and shoot interior of Italian ryegrass vegetated in diesel contaminated soils. High colonization, gene abundance and expression in loamy soils were observed. By contrast, low colonization, gene abundance and absence of gene expression in sandy soil were found. The highest levels of genes expression and hydrocarbon degradation were seen in loamy soil that had been inoculated with BTRH79 and were significantly higher compared to those in other soils. A positive correlation was observed between gene expression and hydrocarbon degradation indicating that catabolic gene expression is necessary for contaminant degradation. These results suggest that soil type influences the bacterial colonization and microbial activities and subsequently the efficiency of contaminant degradation.
Collapse
Affiliation(s)
- Muhammad Afzal
- AIT Austrian Institute of Technology GmbH, Department of Health and Environment, A-2444 Seibersdorf, Austria
| | | | | | | | | |
Collapse
|
5
|
|
6
|
Lipthay JR, Aamand J, Barkay T. Expression of tfdA genes in aquatic microbial communities during acclimation to 2,4-dichlorophenoxyacetic acid. FEMS Microbiol Ecol 2009; 40:205-14. [PMID: 19709228 DOI: 10.1111/j.1574-6941.2002.tb00953.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The role of gene expression during acclimation of aquatic microbial communities was examined by relating transcription of tfdA to the degradation of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). The tfdA gene encodes for a 2,4-D/2-oxoglutarate dioxygenase that transforms 2,4-D to 2,4-dichlorophenol. Transcription of tfdA, the abundance of tfdA genes and 2,4-D degrading populations, and the rate of 2,4-D disappearance were followed in laboratory incubations of two pond water samples that were exposed to 0.11 mM 2,4-D. Both communities responded to 2,4-D exposure by induction of tfdA transcription but the dynamics of transcript abundance and the homology to the tfdA riboprobe suggested different populations of 2,4-D degraders in the two ponds. In one community, where tfdA transcripts were highly homologous to the tfdA gene of Ralstonia eutropha JMP134, transcription of tfdA was transient and dropped while 2,4-D degradation continued. In the other freshwater community, where tfdA genes with a lower similarity to the tfdA gene of strain JMP134 were transcribed, transcript levels remained high although 2,4-D degradation had ceased. Restriction fragment length polymorphism analysis of tfdA amplicons similarly demonstrated the presence of different tfdA loci in the two freshwater communities, and this difference in populations of tfdA genes probably explains the observed difference in dynamics of catabolic gene transcription.
Collapse
Affiliation(s)
- Julia R Lipthay
- Department of Geochemistry, Geological Survey of Denmark and Greenland, Thoravej 8, DK-2400 Copenhagen NV, Denmark.
| | | | | |
Collapse
|
7
|
Diversity, abundance, and consistency of microbial oxygenase expression and biodegradation in a shallow contaminated aquifer. Appl Environ Microbiol 2009; 75:6478-87. [PMID: 19700556 DOI: 10.1128/aem.01091-09] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The diversity of Rieske dioxygenase genes and short-term temporal variability in the abundance of two selected dioxygenase gene sequences were examined in a naphthalene-rich, coal tar waste-contaminated subsurface study site. Using a previously published PCR-based approach (S. M. Ní Chadhain, R. S. Norman, K. V. Pesce, J. J. Kukor, and G. J. Zylstra, Appl. Environ. Microbiol. 72:4078-4087, 2006) a broad suite of genes was detected, ranging from dioxygenase sequences associated with Rhodococcus and Sphingomonas to 32 previously uncharacterized Rieske gene sequence clone groups. The nag genes appeared frequently (20% of the total) in two groundwater monitoring wells characterized by low ( approximately 10(2) ppb; approximately 1 muM) ambient concentrations of naphthalene. A quantitative competitive PCR assay was used to show that abundances of nag genes (and archetypal nah genes) fluctuated substantially over a 9-month period. To contrast short-term variation with long-term community stability, in situ community gene expression (dioxygenase mRNA) and biodegradation potential (community metabolism of naphthalene in microcosms) were compared to measurements from 6 years earlier. cDNA sequences amplified from total RNA extracts revealed that nah- and nag-type genes were expressed in situ, corresponding well with structural gene abundances. Despite evidence for short-term (9-month) shifts in dioxygenase gene copy number, agreement in field gene expression (dioxygenase mRNA) and biodegradation potential was observed in comparisons to equivalent assays performed 6 years earlier. Thus, stability in community biodegradation characteristics at the hemidecadal time frame has been documented for these subsurface microbial communities.
Collapse
|
8
|
Bordenave S, Goñi-Urriza M, Vilette C, Blanchard S, Caumette P, Duran R. Diversity of ring-hydroxylating dioxygenases in pristine and oil contaminated microbial mats at genomic and transcriptomic levels. Environ Microbiol 2008; 10:3201-11. [PMID: 18662307 DOI: 10.1111/j.1462-2920.2008.01707.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The aim of this work was to characterize bacterial ring-hydroxylating dioxygenase (RHD) diversity in a pristine microbial mat and follow their diversity changes in response to heavy fuel oil contamination. In order to describe the RHDs diversity, new degenerate primers were designed and a nested-PCR approach was developed to gain sensitivity and wider diversity. RHD diversity in artificially contaminated mats maintained in microcosms and in chronically contaminated mats was analysed by clone libraries and terminal restriction fragment length polymorphism (T-RFLP) at genomic and transcriptomic levels. The RHD diversity in the pristine microbial mat was represented by Pseudomonas putida nahAc-like genes and no increase of diversity was detected after 1 year of oil contamination. The diversity observed in a 30 year chronically polluted microbial mat was represented by four main RHD clusters and two new genes revealing higher polyaromatic hydrocarbon (PAH) degradation capacity. This study illustrates that a single petroleum contamination (such as oil spill) is not enough to involve a detectable modification of RHD diversity. The new degenerate primers described here allowed RHD gene amplification from pristine and contaminated samples thereby showing their diversity. The proposed approach solves one of the main problems of functional gene analysis providing effective amplification of the environmental diversity of the targeted genes.
Collapse
Affiliation(s)
- Sylvain Bordenave
- Equipe Environnement et Microbiologie, Institut Pluridisciplinaire de Recherche Environnement et Matériaux, UMR CNRS 5254, Université de Pau BP1155-64013 Pau cedex, France
| | | | | | | | | | | |
Collapse
|
9
|
Jørgensen KS. Advances in monitoring of catabolic genes during bioremediation. Indian J Microbiol 2008; 48:152-5. [PMID: 23100709 DOI: 10.1007/s12088-008-0021-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Accepted: 03/27/2008] [Indexed: 11/26/2022] Open
Abstract
Biodegradation of xenobiotic compounds by microbes is exploited in the clean up of contaminated environments by bioremediation. Catabolic (or functional) genes encode for specific enzymes in catabolic pathways such as key enzymes in xenobiotic degradation pathways. By assessing the abundance or the expression of key genes in environmental samples one can get a potential measure of the degradation activity. One way of assessing the abundance and expression of specific catabolic genes is by analyzing the metagenomic DNA and RNA from environmental samples. Three major challenges in the detection and quantification of catabolic genes in bioremediation studies are 1) the accurate and sensitive quantification from environmental samples 2) the coverage of the enzymatic potential by the targeted genes 3) the validation of the correlation with actual observed degradation activities in field cases. New advances in realtime PCR, functional gene arrays and meta-transcriptomics have improved the applicability of catabolic gene assessment during bioremediation.
Collapse
|
10
|
Piskonen R, Nyyssönen M, Itävaara M. Evaluating the biodegradation of aromatic hydrocarbons by monitoring of several functional genes. Biodegradation 2008; 19:883-95. [PMID: 18425625 DOI: 10.1007/s10532-008-9190-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Accepted: 04/01/2008] [Indexed: 10/22/2022]
Abstract
Various microbial activities determine the effectiveness of bioremediation processes. In this work, we evaluated the feasibility of gene array hybridization for monitoring the efficiency of biodegradation processes. Biodegradation of 14C-labelled naphthalene and toluene by the aromatic hydrocarbon-degrading Pseudomonas putida F1, P. putida mt-2 and P. putida G7 was followed in mixed liquid culture microcosm by a preliminary, nylon membrane-based gene array. In the beginning of the study, toluene was degraded rapidly and increased amount of toluene degradation genes was detected by the preliminary gene array developed for the study. After toluene was degraded, naphthalene mineralization started and the amount of naphthalene degradation genes increased as biodegradation proceeded. The amount of toluene degradation genes decreased towards the end of the study. The hybridization signal intensities determined by preliminary gene array were in good agreement with mineralization of naphthalene and toluene and with the amount of naphthalene dioxygenase and toluene dioxygenase genes quantified by dot blot hybridization. The clear correlation between the results obtained by the preliminary array and the biodegradation process suggests that gene array methods can be considered as a promising tool for monitoring the efficiency of biodegradation processes.
Collapse
Affiliation(s)
- Reetta Piskonen
- VTT Technical Research Centre of Finland, Tietotie 2, P. O. Box 1000, 02044 VTT, Espoo, Finland.
| | | | | |
Collapse
|
11
|
Baldwin BR, Nakatsu CH, Nies L. Enumeration of aromatic oxygenase genes to evaluate monitored natural attenuation at gasoline-contaminated sites. WATER RESEARCH 2008; 42:723-31. [PMID: 17707876 DOI: 10.1016/j.watres.2007.07.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 07/25/2007] [Accepted: 07/31/2007] [Indexed: 05/16/2023]
Abstract
Monitoring groundwater benzene, toluene, ethylbenzene, and xylene (BTEX) concentrations is the typical method to assess monitored natural attenuation (MNA) and bioremediation as corrective actions at gasoline-contaminated sites. Conclusive demonstration of bioremediation, however, relies on converging lines of chemical and biological evidence to support a decision. In this study, real-time PCR quantification of aromatic oxygenase genes was used to evaluate the feasibility of MNA at two gasoline-impacted sites. Phenol hydroxylase (PHE), ring-hydroxylating toluene monooxygenase (RMO), naphthalene dioxygenase (NAH), toluene monooxygenase (TOL), toluene dioxygenase (TOD), and biphenyl dioxygenase (BPH4) genes were routinely detected in BTEX-impacted wells. Aromatic oxygenase genes were not detected in sentinel wells outside the plume indicating that elevated levels of oxygenase genes corresponded to petroleum hydrocarbon contamination. Total aromatic oxygenase gene copy numbers detected in impacted wells were on the order of 10(6)-10(9)copies L(-1). PHE, RMO, NAH, TOD, and BPH4 gene copies positively correlated to total BTEX concentration. Mann-Kendall analysis of benzene concentrations was used to evaluate the status of the dissolved BTEX plume. The combination of trend analysis of contaminant concentrations with quantification of aromatic oxygenase genes was used to assess the feasibility of MNA as corrective measures at both sites.
Collapse
Affiliation(s)
- Brett R Baldwin
- School of Civil Engineering, Purdue University, West Lafayette, IN 47907-1284, USA.
| | | | | |
Collapse
|
12
|
Recent Advances in Functional Genomics and Proteomics of Plant Associated Microbes. SOIL BIOLOGY 2008. [DOI: 10.1007/978-3-540-75575-3_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
13
|
Ferguson AS, Huang WE, Lawson KA, Doherty R, Gibert O, Dickson KW, Whiteley AS, Kulakov LA, Thompson IP, Kalin RM, Larkin MJ. Microbial analysis of soil and groundwater from a gasworks site and comparison with a sequenced biological reactive barrier remediation process. J Appl Microbiol 2007; 102:1227-38. [PMID: 17448158 DOI: 10.1111/j.1365-2672.2007.03398.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS To investigate the distribution of a polymicrobial community of biodegradative bacteria in (i) soil and groundwater at a former manufactured gas plant (FMGP) site and (ii) in a novel SEquential REactive BARrier (SEREBAR) bioremediation process designed to bioremediate the contaminated groundwater. METHODS AND RESULTS Culture-dependent and culture-independent analyses using denaturing gradient gel electrophoresis (DGGE) and polymerase chain reaction (PCR) for the detection of 16S ribosomal RNA gene and naphthalene dioxygenase (NDO) genes of free-living (planktonic groundwater) and attached (soil biofilm) samples from across the site and from the SEREBAR process was applied. Naphthalene arising from groundwater was effectively degraded early in the process and the microbiological analysis indicated a dominant role for Pseudomonas and Comamonas in its degradation. The microbial communities appeared highly complex and diverse across both the sites and in the SEREBAR process. An increased population of naphthalene degraders was associated with naphthalene removal. CONCLUSION The distribution of micro-organisms in general and naphthalene degraders across the site was highly heterogeneous. Comparisons made between areas contaminated with polycyclic aromatic hydrocarbons (PAH) and those not contaminated, revealed differences in the microbial community profile. The likelihood of noncultured bacteria being dominant in mediating naphthalene removal was evident. SIGNIFICANCE AND IMPACT OF THE STUDY This work further emphasizes the importance of both traditional and molecular-based tools in determining the microbial ecology of contaminated sites and highlights the role of noncultured bacteria in the process.
Collapse
Affiliation(s)
- A S Ferguson
- QUESTOR Centre and EERC School of Planning Architechture and Civil Engineering, David Keir Building, The Queen's University of Belfast, Belfast, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Cunliffe M, Kawasaki A, Fellows E, Kertesz MA. Effect of inoculum pretreatment on survival, activity and catabolic gene expression of Sphingobium yanoikuyae B1 in an aged polycyclic aromatic hydrocarbon-contaminated soil. FEMS Microbiol Ecol 2006; 58:364-72. [PMID: 17117981 DOI: 10.1111/j.1574-6941.2006.00167.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
The survival and effectiveness of a bioaugmentation strain in its target environment depend not only on physicochemical parameters in the soil but also on the physiological state of the inoculated organism. This study examined the effect of variations in inoculum pretreatment on the survival, metabolic activity (measured as rRNA content) and polycyclic aromatic hydrocarbon (PAH)-catabolic gene expression of Sphingobium yanoikuyae B1 in an aged PAH-contaminated soil. RNA denaturing gradient gel electrophoresis analysis showed stable colonization of PAH-contaminated soil by S. yanoikuyae B1 after four pretreatments (growth in complex or minimal medium, starvation, or acclimation to phenanthrene). By contrast, extractable CFUs decreased with time for all four treatments, and significantly faster for Luria Bertani-grown inocula, suggesting that these cells adhered strongly to soil particles while remaining metabolically active. Pretreatment of the inoculum had a dramatic effect on the expression of genes specific to the PAH-degradation pathway. The highest levels of bphC and xylE expression were seen for inocula that had been precultivated on complex medium, and degradation of PAHs was significantly enhanced in soils treated with these inocula. The results suggest that using complex media instead of minimal media for cultivating bioaugmentation inocula may improve the subsequent efficiency of contaminant biodegradation in the soil.
Collapse
Affiliation(s)
- Michael Cunliffe
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | | | | | | |
Collapse
|
16
|
Tuomi PM, Salminen JM, Jørgensen KS. The abundance of nahAc genes correlates with the 14C-naphthalene mineralization potential in petroleum hydrocarbon-contaminated oxic soil layers. FEMS Microbiol Ecol 2005; 51:99-107. [PMID: 16329859 DOI: 10.1016/j.femsec.2004.07.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2003] [Revised: 05/11/2004] [Accepted: 07/20/2004] [Indexed: 11/26/2022] Open
Abstract
In this study, we evaluated whether the abundance of the functional gene nahAc reflects aerobic naphthalene degradation potential in subsurface and surface samples taken from three petroleum hydrocarbon contaminated sites in southern Finland. The type of the contamination at the sites varied from lightweight diesel oil to high molecular weight residuals of crude oil. Samples were collected from both oxic and anoxic soil layers. The naphthalene dioxygenase gene nahAc was quantified using a replicate limiting dilution-polymerase chain reaction (RLD-PCR) method with a degenerate primer pair. In the non-contaminated samples nahAc genes were not detected. In the petroleum hydrocarbon-contaminated oxic soil samples nahAc gene abundance [range 3 x 10(1)-9 x 10(4) copies (g dry wt soil)(-1)] was correlated (Kendall non-parametric correlation r2=0.459, p<0.01) with the aerobic 14C-naphthalene mineralization potential (range 1 x 10(-5)-0.1 d(-1)) measured in microcosms at in situ temperatures (8 degrees C for subsurface and 20 degrees C for surface soil samples). In these samples nahAc gene abundance was also correlated with total microbial cell counts (r2=0.471, p<0.01), respiration rate (r2=0.401, p<0.01) and organic matter content (r2=0.341, p<0.05). NahAc genes were amplified from anoxic soil layers indicating that, although involved in aerobic biodegradation of naphthalene, these genes or related sequences were also present in the anoxic subsurface. In the samples taken from the anoxic layers, the aerobic 14C-naphthalene mineralization rates were not correlated with nahAc gene abundance. In conclusion, current sequence information provides the basis for a robust tool to estimate the naphthalene degradation potential at oxic zones of different petroleum hydrocarbon-contaminated sites undergoing in situ bioremediation.
Collapse
Affiliation(s)
- Pirjo M Tuomi
- Finnish Environment Institute, P.O. Box 140, FIN-00251 Helsinki, Finland
| | | | | |
Collapse
|
17
|
Ahn Y, Jung H, Tatavarty R, Choi H, Yang JW, Kim IS. Monitoring of petroleum hydrocarbon degradative potential of indigenous microorganisms in ozonated soil. Biodegradation 2005; 16:45-56. [PMID: 15727154 DOI: 10.1007/s10531-004-0428-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
This study was performed to investigate the petroleum hydrocarbon (PH) degradative potential of indigenous microorganisms in ozonated soil to better develop combined pre-ozonation/bioremediation technology. Diesel-contaminated soils were ozonated for 0-900 min. PH and microbial concentrations in the soils decreased with increased ozonation time. The greatest reduction of total PH (TPH, 47.6%) and aromatics (11.3%) was observed in 900-min ozonated soil. The number of total viable heterotrophic bacteria decreased by three orders of magnitude in the soil. Ozonated soils were incubated for 9 weeks for bioremediation. The number of microorganisms in the soils increased during the incubation period, as monitored by culture- and nonculture-based methods. The soils showed additional PH-removal during incubation, supporting the presence of PH-degraders in the soils. The highest removal (25.4%) of TPH was observed during the incubation of 180-min ozonated soil during the incubation while a negligible removal was shown in 900-min ozonated soil. This negligible removal could be explained by the existence of relatively few or undetected PH-degraders in 900-min ozonated soil. After a 9-week incubation of the ozonated soils, 180-min ozonated soil showed the lowest TPH concentration, suggesting that appropriate ozonation and indigenous microorganisms survived ozonation could enhance remediation of PH-contaminated soil. Microbial community composition in 9-week incubated soils revealed a slight difference between 900-min ozonated and unozonated soils, as analyzed by whole cell hybridization. Taken together, this study provided insight into indigenous microbial potential to degrade PH in ozonated soils.
Collapse
Affiliation(s)
- Yeonghee Ahn
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon 305-701, Korea.
| | | | | | | | | | | |
Collapse
|
18
|
Piskonen R, Nyyssönen M, Rajamäki T, Itävaara M. Monitoring of accelerated naphthalene-biodegradation in a bioaugmented soil slurry. Biodegradation 2005; 16:127-34. [PMID: 15730023 DOI: 10.1007/s10532-004-4893-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The effect of microbial inoculation on the mineralization of naphthalene in a bioslurry treatment was evaluated in soil slurry microcosms. Inoculation by Pseudomonas putida G7 carrying the naphthalene dioxygenase (nahA) gene resulted in rapid mineralization of naphthalene, whereas indigenous microorganisms in the PAH-contaminated soil required a 28 h adaptation period before significant mineralization occurred. The number of nahA-like gene copies increased in both the inoculated and non-inoculated soil as mineralization proceeded, indicating selection towards naphthalene dioxygenase producing bacteria in the microbial community. In addition, 16S rRNA analysis by denaturing gradient gel electrophoresis (DGGE) analysis showed that significant selection occurred in the microbial community as a result of biodegradation. However, the indigenous soil bacteria were not able to compete with the P. putida G7 inoculum adapted to naphthalene biodegradation, even though the soil microbial community slightly suppressed naphthalene mineralization by P. putida G7.
Collapse
|
19
|
Holmes DE, Nevin KP, Lovley DR. In situ expression of nifD in Geobacteraceae in subsurface sediments. Appl Environ Microbiol 2005; 70:7251-9. [PMID: 15574924 PMCID: PMC535187 DOI: 10.1128/aem.70.12.7251-7259.2004] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In order to determine whether the metabolic state of Geobacteraceae involved in bioremediation of subsurface sediments might be inferred from levels of mRNA for key genes, in situ expression of nifD, a highly conserved gene involved in nitrogen fixation, was investigated. When Geobacter sulfurreducens was grown without a source of fixed nitrogen in chemostats with acetate provided as the limiting electron donor and Fe(III) as the electron acceptor, levels of nifD transcripts were 4 to 5 orders of magnitude higher than in chemostat cultures provided with ammonium. In contrast, the number of transcripts of recA and the 16S rRNA gene were slightly lower in the absence of ammonium. The addition of acetate to organic- and nitrogen-poor subsurface sediments stimulated the growth of Geobacteraceae and Fe(III) reduction, as well as the expression of nifD in Geobacteraceae. Levels of nifD transcripts in Geobacteraceae decreased more than 100-fold within 2 days after the addition of 100 microM ammonium, while levels of recA and total bacterial 16S rRNA in Geobacteraceae remained relatively constant. Ammonium amendments had no effect on rates of Fe(III) reduction in acetate-amended sediments or toluene degradation in petroleum-contaminated sediments, suggesting that other factors, such as the rate that Geobacteraceae could access Fe(III) oxides, limited Fe(III) reduction. These results demonstrate that it is possible to monitor one aspect of the in situ metabolic state of Geobacteraceae species in subsurface sediments via analysis of mRNA levels, which is the first step toward a more global analysis of in situ gene expression related to nutrient status and stress response during bioremediation by Geobacteraceae.
Collapse
Affiliation(s)
- Dawn E Holmes
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA.
| | | | | |
Collapse
|
20
|
Dorn JG, Mahal MK, Brusseau ML, Maier RM. Employing a novel fiber optic detection system to monitor the dynamics of in situ lux bioreporter activity in porous media: system performance update. Anal Chim Acta 2004. [DOI: 10.1016/j.aca.2004.07.060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
Dionisi HM, Chewning CS, Morgan KH, Menn FM, Easter JP, Sayler GS. Abundance of dioxygenase genes similar to Ralstonia sp. strain U2 nagAc is correlated with naphthalene concentrations in coal tar-contaminated freshwater sediments. Appl Environ Microbiol 2004; 70:3988-95. [PMID: 15240274 PMCID: PMC444821 DOI: 10.1128/aem.70.7.3988-3995.2004] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We designed a real-time PCR assay able to recognize dioxygenase large-subunit gene sequences with more than 90% similarity to the Ralstonia sp. strain U2 nagAc gene (nagAc-like gene sequences) in order to study the importance of organisms carrying these genes in the biodegradation of naphthalene. Sequencing of PCR products indicated that this real-time PCR assay was specific and able to detect a variety of nagAc-like gene sequences. One to 100 ng of contaminated-sediment total DNA in 25-microl reaction mixtures produced an amplification efficiency of 0.97 without evident PCR inhibition. The assay was applied to surficial freshwater sediment samples obtained in or in close proximity to a coal tar-contaminated Superfund site. Naphthalene concentrations in the analyzed samples varied between 0.18 and 106 mg/kg of dry weight sediment. The assay for nagAc-like sequences indicated the presence of (4.1 +/- 0.7) x 10(3) to (2.9 +/- 0.3) x 10(5) copies of nagAc-like dioxygenase genes per microg of DNA extracted from sediment samples. These values corresponded to (1.2 +/- 0.6) x 10(5) to (5.4 +/- 0.4) x 10(7) copies of this target per g of dry weight sediment when losses of DNA during extraction were taken into account. There was a positive correlation between naphthalene concentrations and nagAc-like gene copies per microgram of DNA (r = 0.89) and per gram of dry weight sediment (r = 0.77). These results provide evidence of the ecological significance of organisms carrying nagAc-like genes in the biodegradation of naphthalene.
Collapse
Affiliation(s)
- Hebe M Dionisi
- Center for Environmental Biotechnology, 676 Dabney Hall, The University of Tennessee, Knoxville, TN 37996, USA
| | | | | | | | | | | |
Collapse
|
22
|
Burns R, Stach J. Microbial ecology of soil biofilms: Substrate bioavailability, bioremediation and complexity. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s0166-2481(02)80006-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
23
|
Milcic-Terzic J, Lopez-Vidal Y, Vrvic MM, Saval S. Detection of catabolic genes in indigenous microbial consortia isolated from a diesel-contaminated soil. BIORESOURCE TECHNOLOGY 2001; 78:47-54. [PMID: 11265787 DOI: 10.1016/s0960-8524(00)00156-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Bioremediation is often used for in situ remediation of petroleum-contaminated sites. The primary focus of this study was on understanding the indigenous microbial community which can survive in contaminated environment and is responsible for the degradation. Diesel. toluene and naphthalene-degrading microbial consortia were isolated from diesel-contaminated soil by growing on selective hydrocarbon substrates. The presence and frequency of the catabolic genes responsible for aromatic hydrocarbon biodegradation (xylE, ndoB) within the isolated consortia were screened using polymerase chain reaction PCR and DNA DNA colony hybridization. The diesel DNA-extract possessed both the xy/E catabolic gene for toluene, and the nah catabolic gene for polynuclear aromatic hydrocarbon degradation. The toluene DNA-extract possessed only the xylE catabolic gene, while the naphthalene DNA-extract only the ndoB gene. Restriction enzyme analysis with HaeIII indicated similar restriction patterns for the xylE gene fragment between toluene DNA-extract and a type strain, Pseudomonas putida ATCC 23973. A substantial proportion (74%) of the colonies from the diesel-consortium possessed the xylE gene, and the ndoB gene (78%), while a minority (29%) of the toluene-consortium harbored the xylE gene. 59% of the colonies from the naphthalene-consortium had the ndoB gene, and did not have the xylE gene. These results indicate that the microbial population has been naturally enriched in organisms carrying genes for aromatic hydrocarbon degradation and that significant aromatic biodegradative potential exists at the site. Characterization of the population genotype constitutes a molecular diagnosis which permits the determination of the catabolic potential of the site to degrade the contaminant present.
Collapse
Affiliation(s)
- J Milcic-Terzic
- Institute of Engineering, National University of Mexico, Coyocan
| | | | | | | |
Collapse
|
24
|
Leblond JD, Schultz TW, Sayler GS. Observations on the preferential biodegradation of selected components of polyaromatic hydrocarbon mixtures. CHEMOSPHERE 2001; 42:333-343. [PMID: 11100783 DOI: 10.1016/s0045-6535(00)00161-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The capacity of the naphthalene degrading enzyme (NAH) system of Pseudomonas fluorescens 5R and a number of other NAH system bacterial isolates to degrade mixtures of polyaromatic hydrocarbons (PAHs) and heterocyclic compounds were examined. It was found that all the examined organisms displayed similar patterns of preferential compound degradation when presented with the same mixture. Using strains that possess portions of the NAH system, this preferential degradation was localized to the activity of naphthalene dioxygenase. Comparisons of the first-order rates of compound degradation with the structures of the mixture components indicated that increased deviation from the base structure of naphthalene led to slower disappearance. Structural features that were found to decrease the rate of compound degradation include an increase in the number of methyl substituents and an increase in the size of a substituent.
Collapse
Affiliation(s)
- J D Leblond
- Center for Environmental Biotechnology, University of Tennessee, Knoxville 37996-0615, USA
| | | | | |
Collapse
|
25
|
Laurie AD, Lloyd-Jones G. Quantification of phnAc and nahAc in contaminated new zealand soils by competitive PCR. Appl Environ Microbiol 2000; 66:1814-7. [PMID: 10788344 PMCID: PMC101417 DOI: 10.1128/aem.66.5.1814-1817.2000] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Unculturable polycyclic aromatic hydrocarbon (PAH)-degrading bacteria are a significant reservoir of the microbial potential to catabolize low-molecular-weight PAHs. The population of these bacteria is larger than the population of nah-like bacteria that are the dominant organisms in culture-based studies. We used the recently described phn genes of Burkholderia sp. strain RP007, which feature only rarely in culture-based studies, as an alternative genotype for naphthalene and phenanthrene degradation and compared this genotype with the genotypically distinct but ubiquitous nah-like class in different soils. Competitive PCR quantification of phnAc and nahAc, which encode the iron sulfur protein large (alpha) subunits of PAH dioxygenases in nah-like and phn catabolic operons, revealed that the phn genotype can have a greater ecological significance than the nah-like genotype.
Collapse
Affiliation(s)
- A D Laurie
- Landcare Research, Hamilton, New Zealand
| | | |
Collapse
|
26
|
Lloyd-Jones G, Laurie AD, Hunter DW, Fraser R. Analysis of catabolic genes for naphthalene and phenanthrene degradation in contaminated New Zealand soils. FEMS Microbiol Ecol 1999. [DOI: 10.1111/j.1574-6941.1999.tb00599.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
27
|
Wilson MS, Bakermans C, Madsen EL. In situ, real-time catabolic gene expression: extraction and characterization of naphthalene dioxygenase mRNA transcripts from groundwater. Appl Environ Microbiol 1999; 65:80-7. [PMID: 9872763 PMCID: PMC90986 DOI: 10.1128/aem.65.1.80-87.1999] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We developed procedures for isolating and characterizing in situ-transcribed mRNA from groundwater microorganisms catabolizing naphthalene at a coal tar waste-contaminated site. Groundwater was pumped through 0.22-microm-pore-size filters, which were then frozen in dry ice-ethanol. RNA was extracted from the frozen filters by boiling sodium dodecyl sulfate lysis and acidic phenol-chloroform extraction. Transcript characterization was performed with a series of PCR primers designed to amplify nahAc homologs. Several primer pairs were found to amplify nahAc homologs representing the entire diversity of the naphthalene-degrading genes. The environmental RNA extract was reverse transcribed, and the resultant mixture of cDNAs was amplified by PCR. A digoxigenin-labeled probe mixture was produced by PCR amplification of groundwater cDNA. This probe mixture hybridized under stringent conditions with the corresponding PCR products from naphthalene-degrading bacteria carrying a variety of nahAc homologs, indicating that diverse dioxygenase transcripts had been retrieved from groundwater. Diluted and undiluted cDNA preparations were independently amplified, and 28 of the resulting PCR products were cloned and sequenced. Sequence comparisons revealed two major groups related to the dioxygenase genes ndoB and dntAc, previously cloned from Pseudomonas putida NCIB 9816-4 and Burkholderia sp. strain DNT, respectively. A distinctive subgroup of sequences was found only in experiments performed with the undiluted cDNA preparation. To our knowledge, these results are the first to directly document in situ transcription of genes encoding naphthalene catabolism at a contaminated site by indigenous microorganisms. The retrieved sequences represent greater diversity than has been detected at the study site by culture-based approaches.
Collapse
Affiliation(s)
- M S Wilson
- Section of Microbiology, Division of Biological Sciences, Cornell University, Ithaca New York 14853, USA
| | | | | |
Collapse
|
28
|
Hedlund BP, Geiselbrecht AD, Bair TJ, Staley JT. Polycyclic aromatic hydrocarbon degradation by a new marine bacterium, Neptunomonas naphthovorans gen. nov., sp. nov. Appl Environ Microbiol 1999; 65:251-9. [PMID: 9872786 PMCID: PMC91009 DOI: 10.1128/aem.65.1.251-259.1999] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/1998] [Accepted: 10/19/1998] [Indexed: 11/20/2022] Open
Abstract
Two strains of bacteria were isolated from creosote-contaminated Puget Sound sediment based on their ability to utilize naphthalene as a sole carbon and energy source. When incubated with a polycyclic aromatic hydrocarbon (PAH) compound in artificial seawater, each strain also degraded 2-methylnaphthalene and 1-methylnaphthalene; in addition, one strain, NAG-2N-113, degraded 2,6-dimethylnaphthalene and phenanthrene. Acenaphthene was not degraded when it was used as a sole carbon source but was degraded by both strains when it was incubated with a mixture of seven other PAHs. Degenerate primers and the PCR were used to isolate a portion of a naphthalene dioxygenase iron-sulfur protein (ISP) gene from each of the strains. A phylogenetic analysis of PAH dioxygenase ISP deduced amino acid sequences showed that the genes isolated in this study were distantly related to the genes encoding naphthalene dioxygenases of Pseudomonas and Burkholderia strains. Despite the differences in PAH degradation phenotype between the new strains, the dioxygenase ISP deduced amino acid fragments of these organisms were 97.6% identical. 16S ribosomal DNA-based phylogenetic analysis placed these bacteria in the gamma-3 subgroup of the Proteobacteria, most closely related to members of the genus Oceanospirillum. However, morphologic, physiologic, and genotypic differences between the new strains and the oceanospirilla justify the creation of a novel genus and species, Neptunomonas naphthovorans. The type strain of N. naphthovorans is strain NAG-2N-126.
Collapse
Affiliation(s)
- B P Hedlund
- Department of Microbiology, University of Washington, Seattle, Washington 98195-7274, USA.
| | | | | | | |
Collapse
|
29
|
Abstract
The potential for biodegradation of aromatic hydrocarbons was evaluated in soil samples recovered along gradients of both contaminant levels and pH values existing downstream of a long-term coal pile storage basin. pH values for areas greatly impacted by runoff from the storage basin were 2.0. Even at such a reduced pH, the indigenous microbial community was metabolically active, showing the ability to oxidize more than 40% of the parent hydrocarbons, naphthalene and toluene, to carbon dioxide and water. Treatment of the soil samples with cycloheximide inhibited mineralization of the aromatic substrates. DNA hybridization analysis indicated that whole-community nucleic acids recovered from these samples did not hybridize with genes, such as nahA, nahG, nahH, todC1C2, and tomA, that encode common enzymes from neutrophilic bacteria. Since these data suggested that the degradation of aromatic compounds may involve a microbial consortium instead of individual acidophilic bacteria, experiments using microorganisms isolated from these samples were initiated. While no defined mixed cultures were able to evolve 14CO2 from labeled substrates in these mineralization experiments, an undefined mixed culture including a fungus, a yeast, and several bacteria successfully metabolized approximately 27% of supplied naphthalene after 1 week. This study shows that biodegradation of aromatic hydrocarbons can occur in environments with extremely low pH values.
Collapse
|
30
|
Langworthy DE, Stapleton RD, Sayler GS, Findlay RH. Genotypic and phenotypic responses of a riverine microbial community to polycyclic aromatic hydrocarbon contamination. Appl Environ Microbiol 1998; 64:3422-8. [PMID: 9726892 PMCID: PMC106742 DOI: 10.1128/aem.64.9.3422-3428.1998] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The phenotypic and genotypic adaptation of a freshwater sedimentary microbial community to elevated (22 to 217 microgram [dry weight] of sediment-1) levels of polycyclic aromatic hydrocarbons (PAHs) was determined by using an integrated biomolecular approach. Central to the approach was the use of phospholipid fatty acid (PLFA) profiles to characterize the microbial community structure and nucleic acid analysis to quantify the frequency of degradative genes. The study site was the Little Scioto River, a highly impacted, channelized riverine system located in central Ohio. This study site is a unique lotic system, with all sampling stations having similar flow and sediment characteristics both upstream and downstream from the source of contamination. These characteristics allowed for the specific analysis of PAH impact on the microbial community. PAH concentrations in impacted sediments ranged from 22 to 217 microgram (dry weight) of sediment-1, while PAH concentrations in ambient sediments ranged from below detection levels to 1.5 microgram (dry weight) of sediment-1. Total microbial biomass measured by phospholipid phosphate (PLP) analysis ranged from 95 to 345 nmol of PLP g (dry weight) of sediment-1. Nucleic acid analysis showed the presence of PAH-degradative genes at all sites, although observed frequencies were typically higher at contaminated sites. Principal component analysis of PLFA profiles indicated that moderate to high PAH concentrations altered microbial community structure and that seasonal changes were comparable in magnitude to the effects of PAH pollution. These data indicate that this community responded to PAH contamination at both the phenotypic and the genotypic level.
Collapse
Affiliation(s)
- D E Langworthy
- Department of Microbiology, Miami University, Oxford, Ohio 45056, USA
| | | | | | | |
Collapse
|
31
|
Stapleton RD, Ripp S, Jimenez L, Cheol-Koh S, Fleming JT, Gregory IR, Sayler GS. Nucleic acid analytical approaches in bioremediation: site assessment and characterization. J Microbiol Methods 1998. [DOI: 10.1016/s0167-7012(98)00021-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Dagher F, Déziel E, Lirette P, Paquette G, Bisaillon JG, Villemur R. Comparative study of five polycyclic aromatic hydrocarbon degrading bacterial strains isolated from contaminated soils. Can J Microbiol 1997; 43:368-77. [PMID: 9115093 DOI: 10.1139/m97-051] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Five polycyclic aromatic hydrocarbon (PAH) degrading bacterial strains, Pseudomonas putida 34, Pseudomonas fluorescens 62, Pseudomonas aeruginosa 57, Sphingomonas sp. strain 107, and the unidentified strain PL1, were isolated from two contaminated soils and characterized for specific features regarding PAH degradation. Degradation efficiency was determined by the rapidity to form clearing zones around colonies when sprayed with different PAH solutions and the growth in liquid medium with different PAHs as sole source of carbon and energy. The presence of plasmids, the production of biosurfactants, the effect of salicylate on PAH degradation, the transformation of indole to indigo indicating the presence of an aromatic ring dioxygenase activity, and the hybridization with the SphAb prove representing a sequence highly homologous to the naphthalene dioxygenase ferredoxin gene nahAb were examined. The most efficient strain in terms of substrate specificity and rapidity to degrade different PAHs was Sphingomonas sp. strain 107, followed by strain PL1 and P. aeruginosa 57. The less efficient strains were P. putida 34 and P. fluorescens 62. Each strain transformed indole to indigo, except strain PL1. Biosurfactants were produced by P. aeruginosa 57 and P. putida 34, and a bioemulsifier was produced by Sphingomonas sp. strain 107. The presence of salicylate in solid medium has accelerated the formation of clearing zones and the transformation of indole by Sphingomonas sp. strain 107 and P. aeruginosa 57 colonies. Plasmids were found in Sphingomonas sp. strain 107 and strain PL1. The SphAb probe hybridized with DNA extracted from each strain. However, hybridization signals were detected only in the plasmidic fraction of Sphingomonas sp. strain 107 and strain PL1. Using a polymerase chain reaction (PCR) approach, we determined that several genes encoding enzymes involved in the upper catabolic pathway of naphthalene were present in each strain. Sequencing of PCR DNA fragments revealed that, for all the five strains, these genes are highly homologous with respective genes found in the pah, dox, and nah operons, and are arranged in a polycistronic operon. Results suggest that these genes are ordered in the five selected strains like the pah, nah, and dox operons.
Collapse
Affiliation(s)
- F Dagher
- Centre de recherche en microbiologie appliquée, Institut Armand-Frappier, Laval, QC, Canada
| | | | | | | | | | | |
Collapse
|
33
|
Kehrmeyer S, Applegate B, Pinkart H, Hedrick D, White D, Sayler G. Combined lipid/DNA extraction method for environmental samples. J Microbiol Methods 1996. [DOI: 10.1016/0167-7012(95)00094-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Goyal AK, Zylstra GJ. Molecular cloning of novel genes for polycyclic aromatic hydrocarbon degradation from Comamonas testosteroni GZ39. Appl Environ Microbiol 1996; 62:230-6. [PMID: 8572701 PMCID: PMC167791 DOI: 10.1128/aem.62.1.230-236.1996] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Three strains of Comamonas testosteroni were isolated from river sediment for the ability to degrade phenanthrene; two of the strains also grew on naphthalene, and one strain also grew on anthracene. The homology of the genes for polycyclic aromatic hydrocarbon degradation in these strains to the classical genes (nah) for naphthalene degradation from Pseudomonas putida NCIB 9816-4 was determined. The three C. testosteroni strains showed no homology to the nah gene probe even under low-stringency conditions. The genes for naphthalene and phenanthrene degradation were cloned from one of the three C. testosteroni strains. Two cosmid clones expressing polycyclic aromatic hydrocarbon dioxygenase activity were identified from a library prepared with genomic DNA from C. testosteroni GZ39. The genes coding for the first two enzymes in the catabolic pathway, phenanthrene dioxygenase and cis-phenanthrene dihydrodiol dehydrogenase, were localized to a 5.4-kb NcoI-PstI fragment by subcloning and gene expression experiments. Further subcloning and analysis revealed a novel organization of the genes, with the gene for cis-phenanthrene dihydrodiol dehydrogenase located between the genes for the individual phenanthrene dioxygenase components. A Southern blot with the cloned genes from C. testosteroni GZ39 confirmed that these genes are distinct from those found in P. putida NCIB 9816-4. Southern blots also demonstrated that C. testosteroni GZ38A possesses genes for phenanthrene degradation that are similar to those cloned from C. testosteroni GZ39. However, C. testosteroni GZ42 possesses genes for phenanthrene degradation that are not homologous to those cloned from C. testosteroni GZ39. This suggests that there are at least two different sets of genes for the degradation of phenanthrene among the three C. testosteroni strains.
Collapse
Affiliation(s)
- A K Goyal
- Center for Agricultural Molecular Biology, Cook College, Rutgers University, New Brunswick, New Jersey 08903-0231, USA
| | | |
Collapse
|
35
|
Johnson GR, Olsen RH. Nucleotide sequence analysis of genes encoding a toluene/benzene-2-monooxygenase from Pseudomonas sp. strain JS150. Appl Environ Microbiol 1995; 61:3336-46. [PMID: 7574644 PMCID: PMC167614 DOI: 10.1128/aem.61.9.3336-3346.1995] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
It was previously shown by others that Pseudomonas sp. strain JS150 metabolizes benzene and alkyl- and chloro-substituted benzenes by using dioxygenase-initiated pathways coupled with multiple downstream metabolic pathways to accommodate catechol metabolism. By cloning genes encoding benzene-degradative enzymes, we found that strain JS150 also carries genes for a toluene/benzene-2-monooxygenase. The gene cluster encoding a 2-monooxygenase and its cognate regulator was cloned from a plasmid carried by strain JS150. Oxygen (18O2) incorporation experiments using Pseudomonas aeruginosa strains that carried the cloned genes confirmed that toluene hydroxylation was catalyzed through an authentic monooxygenase reaction to yield ortho-cresol. Regions encoding the toluene-2-monooxygenase and regulatory gene product were localized in two regions of the cloned fragment. The nucleotide sequence of the toluene/benzene-2-monooxygenase locus was determined. Analysis of this sequence revealed six open reading frames that were then designated tbmA, tbmB, tbmC, tbmD, tbmE, and tbmF. The deduced amino acid sequences for these genes showed the presence of motifs similar to well-conserved functional domains of multicomponent oxygenases. This analysis allowed the tentative identification of two terminal oxygenase subunits (TbmB and TbmD) and an electron transport protein (TbmF) for the monooxygenase enzyme. In addition to these gene products, all the tbm polypeptides shared significant homology with protein components from other bacterial multicomponent monooxygenases. Overall, the tbm gene products shared greater similarity with polypeptides from the phenol hydroxylases of Pseudomonas putida CF600, P35X, and BH than with those from the toluene monooxygenases of Pseudomonas mendocina KR1 and Burkholderia (Pseudomonas) pickettii PKO1. The relationship found between the phenol hydroxylases and a toluene-2-monooxygenase, characterized in this study for the first time at the nucleotide sequence level, suggested that DNA probes used for surveys of environmental populations should be carefully selected to reflect DNA sequences corresponding to the metabolic pathway of interest.
Collapse
Affiliation(s)
- G R Johnson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor 48109-0620, USA
| | | |
Collapse
|
36
|
Sayler GS, Layton A, Lajoie C, Bowman J, Tschantz M, Fleming JT. Molecular site assessment and process monitoring in bioremediation and natural attenuation. off. Appl Biochem Biotechnol 1995; 54:277-90. [PMID: 7486982 DOI: 10.1007/bf02787926] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A variety of modern biotechnical approaches are available to assist in optimizing and controlling bioremediation processes. These approaches are broad-ranging, and may include genetic engineering to improve biodegradative performance, maintenance of the environment, and process monitoring and control. In addition to direct genetic engineering strategies, molecular diagnostic and monitoring technology using DNA gene probing methods and new quantitative mRNA analytical procedures allows direct analysis of degradative capacity, activity, and response under in situ conditions. Applications of these molecular approaches in process developments for trichloroethylene (TCE), polychlorinated biphenyls (PCB), and polynuclear aromatic hydrocarbons (PAH) bio-oxidation in soils, aquifer sediments, and ground-water treatment reactors have been demonstrated. Molecular genetic technologies permit not only the development of new processes for bioremediation, but also new process monitoring, control strategies, and molecular optimization paradigms that take full advantage of vast and diverse abilities of microorganisms to destroy problem chemicals.
Collapse
Affiliation(s)
- G S Sayler
- Center for Environmental Biotechnology, University of Tennessee, Knoxville 37922, USA
| | | | | | | | | | | |
Collapse
|
37
|
Layton AC, Lajoie CA, Easter JP, Jernigan R, Sanseverino J, Sayler GS. Molecular diagnostics and chemical analysis for assessing biodegradation of polychlorinated biphenyls in contaminated soils. JOURNAL OF INDUSTRIAL MICROBIOLOGY 1994; 13:392-401. [PMID: 7765670 DOI: 10.1007/bf01577225] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The microbial populations in PCB-contaminated electric power substation capacitor bank soil (TVA soil) and from another PCB-contaminated site (New England soil) were compared to determine their potential to degrade PCB. Known biphenyl operon genes were used as gene probes in colony hybridizations and in dot blots of DNA extracted from the soil to monitor the presence of PCB-degrading organisms in the soils. The microbial populations in the two soils differed in that the population in New England soil was enriched by the addition of 1000 p.p.m. 2-chlorobiphenyl (2-CB) whereas the population in the TVA capacitor bank soil was not affected. PCB degradative activity in the New England soil was indicated by a 50% PCB disappearance (gas chromatography), accumulation of chlorobenzoates (HPLC), and 14CO2 evolution from 14C-2CB. The PCB-degrading bacteria in the New England soil could be identified by their positive hybridization to the bph gene probes, their ability to produce the yellow meta-cleavage product from 2,3-dihydroxybiphenyl (2,3-DHB), and the degradation of specific PCB congeners by individual isolates in resting cell assays. Although the TVA capacitor bank soil lacked effective PCB-degrading populations, addition of a PCB-degrading organism and 10,000 p.p.m. biphenyl resulted in a > 50% reduction of PCB levels. Molecular characterization of soil microbial populations in laboratory scale treatments is expected to be valuable in the design of process monitoring and performance verification approaches for full scale bioremediation.
Collapse
Affiliation(s)
- A C Layton
- Department of Microbiology, University of Tennessee, Knoxville 37922-2567
| | | | | | | | | | | |
Collapse
|