1
|
Kurdi M, Fadul MM, Addas BMJ, Faizo E, Alkhayyat S, Bamaga AK, Alsinani T, Katib Y, Okal F, Maghrabi Y, Sabbagh AJ, Moshref R, Albalawi S, Alkhotani A, Halawa TF, Mulla N, Hakamy S, Baeesa S. Dynamic interplay between corticosteroid treatment and the role of SRC-1 gene dysregulation in the progression of WHO-Grade 4 Astrocytoma. J Neurooncol 2023; 163:693-705. [PMID: 37402091 PMCID: PMC10393858 DOI: 10.1007/s11060-023-04385-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 06/26/2023] [Indexed: 07/05/2023]
Abstract
BACKGROUND Corticosteroid is commonly used before surgery to control cerebral oedema in brain tumours and is frequently continued throughout treatment. Its long-term effect of on the recurrence of WHO-Grade 4 astrocytoma remains controversial. The interaction between corticosteroid, SRC-1 gene and cytotoxic T-cells has never been investigated. METHODS A retrospective cohort of 36 patients with WHO-Grade 4 astrocytoma were examined for CD8 + T-cell and SRC-1 gene expressions through IHC and qRT-PCR. The impact of corticosteroid on CD8+T-cells infiltration, SRC-1 expression, and tumour recurrence was analyzed. RESULTS The mean patients age was 47-years, with a male to female ratio 1.2. About 78% [n = 28] of the cases showed reduced or no CD8+T-cell expression while 22% [n = 8] of cases have showed medium to high CD8+T-cell expression. SRC-1 gene was upregulated in 5 cases [14%] and 31 cases [86%] showed SRC-1 downregulation. The average of total days and doses of administered corticosteroid from the preoperative period to the postoperative period was at range of 14-106 days and 41-5028 mg, respectively. There was no significant statistical difference in RFI among tumours expressing high or low CD8+T-cells when corticosteroid was administered in recommended or exceeded doses [p-value = 0.640]. There was a significant statistical difference in RFI between CD8+T-Cell expression and SRC-1 gene dysregulation [p-value = 002]. Tumours with high CD8+T T-cell expression and SRC-1 gene downregulation had late recurrence. CONCLUSIONS Corticosteroid treatment can directly affect the SRC-1 gene regulation but does not directly influence cytotoxic T-cells infiltration or tumor progression. However, SRC-1 gene downregulation can facilitate late tumor recurrence.
Collapse
Affiliation(s)
- Maher Kurdi
- Department of Pathology, Faculty of Medicine, King Abdulaziz University, Rabigh, Kingdom of Saudi Arabia.
- Neuromuscular Unit, King Fahad Medical Research Center, Jeddah, Saudi Arabia.
| | - Motaz M Fadul
- Department of Pathology, Faculty of Medicine, King Abdulaziz University, Rabigh, Kingdom of Saudi Arabia
| | - Bassam M J Addas
- Department of Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Eyad Faizo
- Department of Surgery, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Shadi Alkhayyat
- Department of Internal Medicine, Faculty of Medicine, King Abdulaziz University and Hospital, Jeddah, Saudi Arabia
| | - Ahmed K Bamaga
- Department of Paediatric, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Taghreed Alsinani
- Department of Neurosurgery, King Fahad General Hospital, Jeddah, Saudi Arabia
| | - Yousef Katib
- Department of Radiology, Faculty of Medicine, Taibah University, Madinah, Saudi Arabia
| | - Fahad Okal
- Department of Neuroscience, Neurosurgery Section, King Abdulaziz Medical City, National Guard Health Affairs, Jeddah, Saudi Arabia
| | - Yazid Maghrabi
- Department of Neuroscience, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Abdulrahman J Sabbagh
- Department of Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rana Moshref
- Department of Neuroscience, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Sultan Albalawi
- Department of Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Alaa Alkhotani
- Department of Pathology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Taher F Halawa
- Department of Paediatric, Faculty of Medicine, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Nasser Mulla
- Department of Internal Medicine, Faculty of Medicine, Taibah University, Medina, Saudi Arabia
| | - Sahar Hakamy
- Neuromuscular Unit, King Fahad Medical Research Center, Jeddah, Saudi Arabia
| | - Saleh Baeesa
- Department of Neuroscience, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| |
Collapse
|
2
|
Abraham EH, Guidotti G, Rapaport E, Bower D, Brown J, Griffin RJ, Donnelly A, Waitzkin ED, Qamar K, Thompson MA, Ethirajan S, Robinson K. Cystic fibrosis improves COVID-19 survival and provides clues for treatment of SARS-CoV-2. Purinergic Signal 2021; 17:399-410. [PMID: 33970408 PMCID: PMC8107773 DOI: 10.1007/s11302-021-09771-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/26/2021] [Indexed: 12/11/2022] Open
Abstract
Systemic pools of ATP are elevated in individuals homozygous for cystic fibrosis (CF) as evidenced by elevated blood and plasma ATP levels. This elevated ATP level seems to provide benefit in the presence of advanced solid tumors (Abraham et al., Nature Medicine 2(5):593-596, 1996). We published in this journal a paper showing that IV ATP can elevate the depleted ATP pools of advanced cancer patients up to levels found in CF patients with subsequent clinical, biochemical, and quality of life (QOL) improvements (Rapaport et al., Purinergic Signalling 11(2): 251-262, 2015). We hypothesize that the elevated ATP levels seen in CF patients may be benefiting CF patients in another way: by improving their survival after contracting COVID-19. We discuss here the reasoning behind this hypothesis and suggest how these findings might be applied clinically in the general population.
Collapse
Affiliation(s)
- Edward H Abraham
- Saint Francis Health System, Tulsa, OK, USA.
- Kansas City Urology Care, Kansas City, KS, USA.
| | - Guido Guidotti
- Department of Molecular and Cell Biology, Harvard University, Cambridge, MA, USA
| | | | | | | | - Robert J Griffin
- University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | | | - Kenon Qamar
- Kansas City Urology Care, Kansas City, KS, USA
| | | | | | | |
Collapse
|
3
|
Nambiar DK, Rajamani P, Deep G, Jain AK, Agarwal R, Singh RP. Silibinin Preferentially Radiosensitizes Prostate Cancer by Inhibiting DNA Repair Signaling. Mol Cancer Ther 2015; 14:2722-34. [PMID: 26516160 DOI: 10.1158/1535-7163.mct-15-0348] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 09/23/2015] [Indexed: 12/21/2022]
Abstract
Radiotherapy, a frequent mode of cancer treatment, is often restricted by dose-related toxicity and development of therapeutic resistance. To develop a novel and selective radiosensitizer, we studied the radiosensitizing effects and associated mechanisms of silibinin in prostate cancer. The radiosensitizing effect of silibinin with ionizing radiation (IR) was assessed on radioresistant prostate cancer cell lines by clonogenic, cell cycle, cell death, and DNA repair assays. Tumor xenograft growth, immunohistochemical (IHC) analysis of tumor tissues, and toxicity-related parameters were measured in vivo. Silibinin (25 μmol/L) enhanced IR (2.5-10 Gy)-caused inhibition (up to 96%, P < 0.001) of colony formation selectively in prostate cancer cells, and prolonged and enhanced IR-caused G2-M arrest, apoptosis, and ROS production. Mechanistically, silibinin inhibited IR-induced DNA repair (ATM and Chk1/2) and EGFR signaling and attenuated the levels of antiapoptotic proteins. Specifically, silibinin suppressed IR-induced nuclear translocation of EGFR and DNA-PK, an important mediator of DSB repair, leading to an increased number of γ-H2AX (ser139) foci suggesting lesser DNA repair. In vivo, silibinin strongly radiosensitized DU145 tumor xenograft inhibition (84%, P < 0.01) with higher apoptotic response (10-fold, P < 0.01) and reduced repair of DNA damage, and rescued the mice from IR-induced toxicity and hematopoietic injury. Overall, silibinin enhanced the radiotherapeutic response via suppressing IR-induced prosurvival signaling and DSB repair by inhibiting nuclear translocation of EGFR and DNA-PK. Because silibinin is already in phase II clinical trial for prostate cancer patients, the present finding has translational relevance for radioresistant prostate cancer.
Collapse
Affiliation(s)
- Dhanya K Nambiar
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India. School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Paulraj Rajamani
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Gagan Deep
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colorado
| | - Anil K Jain
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colorado
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colorado
| | - Rana P Singh
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India. School of Life Sciences, Central University of Gujarat, Gandhinagar, India.
| |
Collapse
|
4
|
Selenius M, Hedman M, Brodin D, Gandin V, Rigobello MP, Flygare J, Marzano C, Bindoli A, Brodin O, Björnstedt M, Fernandes AP. Effects of redox modulation by inhibition of thioredoxin reductase on radiosensitivity and gene expression. J Cell Mol Med 2012; 16:1593-605. [PMID: 22003958 PMCID: PMC3823227 DOI: 10.1111/j.1582-4934.2011.01469.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The thioredoxin system is a promising target when aiming to overcome the problem of clinical radiation resistance. Altered cellular redox status and redox sensitive thiols contributing to induction of resistance strongly connect the ubiquitous redox enzyme thioredoxin reductase (TrxR) to the cellular response to ionizing radiation. To further investigate possible strategies in combating clinical radiation resistance, human radio-resistant lung cancer cells were subjected to a combination of single fractions of γ-radiation at clinically relevant doses and non-toxic levels of a well-characterized thioredoxin reductase inhibitor, the phosphine gold(I) compound [Au(SCN)(PEt3)]. The combination of the TrxR-inhibitor and ionizing radiation reduced the surviving fractions and impaired the ability of the U1810 cells to repopulate by approximately 50%. In addition, inhibition of thioredoxin reductase caused changes in the cell cycle distribution, suggesting a disturbance of the mitotic process. Global gene expression analysis also revealed clustered genetic expression changes connected to several major cellular pathways such as cell cycle, cellular response to stress and DNA damage. Specific TrxR-inhibition as a factor behind the achieved results was confirmed by correlation of gene expression patterns between gold and siRNA treatment. These results clearly demonstrate TrxR as an important factor conferring resistance to irradiation and the use of [Au(SCN)(PEt3)] as a promising radiosensitizing agent.
Collapse
Affiliation(s)
- Markus Selenius
- Karolinska Institutet, Department of Laboratory Medicine, Division of Pathology, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Chin DH, Li HH, Kuo HM, Chao PDL, Liu CW. Neocarzinostatin as a probe for DNA protection activity--molecular interaction with caffeine. Mol Carcinog 2011; 51:327-38. [PMID: 21538576 DOI: 10.1002/mc.20788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2010] [Revised: 03/27/2011] [Accepted: 04/04/2011] [Indexed: 11/08/2022]
Abstract
Neocarzinostatin (NCS), a potent mutagen and carcinogen, consists of an enediyne prodrug and a protein carrier. It has a unique double role in that it intercalates into DNA and imposes radical-mediated damage after thiol activation. Here we employed NCS as a probe to examine the DNA-protection capability of caffeine, one of common dietary phytochemicals with potential cancer-chemopreventive activity. NCS at the nanomolar concentration range could induce significant single- and double-strand lesions in DNA, but up to 75 ± 5% of such lesions were found to be efficiently inhibited by caffeine. The percentage of inhibition was caffeine-concentration dependent, but was not sensitive to the DNA-lesion types. The well-characterized activation reactions of NCS allowed us to explore the effect of caffeine on the enediyne-generated radicals. Postactivation analyses by chromatographic and mass spectroscopic methods identified a caffeine-quenched enediyne-radical adduct, but the yield was too small to fully account for the large inhibition effect on DNA lesions. The affinity between NCS chromophore and DNA was characterized by a fluorescence-based kinetic method. The drug-DNA intercalation was hampered by caffeine, and the caffeine-induced increases in DNA-drug dissociation constant was caffeine-concentration dependent, suggesting importance of binding affinity in the protection mechanism. Caffeine has been shown to be both an effective free radical scavenger and an intercalation inhibitor. Our results demonstrated that caffeine ingeniously protected DNA against the enediyne-induced damages mainly by inhibiting DNA intercalation beforehand. The direct scavenging of the DNA-bound NCS free radicals by caffeine played only a minor role.
Collapse
Affiliation(s)
- Der-Hang Chin
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan, Republic of China.
| | | | | | | | | |
Collapse
|
6
|
|
7
|
Insight into the strong inhibitory action of salt on activity of neocarzinostatin. Bioorg Med Chem 2010; 18:1980-7. [PMID: 20137955 DOI: 10.1016/j.bmc.2010.01.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 01/12/2010] [Accepted: 01/13/2010] [Indexed: 11/21/2022]
Abstract
Enediyne anticancer drugs belong to one of the most potent category in inducing DNA damage. We report 85+/-5% inhibition on activity of neocarzinostatin by salt. As high sodium ion concentration is a known tumor cell feature, we explored the dynamic mechanism of inhibition. Using various analytical tools, we examined parameters involved in the four consecutive steps of the drug action, namely, drug releasing from carrier protein, drug-DNA binding, drug activating, and DNA damaging. Neither protein stability, nor drug release rate, was altered by salt. The salt inhibition level was similar in between the protein-bound and unbound enediyne chromophore. Salt did not quench the thiol-induced drug activation. The inhibition was independent of DNA lesion types and irrelevant with thiol structures. Collectively, no salt interaction was found in the releasing, activating, and DNA damaging step of the drug action. However, binding with DNA decreased linearly with salt and corresponded well with the salt-induced inhibition on the drug activity. Salt interference on the affinity of DNA binding was the main and sole cause of the severe salt inhibition. The inhibition factor should be carefully considered for all agents with similar DNA binding mode.
Collapse
|
8
|
Tyrsina EG, Slanina SV, Kakpakova ES, Kalendo GS, Kan NG, Tyrsin OY, Ryskov AP. Isolation and characterization of highly radioresistant malignant hamster fibroblasts that survive acute gamma irradiation with 20 Gy. Radiat Res 2006; 164:745-54. [PMID: 16296880 DOI: 10.1667/rr3443.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
To study the acquired radioresistance of tumor cells, a model system of two cell lines, Djungarian hamster fibroblasts (DH-TK-) and their radioresistant progeny, was established. The progeny of irradiated cells were isolated by treating the parental cell monolayer with a single dose of 20 Gy (PIC-20). The genetic and morphological features, clonogenic ability, radiosensitivity, cell growth kinetics, ability to grow in methylcellulose, and tumorigenicity of these cell lines were compared. The plating efficiency of PIC-20 cells exceeded that of DH-TK- cells. The progeny of irradiated cells were more radioresistant than parental cells. The average D0 for PIC-20 cells was 7.4 +/- 0.2 Gy, which is three times higher than that for parental cells (2.5 +/- 0.1 Gy). Progeny cell survival in methylcellulose after irradiation with a dose of 10 Gy was 15 times higher than that of DH-TK- cells. In contrast to parental cells, the progeny of irradiated cells showed fast and effective repopulation after irradiation with doses of 12.5 and 15 Gy. The tumor formation ability of irradiated progeny cells was higher than that of parental cells; after 15 Gy irradiation, PIC-20 cells produced tumors as large as unirradiated progeny of irradiated cells, whereas the tumor development of DH-TK- cells diminished by 70%. High radioresistance of progeny of irradiated cells was reproduced during the long period of cultivation (more than 80 passages). The stability of the radioresistant phenotype of PIC-20 cells allows us to investigate the possible mechanisms of acquired tumor radioresistance.
Collapse
Affiliation(s)
- Ekaterina G Tyrsina
- Institute of Carcinogenesis of Russian Cancer Research Center, Russian Academy of Medical Sciences, Moscow, 115478, Russia.
| | | | | | | | | | | | | |
Collapse
|
9
|
Akimoto T. Molecular targets for potentiation of radiation-induced cell killing. Breast Cancer 2004; 11:121-8. [PMID: 15550856 DOI: 10.1007/bf02968290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Molecular target-based drugs have been emerging as a cancer treatment. Clinical trials using the combined approach of radiation therapy and molecular target-based drugs have been performed to evaluate the feasibility of this approach, and improve the response of tumors to radiation. To achieve maximum radiotherapeutic gain, understanding of the interaction of radiation and drugs are indispensable. Preclinical data have already demonstrated synergistic enhancement of radiation-induced cell killing by several molecular target-based drugs. Among these, the effect of drugs that target receptor tyrosine kinase and its signal transduction pathways on radiosensitivity has been intensively investigated. In this review, established and potential molecular targets for potentiation of radiation-induced cell killing are summarized, and preclinical data regarding investigations of new molecular targets for radiosensitization will be introduced. In addition, the results and toxicities of clinical trials using combined radiation therapy and molecular target-based drugs are summarized.
Collapse
Affiliation(s)
- Tetsuo Akimoto
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan.
| |
Collapse
|
10
|
Pucci S, Mazzarelli P, Rabitti C, Giai M, Gallucci M, Flammia G, Alcini A, Altomare V, Fazio VM. Tumor specific modulation of KU70/80 DNA binding activity in breast and bladder human tumor biopsies. Oncogene 2001; 20:739-47. [PMID: 11314007 DOI: 10.1038/sj.onc.1204148] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2000] [Revised: 10/30/2000] [Accepted: 12/05/2000] [Indexed: 01/13/2023]
Abstract
The Ku70/80 heterodimer is the regulatory subunit of the DNA-dependent protein kinase (DNA-PK) and its DNA-binding activity mediates DNA double-strand breaks repair. Although Ku80 was recently proposed as a caretaker gene involved in the control of genome integrity, no data are available on Ku70/80 DNA-binding activity in human tumors. Heterodimer DNA-binding activity and protein expression were assayed by electrophoretic-mobility-shift-assay (EMSA) and Western blot analysis, in nuclear and cytoplasmic extracts from eight breast, seven bladder primary tumors and three metastatic nodes from breast cancers. Corresponding normal tissues of the same patients were used as controls. Ten out of 15 tumors showed nuclear Ku-binding activity 3-10 times higher than in the normal tissues, irrespective of bladder or breast origin. Conversely, in 5/15 primary tumors and in all the metastatic nodes analysed, nuclear Ku-activity was 1.5-4.5-fold lower than in the corresponding normal tissues. Cytoplasmic heterodimer activity significantly differed between tumor and normal tissues, displaying a 2-10-fold increase in neoplastic tissues. Three different patterns combining both Ku expression and activity with tumor characteristics were identified. In low aggressive breast tumors p70/p80 proteins were expressed in tumor but not in normal tissues. The heterodimer binding-activity matched the protein levels. In non-invasive bladder carcinomas no significant differences in protein expression between tumor and the corresponding normal tissues were found, however heterodimer binding-activity was increased in tumor samples. In breast and bladder tumors, at the advanced stage and in node metastases, the binding activity was strongly reduced in tumor biopsies, however no differences were demonstrated between normal and tumor protein levels. Our results suggest a different modulation of Ku70/80 DNA-binding activity in human neoplastic tissues, possibly related to tumor progression. Findings provide further data on tissue-specific protein expression and post-translational regulation of heterodimer activity.
Collapse
Affiliation(s)
- S Pucci
- Institute of Experimental Medicine, CNR, Via Fosso del Cavaliere 100, 00133 Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Zhang L, Wan XS, Donahue JJ, Ware JH, Kennedy AR. Effects of the Bowman-Birk inhibitor on clonogenic survival and cisplatin- or radiation-induced cytotoxicity in human breast, cervical, and head and neck cancer cells. Nutr Cancer 1999; 33:165-73. [PMID: 10368812 DOI: 10.1207/s15327914nc330208] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Bowman-Birk inhibitor (BBI) is a soybean-derived anticarcinogenic protease inhibitor previously shown to potentiate cisplatin-induced cytoxicity in human lung and ovarian cancer cells. To further assess the potential of BBI as a sensitizing agent for cancer radiotherapy and chemotherapy, we evaluated the effects of BBI and a soybean concentrate enriched in BBI known as BBI concentrate (BBIC) on clonogenic survival and radiation- or cisplatin-induced cell killing in MCF7 human breast carcinoma cells, SCC61 and SQ20B human head and neck carcinoma cells, HeLa, HeLa-R1, and HeLa-R3 human cervical carcinoma cells, MCF10 nontumorigenic human epithelial cells, HTori-3 nontumorigenic human thyroid epithelial cells, and C3H10T1/2 mouse fibroblast cells. BBI and BBIC significantly suppressed the clonogenic survival of MCF7 and SCC61 cells. BBIC also suppressed the survival of SQ20B cells and enhanced radiation-induced cell killing in SCC61 and SQ20B cells and cisplatin-induced cell killing in HeLa, HeLa-R1, and HeLa-R3 cells. In contrast, BBI and/or BBIC did not enhance radiation-induced cell killing in MCF10 cells or cisplatin-induced cell killing in C3H10T1/2 cells. BBI did not significantly affect the survival of SQ20B cells or enhance radiation-induced cell killing in SCC61 and SQ20B cells. The clonogenic survivals of MCF10 and C3H10T1/2 cells were not adversely affected by treatment with BBI or BBIC. The clonogenic survival of HTori-3 cells was only moderately suppressed by treatment with BBIC at > or = 80 micrograms/ml. These results suggest that BBIC could be a useful agent for the potentiation of radiation- and cisplatin-mediated cancer treatment without significant adverse effects on surrounding normal tissues.
Collapse
Affiliation(s)
- L Zhang
- Department of Radiation Oncology, University of Pennsylvania School of Medicine, Philadelphia 19104, USA
| | | | | | | | | |
Collapse
|
12
|
Gill JS, Windebank AJ. Cisplatin-induced apoptosis in rat dorsal root ganglion neurons is associated with attempted entry into the cell cycle. J Clin Invest 1998; 101:2842-50. [PMID: 9637718 PMCID: PMC508875 DOI: 10.1172/jci1130] [Citation(s) in RCA: 222] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Platinum compounds induce apoptosis in malignant cells and are used extensively in the treatment of cancer. Total dose is limited by development of a sensory neuropathy. We now demonstrate that when rats are administered cisplatin (2 mg/kg i.p. for 5 d), primary sensory neurons in the dorsal root ganglion die by apoptosis. This was reproduced by exposure of dorsal root ganglion neurons and PC12 cells to cisplatin (3 microg/ml) in vitro. Apoptosis was confirmed by electron microscopy, DNA laddering, and inhibition by the caspase inhibitor z-VAD.fmk (100 microM). Cell death in vitro was preceded by upregulation of cyclin D1, cdk4, and increased phosphorylation of retinoblastoma protein; all are indicators of cell cycle advancement. The level of p16(INK4a), an endogenous inhibitor of the cyclin D1/cdk4 complex decreased. Exposure of PC12 cells and dorsal root ganglion neurons to increased levels of nerve growth factor (100 ng/ ml) prevented both apoptosis and upregulation of the cell cycle markers. Cancer cells without nerve growth factor receptors (gp140TrkA) were not protected by the neurotrophin. This indicated that cisplatin may kill cancer cells and neurons by a similar mechanism. In postmitotic neurons, this involves an attempt to re-enter the cell cycle resulting in apoptosis which is specifically prevented by nerve growth factor.
Collapse
Affiliation(s)
- J S Gill
- Molecular Neuroscience Program, Mayo Clinic and Mayo Foundation, Rochester, Minnesota 55905, USA.
| | | |
Collapse
|
13
|
Xanthoudakis S, Smeyne RJ, Wallace JD, Curran T. The redox/DNA repair protein, Ref-1, is essential for early embryonic development in mice. Proc Natl Acad Sci U S A 1996; 93:8919-23. [PMID: 8799128 PMCID: PMC38569 DOI: 10.1073/pnas.93.17.8919] [Citation(s) in RCA: 378] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The DNA-binding activity of AP-1 proteins is modulated, in vitro, by a posttranslational mechanism involving reduction oxidation. This mode of regulation has been proposed to control both the transcriptional activity and the oncogenic potential of Fos and Jun. Previous studies revealed that reduction of oxidized Fos and Jun by a cellular protein, Ref-1, stimulates sequence-specific AP-1 DNA-binding activity. Ref-1, a bifunctional protein, is also capable of initiating the repair of apurinic/apyrymidinic sites in damaged DNA. The relationship between the redox and DNA repair activities of Ref-1 is intriguing; both activities have been suggested to play an important role in the cellular response to oxidative stress. To investigate the physiological function of Ref-1, we used a gene targeting strategy to generate mice lacking a functional ref-1 gene. We report here that heterozygous mutant mice develop into adulthood without any apparent abnormalities. In contrast, homozygous mutant mice, lacking a functional ref-1 gene, die during embryonic development. Detailed analysis indicates that death occurs following blastocyst formation, shortly after the time of implantation. Degeneration of the mutant embryos is clearly evident at embryonic day 5.5. These findings demonstrate that Ref-1 is essential for early embryonic development.
Collapse
Affiliation(s)
- S Xanthoudakis
- Department of Central Nervous System Research, Hoffmann-La Roche Inc., Nutley, NJ 07110, USA
| | | | | | | |
Collapse
|
14
|
Mazzanti R, Fantappie O, Fabrizio P, Pacini S, Relli P, Casamassima F, Milano F, Ruggiero M. Conferring drug resistance by MDR1 gene transfection increases susceptibility to irradiation and lipid peroxidation in 3T3 cell line. Free Radic Biol Med 1996; 20:601-6. [PMID: 8904302 DOI: 10.1016/0891-5849(95)02063-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This study was performed to test the hypothesis that conferring multiple drug resistance reduces cell susceptibility to irradiation and iron-stimulated lipid peroxidation. Multidrug resistant (PN1A) and parental drug sensitive (PSI-2) cell lines were exposed to ADP-Fe or Ascorbate-Fe complexes at 37 degrees C and to irradiation. Lipid peroxidation was estimated by the TBA test, whereas x-ray effect was estimated by clonogenic assay. Cell glutathione-S-transferase (GST), total and Se-dependent glutathione peroxidase (GSH-Px) activities, and glutathione and vitamin E were measured. PN1A produced more peroxides than PSI-2 after exposure to iron complexes and formed fewer colonies after irradiation. Higher activities of GST and total and Se-GSH-Px were observed in PN1A. Vitamin E and total glutathione did not differ in the two cell subclones. These data show that the induction of the mdr1 phenotype by transfection of mdr1 gene in 3T3 cells increases susceptibility to irradiation and iron stimulated lipid peroxidation.
Collapse
Affiliation(s)
- R Mazzanti
- Institute of Internal Medicine, University of Florence, Italy
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Görlach A, Acker H. pO2- and pH-gradients in multicellular spheroids and their relationship to cellular metabolism and radiation sensitivity of malignant human tumor cells. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1227:105-12. [PMID: 7986818 DOI: 10.1016/0925-4439(94)90085-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- A Görlach
- Max-Planck Institut für Molekulare Physiologie, Dortmund, Germany
| | | |
Collapse
|