1
|
Sterling AJ, Snelling WJ, Naughton PJ, Ternan NG, Dooley JSG. Competent but complex communication: The phenomena of pheromone-responsive plasmids. PLoS Pathog 2020; 16:e1008310. [PMID: 32240270 PMCID: PMC7117660 DOI: 10.1371/journal.ppat.1008310] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Enterococci are robust gram-positive bacteria that are found in a variety of surroundings and that cause a significant number of healthcare-associated infections. The genus possesses a high-efficiency pheromone-responsive plasmid (PRP) transfer system for genetic exchange that allows antimicrobial-resistance determinants to spread within bacterial populations. The pCF10 plasmid system is the best characterised, and although other PRP systems are structurally similar, they lack exact functional homologues of pCF10-encoded genes. In this review, we provide an overview of the enterococcal PRP systems, incorporating functional details for the less-well-defined systems. We catalogue the virulence-associated elements of the PRPs that have been identified to date, and we argue that this reinforces the requirement for elucidation of the less studied systems.
Collapse
Affiliation(s)
- Amy J. Sterling
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, Londonderry, Northern Ireland
- * E-mail:
| | - William J. Snelling
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, Londonderry, Northern Ireland
| | - Patrick J. Naughton
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, Londonderry, Northern Ireland
| | - Nigel G. Ternan
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, Londonderry, Northern Ireland
| | - James S. G. Dooley
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, Londonderry, Northern Ireland
| |
Collapse
|
2
|
Xiang Y, Halin J, Fan Z, Hu S, Wang M, Qiu L, Zhang Z, Mattjus P, Zhang Y. Topovectorial mechanisms control the juxtamembrane proteolytic processing of Nrf1 to remove its N-terminal polypeptides during maturation of the CNC-bZIP factor. Toxicol Appl Pharmacol 2018; 360:160-184. [PMID: 30268580 DOI: 10.1016/j.taap.2018.09.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/17/2018] [Accepted: 09/26/2018] [Indexed: 01/06/2023]
Abstract
The topobiological behaviour of Nrf1 dictates its post-translational modification and its ability to transactivate target genes. Here, we have elucidated that topovectorial mechanisms control the juxtamembrane processing of Nrf1 on the cyto/nucleoplasmic side of endoplasmic reticulum (ER), whereupon it is cleaved and degraded to remove various lengths of its N-terminal domain (NTD, also refolded into a UBL module) and acidic domain-1 (AD1) to yield multiple isoforms. Notably, an N-terminal ~12.5-kDa polypeptide of Nrf1 arises from selective cleavage at an NHB2-adjoining region within NTD, whilst other longer UBL-containing isoforms may arise from proteolytic processing of the protein within AD1 around PEST1 and Neh2L degrons. The susceptibility of Nrf1 to proteolysis is determined by dynamic repositioning of potential UBL-adjacent degrons and cleavage sites from the ER lumen through p97-driven retrotranslocation and -independent pathways into the cyto/nucleoplasm. These repositioned degrons and cleavage sites within NTD and AD1 of Nrf1 are coming into their bona fide functionality, thereby enabling it to be selectively processed by cytosolic DDI-1/2 proteases and also partiality degraded via 26S proteasomes. The resultant proteolytic processing of Nrf1 gives rise to a mature ~85-kDa CNC-bZIP transcription factor, which regulates transcriptional expression of cognate target genes. Furthermore, putative ubiquitination of Nrf1 is not a prerequisite necessary for involvement of p97 in the client processing. Overall, the regulated juxtamembrane proteolysis (RJP) of Nrf1, though occurring in close proximity to the ER, is distinctive from the mechanism that regulates the intramembrane proteolytic (RIP) processing of ATF6 and SREBP1.
Collapse
Affiliation(s)
- Yuancai Xiang
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering and Faculty of Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China
| | - Josefin Halin
- Department of Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Artillerigatan 6A, III, BioCity, FI-20520 Turku, Finland
| | - Zhuo Fan
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering and Faculty of Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China
| | - Shaofan Hu
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering and Faculty of Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China
| | - Meng Wang
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering and Faculty of Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China
| | - Lu Qiu
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering and Faculty of Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China
| | - Zhengwen Zhang
- Institute of Neuroscience and Psychology, School of Life Sciences, University of Glasgow, 42 Western Common Road, G22 5PQ Glasgow, Scotland, United Kingdom
| | - Peter Mattjus
- Department of Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Artillerigatan 6A, III, BioCity, FI-20520 Turku, Finland
| | - Yiguo Zhang
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering and Faculty of Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China.
| |
Collapse
|
3
|
Zade HM, Keshavarz R, Shekarabi HSZ, Bakhshinejad B. Biased selection of propagation-related TUPs from phage display peptide libraries. Amino Acids 2017; 49:1293-1308. [DOI: 10.1007/s00726-017-2452-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/09/2017] [Indexed: 10/19/2022]
|
4
|
Hynninen A, Touzé T, Pitkänen L, Mengin-Lecreulx D, Virta M. An efflux transporter PbrA and a phosphatase PbrB cooperate in a lead-resistance mechanism in bacteria. Mol Microbiol 2009; 74:384-94. [PMID: 19737357 DOI: 10.1111/j.1365-2958.2009.06868.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The gene cluster pbrTRABCD from Cupriavidus metallidurans CH34 is thought to encode a unique, specific resistance mechanism for lead. However, the exact functions of these genes are unknown. In this study we examine the metal specificity and functions of pbrABCD by expressing these genes in different combinations and comparing their ability to restore Pb(2+), Zn(2+) and Cd(2+) resistance in a metal-sensitive C. metallidurans strain DN440. We show that lead resistance in C. metallidurans is achieved through the cooperation of the Zn/Cd/Pb-translocating ATPase PbrA and the undecaprenyl pyrophosphate phosphatase PbrB. While PbrA non-specifically exported Pb(2+), Zn(2+) and Cd(2+), a specific increase in lead resistance was observed when PbrA and PbrB were coexpressed. As a model of action for PbrA and PbrB we propose a mechanism where Pb(2+) is exported from the cytoplasm by PbrA and then sequestered as a phosphate salt with the inorganic phosphate produced by PbrB. Similar operons containing genes for heavy metal translocating ATPases and phosphatases were found in several different bacterial species, suggesting that lead detoxification through active efflux and sequestration is a common lead-resistance mechanism.
Collapse
Affiliation(s)
- Anu Hynninen
- Department of Applied Chemistry and Microbiology, University of Helsinki, FIN-00014 Helsinki, Finland
| | | | | | | | | |
Collapse
|
5
|
Abstract
Insulin, the major secreted product of the beta-cells of the islets of Langerhans, is initially synthesized as a precursor (preproinsulin), from which the mature hormone is excised by a series of proteolytic cleavages. This review provides a personal narrative of some of the key research projects leading to the identification of the central processing enzymes as proprotein convertase 1, proprotein convertase 2, and carboxypeptidase E. It also discusses the central roles of the intragranular environment and chaperone-like proteins in modulating processing activity.
Collapse
Affiliation(s)
- Howard W Davidson
- Barbara Davis Center for Childhood Diabetes, University of Colorado Health Sciences Center, Denver, CO, USA.
| |
Collapse
|
6
|
Kleine LL, Monnet V, Pechoux C, Trubuil A. Role of bacterial peptidase F inferred by statistical analysis and further experimental validation. HFSP JOURNAL 2008; 2:29-41. [PMID: 19404451 DOI: 10.2976/1.2820377] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Accepted: 11/09/2007] [Indexed: 11/19/2022]
Abstract
Despite the quantity of high-throughput data available nowadays, the precise role of many proteins has not been elucidated. Available methods for classifying proteins and reconstructing metabolic networks are efficient for finding global categories, but do not answer the biologist's specific and targeted questions. Following Yamanishi et al. [Yamanishi, Y, Vert, JP, Nakaya, A, and Kaneisha, M (2003). "Extraction of correlated clusters from multiple genomic data by generalized kernel canonical correlation analysis." Bioinformatics 19, Suppl. 1, i323-i330] we used a kernel canonical correlation analysis (KCCA) to predict the role of the bacterial peptidase PepF. We integrated five existing data types: protein metabolic networks, microarray data, phylogenetic profiles, distances between proteins and incomplete two-dimensional-gel data (for which we propose a completion strategy), available for Lactococcus lactis to determine relationships between proteins. The predicted relationships were then used to guide our laboratory work which proved most of the predictions correct. PepF had previously been characterized as a zinc dependent endopeptidase [Nardi, M, Renault, P, and Monnet, V (1997). "Duplication of the pepF gene and shuffling of DNA fragments on the lactose plasmid of Lactococcus lactis." J. Bacteriol. 179, 4164-4171; Monnet, V, Nardi, M, Chopin, MC, and Gripon, JC (1994). "Biochemical and genetic characterization of PepF on oligoendopeptidase from Lactococcus lactis." J. Bio. Chem. 269, 32070-32076]. Analyzing a PepF mutant, we confirmed its participation in protein secretion through a strong relationship between the signal peptidase I and PepF predicted by the KCCA. The global nature of our approach made it possible to discover pleiotropic roles of the protein which had remained unknown using classical approaches.
Collapse
|
7
|
Characterization of the sequence specificity determinants required for processing and control of sex pheromone by the intramembrane protease Eep and the plasmid-encoded protein PrgY. J Bacteriol 2007; 190:1172-83. [PMID: 18083822 DOI: 10.1128/jb.01327-07] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Conjugative transfer of the Enterococcus faecalis plasmid pCF10 is induced by the peptide pheromone cCF10 when recipient-produced cCF10 is detected by donors. cCF10 is produced by proteolytic processing of the signal sequence of a chromosomally encoded lipoprotein (CcfA). In donors, endogenously produced cCF10 is carefully controlled to prevent constitutive expression of conjugation functions, an energetically wasteful process, except in vivo, where endogenous cCF10 induces a conjugation-linked virulence factor. Endogenous cCF10 is controlled by two plasmid-encoded products; a membrane protein PrgY reduces pheromone levels in donors, and a secreted inhibitor peptide iCF10 inhibits the residual endogenous pheromone that escapes PrgY control. In this study we genetically determined the amino acid specificity determinants within PrgY, cCF10, and the cCF10 precursor that are necessary for cCF10 processing and for PrgY-mediated control. We showed that amino acid residues 125 to 241 of PrgY are required for specific recognition of cCF10 and that PrgY recognizes determinants within the heptapeptide cCF10 sequence, supporting a direct interaction between PrgY and mature cCF10. In addition, we found that a regulated intramembrane proteolysis (RIP) family pheromone precursor-processing protein Eep recognizes amino acids N-terminal to cCF10 in the signal sequence of CcfA. These results support a model where Eep directly targets pheromone precursors for RIP and PrgY interacts directly with the mature cCF10 peptide during processing. Despite evidence that both PrgY and Eep associate with cCF10 in or near the membrane, results presented here indicate that these two proteins function independently.
Collapse
|
8
|
Chandler JR, Flynn AR, Bryan EM, Dunny GM. Specific control of endogenous cCF10 pheromone by a conserved domain of the pCF10-encoded regulatory protein PrgY in Enterococcus faecalis. J Bacteriol 2005; 187:4830-43. [PMID: 15995198 PMCID: PMC1169508 DOI: 10.1128/jb.187.14.4830-4843.2005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Conjugative transfer of Enterococcus faecalis plasmid pCF10 is induced by the heptapeptide pheromone cCF10. cCF10 produced by plasmid-free recipient cells is detected by pCF10-containing donor cells, which respond by induction of plasmid-encoded transfer functions. The pCF10-encoded membrane protein PrgY is essential to prevent donor cells from responding to endogenously produced pheromone while maintaining the ability to respond to pheromone from an exogenous source; this function has not been identified in any nonenterococcal prokaryotic signaling system. PrgY specifically inhibited endogenous cCF10 and cPD1 (a pheromone that induces transfer of closely related plasmid pPD1) but not cAD1 (which is specific for less-related plasmid pAD1). Ectopic expression of PrgY in plasmid-free recipient cells reduced pheromone activity in culture supernatants and reduced the ability of these cells to acquire pCF10 by conjugation but did not have any effect on the interaction of these cells with exogenously supplied cCF10. The cloned prgY gene could complement a pCF10 prgY null mutation, and complementation was used to identify point mutations impairing PrgY function. Such mutations also abolished the inhibitory effect of PrgY expression in recipients on pheromone production and on acquisition of pCF10. Most randomly generated point mutations identified in the genetic screen mapped to a predicted extracellular domain in the N terminus of PrgY that is conserved in a newly identified family of related proteins from disparate species including Borrelia burgdorferi, Archaeoglobus fulgidus, Arabidopsis thaliana, and Homo sapiens. The combined genetic and physiological data suggest that PrgY may sequester or inactivate cCF10 as it is released from the membrane.
Collapse
|
9
|
Chandler JR, Dunny GM. Enterococcal peptide sex pheromones: synthesis and control of biological activity. Peptides 2004; 25:1377-88. [PMID: 15374642 DOI: 10.1016/j.peptides.2003.10.020] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2003] [Accepted: 10/31/2003] [Indexed: 11/23/2022]
Abstract
The enterococcal pheromone-inducible plasmids such as pCF10 represent a unique class of mobile genetic elements whose transfer functions are induced by peptide sex pheromones. These pheromones are excreted by potential recipient cells and detected by plasmid-containing donor cells at the cell surface, where the pheromone is imported and signals induction of the plasmid transfer system. Pheromone is processed from a chromosomally encoded lipoprotein and excreted by both the donor and recipient cells, but a carefully controlled detection system prevents a response to self-pheromone while still allowing an extremely sensitive response to exogenous pheromone.
Collapse
Affiliation(s)
- Josephine R Chandler
- Department of Microbiology, University of Minnesota Medical School, 1460 Mayo Bldg., 420 Delaware Street SE, Minneapolis, MN 55455-0312, USA
| | | |
Collapse
|
10
|
Davidson HW. (Pro)Insulin processing. Cell Biochem Biophys 2004. [DOI: 10.1007/bf02739019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Rodi DJ, Soares AS, Makowski L. Quantitative assessment of peptide sequence diversity in M13 combinatorial peptide phage display libraries. J Mol Biol 2002; 322:1039-52. [PMID: 12367527 DOI: 10.1016/s0022-2836(02)00844-6] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Novel statistical methods have been developed and used to quantitate and annotate the sequence diversity within combinatorial peptide libraries on the basis of small numbers (1-200) of sequences selected at random from commercially available M13 p3-based phage display libraries. These libraries behave statistically as though they correspond to populations containing roughly 4.0+/-1.6% of the random dodecapeptides and 7.9+/-2.6% of the random constrained heptapeptides that are theoretically possible within the phage populations. Analysis of amino acid residue occurrence patterns shows no demonstrable influence on sequence censorship by Escherichia coli tRNA isoacceptor profiles or either overall codon or Class II codon usage patterns, suggesting no metabolic constraints on recombinant p3 synthesis. There is an overall depression in the occurrence of cysteine, arginine and glycine residues and an overabundance of proline, threonine and histidine residues. The majority of position-dependent amino acid sequence bias is clustered at three positions within the inserted peptides of the dodecapeptide library, +1, +3 and +12 downstream from the signal peptidase cleavage site. Conformational tendency measures of the peptides indicate a significant preference for inserts favoring a beta-turn conformation. The observed protein sequence limitations can primarily be attributed to genetic codon degeneracy and signal peptidase cleavage preferences. These data suggest that for applications in which maximal sequence diversity is essential, such as epitope mapping or novel receptor identification, combinatorial peptide libraries should be constructed using codon-corrected trinucleotide cassettes within vector-host systems designed to minimize morphogenesis-related censorship.
Collapse
Affiliation(s)
- Diane J Rodi
- Combinatorial Biology Unit, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | | | | |
Collapse
|
12
|
Govaerts M, Verhaert P, Jongejan F, Goddeeris BM. Characterisation of the 33kDa piroplasm surface antigen of Theileria orientalis/sergenti/buffeli isolates from West Java, Indonesia. Vet Parasitol 2002; 104:103-17. [PMID: 11809330 DOI: 10.1016/s0304-4017(01)00621-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The immunodominant 33/35kDa antigen of a Theileria isolate from West Java, Indonesia, was characterised and immuno-affinity purified by use of a monoclonal antibody, KUL-a4, and was shown to be representative of the T. orientalis/sergenti/buffeli group. The aminoterminal sequence of the purified 35kDa peptide (20 residues) was determined by automated Edman degradation and found to correspond to the predicted amino acid sequence of a prospective p33 gene previously sequenced from the same isolate. The cleavage site of a putative signal peptide was identified and conforms the (-3, -1) rule for signal peptidases. The existence of dimeric and trimeric forms of the p33/35 antigen is hypothesised from Western blot profiles. KUL-a4 appeared specific for the T. orientalis/sergenti/buffeli group. It did not recognise in indirect fluorescence antibody test (IFAT), intraerythrocytic bodies of Anaplasma marginale or piroplasms and schizonts of T. mutans, T. parva and T. annulata, whereas cattle antisera raised to these species showed cross-reactivity in IFAT. It however, appeared weakly cross-reactive in Western blot and ELISA, with the 34kDa piroplasm antigen of one T. annulata (Gharb) isolate. The present study indicates that the isolated antigen belongs to the p33/34 antigen family described within the T. sergenti/orientalis/buffeli group, and documents the group-specificity of one of its epitopes.
Collapse
Affiliation(s)
- Marc Govaerts
- Laboratory of Physiology and Immunology of Domestic Animals, Katholieke Universiteit Leuven, Kasteelpark Arenburg 30, B-3001 Heverlee, Leuven, Belgium
| | | | | | | |
Collapse
|
13
|
Antiporta MH, Dunny GM. ccfA, the genetic determinant for the cCF10 peptide pheromone in Enterococcus faecalis OG1RF. J Bacteriol 2002; 184:1155-62. [PMID: 11807076 PMCID: PMC134800 DOI: 10.1128/jb.184.4.1155-1162.2002] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nosocomial pathogen Enterococcus faecalis has a unique pheromone-inducible conjugative mating system. Conjugative transfer of the E. faecalis plasmid pCF10 is specifically induced by the cCF10 peptide pheromone (LVTLVFV). Genomic sequence information has recently allowed the identification of putative structural genes coding for the various enterococcal pheromones (D. B. Clewell et al., Mol. Microbiol. 35:246-247, 2000). The cCF10 pheromone sequence LVTLVFV was found within an open reading frame designated ccfA, encoding a putative lipoprotein precursor. Several other pheromone sequences were found in similar locations within other predicted lipoproteins. CcfA shows significant sequence relatedness to the Escherichia coli protein YidC, an inner membrane protein translocase, as well as to a large number of homologs identified in gram-positive and in gram-negative bacteria. Analysis of the deduced CcfA amino acid sequence suggested that mature cCF10 peptide could be formed from the proteolytic degradation of its signal peptide. Expression of the cloned ccfA gene with an inducible expression vector dramatically increased cCF10 production by E. faecalis and also resulted in cCF10 production by Lactococcus lactis, a non-pheromone producer. Site-directed mutagenesis of the ccfA sequence encoding the cCF10 peptide confirmed that ccfA was a functional genetic determinant for cCF10.
Collapse
Affiliation(s)
- Michelle H Antiporta
- Department of Microbiology, University of Minnesota Medical School, Minneapolis, Minnesota 55455-0312, USA
| | | |
Collapse
|
14
|
Gallagher J, Kaderbhai NN, Kaderbhai MA. Kinetic constants of signal peptidase I using cytochrome b5 as a precursor substrate. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1550:1-5. [PMID: 11738082 DOI: 10.1016/s0167-4838(01)00265-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A procedure is described for measuring Escherichia coli signal peptidase I activity which exploits an intact precursor protein composed of the alkaline phosphatase signal peptide fused to the full length mammalian cytochrome b5. This cytochrome b5 precursor protein has been extensively characterised and shown to be processed accurately by purified signal peptidase I [Protein Expr. Purif. 7 (1996) 237]. The amphipathic, chimaeric cytochrome b5 precursor was isolated in mg quantities in a highly homogeneous state under non-denaturing conditions. The processing of the cytochrome b5 precursor by signal peptidase displayed Michaelis-Menten kinetics with K(m)=50 microM and k(cat)=11 s(-1). The K(m) was 20-fold lower than that obtained with signal peptide substrates and 3-fold higher than that reported for pro-OmpA-nuclease A precursor fusion. The corresponding turnover number, k(cat), was four orders of magnitude greater than the peptide substrates but was 2-fold lower than pro-OmpA-nuclease A precursor fusion. These results confirm that both the affinities and the catalytic power of the signal peptidase are significantly higher for macromolecular precursor substrates than for the shorter signal peptide substrates.
Collapse
Affiliation(s)
- J Gallagher
- Institute of Biological Sciences, The University of Wales Aberystwyth, SY23 3DD, Aberystwyth, UK
| | | | | |
Collapse
|
15
|
Kasahara M, Unno T, Yashiro K, Ohmori M. CyaG, a novel cyanobacterial adenylyl cyclase and a possible ancestor of mammalian guanylyl cyclases. J Biol Chem 2001; 276:10564-9. [PMID: 11134014 DOI: 10.1074/jbc.m008006200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A novel gene encoding an adenylyl cyclase, designated cyaG, was identified in the filamentous cyanobacterium Spirulina platensis. The predicted amino acid sequence of the C-terminal region of cyaG was similar to the catalytic domains of Class III adenylyl and guanylyl cyclases. The N-terminal region next to the catalytic domain of CyaG was similar to the dimerization domain, which is highly conserved among guanylyl cyclases. As a whole, CyaG is more closely related to guanylyl cyclases than to adenylyl cyclases in its primary structure. The catalytic domain of CyaG was expressed in Escherichia coli and partially purified. CyaG showed adenylyl cyclase (but not guanylyl cyclase) activity. By site-directed mutagenesis of three amino acid residues (Lys(533), Ile(603), and Asp(605)) within the purine ring recognition site of CyaG to Glu, Arg, and Cys, respectively, CyaG was transformed to a guanylyl cyclase that produced cGMP instead of cAMP. Thus having properties of both cyclases, CyaG may therefore represent a critical position in the evolution of Class III adenylyl and guanylyl cyclases.
Collapse
Affiliation(s)
- M Kasahara
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro, Tokyo 153, Japan
| | | | | | | |
Collapse
|
16
|
Whatmore AM. Streptococcus pyogenes sclB encodes a putative hypervariable surface protein with a collagen-like repetitive structure. MICROBIOLOGY (READING, ENGLAND) 2001; 147:419-429. [PMID: 11158359 DOI: 10.1099/00221287-147-2-419] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Streptococcus pyogenes is the causative agent in a wide range of diseases of humans of varying severity. During a study scanning the genome sequence of a serotype M1 invasive isolate SF370 for novel surface proteins, an ORF, designated sclB, was identified. The putative protein encoded by sclB contains both a signal peptide and classic Gram-positive wall-associated sequences. Comparison of the sequences of this ORF with those from a number of unrelated isolates demonstrated that sclB encodes a putative surface protein with a variable N-terminal sequence followed by a variable length tract of collagen-like GXY(n) repeats. A further feature of sclB is the presence of CAAAA repeat tracts immediately downstream of the putative start codon. The number of these pentameric repeats varies from 4 to 15 between strains and variation in repeat number results in the predicted SclB protein being either in or out of frame relative to the start codon. These observations suggest that expression of this protein may be regulated at the translational level as a result of gain or loss of CAAAA repeats. While the function of SclB remains to be elucidated, an sclB-specific transcript was detected by RT-PCR during in vitro culture. Finally, it is shown that a second gene, sclA, potentially encoding a protein with a similar extensive collagen-like structure and variable N-terminal sequence, is present in all isolates of S. pyogenes tested to date. Thus S. pyogenes harbours a novel family of structurally related and surface-exposed proteins of potential importance in the pathogenic process.
Collapse
Affiliation(s)
- Adrian M Whatmore
- Infectious Disease Research Group, Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK1
| |
Collapse
|
17
|
Striebel HM, Kalousek F. Eukaryotic precursor proteins are processed by Escherichia coli outer membrane protein OmpP. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 262:832-9. [PMID: 10411646 DOI: 10.1046/j.1432-1327.1999.00446.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A new specific endopeptidase that cleaves eukaryotic precursor proteins has been found in Escherichia coli K but not in E. coli B strains. After purification, protein sequencing and Western blotting, the endopeptidase was shown to be identical with E. coli outer membrane protein OmpP [Kaufmann, A., Stierhof, Y.-D. & Henning, U. (1994) J. Bacteriol. 176, 359-367]. Further characterization of enzymatic properties of the new peptidase was performed. Comparison of the cleavage specificities of the newly found endopeptidase and that of rat mitochondrial processing peptidase (MPP) showed that patterns of proteolytic cleavage on the investigated precursor proteins by both enzymes are similar. By using three mitochondrial precursor proteins, the specificity assigned to OmpP previously, a cleavage position between two basic amino-acid residues, was extended to a three amino-acid recognition sequence. Positions +1 to +3 of this extended recognition site consist of an amino-acid residue with a small aliphatic side chain such as alanine or serine, a large hydrophobic residue such as leucine or valine followed by an arginine residue. Additionally, structural motifs of the substrate seem to be required for OmpP cleavage.
Collapse
Affiliation(s)
- H M Striebel
- Yale University School of Medicine, Department of Genetics, New Haven, CT, USA.
| | | |
Collapse
|
18
|
Navarre WW, Schneewind O. Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev 1999; 63:174-229. [PMID: 10066836 PMCID: PMC98962 DOI: 10.1128/mmbr.63.1.174-229.1999] [Citation(s) in RCA: 935] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cell wall envelope of gram-positive bacteria is a macromolecular, exoskeletal organelle that is assembled and turned over at designated sites. The cell wall also functions as a surface organelle that allows gram-positive pathogens to interact with their environment, in particular the tissues of the infected host. All of these functions require that surface proteins and enzymes be properly targeted to the cell wall envelope. Two basic mechanisms, cell wall sorting and targeting, have been identified. Cell well sorting is the covalent attachment of surface proteins to the peptidoglycan via a C-terminal sorting signal that contains a consensus LPXTG sequence. More than 100 proteins that possess cell wall-sorting signals, including the M proteins of Streptococcus pyogenes, protein A of Staphylococcus aureus, and several internalins of Listeria monocytogenes, have been identified. Cell wall targeting involves the noncovalent attachment of proteins to the cell surface via specialized binding domains. Several of these wall-binding domains appear to interact with secondary wall polymers that are associated with the peptidoglycan, for example teichoic acids and polysaccharides. Proteins that are targeted to the cell surface include muralytic enzymes such as autolysins, lysostaphin, and phage lytic enzymes. Other examples for targeted proteins are the surface S-layer proteins of bacilli and clostridia, as well as virulence factors required for the pathogenesis of L. monocytogenes (internalin B) and Streptococcus pneumoniae (PspA) infections. In this review we describe the mechanisms for both sorting and targeting of proteins to the envelope of gram-positive bacteria and review the functions of known surface proteins.
Collapse
Affiliation(s)
- W W Navarre
- Department of Microbiology & Immunology, UCLA School of Medicine, Los Angeles, California 90095, USA
| | | |
Collapse
|
19
|
van Dijl JM, de Jong A, Venema G, Bron S. Identification of the potential active site of the signal peptidase SipS of Bacillus subtilis. Structural and functional similarities with LexA-like proteases. J Biol Chem 1995; 270:3611-8. [PMID: 7876097 DOI: 10.1074/jbc.270.8.3611] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Signal peptidases remove signal peptides from secretory proteins. By comparing the type I signal peptidase, SipS, of Bacillus subtilis with signal peptidases from prokaryotes, mitochondria, and the endoplasmic reticular membrane, patterns of conserved amino acids were discovered. The conserved residues of SipS were altered by site-directed mutagenesis. Replacement of methionine 44 by alanine yielded an enzyme with increased activity. Two residues (aspartic acid 146 and arginine 84) appeared to be conformational determinants; three other residues (serine 43, lysine 83, and aspartic acid 153) were critical for activity. Comparison of SipS with other proteases requiring serine, lysine, or aspartic acid residues in catalysis revealed sequence similarity between the region of SipS around serine 43 and lysine 83 and the active-site region of LexA-like proteases. Furthermore, self-cleavage sites of LexA-like proteases closely resembled signal peptidase cleavage sites. Together with the finding that serine and lysine residues are critical for activity of the signal peptidase of Escherichia coli (Tschantz, W.R., Sung, M., Delgado-Partin, V.M., and Dalbey, R.E. (1993) J. Biol. Chem. 268, 27349-27354), our data indicate that type I signal peptidases and LexA-like proteases are structurally and functionally related serine proteases. A model envisaging a catalytic serine-lysine dyad in prokaryotic type I signal peptidases is proposed to accommodate our observations.
Collapse
Affiliation(s)
- J M van Dijl
- Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, Haren, The Netherlands
| | | | | | | |
Collapse
|
20
|
Abstract
Major histocompatibility complex (MHC) class I molecules bind peptides of 8-10 residues in the endoplasmic reticulum (ER) and convey them to the cell surface for inspection by CD8-expressing T cells (TCD8+). Antigenic peptides are predominantly derived from a cytosolic pool of polypeptides. The proteolytic generation of peptides from polypeptides clearly begins in the cytosol, but it is uncertain whether the final proteolytic steps occur before or after peptides are transported into the ER by the MHC-encoded peptide transporter (TAP). To study the trimming of antigenic peptides in the secretory pathway in the absence of cytosolic processing, we used an NH2-terminal signal sequence to target to the ER of TAP-deficient cells, "tandem" peptides consisting of two defined TCD8+ determinants arranged from head to tail. We find that in contrast to cytosolic proteases in TAP-expressing cells, which are able to liberate antigenic peptides from either end of a tandem peptide, proteases (probably aminopeptidases) present in an early secretory compartment preferentially liberate the COOH-terminal determinant. These findings demonstrate that proteolytic activities associated with antigen processing are not limited to the cytosol, but that they also exist in an early secretory compartment. Such secretory aminopeptidases may function to trim TAP-transported peptides to the optimal size for binding to class I molecules.
Collapse
Affiliation(s)
- H L Snyder
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892
| | | | | |
Collapse
|
21
|
Barkocy-Gallagher G, Cannon J, Bassford P. Beta-turn formation in the processing region is important for efficient maturation of Escherichia coli maltose-binding protein by signal peptidase I in vivo. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36873-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
22
|
Braun V, Wu H. Chapter 14 Lipoproteins, structure, function, biosynthesis and model for protein export. BACTERIAL CELL WALL 1994. [DOI: 10.1016/s0167-7306(08)60417-2] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
23
|
Harding V, Karim A, Kaderbhai N, Jones A, Evans A, Kaderbhai MA. Processing of chimeric mammalian cytochrome b5 precursors in Escherichia coli: reaction specificity of signal peptidase and identification of an aminopeptidase in post-translocational processing. Biochem J 1993; 293 ( Pt 3):751-6. [PMID: 8352742 PMCID: PMC1134430 DOI: 10.1042/bj2930751] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A chimeric precursor interlinked by an arginine residue between the full-length signal sequence of alkaline phosphatase and the eukaryotic cytoplasmic cytochrome b5 was constructed. Expression of the chimeric precursor protein in Escherichia coli resulted in efficient export of spectrally authentic cytochrome b5 into the periplasm [Karim, Harding, Evans, Kaderbhai and Kaderbhai (1993) Bio/Technology 11, 612-618]. On sequencing, the apparent absence of arginine at the N-terminus of the secreted cytochrome b5 implied that the chimera was either miscleaved by signal peptidase or further processed following signal excision by an uncharacterized peptidase. The influence of the N-terminal region of cytochrome b5 on the unusual processing of the chimeric precursor was investigated by engineering a number of variant forms in which the region between Arg+1 and the mature portion of cytochrome b5 was extended and varied. Observations of the in vivo processed patterns of these variant cytochrome b5 forms exported into the periplasm revealed that the absence of arginine was due to neither miscleavage of the translocated precursor by the signal peptidase nor the nature of the early region of cytochrome b5. In fact, the selective excision of the arginine residue occurred subsequent to signal sequence deletion by an aminopeptidase which was sensitive to the metal chelator o-phenanthroline. We show that this aminopeptidase also participates in the trimming of the N-terminal arginine residue of the bacterial alkaline phosphatase to generate the three isoenzymes in the periplasm.
Collapse
Affiliation(s)
- V Harding
- Department of Biochemistry, University of Wales, Penglais, Aberystwyth, Dyfed, U.K
| | | | | | | | | | | |
Collapse
|
24
|
Sakakibara Y, Tsutsumi K, Nakamura K, Yamane K. Structural requirements of Bacillus subtilis alpha-amylase signal peptide for efficient processing: in vivo pulse-chase experiments with mutant signal peptides. J Bacteriol 1993; 175:4203-12. [PMID: 8320234 PMCID: PMC204850 DOI: 10.1128/jb.175.13.4203-4212.1993] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The Bacillus subtilis alpha-amylase signal peptide consists of 33 amino acids from its translation initiation site. To analyze the structural requirements for efficient processing of the signal peptide, single and repeated Ala-X-Ala sequences and their modifications were introduced into B. subtilis alpha-amylase signal peptides of different lengths and the mature thermostable alpha-amylase. Then the cleavage positions and processing rates of the signal peptides were analyzed by the NH2-terminal amino acid sequences of the exported thermostable alpha-amylases and by in vivo pulse-chase experiments. In B. subtilis, the most efficient cleavage site was located at the peptide bond between Ala-33 and amino acid X at position 34, even though Val-X-Ala and six repeating Ala-X-Ala sequences were present around the cleavage site. However, the cleavage site was shifted to the peptide bond between Ala-31 and amino acid X when Ala-33 was deleted, and it was also shifted to Ala-35 and X when Ala-33 was replaced with Val-33. The shorter signal peptide consisting of 31 amino acids reduced the processing rate and alpha-amylase production. In contrast, those signal peptides were cleaved preferentially at the peptide bond between Ala-31 and amino acid X in Escherichia coli. In addition to the presence of an Ala residue at the -1 amino acid position, the length of the signal peptide was another important requirement for efficient processing.
Collapse
Affiliation(s)
- Y Sakakibara
- Institute of Biological Sciences, University of Tsukuba, Ibaraki, Japan
| | | | | | | |
Collapse
|
25
|
Karim A, Kaderbhai N, Evans A, Harding V, Kaderbhai MA. Efficient bacterial export of a eukaryotic cytoplasmic cytochrome. BIO/TECHNOLOGY (NATURE PUBLISHING COMPANY) 1993; 11:612-8. [PMID: 7763609 DOI: 10.1038/nbt0593-612] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The soluble core domain of cytochrome b5 of liver endoplasmic reticulum was appended at its amino terminus to full-length alkaline phosphatase secretory signal sequence including the ribosomal binding site. The chimeric precursor gene was placed under the transcriptional control of the native pho promoter in a prokaryotic expression vector. Induction of Escherichia coli by growth in a phosphate-limited medium resulted in abundant synthesis of cytochrome b5 as detected spectrophotometrically and by visual transformation of the bacteria to a pink color. The signal-appended cytochrome b5, but not the corresponding signal-deficient derivative, was translocated across the bacterial inner membrane and processed to yield authentic, haem-assembled cytochrome b5 within the periplasm. The eventual processing of the chimeric cytochrome b5 precursor was unusual regarding the known reaction specificity of signal peptidase. The exported, mature haemoprotein was biochemically indistinguishable from its native mammalian counterpart. At peak induction, approximately 6 mg of correctly matured cytochrome b5 per liter of culture was exported. This amount of cytochrome b5 constituted 6% (w/w) of the periplasmic protein. The appearance of the exported apo-cytochrome b5 preceded the formation of holo-protein. Thus the eukaryotic cytoplasmic protein was efficiently exported from E. coli and post-translocationally modified to generate a functional haemoprotein in the periplasm.
Collapse
Affiliation(s)
- A Karim
- Department of Biochemistry, School of Life Sciences, University of Wales, Aberystwyth, U.K
| | | | | | | | | |
Collapse
|
26
|
Larriba G. Translocation of proteins across the membrane of the endoplasmic reticulum: a place for Saccharomyces cerevisiae. Yeast 1993; 9:441-63. [PMID: 8391742 DOI: 10.1002/yea.320090502] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- G Larriba
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| |
Collapse
|
27
|
Collier DN. SecB: a molecular chaperone of Escherichia coli protein secretion pathway. ADVANCES IN PROTEIN CHEMISTRY 1993; 44:151-93. [PMID: 8100379 DOI: 10.1016/s0065-3233(08)60567-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- D N Collier
- CR&D, E. I. du Pont de Nemours & Co., Wilmington, Delaware 19880
| |
Collapse
|
28
|
Strom MS, Lory S. Kinetics and sequence specificity of processing of prepilin by PilD, the type IV leader peptidase of Pseudomonas aeruginosa. J Bacteriol 1992; 174:7345-51. [PMID: 1429457 PMCID: PMC207430 DOI: 10.1128/jb.174.22.7345-7351.1992] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
PilD, originally isolated as an essential component for the biogenesis of the type IV pili of Pseudomonas aeruginosa, is a unique endopeptidase responsible for processing the precursors of the P. aeruginosa pilin subunits. It is also required for the cleavage of the leader peptides from the Pdd proteins, which are essential components of an extracellular secretion pathway specific for the export of a number of P. aeruginosa hydrolytic enzymes and toxins. Substrates for PilD are initially synthesized with short, i.e., 6- to 8-amino-acid-long, leader peptides with a net basic charge and share a high degree of amino acid homology through the first 16 to 30 residues at the amino terminus. In addition, they all have a phenylalanine residue at the +1 site relative to the cleavage site, which is N methylated prior to assembly into the oligomeric structures. In this study, the kinetics of leader peptide cleavage from the precursor of the P. aeruginosa pilin subunit by PilD was determined in vitro. The rates of cleavage were compared for purified enzyme and substrate as well as for enzyme and substrate contained within total membranes extracted from P. aeruginosa strains overexpressing the cloned pilD or pilA genes. Optimal conditions were obtained only when both PilD and substrate were contained within total membranes. PilD catalysis of P. aeruginosa prepilin followed normal Michaelis-Menten kinetics, with a measured apparent Km of approximately 650 microM, and a kcat of 180 min-1. The kinetics of PilD processing of another type IV pilin precursor, that from Neisseria gonorrhoeae with a 7-amino-acid-long leader peptide, were essentially the same as that measured for wild-type P. aeruginosa prepilin. Quite different results were obtained for a number of prepilin substrates containing substitutions at the conserved phenylalanine at the +1 position relative to the cleavage site, which were previously shown to be well tolerated in vivo. Substitutions of methionine, serine, and cysteine for phenylalanine show that Km values remain close to that measured for wild-type substrate, while kcat and kcat/Km values were significantly decreased. This indicates that while the affinity of enzyme for substrate is relatively unaffected by the substitutions, the maximum rate of catalysis favors a phenylalanine at this position. Interesting, PilD cleavage of one mutated pillin (asparagine) resulted in a lower Km value of 52.5 microM, which indicates a higher affinity for the enzyme, as well as a lower kcat value of 6.1 min m(-1). This suggests that it may be feasible to design peptide inhibitors of PilD.
Collapse
Affiliation(s)
- M S Strom
- Department of Microbiology, School of Medicine, University of Washington, Seattle 98195
| | | |
Collapse
|
29
|
Müller M. Proteolysis in protein import and export: signal peptide processing in eu- and prokaryotes. EXPERIENTIA 1992; 48:118-29. [PMID: 1740185 DOI: 10.1007/bf01923506] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Numerous proteins in pro- and eukaryotes must cross cellular membranes in order to reach their site of function. Many of these proteins carry signal sequences that are removed by specific signal peptidases during, or shortly after, membrane transport. Signal peptidases have been identified in the rough endoplasmic reticulum, the matrix and inner membrane of mitochondria, the stroma and thylakoid membrane of chloroplasts, the bacterial plasma membrane and the thylakoid membrane of cyanobacteria. The composition of these peptidases varies between one and several subunits. No site-specific inhibitors are known for the majority of these enzymes. Accordingly, signal peptidases recognize structural motifs rather than linear amino acid sequences. Such motifs have become evident by employing extensive site-directed mutagenesis to investigate the anatomy of signal sequences. Analysis of the reaction specificities and the primary sequences of several signal peptidases suggests that the enzymes of the endoplasmic reticulum, the inner mitochondrial membrane and the thylakoid membrane of chloroplasts all have evolved from bacterial progenitors.
Collapse
Affiliation(s)
- M Müller
- Institute of Biochemistry, University of Freiburg, Germany
| |
Collapse
|
30
|
Chapter 3 Molecular characterization of Sec proteins comprising the protein secretory machinery of Escherichia coli. ACTA ACUST UNITED AC 1992. [DOI: 10.1016/s0167-7306(08)60080-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
31
|
Synthesis of precursor maltose-binding protein with proline in the +1 position of the cleavage site interferes with the activity of Escherichia coli signal peptidase I in vivo. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)48419-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
32
|
Nunn DN, Lory S. Product of the Pseudomonas aeruginosa gene pilD is a prepilin leader peptidase. Proc Natl Acad Sci U S A 1991; 88:3281-5. [PMID: 1901657 PMCID: PMC51430 DOI: 10.1073/pnas.88.8.3281] [Citation(s) in RCA: 175] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The related type IV pilins produced by Pseudomonas aeruginosa, Neisseria gonorrhoeae, Bacteroides nodosus, and Moraxella bovis are synthesized as precursors with short, six- or seven-amino acid N-terminal leader peptides. We have previously observed that P. aeruginosa mutations in pilD, a gene required for pilus biogenesis, result in the accumulation of unprocessed prepilin in the membrane and a general defect in the excretion of a number of extracellular enzymes. An endopeptidase activity has been detected in detergent-solubilized inner membrane of P. aeruginosa and shown to correctly cleave the prepilin of P. aeruginosa and N. gonorrhoeae. It is absent from pilD mutants, increased by pilD overexpression, and conferred on Escherichia coli by the introduction of the pilD gene. The pilD gene product, purified by immunoaffinity chromatography with antibody to a PilD-derived synthetic peptide, was identified with the endopeptidase. PilD appears to be a prototype of a class of enzymes that process not only type IV pilin precursors but also components of a protein-excretion apparatus of Gram-negative bacteria.
Collapse
Affiliation(s)
- D N Nunn
- Department of Microbiology, School of Medicine, University of Washington, Seattle 98195
| | | |
Collapse
|
33
|
|