1
|
Sung TY, Patel AK, Lin SR, Huang CT, Huang YT. Strategic carbon source supplementation enhances nitrite degradation by Pantoea sp. A5 in variable temperature conditions. BIORESOURCE TECHNOLOGY 2025; 425:132299. [PMID: 40015525 DOI: 10.1016/j.biortech.2025.132299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 02/04/2025] [Accepted: 02/24/2025] [Indexed: 03/01/2025]
Abstract
The expanding global demand for sustainable aquaculture underscores the need for efficient water quality management, particularly in controlling harmful nitrogenous compounds like nitrites. This study explores the effectiveness of Pantoea sp. A5, a nitrite-degrading bacterium isolated from food waste, reduces nitrite levels in aquaculture systems, focusing on the role of carbon sources like glucose and glycerol. The experiments showed that these carbon sources, especially glycerol, significantly enhanced the bacterium's ability to degrade nitrites across a range of temperatures without promoting growth, suggesting a cost-effective alternative to glucose. Unlike acetic acid, which did not enhance nitrite degradation, glycerol and glucose regulated metabolic pathways, evidenced by reduced malate dehydrogenase (MDH) activity and increased glutamate dehydrogenase (GDH) levels, facilitating efficient ammonia assimilation. These findings highlight the potential of using targeted carbon sources to manage nitrite levels in aquaculture, improving sustainability and contributing to global food supply efforts.
Collapse
Affiliation(s)
- Tzu-Yuan Sung
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029 Uttar Pradesh, India
| | - Shang-Ru Lin
- Department of Marine Biotechnology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Chuan-Ting Huang
- Department of Marine Biotechnology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Ying-Tang Huang
- Department of Marine Biotechnology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan.
| |
Collapse
|
2
|
Egas RA, Kurth JM, Boeren S, Sousa DZ, Welte CU, Sánchez-Andrea I. A novel mechanism for dissimilatory nitrate reduction to ammonium in Acididesulfobacillus acetoxydans. mSystems 2024; 9:e0096723. [PMID: 38323850 PMCID: PMC10949509 DOI: 10.1128/msystems.00967-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/25/2023] [Indexed: 02/08/2024] Open
Abstract
The biological route of nitrate reduction has important implications for the bioavailability of nitrogen within ecosystems. Nitrate reduction via nitrite, either to ammonium (ammonification) or to nitrous oxide or dinitrogen (denitrification), determines whether nitrogen is retained within the system or lost as a gas. The acidophilic sulfate-reducing bacterium (aSRB) Acididesulfobacillus acetoxydans can perform dissimilatory nitrate reduction to ammonium (DNRA). While encoding a Nar-type nitrate reductase, A. acetoxydans lacks recognized nitrite reductase genes. In this study, A. acetoxydans was cultivated under conditions conducive to DNRA. During cultivations, we monitored the production of potential nitrogen intermediates (nitrate, nitrite, nitric oxide, hydroxylamine, and ammonium). Resting cell experiments were performed with nitrate, nitrite, and hydroxylamine to confirm their reduction to ammonium, and formed intermediates were tracked. To identify the enzymes involved in DNRA, comparative transcriptomics and proteomics were performed with A. acetoxydans growing under nitrate- and sulfate-reducing conditions. Nitrite is likely reduced to ammonia by the previously undescribed nitrite reductase activity of the NADH-linked sulfite reductase AsrABC, or by a putatively ferredoxin-dependent homolog of the nitrite reductase NirA (DEACI_1836), or both. We identified enzymes and intermediates not previously associated with DNRA and nitrosative stress in aSRB. This increases our knowledge about the metabolism of this type of bacteria and helps the interpretation of (meta)genome data from various ecosystems on their DNRA potential and the nitrogen cycle.IMPORTANCENitrogen is crucial to any ecosystem, and its bioavailability depends on microbial nitrogen-transforming reactions. Over the recent years, various new nitrogen-transforming reactions and pathways have been identified, expanding our view on the nitrogen cycle and metabolic versatility. In this study, we elucidate a novel mechanism employed by Acididesulfobacillus acetoxydans, an acidophilic sulfate-reducing bacterium, to reduce nitrate to ammonium. This finding underscores the diverse physiological nature of dissimilatory reduction to ammonium (DNRA). A. acetoxydans was isolated from acid mine drainage, an extremely acidic environment where nitrogen metabolism is poorly studied. Our findings will contribute to understanding DNRA potential and variations in extremely acidic environments.
Collapse
Affiliation(s)
- Reinier A. Egas
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Julia M. Kurth
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
- Microcosm Earth Centre, Philipps-Universität Marburg & Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University & Research, Wageningen, The Netherlands
| | - Diana Z. Sousa
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
- Centre for Living Technologies, Alliance TU/e, WUR, UU, UMC Utrecht, Utrecht, The Netherlands
| | - Cornelia U. Welte
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Irene Sánchez-Andrea
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
- Department of Environmental Sciences for Sustainability, IE University, Segovia, Spain
| |
Collapse
|
3
|
An J, Sun L, Liu M, Dai R, Ge G, Wang Z, Jia Y. Influences of Growth Stage and Ensiling Time on Fermentation Characteristics, Nitrite, and Bacterial Communities during Ensiling of Alfalfa. PLANTS (BASEL, SWITZERLAND) 2023; 13:84. [PMID: 38202392 PMCID: PMC10780930 DOI: 10.3390/plants13010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/05/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024]
Abstract
This study examined the impacts of growth stage and ensiling duration on the fermentation characteristics, nitrite content, and bacterial communities during the ensiling of alfalfa. Harvested alfalfa was divided into two groups: vegetative growth stage (VG) and late budding stage (LB). The fresh alfalfa underwent wilting until reaching approximately 65% moisture content, followed by natural fermentation. The experiment followed a completely randomized design, with samples collected after the wilting of alfalfa raw materials (MR) and on days 1, 3, 5, 7, 15, 30, and 60 of fermentation. The growth stage significantly influenced the chemical composition of alfalfa, with crude protein content being significantly higher in the vegetative growth stage alfalfa compared to that in the late budding stage (p < 0.05). Soluble carbohydrates, neutral detergent fiber, and acid detergent fiber content were significantly lower in the vegetative growth stage compared to the late budding stage (p < 0.05). Nitrite content, nitrate content, nitrite reductase activity, and nitrate reductase activity were all significantly higher in the vegetative growth stage compared to the late budding stage (p < 0.05). In terms of fermentation parameters, silage from the late budding stage exhibited superior characteristics compared to that from the vegetative growth stage. Compared to the alfalfa silage during the vegetative growth stage, the late budding stage group exhibited a higher lactate content and lower pH level. Notably, butyric acid was only detected in the silage from the vegetative growth stage group. Throughout the ensiling process, nitrite content, nitrate levels, nitrite reductase activity, and nitrate reductase activity decreased in both treatment groups. The dominant lactic acid bacteria differed between the two groups, with Enterococcus being predominant in vegetative growth stage alfalfa silage, and Weissella being predominant in late budding stage silage, transitioning to Lactiplantibacillus in the later stages of fermentation. On the 3rd day of silage fermentation, the vegetative growth stage group exhibited the highest abundance of Enterococcus, which subsequently decreased to its lowest level on the 15th day. Correlation analysis revealed that lactic acid bacteria, including Limosilactobacillus, Levilactobacillus, Loigolactobacillus, Pediococcus, Lactiplantibacillus, and Weissella, played a key role in nitrite and nitrate degradation in alfalfa silage. The presence of nitrite may be linked to Erwinia, unclassified_o__Enterobacterales, Pantoea, Exiguobacterium, Enterobacter, and Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium.
Collapse
Affiliation(s)
- Jiangbo An
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot 010019, China; (J.A.); (M.L.); (R.D.); (G.G.); (Z.W.)
- Key Laboratory of Grassland Resources, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010019, China
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010019, China
| | - Lin Sun
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China;
| | - Mingjian Liu
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot 010019, China; (J.A.); (M.L.); (R.D.); (G.G.); (Z.W.)
- Key Laboratory of Grassland Resources, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010019, China
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010019, China
| | - Rui Dai
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot 010019, China; (J.A.); (M.L.); (R.D.); (G.G.); (Z.W.)
- Key Laboratory of Grassland Resources, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010019, China
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010019, China
| | - Gentu Ge
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot 010019, China; (J.A.); (M.L.); (R.D.); (G.G.); (Z.W.)
- Key Laboratory of Grassland Resources, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010019, China
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010019, China
| | - Zhijun Wang
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot 010019, China; (J.A.); (M.L.); (R.D.); (G.G.); (Z.W.)
- Key Laboratory of Grassland Resources, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010019, China
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010019, China
| | - Yushan Jia
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot 010019, China; (J.A.); (M.L.); (R.D.); (G.G.); (Z.W.)
- Key Laboratory of Grassland Resources, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010019, China
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010019, China
| |
Collapse
|
4
|
North H, McLaughlin M, Fiebig A, Crosson S. The Caulobacter NtrB-NtrC two-component system bridges nitrogen assimilation and cell development. J Bacteriol 2023; 205:e0018123. [PMID: 37791753 PMCID: PMC10601693 DOI: 10.1128/jb.00181-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/03/2023] [Indexed: 10/05/2023] Open
Abstract
A suite of molecular sensory systems enables Caulobacter to control growth, development, and reproduction in response to levels of essential elements. The bacterial enhancer-binding protein (bEBP) NtrC and its cognate sensor histidine kinase, NtrB, are key regulators of nitrogen assimilation in many bacteria, but their roles in Caulobacter metabolism and development are not well defined. Notably, Caulobacter NtrC is an unconventional bEBP that lacks the σ54-interacting loop commonly known as the GAFTGA motif. Here we show that deletion of Caulobacter crescentus ntrC slows cell growth in complex medium and that ntrB and ntrC are essential when ammonium is the sole nitrogen source due to their requirement for glutamine synthetase expression. Random transposition of a conserved IS3-family mobile genetic element frequently rescued the growth defect of ntrC mutant strains by restoring transcription of the glnBA operon, revealing a possible role for IS3 transposition in shaping the evolution of Caulobacter populations during nutrient limitation. We further identified dozens of direct NtrC-binding sites on the C. crescentus chromosome, with a large fraction located near genes involved in polysaccharide biosynthesis. The majority of binding sites align with those of the essential nucleoid-associated protein, GapR, or the cell cycle regulator, MucR1. NtrC is therefore predicted to directly impact the regulation of cell cycle and cell development. Indeed, loss of NtrC function led to elongated polar stalks and elevated synthesis of cell envelope polysaccharides. This study establishes regulatory connections between NtrC, nitrogen metabolism, polar morphogenesis, and envelope polysaccharide synthesis in Caulobacter. IMPORTANCE Bacteria balance cellular processes with the availability of nutrients in their environment. The NtrB-NtrC two-component signaling system is responsible for controlling nitrogen assimilation in many bacteria. We have characterized the effect of ntrB and ntrC deletion on Caulobacter growth and development and uncovered a role for spontaneous IS element transposition in the rescue of transcriptional and nutritional deficiencies caused by ntrC mutation. We further defined the regulon of Caulobacter NtrC, a bacterial enhancer-binding protein, and demonstrate that it shares specific binding sites with essential proteins involved in cell cycle regulation and chromosome organization. Our work provides a comprehensive view of transcriptional regulation mediated by a distinctive NtrC protein, establishing its connection to nitrogen assimilation and developmental processes in Caulobacter.
Collapse
Affiliation(s)
- Hunter North
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Maeve McLaughlin
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Aretha Fiebig
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Sean Crosson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
5
|
North H, McLaughlin M, Fiebig A, Crosson S. The Caulobacter NtrB-NtrC two-component system bridges nitrogen assimilation and cell development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.06.543975. [PMID: 37333394 PMCID: PMC10274813 DOI: 10.1101/2023.06.06.543975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
A suite of molecular sensory systems enables Caulobacter to control growth, development, and reproduction in response to levels of essential elements. The bacterial enhancer binding protein (bEBP) NtrC, and its cognate sensor histidine kinase NtrB, are key regulators of nitrogen assimilation in many bacteria, but their roles in Caulobacter metabolism and development are not well defined. Notably, Caulobacter NtrC is an unconventional bEBP that lacks the σ54-interacting loop commonly known as the GAFTGA motif. Here we show that deletion of C. crescentus ntrC slows cell growth in complex medium, and that ntrB and ntrC are essential when ammonium is the sole nitrogen source due to their requirement for glutamine synthetase (glnA) expression. Random transposition of a conserved IS3-family mobile genetic element frequently rescued the growth defect of ntrC mutant strains by restoring transcription of the glnBA operon, revealing a possible role for IS3 transposition in shaping the evolution of Caulobacter populations during nutrient limitation. We further identified dozens of direct NtrC binding sites on the C. crescentus chromosome, with a large fraction located near genes involved in polysaccharide biosynthesis. The majority of binding sites align with those of the essential nucleoid associated protein, GapR, or the cell cycle regulator, MucR1. NtrC is therefore predicted to directly impact the regulation of cell cycle and cell development. Indeed, loss of NtrC function led to elongated polar stalks and elevated synthesis of cell envelope polysaccharides. This study establishes regulatory connections between NtrC, nitrogen metabolism, polar morphogenesis, and envelope polysaccharide synthesis in Caulobacter .
Collapse
Affiliation(s)
- Hunter North
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan USA
| | - Maeve McLaughlin
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan USA
| | - Aretha Fiebig
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan USA
| | - Sean Crosson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan USA
| |
Collapse
|
6
|
Mathebela P, Damane BP, Mulaudzi TV, Mkhize-Khwitshana ZL, Gaudji GR, Dlamini Z. Influence of the Microbiome Metagenomics and Epigenomics on Gastric Cancer. Int J Mol Sci 2022; 23:13750. [PMID: 36430229 PMCID: PMC9693604 DOI: 10.3390/ijms232213750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
Gastric cancer (GC) is one of the major causes of cancer deaths worldwide. The disease is seldomly detected early and this limits treatment options. Because of its heterogeneous and complex nature, the disease remains poorly understood. The literature supports the contribution of the gut microbiome in the carcinogenesis and chemoresistance of GC. Drug resistance is the major challenge in GC therapy, occurring as a result of rewired metabolism. Metabolic rewiring stems from recurring genetic and epigenetic factors affecting cell development. The gut microbiome consists of pathogens such as H. pylori, which can foster both epigenetic alterations and mutagenesis on the host genome. Most of the bacteria implicated in GC development are Gram-negative, which makes it challenging to eradicate the disease. Gram-negative bacterium co-infections with viruses such as EBV are known as risk factors for GC. In this review, we discuss the role of microbiome-induced GC carcinogenesis. The disease risk factors associated with the presence of microorganisms and microbial dysbiosis are also discussed. In doing so, we aim to emphasize the critical role of the microbiome on cancer pathological phenotypes, and how microbiomics could serve as a potential breakthrough in determining effective GC therapeutic targets. Additionally, consideration of microbial dysbiosis in the GC classification system might aid in diagnosis and treatment decision-making, taking the specific pathogen/s involved into account.
Collapse
Affiliation(s)
- Precious Mathebela
- Department of Surgery, Steve Biko Academic Hospital, University of Pretoria, Hatfield 0028, South Africa
| | - Botle Precious Damane
- Department of Surgery, Steve Biko Academic Hospital, University of Pretoria, Hatfield 0028, South Africa
| | - Thanyani Victor Mulaudzi
- Department of Surgery, Steve Biko Academic Hospital, University of Pretoria, Hatfield 0028, South Africa
| | - Zilungile Lynette Mkhize-Khwitshana
- School of Medicine, University of Kwa-Zulu Natal, Durban, KwaZulu-Natal 4013, South Africa
- SAMRC Research Capacity Development Division, South African Medical Research Council, Tygerberg, Cape Town 7501, South Africa
| | - Guy Roger Gaudji
- Department of Urology, Level 7, Bridge C, Steve Biko Academic Hospital, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia 0007, South Africa
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa
| |
Collapse
|
7
|
Yakimovich KM, Quarmby LM. A metagenomic study of the bacteria in snow algae microbiomes. Can J Microbiol 2022; 68:507-520. [PMID: 35512372 DOI: 10.1139/cjm-2021-0313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The bacterial communities found in snow algae blooms have been described in terms of their 16S rRNA gene community profiles, but little information exists on their metabolic potential. Previously, we reported that several bacterial taxa are common across snow algae blooms in the southwestern mountains of the Coast Range in British Columbia, Canada. Here, we further this work by reporting a partial bacterial metagenome from the same snow algal microbiomes. Using shotgun metagenomic data, we constructed metagenomically assembled bacterial genomes (MAGs). Of the total 54 binned MAGs, 28 were bacterial and estimated to be at least 50% complete based on single copy core genes. The 28 MAGs fell into five Classes: Actinomycetia, Alphaproteobacteria, Bacteroidia, Betaproteobacteria and Gammaproteobacteria. All MAGs were assigned to a class, 27 to an order, 25 to family, 18 to genus, and none to species. MAGs showed the potential to support algal growth by synthesizing B-vitamins and growth hormones. There was also widespread adaptation to the low oxygen environment of biofilms, including synthesis of high-affinity terminal oxidases and anaerobic pathways for cobalamin synthesis. Also notable, was the absence of N2 fixation, and the presence of incomplete denitrification pathways suggestive of NO signalling within the microbiome.
Collapse
Affiliation(s)
- Kurt Michael Yakimovich
- Simon Fraser University, 1763, Molecular Biology and Biochemistry, Burnaby, British Columbia, Canada;
| | - Lynne M Quarmby
- Simon Fraser University, 1763, Department of Molecular Biology and Biochemistry, Burnaby, Canada;
| |
Collapse
|
8
|
Translational multi-omics microbiome research for strategies to improve cattle production and health. Emerg Top Life Sci 2022; 6:201-213. [PMID: 35311904 DOI: 10.1042/etls20210257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/23/2022] [Accepted: 03/01/2022] [Indexed: 12/27/2022]
Abstract
Cattle microbiome plays a vital role in cattle growth and performance and affects many economically important traits such as feed efficiency, milk/meat yield and quality, methane emission, immunity and health. To date, most cattle microbiome research has focused on metataxonomic and metagenomic characterization to reveal who are there and what they may do, preventing the determination of the active functional dynamics in vivo and their causal relationships with the traits. Therefore, there is an urgent need to combine other advanced omics approaches to improve microbiome analysis to determine their mode of actions and host-microbiome interactions in vivo. This review will critically discuss the current multi-omics microbiome research in beef and dairy cattle, aiming to provide insights on how the information generated can be applied to future strategies to improve production efficiency, health and welfare, and environment-friendliness in cattle production through microbiome manipulations.
Collapse
|
9
|
Genomic and Functional Variation of the Chlorophyll d-Producing Cyanobacterium Acaryochloris marina. Microorganisms 2022; 10:microorganisms10030569. [PMID: 35336144 PMCID: PMC8949462 DOI: 10.3390/microorganisms10030569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 02/01/2023] Open
Abstract
The Chlorophyll d-producing cyanobacterium Acaryochloris marina is widely distributed in marine environments enriched in far-red light, but our understanding of its genomic and functional diversity is limited. Here, we take an integrative approach to investigate A. marina diversity for 37 strains, which includes twelve newly isolated strains from previously unsampled locations in Europe and the Pacific Northwest of North America. A genome-wide phylogeny revealed both that closely related A. marina have migrated within geographic regions and that distantly related A. marina lineages can co-occur. The distribution of traits mapped onto the phylogeny provided evidence of a dynamic evolutionary history of gene gain and loss during A. marina diversification. Ancestral genes that were differentially retained or lost by strains include plasmid-encoded sodium-transporting ATPase and bidirectional NiFe-hydrogenase genes that may be involved in salt tolerance and redox balance under fermentative conditions, respectively. The acquisition of genes by horizontal transfer has also played an important role in the evolution of new functions, such as nitrogen fixation. Together, our results resolve examples in which genome content and ecotypic variation for nutrient metabolism and environmental tolerance have diversified during the evolutionary history of this unusual photosynthetic bacterium.
Collapse
|
10
|
Sathee L, Krishna GK, Adavi SB, Jha SK, Jain V. Role of protein phosphatases in the regulation of nitrogen nutrition in plants. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2911-2922. [PMID: 35035144 PMCID: PMC8720119 DOI: 10.1007/s12298-021-01115-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/18/2021] [Accepted: 12/07/2021] [Indexed: 05/20/2023]
Abstract
The reversible protein phosphorylation and dephosphorylation mediated by protein kinases and phosphatases regulate different biological processes and their response to environmental cues, including nitrogen (N) availability. Nitrate assimilation is under the strict control of phosphorylation-dephosphorylation mediated post-translational regulation. The protein phosphatase family with approximately 150 members in Arabidopsis and around 130 members in rice is a promising player in N uptake and assimilation pathways. Protein phosphatase 2A (PP2A) enhances the activation of nitrate reductase (NR) by deactivating SnRK1 and reduces the binding of inhibitory 14-3-3 proteins on NR. The functioning of nitrate transporter NPF6.3 is regulated by phosphorylation of CBL9 (Calcineurin B like protein 9) and CIPK23 (CBL interacting protein kinase 23) module. Phosphorylation by CIPK23 inhibits the activity of NPF6.3, whereas protein phosphatases (PP2C) enhance the NPF6.3-dependent nitrate sensing. PP2Cs and CIPK23 also regulate ammonium transporters (AMTs). Under either moderate ammonium supply or high N demand, CIPK23 is bound and inactivated by PP2Cs. Ammonium uptake is mediated by nonphosphorylated and active AMT1s. Whereas, under high ammonium availability, CIPK23 gets activated and phosphorylate AMT1;1 and AMT1;2 rendering them inactive. Recent reports suggest the critical role of protein phosphatases in regulating N use efficiency (NUE). In rice, PP2C9 regulates NUE by improving N uptake and assimilation. Comparative leaf proteome of wild type and PP2C9 over-expressing transgenic rice lines showed 30 differentially expressed proteins under low N level. These proteins are involved in photosynthesis, N metabolism, signalling, and defence.
Collapse
Affiliation(s)
- Lekshmy Sathee
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012 India
| | - G. K. Krishna
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012 India
- Department of Plant Physiology, College of Agriculture, Kerala Agricultural University, Thrissur, 680 656 India
| | - Sandeep B. Adavi
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012 India
| | - Shailendra K. Jha
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012 India
| | - Vanita Jain
- Agricultural Education Division, ICAR, KAB-II, New Delhi, 110 012 India
| |
Collapse
|
11
|
Asamoto CK, Rempfert KR, Luu VH, Younkin AD, Kopf SH. Enzyme-Specific Coupling of Oxygen and Nitrogen Isotope Fractionation of the Nap and Nar Nitrate Reductases. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:5537-5546. [PMID: 33687201 DOI: 10.1021/acs.est.0c07816] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Dissimilatory nitrate reduction (DNR) to nitrite is the first step in denitrification, the main process through which bioavailable nitrogen is removed from ecosystems. DNR is catalyzed by both cytosolic (Nar) and periplasmic (Nap) nitrate reductases and fractionates the stable isotopes of nitrogen (14N, 15N) and oxygen (16O, 18O), which is reflected in residual environmental nitrate pools. Data on the relationship between the pattern in oxygen vs nitrogen isotope fractionation (18ε/15ε) suggests that systematic differences exist between marine and terrestrial ecosystems that are not fully understood. We examined the 18ε/15ε of nitrate-reducing microorganisms that encode Nar, Nap, or both enzymes, as well as gene deletion mutants of Nar and Nap to test the hypothesis that enzymatic differences alone could explain the environmental observations. We find that the distribution of 18ε/15ε fractionation ratios of all examined nitrate reductases forms two distinct peaks centered around an 18ε/15ε proportionality of 0.55 (Nap) and 0.91 (Nar), with the notable exception of the Bacillus Nar reductases, which cluster isotopically with the Nap reductases. Our findings may explain differences in 18ε/15ε fractionation between marine and terrestrial systems and challenge current knowledge about Nar 18ε/15ε signatures.
Collapse
Affiliation(s)
- Ciara K Asamoto
- Department of Geological Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Kaitlin R Rempfert
- Department of Geological Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Victoria H Luu
- Department of Geosciences, Princeton University, Princeton, New Jersey 08544, United States
| | - Adam D Younkin
- Department of Geological Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Sebastian H Kopf
- Department of Geological Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
12
|
Bajeli S, Baid N, Kaur M, Pawar GP, Chaudhari VD, Kumar A. Terminal Respiratory Oxidases: A Targetables Vulnerability of Mycobacterial Bioenergetics? Front Cell Infect Microbiol 2020; 10:589318. [PMID: 33330134 PMCID: PMC7719681 DOI: 10.3389/fcimb.2020.589318] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022] Open
Abstract
Recently, ATP synthase inhibitor Bedaquiline was approved for the treatment of multi-drug resistant tuberculosis emphasizing the importance of oxidative phosphorylation for the survival of mycobacteria. ATP synthesis is primarily dependent on the generation of proton motive force through the electron transport chain in mycobacteria. The mycobacterial electron transport chain utilizes two terminal oxidases for the reduction of oxygen, namely the bc1-aa3 supercomplex and the cytochrome bd oxidase. The bc1-aa3 supercomplex is an energy-efficient terminal oxidase that pumps out four vectoral protons, besides consuming four scalar protons during the transfer of electrons from menaquinone to molecular oxygen. In the past few years, several inhibitors of bc1-aa3 supercomplex have been developed, out of which, Q203 belonging to the class of imidazopyridine, has moved to clinical trials. Recently, the crystal structure of the mycobacterial cytochrome bc1-aa3 supercomplex was solved, providing details of the route of transfer of electrons from menaquinone to molecular oxygen. Besides providing insights into the molecular functioning, crystal structure is aiding in the targeted drug development. On the other hand, the second respiratory terminal oxidase of the mycobacterial respiratory chain, cytochrome bd oxidase, does not pump out the vectoral protons and is energetically less efficient. However, it can detoxify the reactive oxygen species and facilitate mycobacterial survival during a multitude of stresses. Quinolone derivatives (CK-2-63) and quinone derivative (Aurachin D) inhibit cytochrome bd oxidase. Notably, ablation of both the two terminal oxidases simultaneously through genetic methods or pharmacological inhibition leads to the rapid death of the mycobacterial cells. Thus, terminal oxidases have emerged as important drug targets. In this review, we have described the current understanding of the functioning of these two oxidases, their physiological relevance to mycobacteria, and their inhibitors. Besides these, we also describe the alternative terminal complexes that are used by mycobacteria to maintain energized membrane during hypoxia and anaerobic conditions.
Collapse
Affiliation(s)
- Sapna Bajeli
- Molecular Mycobacteriology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh, India
| | - Navin Baid
- Molecular Mycobacteriology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh, India
| | - Manjot Kaur
- Division of Medicinal Chemistry, Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh, India
| | - Ganesh P Pawar
- Division of Medicinal Chemistry, Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh, India
| | - Vinod D Chaudhari
- Division of Medicinal Chemistry, Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh, India
| | - Ashwani Kumar
- Molecular Mycobacteriology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
13
|
O'Hara E, Neves ALA, Song Y, Guan LL. The Role of the Gut Microbiome in Cattle Production and Health: Driver or Passenger? Annu Rev Anim Biosci 2020; 8:199-220. [PMID: 32069435 DOI: 10.1146/annurev-animal-021419-083952] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ruminant production systems face significant challenges currently, driven by heightened awareness of their negative environmental impact and the rapidly rising global population. Recent findings have underscored how the composition and function of the rumen microbiome are associated with economically valuable traits, including feed efficiency and methane emission. Although omics-based technological advances in the last decade have revolutionized our understanding of host-associated microbial communities, there remains incongruence over the correct approach for analysis of large omic data sets. A global approach that examines host/microbiome interactions in both the rumen and the lower digestive tract is required to harness the full potential of the gastrointestinal microbiome for sustainable ruminant production. This review highlights how the ruminant animal production community may identify and exploit the causal relationships between the gut microbiome and host traits of interest for a practical application of omic data to animal health and production.
Collapse
Affiliation(s)
- Eóin O'Hara
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada; , ,
| | - André L A Neves
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada; , ,
| | - Yang Song
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada; , , .,College of Animal Science and Technology, Inner Mongolia University for the Nationalities, Tongliao, China 028000;
| | - Le Luo Guan
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada; , ,
| |
Collapse
|
14
|
The role of the NADH-dependent nitrite reductase, Nir, from Escherichia coli in fermentative ammonification. Arch Microbiol 2018; 201:519-530. [PMID: 30406295 DOI: 10.1007/s00203-018-1590-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/17/2018] [Accepted: 10/24/2018] [Indexed: 10/27/2022]
Abstract
Nitrate and nitrite reduction are of paramount importance for nitrogen assimilation and anaerobic metabolism, and understanding the specific roles of each participating reductase is necessary to describe the biochemical balance that dictates cellular responses to their environments. The soluble, cytoplasmic siroheme NADH-nitrite reductase (Nir) in Escherichia coli is necessary for nitrate/nitrite assimilation but has also been reported to either "detoxify" nitrite, or to carry out fermentative ammonification in support of anaerobic catabolism. Theoretically, nitrite detoxification would be important for anaerobic growth on nitrate, during which excess nitrite would be reduced to ammonium. Fermentative ammonification by Nir would be important for maximization of non-respiratory ATP production during anaerobic growth in the presence of nitrite. Experiments reported here were designed to test the potential role of Nir in fermentative ammonification directly by growing E. coli along with mutant strains lacking Nir or the respiratory nitrite reductase (Nrf) under anaerobic conditions in defined media while monitoring nitrogen utilization and fermentation metabolites. To focus on the role of Nir in fermentative ammonification, pH control was used in most experiments to eliminate nitrite toxicity due to nitric acid formation. Our results demonstrate that Nir confers a significant benefit during fermentative growth that reflects fermentative ammonification rather than detoxification. We conclude that fermentative ammonification by Nir allows for the energetically favorable fermentation of glucose to formate and acetate. These results and conclusions are discussed in light of the roles of Nir in other bacteria and in plants.
Collapse
|
15
|
Koch CD, Gladwin MT, Freeman BA, Lundberg JO, Weitzberg E, Morris A. Enterosalivary nitrate metabolism and the microbiome: Intersection of microbial metabolism, nitric oxide and diet in cardiac and pulmonary vascular health. Free Radic Biol Med 2017; 105:48-67. [PMID: 27989792 PMCID: PMC5401802 DOI: 10.1016/j.freeradbiomed.2016.12.015] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/18/2016] [Accepted: 12/12/2016] [Indexed: 02/07/2023]
Abstract
Recent insights into the bioactivation and signaling actions of inorganic, dietary nitrate and nitrite now suggest a critical role for the microbiome in the development of cardiac and pulmonary vascular diseases. Once thought to be the inert, end-products of endothelial-derived nitric oxide (NO) heme-oxidation, nitrate and nitrite are now considered major sources of exogenous NO that exhibit enhanced vasoactive signaling activity under conditions of hypoxia and stress. The bioavailability of nitrate and nitrite depend on the enzymatic reduction of nitrate to nitrite by a unique set of bacterial nitrate reductase enzymes possessed by specific bacterial populations in the mammalian mouth and gut. The pathogenesis of pulmonary hypertension (PH), obesity, hypertension and CVD are linked to defects in NO signaling, suggesting a role for commensal oral bacteria to shape the development of PH through the formation of nitrite, NO and other bioactive nitrogen oxides. Oral supplementation with inorganic nitrate or nitrate-containing foods exert pleiotropic, beneficial vascular effects in the setting of inflammation, endothelial dysfunction, ischemia-reperfusion injury and in pre-clinical models of PH, while traditional high-nitrate dietary patterns are associated with beneficial outcomes in hypertension, obesity and CVD. These observations highlight the potential of the microbiome in the development of novel nitrate- and nitrite-based therapeutics for PH, CVD and their risk factors.
Collapse
Affiliation(s)
- Carl D Koch
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA.
| | - Mark T Gladwin
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA; Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh PA 15261, USA
| | - Bruce A Freeman
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh PA 15261, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, S-17177 Stockholm, Sweden
| | - Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institutet, S-17177 Stockholm, Sweden
| | - Alison Morris
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA; Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh PA 15261, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Physiology and Pharmacology, Karolinska Institutet, S-17177 Stockholm, Sweden
| |
Collapse
|
16
|
Bonato P, Alves LR, Osaki JH, Rigo LU, Pedrosa FO, Souza EM, Zhang N, Schumacher J, Buck M, Wassem R, Chubatsu LS. The NtrY-NtrX two-component system is involved in controlling nitrate assimilation in Herbaspirillum seropedicae strain SmR1. FEBS J 2016; 283:3919-3930. [PMID: 27634462 DOI: 10.1111/febs.13897] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 08/15/2016] [Accepted: 09/13/2016] [Indexed: 10/21/2022]
Abstract
Herbaspirillum seropedicae is a diazotrophic β-Proteobacterium found endophytically associated with gramineae (Poaceae or graminaceous plants) such as rice, sorghum and sugar cane. In this work we show that nitrate-dependent growth in this organism is regulated by the master nitrogen regulatory two-component system NtrB-NtrC, and by NtrY-NtrX, which functions to specifically regulate nitrate metabolism. NtrY is a histidine kinase sensor protein predicted to be associated with the membrane and NtrX is the response regulator partner. The ntrYntrX genes are widely distributed in Proteobacteria. In α-Proteobacteria they are frequently located downstream from ntrBC, whereas in β-Proteobacteria these genes are located downstream from genes encoding an RNA methyltransferase and a proline-rich protein with unknown function. The NtrX protein of α-Proteobacteria has an AAA+ domain, absent in those from β-Proteobacteria. An ntrY mutant of H. seropedicae showed the wild-type nitrogen fixation phenotype, but the nitrate-dependent growth was abolished. Gene fusion assays indicated that NtrY is involved in the expression of genes coding for the assimilatory nitrate reductase as well as the nitrate-responsive two-component system NarX-NarL (narK and narX promoters, respectively). The purified NtrX protein was capable of binding the narK and narX promoters, and the binding site at the narX promoter for the NtrX protein was determined by DNA footprinting. In silico analyses revealed similar sequences in other promoter regions of H. seropedicae that are related to nitrate assimilation, supporting the role of the NtrY-NtrX system in regulating nitrate metabolism in H. seropedicae.
Collapse
Affiliation(s)
- Paloma Bonato
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, Brazil
| | - Lysangela R Alves
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, Brazil
| | - Juliana H Osaki
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, Brazil
| | - Liu U Rigo
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, Brazil
| | - Fabio O Pedrosa
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, Brazil
| | - Emanuel M Souza
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, Brazil
| | - Nan Zhang
- Department of Life Sciences, Imperial College London, UK
| | | | - Martin Buck
- Department of Life Sciences, Imperial College London, UK
| | - Roseli Wassem
- Department of Genetics, Universidade Federal do Paraná, Curitiba, Brazil
| | - Leda S Chubatsu
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, Brazil
| |
Collapse
|
17
|
Behrendt U, Augustin J, Spröer C, Gelbrecht J, Schumann P, Ulrich A. Taxonomic characterisation of Proteus terrae sp. nov., a N2O-producing, nitrate-ammonifying soil bacterium. Antonie van Leeuwenhoek 2015; 108:1457-1468. [PMID: 26437638 DOI: 10.1007/s10482-015-0601-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/28/2015] [Indexed: 11/28/2022]
Abstract
In the context of studying the influence of N-fertilization on N2 and N2O flux rates in relation to the soil bacterial community composition in fen peat grassland, a group of bacterial strains was isolated that performed dissimilatory nitrate reduction to ammonium and concomitantly produced N2O. The amount of nitrous oxide produced was influenced by the C/N ratio of the medium. The potential to generate nitrous oxide was increased by higher availability of nitrate-N. Phylogenetic analysis based on the 16S rRNA and the rpoB gene sequences demonstrated that the investigated isolates belong to the genus Proteus, showing high similarity with the respective type strains of Proteus vulgaris and Proteus penneri. DNA-DNA hybridization studies revealed differences at the species level. These differences were substantiated by MALDI-TOF MS analysis and several distinct physiological characteristics. On the basis of these results, it was concluded that the soil isolates represent a novel species for which the name Proteus terrae sp. nov. (type strain N5/687(T) =DSM 29910(T) =LMG 28659(T)) is proposed.
Collapse
Affiliation(s)
- Undine Behrendt
- Leibniz Centre for Agricultural Landscape Research (ZALF), Institute for Landscape Biogeochemistry, Eberswalder Str. 84, 15374, Müncheberg, Germany.
| | - Jürgen Augustin
- Leibniz Centre for Agricultural Landscape Research (ZALF), Institute for Landscape Biogeochemistry, Eberswalder Str. 84, 15374, Müncheberg, Germany
| | - Cathrin Spröer
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstr. 7B, 38124, Braunschweig, Germany
| | - Jörg Gelbrecht
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Central Chemical Laboratory, Müggelseedamm 301, 12587, Berlin, Germany
| | - Peter Schumann
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstr. 7B, 38124, Braunschweig, Germany
| | - Andreas Ulrich
- Leibniz Centre for Agricultural Landscape Research (ZALF), Institute for Landscape Biogeochemistry, Eberswalder Str. 84, 15374, Müncheberg, Germany
| |
Collapse
|
18
|
Nitrate reduction to nitrite, nitric oxide and ammonia by gut bacteria under physiological conditions. PLoS One 2015; 10:e0119712. [PMID: 25803049 PMCID: PMC4372352 DOI: 10.1371/journal.pone.0119712] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/16/2015] [Indexed: 12/18/2022] Open
Abstract
The biological nitrogen cycle involves step-wise reduction of nitrogen oxides to ammonium salts and oxidation of ammonia back to nitrites and nitrates by plants and bacteria. Neither process has been thought to have relevance to mammalian physiology; however in recent years the salivary bacterial reduction of nitrate to nitrite has been recognized as an important metabolic conversion in humans. Several enteric bacteria have also shown the ability of catalytic reduction of nitrate to ammonia via nitrite during dissimilatory respiration; however, the importance of this pathway in bacterial species colonizing the human intestine has been little studied. We measured nitrite, nitric oxide (NO) and ammonia formation in cultures of Escherichia coli, Lactobacillus and Bifidobacterium species grown at different sodium nitrate concentrations and oxygen levels. We found that the presence of 5 mM nitrate provided a growth benefit and induced both nitrite and ammonia generation in E.coli and L.plantarum bacteria grown at oxygen concentrations compatible with the content in the gastrointestinal tract. Nitrite and ammonia accumulated in the growth medium when at least 2.5 mM nitrate was present. Time-course curves suggest that nitrate is first converted to nitrite and subsequently to ammonia. Strains of L.rhamnosus, L.acidophilus and B.longum infantis grown with nitrate produced minor changes in nitrite or ammonia levels in the cultures. However, when supplied with exogenous nitrite, NO gas was readily produced independently of added nitrate. Bacterial production of lactic acid causes medium acidification that in turn generates NO by non-enzymatic nitrite reduction. In contrast, nitrite was converted to NO by E.coli cultures even at neutral pH. We suggest that the bacterial nitrate reduction to ammonia, as well as the related NO formation in the gut, could be an important aspect of the overall mammalian nitrate/nitrite/NO metabolism and is yet another way in which the microbiome links diet and health.
Collapse
|
19
|
Sparacino-Watkins C, Stolz JF, Basu P. Nitrate and periplasmic nitrate reductases. Chem Soc Rev 2014; 43:676-706. [PMID: 24141308 DOI: 10.1039/c3cs60249d] [Citation(s) in RCA: 211] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The nitrate anion is a simple, abundant and relatively stable species, yet plays a significant role in global cycling of nitrogen, global climate change, and human health. Although it has been known for quite some time that nitrate is an important species environmentally, recent studies have identified potential medical applications. In this respect the nitrate anion remains an enigmatic species that promises to offer exciting science in years to come. Many bacteria readily reduce nitrate to nitrite via nitrate reductases. Classified into three distinct types--periplasmic nitrate reductase (Nap), respiratory nitrate reductase (Nar) and assimilatory nitrate reductase (Nas), they are defined by their cellular location, operon organization and active site structure. Of these, Nap proteins are the focus of this review. Despite similarities in the catalytic and spectroscopic properties Nap from different Proteobacteria are phylogenetically distinct. This review has two major sections: in the first section, nitrate in the nitrogen cycle and human health, taxonomy of nitrate reductases, assimilatory and dissimilatory nitrate reduction, cellular locations of nitrate reductases, structural and redox chemistry are discussed. The second section focuses on the features of periplasmic nitrate reductase where the catalytic subunit of the Nap and its kinetic properties, auxiliary Nap proteins, operon structure and phylogenetic relationships are discussed.
Collapse
|
20
|
Liu T, Li X, Zhang W, Hu M, Li F. Fe(III) oxides accelerate microbial nitrate reduction and electricity generation by Klebsiella pneumoniae L17. J Colloid Interface Sci 2014; 423:25-32. [DOI: 10.1016/j.jcis.2014.02.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 02/19/2014] [Accepted: 02/21/2014] [Indexed: 10/25/2022]
|
21
|
Three of four GlnR binding sites are essential for GlnR-mediated activation of transcription of the Amycolatopsis mediterranei nas operon. J Bacteriol 2013; 195:2595-602. [PMID: 23543714 DOI: 10.1128/jb.00182-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Amycolatopsis mediterranei U32, genes responsible for nitrate assimilation formed one operon, nasACKBDEF, whose transcription is induced by the addition of nitrate. Here, we characterized GlnR as a direct transcriptional activator for the nas operon. The GlnR-protected DNA sequences in the promoter region of the nas operon were characterized by DNase I footprinting assay, the previously deduced Streptomyces coelicolor double 22-bp GlnR binding consensus sequences comprising a1, b1, a2, and b2 sites were identified, and the sites were then mutated individually to test their roles in both the binding of GlnR in vitro and the GlnR-mediated transcriptional activation in vivo. The results clearly showed that only three GlnR binding sites (a1, b1, and b2 sites) were required by GlnR for its specific binding to the nas promoter region and efficient activation of the transcription of the nas operon in U32, while the a2 site seemed unnecessary.
Collapse
|
22
|
Wang X, Bian Y, Cheng K, Zou H, Sun SSM, He JX. A Comprehensive Differential Proteomic Study of Nitrate Deprivation in Arabidopsis Reveals Complex Regulatory Networks of Plant Nitrogen Responses. J Proteome Res 2012; 11:2301-15. [DOI: 10.1021/pr2010764] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Xu Wang
- School of Life Sciences, Tsinghua University, Beijing 100084, China
- Division of Life Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong 518055, China
- State Key Laboratory of Agrobiotechnology
and School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Yangyang Bian
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Kai Cheng
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hanfa Zou
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Samuel Sai-Ming Sun
- State Key Laboratory of Agrobiotechnology
and School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Jun-Xian He
- State Key Laboratory of Agrobiotechnology
and School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| |
Collapse
|
23
|
Nishimura T, Teramoto H, Vertès AA, Inui M, Yukawa H. ArnR, a novel transcriptional regulator, represses expression of the narKGHJI operon in Corynebacterium glutamicum. J Bacteriol 2008; 190:3264-73. [PMID: 18296524 PMCID: PMC2347399 DOI: 10.1128/jb.01801-07] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Accepted: 02/12/2008] [Indexed: 11/20/2022] Open
Abstract
The narKGHJI operon that comprises putative nitrate/nitrite transporter (narK) and nitrate reductase (narGHJI) genes is required for the anaerobic growth of Corynebacterium glutamicum with nitrate as a terminal electron acceptor. In this study, we identified a gene, arnR, which encodes a transcriptional regulator that represses the expression of the narKGHJI operon in C. glutamicum cells under aerobic conditions. Disruption of arnR induced nitrate reductase activities of C. glutamicum cells and increased narKGHJI mRNA levels under aerobic growth conditions. DNA microarray analyses revealed that besides the narKGHJI operon, the hmp gene, which encodes flavohemoglobin, is negatively regulated by ArnR under aerobic conditions. Promoter-reporter assays indicated that arnR gene expression was positively autoregulated by its gene product, ArnR, under both aerobic and anaerobic conditions. Electrophoretic mobility shift assay experiments showed that purified hexahistidyl-tagged ArnR protein specifically binds to promoter regions of the narKGHJI operon and the hmp and arnR genes. A consensus sequence, TA(A/T)TTAA(A/T)TA, found in the promoter regions of these genes was demonstrated to be involved in the binding of ArnR. Effects on LacZ activity by deletion of the ArnR binding sites within the promoter regions fused to the reporter gene were consistent with the view that the expression of the narKGHJI operon is repressed by the ArnR protein under aerobic conditions, whereas the expression of the arnR gene is autoinduced by ArnR.
Collapse
Affiliation(s)
- Taku Nishimura
- Research Institute of Innovative Technology for the Earth, 9-2 Kizugawadai, Kizugawa, Kyoto 619-0292, Japan
| | | | | | | | | |
Collapse
|
24
|
Turner RJ, Papish AL, Sargent F. Sequence analysis of bacterial redox enzyme maturation proteins (REMPs). Can J Microbiol 2004; 50:225-38. [PMID: 15213747 DOI: 10.1139/w03-117] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The twin-arginine protein transport (Tat) system is a remarkable molecular machine dedicated to the translocation of fully folded proteins across energy-transducing membranes. Complex cofactor-containing Tat substrates acquire their cofactors prior to export, and substrate proteins actually require to be folded before transport can proceed. Thus, it is very likely that mechanisms exist to prevent wasteful export of immature Tat substrates or to curb competition between immature and mature substrates for the transporter. Here we assess the primary sequence relationships between the accessory proteins implicated in this process during assembly of key respiratory enzymes in the model prokaryote Escherichia coli. For each respiratory enzyme studied, a redox enzyme maturation protein (REMP) was assigned. The main finding from this review was the hitherto unexpected link between the Tat-linked REMP DmsD and the nitrate reductase biosynthetic protein NarJ. The evolutionary link between Tat transport and cofactor insertion processes is discussed.Key words: Tat translocase, twin-arginine leader, hydrogenase, nitrate reductase, TMAO reductase, DMSO reductase, formate dehydrogenase, Tor, Dms, Hya, Hyb, Fdh, Nap.
Collapse
Affiliation(s)
- Raymond J Turner
- Department of Biological Sciences, University of Calgary, Alberta, Canada.
| | | | | |
Collapse
|
25
|
Minic Z, Herve G. Arginine metabolism in the deep sea tube worm Riftia pachyptila and its bacterial endosymbiont. J Biol Chem 2003; 278:40527-33. [PMID: 12882969 DOI: 10.1074/jbc.m307835200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The present study describes the distribution and properties of enzymes involved in arginine metabolism in Riftia pachyptila, a tubeworm living around deep sea hydrothermal vents and known to be engaged in a highly specific symbiotic association with a bacterium. The results obtained show that the arginine biosynthetic enzymes, carbamyl phosphate synthetase, ornithine transcarbamylase, and argininosuccinate synthetase are present in all of the tissues of the worm and in the bacteria. Thus, Riftia and its bacterial endosymbiont can assimilate nitrogen and carbon via this arginine biosynthetic pathway. The kinetic properties of ornithine transcarbamylase strongly suggest that neither Riftia nor the bacteria possess the catabolic form of this enzyme belonging to the arginine deiminase pathway, the absence of this pathway being confirmed by the lack of arginine deiminase activity. Arginine decarboxylase and ornithine decarboxylase are involved in the biosynthesis of polyamines such as putrescine and agmatine. These activities are present in the trophosome, the symbiont-harboring tissue, and are higher in the isolated bacteria than in the trophosome, indicating that these enzymes are of bacterial origin. This finding indicates that Riftia is dependent on its bacterial endosymbiont for the biosynthesis of polyamines that are important for its metabolism and physiology. These results emphasize a particular organization of the arginine metabolism and the exchanges of metabolites between the two partners of this symbiosis.
Collapse
Affiliation(s)
- Zoran Minic
- Laboratoire de Biochimie des Signaux Régulateurs Cellulaires et Moléculaires, UMR 7631, Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, 96 Boulevard Raspail, F-75006 Paris, France
| | | |
Collapse
|
26
|
Schwartz E, Henne A, Cramm R, Eitinger T, Friedrich B, Gottschalk G. Complete nucleotide sequence of pHG1: a Ralstonia eutropha H16 megaplasmid encoding key enzymes of H(2)-based ithoautotrophy and anaerobiosis. J Mol Biol 2003; 332:369-83. [PMID: 12948488 DOI: 10.1016/s0022-2836(03)00894-5] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The self-transmissible megaplasmid pHG1 carries essential genetic information for the facultatively lithoautotrophic and facultatively anaerobic lifestyles of its host, the Gram-negative soil bacterium Ralstonia eutropha H16. We have determined the complete nucleotide sequence of pHG1. This megaplasmid is 452,156 bp in size and carries 429 potential genes. Groups of functionally related genes form loose clusters flanked by mobile elements. The largest functional group consists of lithoautotrophy-related genes. These include a set of 41 genes for the biosynthesis of the three previously identified hydrogenases and of a fourth, novel hydrogenase. Another large cluster carries the genetic information for denitrification. In addition to a dissimilatory nitrate reductase, both specific and global regulators were identified. Also located in the denitrification region is a set of genes for cytochrome c biosynthesis. Determinants for several enzymes involved in the mineralization of aromatic compounds were found. The genes for conjugative plasmid transfer predict that R.eutropha forms two types of pili. One of them is related to the type IV pili of pathogenic enterobacteria. pHG1 also carries an extensive "junkyard" region encompassing 17 remnants of mobile elements and 22 partial or intact genes for phage-type integrase. Among the mobile elements is a novel member of the IS5 family, in which the transposase gene is interrupted by a group II intron.
Collapse
Affiliation(s)
- Edward Schwartz
- Institut für Biologie, Mikrobiologie, Humboldt-Universität zu Berlin, Chausseestr. 117, 10115 Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
27
|
Forde BG. Local and long-range signaling pathways regulating plant responses to nitrate. ANNUAL REVIEW OF PLANT BIOLOGY 2002; 53:203-24. [PMID: 12221973 DOI: 10.1146/annurev.arplant.53.100301.135256] [Citation(s) in RCA: 255] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Nitrate is the major source of nitrogen (N) for plants growing in aerobic soils. However, the NO3- ion is also used by plants as a signal to reprogram plant metabolism and to trigger changes in plant architecture. A striking example is the way that a root system can react to a localized source of NO3- by activating the NO3- uptake system and proliferating lateral roots preferentially within the NO3(-)-rich zone. That roots are able to respond autonomously in this fashion implies the existence of local signaling pathways that are sensitive to local changes in the external NO3- concentration. On the other hand, long-range signaling pathways are also needed to modulate these responses according to the plant's N status and to coordinate the allocation of resources between the root and the shoot. This review examines these signaling mechanisms and their interactions with sugar-sensing and hormonal response pathways.
Collapse
Affiliation(s)
- Brian G Forde
- Department of Biological Sciences, Lancaster University, Lancaster, LA1 4YQ, United Kingdom.
| |
Collapse
|
28
|
Minic Z, Simon V, Penverne B, Gaill F, Hervé G. Contribution of the bacterial endosymbiont to the biosynthesis of pyrimidine nucleotides in the deep-sea tube worm Riftia pachyptila. J Biol Chem 2001; 276:23777-84. [PMID: 11306586 DOI: 10.1074/jbc.m102249200] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The deep-sea tube worm Riftia pachyptila (Vestimentifera) from hydrothermal vents lives in an intimate symbiosis with a sulfur-oxidizing bacterium. That involves specific interactions and obligatory metabolic exchanges between the two organisms. In this work, we analyzed the contribution of the two partners to the biosynthesis of pyrimidine nucleotides through both the "de novo" and "salvage" pathways. The first three enzymes of the de novo pathway, carbamyl-phosphate synthetase, aspartate transcarbamylase, and dihydroorotase, were present only in the trophosome, the symbiont-containing tissue. The study of these enzymes in terms of their catalytic and regulatory properties in both the trophosome and the isolated symbiotic bacteria provided a clear indication of the microbial origin of these enzymes. In contrast, the succeeding enzymes of this de novo pathway, dihydroorotate dehydrogenase and orotate phosphoribosyltransferase, were present in all body parts of the worm. This finding indicates that the animal is fully dependent on the symbiont for the de novo biosynthesis of pyrimidines. In addition, it suggests that the synthesis of pyrimidines in other tissues is possible from the intermediary metabolites provided by the trophosomal tissue and from nucleic acid degradation products since the enzymes of the salvage pathway appear to be present in all tissues of the worm. Analysis of these salvage pathway enzymes in the trophosome strongly suggested that these enzymes belong to the worm. In accordance with this conclusion, none of these enzyme activities was found in the isolated bacteria. The enzymes involved in the production of the precursors of carbamyl phosphate and nitrogen assimilation, glutamine synthetase and nitrate reductase, were also investigated, and it appears that these two enzymes are present in the bacteria.
Collapse
Affiliation(s)
- Z Minic
- Laboratoire de Biochimie des Signaux Régulateurs Cellulaires et Moléculaires, UMR 7631, CNRS, Université Pierre et Marie Curie, 96 Boulevard Raspail, F-75006 Paris, France
| | | | | | | | | |
Collapse
|
29
|
Wood NJ, Alizadeh T, Bennett S, Pearce J, Ferguson SJ, Richardson DJ, Moir JW. Maximal expression of membrane-bound nitrate reductase in Paracoccus is induced by nitrate via a third FNR-like regulator named NarR. J Bacteriol 2001; 183:3606-13. [PMID: 11371524 PMCID: PMC95237 DOI: 10.1128/jb.183.12.3606-3613.2001] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2000] [Accepted: 03/28/2001] [Indexed: 11/20/2022] Open
Abstract
Respiratory reduction of nitrate to nitrite is the first key step in the denitrification process that leads to nitrate loss from soils. In Paracoccus pantotrophus, the enzyme system that catalyzes this reaction is encoded by the narKGHJI gene cluster. Expression of this cluster is maximal under anaerobic conditions in the presence of nitrate. Upstream from narK is narR, a gene encoding a member of the FNR family of transcriptional activators. narR is transcribed divergently from the other nar genes. Mutational analysis reveals that NarR is required for maximal expression of the membrane-bound nitrate reductase genes and narK but has no other regulatory function related to denitrification. NarR is shown to require nitrate and/or nitrite is order to activate gene expression. The N-terminal region of the protein lacks the cysteine residues that are required for formation of an oxygen-sensitive iron-sulfur cluster in some other members of the FNR family. Also, NarR lacks a crucial residue involved in interactions of this family of regulators with the sigma(70) subunit of RNA polymerase, indicating that a different mechanism is used to promote transcription. narR is also found in Paracoccus denitrificans, indicating that this species contains at least three FNR homologues.
Collapse
Affiliation(s)
- N J Wood
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
30
|
Moreno-Vivián C, Cabello P, Martínez-Luque M, Blasco R, Castillo F. Prokaryotic nitrate reduction: molecular properties and functional distinction among bacterial nitrate reductases. J Bacteriol 1999; 181:6573-84. [PMID: 10542156 PMCID: PMC94119 DOI: 10.1128/jb.181.21.6573-6584.1999] [Citation(s) in RCA: 344] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- C Moreno-Vivián
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Córdoba, 14071 Córdoba, Spain.
| | | | | | | | | |
Collapse
|
31
|
Lee RW, Robinson JJ, Cavanaugh CM. Pathways of inorganic nitrogen assimilation in chemoautotrophic bacteria-marine invertebrate symbioses: expression of host and symbiont glutamine synthetase. J Exp Biol 1999; 202 (Pt 3):289-300. [PMID: 9882641 DOI: 10.1242/jeb.202.3.289] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Symbioses between chemoautotrophic bacteria and marine invertebrates living at deep-sea hydrothermal vents and other sulfide-rich environments function autotrophically by oxidizing hydrogen sulfide as an energy source and fixing carbon dioxide into organic compounds. For chemoautotrophy to support growth, these symbioses must be capable of inorganic nitrogen assimilation, a process that is not well understood in these or other aquatic symbioses. Pathways of inorganic nitrogen assimilation were investigated in several of these symbioses: the vent tubeworms Riftia pachyptila and Tevnia jerichonana, the vent bivalves Calyptogena magnifica and Bathymodiolus thermophilus, and the coastal bivalve Solemya velum. Nitrate reductase activity was detected in R. pachyptila, T. jerichonana and B. thermophilus, but not in C. magnifica and S. velum. This is evidence for nitrate utilization, either assimilation or respiration, by some vent species and is consistent with the high levels of nitrate availability at vents. The ammonia assimilation enzymes glutamine synthetase (GS) and glutamate dehydrogenase (GDH) were detected in all symbioses tested, indicating that ammonia resulting from nitrate reduction or from environmental uptake can be incorporated into amino acids. A complicating factor is that GS and GDH are potentially of both host and symbiont origin, making it unclear which partner is involved in assimilation. GS, which is considered to be the primary ammonia-assimilating enzyme of autotrophs, was investigated further. Using a combination of molecular and biochemical approaches, host and symbiont GS were distinguished in the intact association. On the basis of Southern hybridizations, immunoreactivity, subunit size and thermal stability, symbiont GS was found to be a prokaryote GS. Host GS was distinct from prokaryote GS. The activities of host and symbiont GS were separated by anion-exchange chromatography and quantified. Virtually all activity in symbiont-containing tissue was due to symbiont GS in R. pachyptila, C. magnifica and B. thermophilus. In contrast, no symbiont GS activity was detected in the gill of S. velum, the predominant activity in this species appearing to be host GS. These findings suggest that ammonia is primarily assimilated by the symbionts in vent symbioses, whereas in S. velum ammonia is first assimilated by the host. The relationship between varying patterns of GS expression and host-symbiont nutritional exchange is discussed.
Collapse
Affiliation(s)
- RW Lee
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
| | | | | |
Collapse
|
32
|
Blasco R, Castillo F, Martínez-Luque M. The assimilatory nitrate reductase from the phototrophic bacterium, Rhodobacter capsulatus E1F1, is a flavoprotein. FEBS Lett 1997; 414:45-9. [PMID: 9305729 DOI: 10.1016/s0014-5793(97)00968-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The assimilatory nitrate reductase from the phototrophic bacterium Rhodobacter capsulatus has been purified to electrophoretic homogeneity and its molecular and kinetic parameters determined. The native nitrate reductase is a dimer of 144 kDa composed of two subunits of 46 and 95 kDa. The purified enzyme catalyzes the electron transfer from NADH, reduced bromophenol blue or reduced viologens to nitrate. The nitrate reductase contains 1 mol FAD per mole of enzyme and also reduces cytochrome c or dichlorophenol indophenol with NADH as the electron donor. The diaphorase activity is located in the small subunit.
Collapse
Affiliation(s)
- R Blasco
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Córdoba, Spain
| | | | | |
Collapse
|
33
|
Kwiatkowski AV, Shapleigh JP. Requirement of nitric oxide for induction of genes whose products are involved in nitric oxide metabolism in Rhodobacter sphaeroides 2.4.3. J Biol Chem 1996; 271:24382-8. [PMID: 8798693 DOI: 10.1074/jbc.271.40.24382] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
During denitrification, freely diffusible nitric oxide (NO) is generated for use as a terminal electron acceptor. NO is produced by nitrite reductase (Nir) and reduced to nitrous oxide by nitric oxide reductase (Nor). Using Nir and Nor-deficient mutants of Rhodobacter sphaeroides 2.4.3, we have shown that the endogenous production of NO or the addition of exogenous NO induces transcription of certain genes encoding Nir and Nor. A Nor-deficient strain was found to be capable of expressing wild type levels of nirK-lacZ and norB-lacZ fusions in medium unamended with nitrogen oxides. When this experiment is performed in the presence of hemoglobin, fusion expression is eliminated. NO and the NO-generator, sodium nitroprusside, can induce expression of both fusions in a strain lacking Nir and the consequent ability to produce NO. Sodium nitroprusside cannot induce expression of nirK-lacZ in a strain lacking the transcriptional activator NnrR (nitrite and nitric oxide reductase regulator). Addition of the cyclic nucleotides cAMP and 8-bromoguanosine-cGMP does not result in expression of either fusion. These results demonstrate that denitrifying bacteria produce NO as a signal molecule to activate expression of the genes encoding proteins required for NO metabolism.
Collapse
Affiliation(s)
- A V Kwiatkowski
- Department of Microbiology, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
34
|
Van Spanning RJ, de Boer AP, Reijnders WN, De Gier JW, Delorme CO, Stouthamer AH, Westerhoff HV, Harms N, van der Oost J. Regulation of oxidative phosphorylation: the flexible respiratory network of Paracoccus denitrificans. J Bioenerg Biomembr 1995; 27:499-512. [PMID: 8718455 DOI: 10.1007/bf02110190] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Paracoccus denitrificans is a facultative anaerobic bacterium that has the capacity to adjust its metabolic infrastructure, quantitatively and/or qualitatively, to the prevailing growth condition. In this bacterium the relative activity of distinct catabolic pathways is subject to a hierarchical control. In the presence of oxygen the aerobic respiration, the most efficient way of electron transfer-linked phosphorylation, has priority. At high oxygen tensions P. denitrificans synthesizes an oxidase with a relatively low affinity for oxygen, whereas under oxygen limitation a high-affinity oxidase appears specifically induced. During anaerobiosis, the pathways with lower free energy-transducing efficiency are induced. In the presence of nitrate, the expression of a number of dehydrogenases ensures the continuation of oxidative phosphorylation via denitrification. After identification of the structural components that are involved in both the aerobic and the anaerobic respiratory networks of P. denitrificans, the intriguing next challenge is to get insight in its regulation. Two transcription regulators have recently been demonstrated to be involved in the expression of a number of aerobic and/or anaerobic respiratory complexes in P. denitrificans. Understanding of the regulation machinery is beginning to emerge and promises much excitement in discovery.
Collapse
Affiliation(s)
- R J Van Spanning
- Department of Microbial Physiology, Vrije Universiteit, Amsterdam, Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Denitrification in bacteria comprises a series of four reduction reactions; for nitrate, nitrite, nitric oxide and nitrous oxide. Nitrogen gas is the final product. The nature of the enzymes catalysing these reactions is described along with the the properties of the underlying electron transport systems. The factors influencing the expression of the reductases for the four reactions are reviewed along with the effect of oxygen on the activities of the enzymes of denitrification. The main emphasis is on observations made with Paracoccus denitrificans and Pseudomonas stutzeri.
Collapse
Affiliation(s)
- S J Ferguson
- Department of Biochemistry, University of Oxford, UK
| |
Collapse
|