1
|
Bilova T, Golushko N, Frolova N, Soboleva A, Silinskaia S, Khakulova A, Orlova A, Sinetova M, Los D, Frolov A. Strain-Specific Features of Primary Metabolome Characteristic for Extremotolerant/Extremophilic Cyanobacteria Under Long-Term Storage. Int J Mol Sci 2025; 26:2201. [PMID: 40076823 PMCID: PMC11900582 DOI: 10.3390/ijms26052201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/19/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Cyanobacteria isolated from extreme habitats are promising in biotechnology due to their high adaptability to unfavorable environments and their specific natural products. Therefore, these organisms are stored under a reduced light supply in multiple collections worldwide. However, it remains unclear whether these strains maintain constitutively expressed primary metabolome features associated with their unique adaptations. To address this question, a comparative analysis of primary metabolomes of twelve cyanobacterial strains from diverse extreme habitats was performed by a combined GC-MS/LC-MS approach. The results revealed that all these cyanobacterial strains exhibited clear differences in their patterns of primary metabolites. These metabolic differences were more pronounced for the strains originating from ecologically different extreme environments. Extremotolerant terrestrial and freshwater strains contained lower strain-specifically accumulated primary metabolites than extremophilic species from habitats with high salinity and alkalinity. The latter group of strains was highly diverse in amounts of specific primary metabolites. This might indicate essentially different molecular mechanisms and metabolic pathways behind the survival of the microorganisms in saline and alkaline environments. The identified strain-specific metabolites are discussed with respect to the metabolic processes that might impact maintaining the viability of cyanobacteria during their storage and indicate unique adaptations formed in their original extreme habitats.
Collapse
Affiliation(s)
- Tatiana Bilova
- Laboratory of Analytical Biochemistry and Biotechnology, K.A. Timiryazev Institute of Plant Physiology Russian Academy of Sciences, 127276 Moscow, Russia; (N.G.); (N.F.); (A.S.); (S.S.); (A.O.)
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Nikita Golushko
- Laboratory of Analytical Biochemistry and Biotechnology, K.A. Timiryazev Institute of Plant Physiology Russian Academy of Sciences, 127276 Moscow, Russia; (N.G.); (N.F.); (A.S.); (S.S.); (A.O.)
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Nadezhda Frolova
- Laboratory of Analytical Biochemistry and Biotechnology, K.A. Timiryazev Institute of Plant Physiology Russian Academy of Sciences, 127276 Moscow, Russia; (N.G.); (N.F.); (A.S.); (S.S.); (A.O.)
| | - Alena Soboleva
- Laboratory of Analytical Biochemistry and Biotechnology, K.A. Timiryazev Institute of Plant Physiology Russian Academy of Sciences, 127276 Moscow, Russia; (N.G.); (N.F.); (A.S.); (S.S.); (A.O.)
| | - Svetlana Silinskaia
- Laboratory of Analytical Biochemistry and Biotechnology, K.A. Timiryazev Institute of Plant Physiology Russian Academy of Sciences, 127276 Moscow, Russia; (N.G.); (N.F.); (A.S.); (S.S.); (A.O.)
| | - Anna Khakulova
- Chemical Analysis and Materials Research Core Facility Center, Research Park, St. Petersburg State University, 199034 St. Petersburg, Russia;
| | - Anastasia Orlova
- Laboratory of Analytical Biochemistry and Biotechnology, K.A. Timiryazev Institute of Plant Physiology Russian Academy of Sciences, 127276 Moscow, Russia; (N.G.); (N.F.); (A.S.); (S.S.); (A.O.)
| | - Maria Sinetova
- Laboratory of Intracellular Regulation, K.A. Timiryazev Institute of Plant Physiology Russian Academy of Sciences, 127276 Moscow, Russia; (M.S.); (D.L.)
| | - Dmitry Los
- Laboratory of Intracellular Regulation, K.A. Timiryazev Institute of Plant Physiology Russian Academy of Sciences, 127276 Moscow, Russia; (M.S.); (D.L.)
| | - Andrej Frolov
- Laboratory of Analytical Biochemistry and Biotechnology, K.A. Timiryazev Institute of Plant Physiology Russian Academy of Sciences, 127276 Moscow, Russia; (N.G.); (N.F.); (A.S.); (S.S.); (A.O.)
| |
Collapse
|
2
|
Wu Z, Li M, Qu L, Zhang C, Xie W. Metagenomic insights into microbial adaptation to the salinity gradient of a typical short residence-time estuary. MICROBIOME 2024; 12:115. [PMID: 38918820 PMCID: PMC11200988 DOI: 10.1186/s40168-024-01817-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 04/17/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND Microbial adaptation to salinity has been a classic inquiry in the field of microbiology. It has been demonstrated that microorganisms can endure salinity stress via either the "salt-in" strategy, involving inorganic ion uptake, or the "salt-out" strategy, relying on compatible solutes. While these insights are mostly based on laboratory-cultured isolates, exploring the adaptive mechanisms of microorganisms within natural salinity gradient is crucial for gaining a deeper understanding of microbial adaptation in the estuarine ecosystem. RESULTS Here, we conducted metagenomic analyses on filtered surface water samples collected from a typical subtropical short residence-time estuary and categorized them by salinity into low-, intermediate-, and high-salinity metagenomes. Our findings highlighted salinity-driven variations in microbial community composition and function, as revealed through taxonomic and Clusters of Orthologous Group (COG) functional annotations. Through metagenomic binning, 127 bacterial and archaeal metagenome-assembled genomes (MAGs) were reconstructed. These MAGs were categorized as stenohaline-specific to low-, intermediate-, or high-salinity-based on the average relative abundance in one salinity category significantly exceeding those in the other two categories by an order of magnitude. Those that did not meet this criterion were classified as euryhaline, indicating a broader range of salinity tolerance. Applying the Boruta algorithm, a machine learning-based feature selection method, we discerned important genomic features from the stenohaline bacterial MAGs. Of the total 12,162 COGs obtained, 40 were identified as important features, with the "inorganic ion transport and metabolism" COG category emerging as the most prominent. Furthermore, eight COGs were implicated in microbial osmoregulation, of which four were related to the "salt-in" strategy, three to the "salt-out" strategy, and one to the regulation of water channel activity. COG0168, annotated as the Trk-type K+ transporter related to the "salt-in" strategy, was ranked as the most important feature. The relative abundance of COG0168 was observed to increase with rising salinity across metagenomes, the stenohaline strains, and the dominant Actinobacteriota and Proteobacteria phyla. CONCLUSIONS We demonstrated that salinity exerts influences on both the taxonomic and functional profiles of the microbial communities inhabiting the estuarine ecosystem. Our findings shed light on diverse salinity adaptation strategies employed by the estuarine microbial communities, highlighting the crucial role of the "salt-in" strategy mediated by Trk-type K+ transporters for microorganisms thriving under osmotic stress in the short residence-time estuary. Video Abstract.
Collapse
Affiliation(s)
- Ziheng Wu
- School of Marine Sciences, Sun Yat-Sen University and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, China
| | - Minchun Li
- School of Marine Sciences, Sun Yat-Sen University and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, China
| | - Liping Qu
- School of Marine Sciences, Sun Yat-Sen University and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, China
| | - Chuanlun Zhang
- Department of Ocean Science and Engineering, Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wei Xie
- School of Marine Sciences, Sun Yat-Sen University and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, China.
| |
Collapse
|
3
|
Vogt JC, Abed RMM, Albach DC, Palinska KA. Bacterial and Archaeal Diversity in Hypersaline Cyanobacterial Mats Along a Transect in the Intertidal Flats of the Sultanate of Oman. MICROBIAL ECOLOGY 2018; 75:331-347. [PMID: 28736793 DOI: 10.1007/s00248-017-1040-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/06/2017] [Indexed: 06/07/2023]
Abstract
Hypersaline intertidal zones are highly dynamic ecosystems that are exposed to multiple extreme environmental conditions including rapidly and frequently changing parameters (water, nutrients, temperature) as well as highly elevated salinity levels often caused by high temperatures and evaporation rates. Microbial mats in most extreme settings, as found at the coastline of the subtropical-arid Arabian Peninsula, have been relatively less studied compared to their counterparts around the world. We report, here, for the first time on the diversity of the bacterial and archaeal communities of marine microbial mats along an intertidal transect in a wide salt flat with strongly increased salinity employing Illumina MiSeq technology for amplicon sequencing of 16S rRNA gene fragments. Microbial communities were dominated by typical halotolerant to halophilic microorganisms, with clear shifts in community composition, richness, and diversity along the transect. Highly adapted specialists (e.g., Euhalothece, Salinibacter, Nanohaloarchaeota) were mainly found at the most extreme, upper tidal sites and less specialized organisms with wide tolerance ranges (e.g., Lyngbya, Rhodovibrio, Salisaeta, Halobacteria) in intermediate sites of the transect. The dominating taxa in the lower tidal sites were typical members of well-stabilized mats (e.g., Coleofasciculus, Anaerolineaceae, Thaumarchaeota). Up to 40% of the archaeal sequences per sample represented so far unknown phyla. In conclusion, the bacterial richness and diversity increased from upper towards lower tidal sites in line with increasing mat stabilization and functional diversity, opposed to that of cyanobacteria only and archaea, which showed their highest richness and diversity in upper tidal samples.
Collapse
Affiliation(s)
- Janina C Vogt
- Institute for Biology and Environmental Science (IBU), Plants Biodiversity and Evolution, Carl-von-Ossietzky University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129, Oldenburg, Germany.
| | - Raeid M M Abed
- Biology Department, College of Science, Sultan Qaboos University, P.O. Box 36, 123, Al Khoud, Oman
| | - Dirk C Albach
- Institute for Biology and Environmental Science (IBU), Plants Biodiversity and Evolution, Carl-von-Ossietzky University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129, Oldenburg, Germany
| | - Katarzyna A Palinska
- Institute for Biology and Environmental Science (IBU), Plants Biodiversity and Evolution, Carl-von-Ossietzky University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129, Oldenburg, Germany
- Institute of Oceanography, Faculty of Oceanography and Geography, University of Gdansk, Al. J. Pilsudskiego 46, 80-378, Gdynia, Poland
| |
Collapse
|
4
|
Oliveira Alvarenga D, Rigonato J, Henrique Zanini Branco L, Soares Melo I, Fatima Fiore M. Phyllonema aviceniicola gen. nov., sp. nov. and Foliisarcina bertiogensis gen. nov., sp. nov., epiphyllic cyanobacteria associated with Avicennia schaueriana leaves. Int J Syst Evol Microbiol 2016; 66:689-700. [DOI: 10.1099/ijsem.0.000774] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Danillo Oliveira Alvarenga
- University of São Paulo, Center for Nuclear Energy in Agriculture, Avenida Centenário 303, 13400-970 Piracicaba, SP, Brazil
| | - Janaina Rigonato
- University of São Paulo, Center for Nuclear Energy in Agriculture, Avenida Centenário 303, 13400-970 Piracicaba, SP, Brazil
| | - Luis Henrique Zanini Branco
- São Paulo State University, Institute of Bioscience, Languages and Exact Sciences, 15054-000 São José do Rio Preto, SP, Brazil
| | - Itamar Soares Melo
- Embrapa Environment, Laboratory of Environmental Microbiology, 13820-000 Jaguariúna, SP, Brazil
| | - Marli Fatima Fiore
- University of São Paulo, Center for Nuclear Energy in Agriculture, Avenida Centenário 303, 13400-970 Piracicaba, SP, Brazil
| |
Collapse
|
5
|
Vítek P, Jehlička J, Edwards HGM, Hutchinson I, Ascaso C, Wierzchos J. Miniaturized Raman instrumentation detects carotenoids in Mars-analogue rocks from the Mojave and Atacama deserts. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2014; 372:rsta.2014.0196. [PMID: 25368344 DOI: 10.1098/rsta.2014.0196] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This study is primarily focused on proving the potential of miniaturized Raman systems to detect any biomolecular and mineral signal in natural geobiological samples that are relevant for future application of the technique within astrobiologically aimed missions on Mars. A series of evaporites of varying composition and origin from two extremely dry deserts were studied, namely Atacama and Mojave. The samples represent both dry evaporitic deposits and recent evaporitic efflorescences from hypersaline brines. The samples comprise halite and different types of sulfates and carbonates. The samples were analysed in two different ways: (i) directly as untreated rocks and (ii) as homogenized powders. Two excitation wavelengths of miniaturized Raman spectrometers were compared: 532 and 785 nm. The potential to detect carotenoids as biomarkers on Mars compared with the potential detection of carbonaceous matter using miniaturized instrumentation is discussed.
Collapse
Affiliation(s)
- P Vítek
- Institute of Geochemistry, Mineralogy and Mineral Resources, Charles University in Prague, Albertov 6, 128 43 Prague 2, Czech Republic
| | - J Jehlička
- Institute of Geochemistry, Mineralogy and Mineral Resources, Charles University in Prague, Albertov 6, 128 43 Prague 2, Czech Republic
| | - H G M Edwards
- Department of Physics and Astronomy, Space Sciences Research Centre, University of Leicester, Leicester LE1 7RH, UK
| | - I Hutchinson
- Department of Physics and Astronomy, Space Sciences Research Centre, University of Leicester, Leicester LE1 7RH, UK
| | - C Ascaso
- Museo Nacional de Ciencias Naturales, CSIC, c/ Serrano 115 dpdo., 28006 Madrid, Spain
| | - J Wierzchos
- Museo Nacional de Ciencias Naturales, CSIC, c/ Serrano 115 dpdo., 28006 Madrid, Spain
| |
Collapse
|
6
|
Genetic diversity of picocyanobacteria in tibetan lakes: assessing the endemic and universal distributions. Appl Environ Microbiol 2014; 80:7640-50. [PMID: 25281375 DOI: 10.1128/aem.02611-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The phylogenetic diversity of picocyanobacteria in seven alkaline lakes on the Tibetan Plateau was analyzed using the molecular marker 16S-23S rRNA internal transcribed spacer sequence. A total of 1,077 environmental sequences retrieved from the seven lakes were grouped into seven picocyanobacterial clusters, with two clusters newly described here. Each of the lakes was dominated by only one or two clusters, while different lakes could have disparate communities, suggesting low alpha diversity but high beta diversity of picocyanobacteria in these high-altitude freshwater and saline lakes. Several globally distributed clusters were found in these Tibetan lakes, such as subalpine cluster I and the Cyanobium gracile cluster. Although other clusters likely exhibit geographic restriction to the plateau temporally, reflecting endemicity, they can indeed be distributed widely on the plateau. Lakes with similar salinities may have similar genetic populations despite a large geographic distance. Canonical correspondence analysis identified salinity as the only environmental factor that may in part explain the diversity variations among lakes. Mantel tests suggested that the community similarities among lakes are independent of geographic distance. A portion of the picocyanobacterial clusters appear to be restricted to a narrow salinity range, while others are likely adapted to a broad range. A seasonal survey of Lake Namucuo across 3 years did not show season-related variations in diversity, and depth-related population partitioning was observed along a vertical profile of the lake. Our study emphasizes the high dispersive potential of picocyanobacteria and suggests that the regional distribution may result from adaptation to specified environments.
Collapse
|
7
|
Trigui H, Masmoudi S, Brochier-Armanet C, Maalej S, Dukan S. Survival of extremely and moderately halophilic isolates of Tunisian solar salterns after UV-B or oxidative stress. Can J Microbiol 2011; 57:923-33. [PMID: 22017705 DOI: 10.1139/w11-087] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adaptation to a solar saltern environment requires mechanisms providing tolerance not only to salinity but also to UV radiation (UVR) and to reactive oxygen species (ROS). We cultivated prokaryote halophiles from two different salinity ponds: the concentrator M1 pond (240 g·L(-1) NaCl) and the crystallizer TS pond (380 g·L(-1) NaCl). We then estimated UV-B and hydrogen peroxide resistance according to the optimal salt concentration for growth of the isolates. We observed a higher biodiversity of bacterial isolates in M1 than in TS. All strains isolated from TS appeared to be extremely halophilic Archaea from the genus Halorubrum. Culturable strains isolated from M1 included extremely halophilic Archaea (genera Haloferax, Halobacterium, Haloterrigena, and Halorubrum) and moderately halophilic Bacteria (genera Halovibrio and Salicola). We also found that archaeal strains were more resistant than bacterial strains to exposure to ROS and UV-B. All organisms tested were more resistant to UV-B exposure at the optimum NaCl concentration for their growth, which is not always the case for H(2)O(2). Finally, if these results are extended to other prokaryotes present in a solar saltern, we could speculate that UVR has greater impact than ROS on the control of prokaryote biodiversity in a solar saltern.
Collapse
Affiliation(s)
- Hana Trigui
- Aix-Marseille Université, Laboratoire de chimie bactérienne, Institut de microbiologie de la Méditerranée, Centre national de la recherche scientifique, France
| | | | | | | | | |
Collapse
|
8
|
Kohls K, Abed RMM, Polerecky L, Weber M, de Beer D. Halotaxis of cyanobacteria in an intertidal hypersaline microbial mat. Environ Microbiol 2009; 12:567-75. [PMID: 19919535 DOI: 10.1111/j.1462-2920.2009.02095.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An intertidal hypersaline cyanobacterial mat from Abu Dhabi (United Arab Emirates) exhibited a reversible change in its surface colour within several hours upon changes in salinity of the overlying water. The mat surface was orange-reddish at salinities above 15% and turned dark green at lower salinities. We investigated this phenomenon using a polyphasic approach that included denaturing gradient gel electrophoresis, microscopy, high-performance liquid chromatography, hyperspectral imaging, absorption spectroscopy, oxygen microsensor measurements and modelling of salinity dynamics. Filaments of Microcoleus chthonoplastes, identified based on 16S rRNA sequencing and morphology, were found to migrate up and down when salinity was decreased below or increased above 15%, respectively, causing the colour change of the mat uppermost layer. Migration occurred in light and in the dark, and could be induced by different salts, not only NaCl. The influence of salinity-dependent and independent physico-chemical parameters, such as water activity, oxygen solubility, H2S, gravity and light, was excluded, indicating that the observed migration was due to a direct response to salt stress. We propose to term this salinity-driven cyanobacterial migration as 'halotaxis', a process that might play a vital role in the survival of cyanobacteria in environments exposed to continuous salinity fluctuations such as intertidal flats.
Collapse
Affiliation(s)
- Katharina Kohls
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359 Bremen, Germany.
| | | | | | | | | |
Collapse
|
9
|
Srivastava AK, Bhargava P, Kumar A, Rai LC, Neilan BA. Molecular characterization and the effect of salinity on cyanobacterial diversity in the rice fields of Eastern Uttar Pradesh, India. SALINE SYSTEMS 2009; 5:4. [PMID: 19344531 PMCID: PMC2680867 DOI: 10.1186/1746-1448-5-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 04/06/2009] [Indexed: 11/22/2022]
Abstract
Background Salinity is known to affect almost half of the world's irrigated lands, especially rice fields. Furthermore, cyanobacteria, one of the critical inhabitants of rice fields have been characterized at molecular level from many different geographical locations. This study, for the first time, has examined the molecular diversity of cyanobacteria inhabiting Indian rice fields which experience various levels of salinity. Results Ten physicochemical parameters were analyzed for samples collected from twenty experimental sites. Electrical conductivity data were used to classify the soils and to investigate relationship between soil salinity and cyanobacterial diversity. The cyanobacterial communities were analyzed using semi-nested 16S rRNA gene PCR and denaturing gradient gel electrophoresis. Out of 51 DGGE bands selected for sequencing only 31 which showed difference in sequences were subjected to further analysis. BLAST analysis revealed highest similarity for twenty nine of the sequences with cyanobacteria, and the other two to plant plastids. Clusters obtained based on morphological and molecular attributes of cyanobacteria were correlated to soil salinity. Among six different clades, clades 1, 2, 4 and 6 contained cyanobacteria inhabiting normal or low saline (having EC < 4.0 ds m-1) to (high) saline soils (having EC > 4.0 ds m-1), however, clade 5 represented the cyanobacteria inhabiting only saline soils. Whilst, clade 3 contained cyanobacteria from normal soils. The presence of DGGE band corresponding to Aulosira strains were present in large number of soil indicating its wide distribution over a range of salinities, as were Nostoc, Anabaena, and Hapalosiphon although to a lesser extent in the sites studied. Conclusion Low salinity favored the presence of heterocystous cyanobacteria, while very high salinity mainly supported the growth of non-heterocystous genera. High nitrogen content in the low salt soils is proposed to be a result of reduced ammonia volatilization compared to the high salt soils. Although many environmental factors could potentially determine the microbial community present in these multidimensional ecosystems, changes in the diversity of cyanobacteria in rice fields was correlated to salinity.
Collapse
Affiliation(s)
- Ashish Kumar Srivastava
- Department of Botany, School of Life Sciences, Mizoram University, Tanhril Campus, Aizawl-796009, India.
| | | | | | | | | |
Collapse
|
10
|
Abed RMM, Kohls K, de Beer D. Effect of salinity changes on the bacterial diversity, photosynthesis and oxygen consumption of cyanobacterial mats from an intertidal flat of the Arabian Gulf. Environ Microbiol 2007; 9:1384-92. [PMID: 17504476 DOI: 10.1111/j.1462-2920.2007.01254.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The effects of salinity fluctuation on bacterial diversity, rates of gross photosynthesis (GP) and oxygen consumption in the light (OCL) and in the dark (OCD) were investigated in three submerged cyanobacterial mats from a transect on an intertidal flat. The transect ran 1 km inland from the low water mark along an increasingly extreme habitat with respect to salinity. The response of GP, OCL and OCD in each sample to various salinities (65 per thousand, 100 per thousand, 150 per thousand and 200 per thousand) were compared. The obtained sequences and the number of unique operational taxonomic units showed clear differences in the mats' bacterial composition. While cyanobacteria decreased from the lower to the upper tidal mat, other bacterial groups such as Chloroflexus and Cytophaga/Flavobacteria/Bacteriodetes showed an opposite pattern with the highest dominance in the middle and upper tidal mats respectively. Gross photosynthesis and OCL at the ambient salinities of the mats decreased from the lower to the upper tidal zone. All mats, regardless of their tidal location, exhibited a decrease in areal GP, OCL and OCD rates at salinities > 100 per thousand. The extent of inhibition of these processes at higher salinities suggests an increase in salt adaptation of the mats microorganisms with distance from the low water line. We conclude that the resilience of microbial mats towards different salinity regimes on intertidal flats is accompanied by adjustment of the diversity and function of their microbial communities.
Collapse
Affiliation(s)
- Raeid M M Abed
- Max-Planck Institute for Marine Microbiology, Microsensor group, Bremen, Germany.
| | | | | |
Collapse
|
11
|
Seckbach J, Oren A. Oxygenic Photosynthetic Microorganisms in Extreme Environments. CELLULAR ORIGIN, LIFE IN EXTREME HABITATS AND ASTROBIOLOGY 2007. [DOI: 10.1007/978-1-4020-6112-7_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
12
|
Wieland A, Kühl M. Regulation of photosynthesis and oxygen consumption in a hypersaline cyanobacterial mat (Camargue, France) by irradiance, temperature and salinity. FEMS Microbiol Ecol 2006; 55:195-210. [PMID: 16420628 DOI: 10.1111/j.1574-6941.2005.00031.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Short-term effects of irradiance (0-1560 micromol photons m(-2) s(-1)), temperature (10-25 degrees C), and salinity (40-160) on oxygenic photosynthesis and oxygen consumption in a hypersaline mat (Salin-de-Giraud, France) were investigated with microsensors under controlled laboratory conditions. Dark O(2) consumption rates were mainly regulated by the mass transfer limitations imposed by the diffusive boundary layer. Areal rates of net photosynthesis increased with irradiance and saturated at irradiances >400 micromol photons m(-2) s(-1). At low irradiances, oxygen consumption increased more strongly with temperature than photosynthesis, whereas the opposite was observed at saturating irradiances. Net photosynthesis vs. irradiance curves were almost unaffected by decreasing salinity (100 to 40), whereas increasing salinities (100 to 160) led to a decrease of net photosynthesis at each irradiance. Dark O(2) consumption rates, maximal gross and net photosynthesis at light saturation were relatively constant over a broad salinity range (60-100) and decreased at salinities above the in situ salinity of 100. Within the range of natural variation, temperature was more important than salinity in regulating photosynthesis and oxygen consumption. At higher salinities the inhibitory impact of salinity on these processes and therefore the importance of salinity as a regulating environmental parameter increased, indicating that in more hypersaline systems, salinity has a stronger limiting effect on microbial activity.
Collapse
Affiliation(s)
- Andrea Wieland
- Marine Biological Laboratory, Institute of Biology, University of Copenhagen, Helsingør, Denmark.
| | | |
Collapse
|
13
|
Sørensen KB, Canfield DE, Oren A. Salinity responses of benthic microbial communities in a solar saltern (Eilat, Israel). Appl Environ Microbiol 2004; 70:1608-16. [PMID: 15006785 PMCID: PMC368310 DOI: 10.1128/aem.70.3.1608-1616.2004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The salinity responses of cyanobacteria, anoxygenic phototrophs, sulfate reducers, and methanogens from the laminated endoevaporitic community in the solar salterns of Eilat, Israel, were studied in situ with oxygen microelectrodes and in the laboratory in slurries. The optimum salinity for the sulfate reduction rate in sediment slurries was between 100 and 120 per thousand, and sulfate reduction was strongly inhibited at an in situ salinity of 215 per thousand. Nevertheless, sulfate reduction was an important respiratory process in the crust, and reoxidation of formed sulfide accounted for a major part of the oxygen budget. Methanogens were well adapted to the in situ salinity but contributed little to the anaerobic mineralization in the crust. In slurries with a salinity of 180 per thousand or less, methanogens were inhibited by increased activity of sulfate-reducing bacteria. Unicellular and filamentous cyanobacteria metabolized at near-optimum rates at the in situ salinity, whereas the optimum salinity for anoxygenic phototrophs was between 100 and 120 per thousand.
Collapse
Affiliation(s)
- Ketil Bernt Sørensen
- Danish Center for Earth System Science, Institute of Biology, University of Southern Denmark, University of Odense, Odense, Denmark.
| | | | | |
Collapse
|
14
|
Nübel U, Garcia-Pichel F, Clavero E, Muyzer G. Matching molecular diversity and ecophysiology of benthic cyanobacteria and diatoms in communities along a salinity gradient. Environ Microbiol 2000; 2:217-26. [PMID: 11220307 DOI: 10.1046/j.1462-2920.2000.00094.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The phylogenetic diversity of oxygenic phototrophic microorganisms in hypersaline microbial mats and their distribution along a salinity gradient were investigated and compared with the halotolerances of closely related cultivated strains. Segments of 16S rRNA genes from cyanobacteria and diatom plastids were retrieved from mat samples by DNA extraction and polymerase chain reaction (PCR), and subsequently analysed by denaturing gradient gel electrophoresis (DGGE). Sequence analyses of DNA from individual DGGE bands suggested that the majority of these organisms was related to cultivated strains at levels that had previously been demonstrated to correlate with characteristic salinity responses. Proportional abundances of amplified 16S rRNA gene segments from phylogenetic groupings of cyanobacteria and diatoms were estimated by image analysis of DGGE gels and were generally found to correspond to abundances of the respective morphotypes determined by microscopic analyses. The results indicated that diatoms accounted for low proportions of cells throughout, that the cyanobacterium Microcoleus chthonoplastes and close relatives dominated the communities up to a salinity of 11% and that, at a salinity of 14%, the most abundant cyanobacteria were related to highly halotolerant cultivated cyanobacteria, such as the recently established phylogenetic clusters of Euhalothece and Halospirulina. Although these organisms in cultures had previously demonstrated their ability to grow with close to optimal rates over a wide range of salinities, their occurrence in the field was restricted to the highest salinities investigated.
Collapse
Affiliation(s)
- U Nübel
- Max Planck Institute for Marine Microbiology, Bremen, Germany.
| | | | | | | |
Collapse
|
15
|
|
16
|
Biological and physical events involved in the origin, effects, and control of organic matter in solar saltworks. ACTA ACUST UNITED AC 1995. [DOI: 10.1007/bf01999117] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
|
18
|
|
19
|
|
20
|
Wais AC, Daniels LL. Populations of bacteriophage infectingHalobacteriumin a transient brine pool. FEMS Microbiol Lett 1985. [DOI: 10.1111/j.1574-6968.1985.tb01167.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
21
|
Reed RH, Chudek JA, Foster R, Stewart WDP. Osmotic adjustment in cyanobacteria from hypersaline environments. Arch Microbiol 1984. [DOI: 10.1007/bf00410900] [Citation(s) in RCA: 91] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|