1
|
Cruz T, Gleizes M, Balayssac S, Mornet E, Marsal G, Millán JL, Malet-Martino M, Nowak LG, Gilard V, Fonta C. Identification of altered brain metabolites associated with TNAP activity in a mouse model of hypophosphatasia using untargeted NMR-based metabolomics analysis. J Neurochem 2017; 140:919-940. [PMID: 28072448 DOI: 10.1111/jnc.13950] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/18/2016] [Accepted: 01/04/2017] [Indexed: 12/20/2022]
Abstract
Tissue non-specific alkaline phosphatase (TNAP) is a key player of bone mineralization and TNAP gene (ALPL) mutations in human are responsible for hypophosphatasia (HPP), a rare heritable disease affecting the mineralization of bones and teeth. Moreover, TNAP is also expressed by brain cells and the severe forms of HPP are associated with neurological disorders, including epilepsy and brain morphological anomalies. However, TNAP's role in the nervous system remains poorly understood. To investigate its neuronal functions, we aimed to identify without any a priori the metabolites regulated by TNAP in the nervous tissue. For this purpose we used 1 H- and 31 P NMR to analyze the brain metabolome of Alpl (Akp2) mice null for TNAP function, a well-described model of infantile HPP. Among 39 metabolites identified in brain extracts of 1-week-old animals, eight displayed significantly different concentration in Akp2-/- compared to Akp2+/+ and Akp2+/- mice: cystathionine, adenosine, GABA, methionine, histidine, 3-methylhistidine, N-acetylaspartate (NAA), and N-acetyl-aspartyl-glutamate, with cystathionine and adenosine levels displaying the strongest alteration. These metabolites identify several biochemical processes that directly or indirectly involve TNAP function, in particular through the regulation of ecto-nucleotide levels and of pyridoxal phosphate-dependent enzymes. Some of these metabolites are involved in neurotransmission (GABA, adenosine), in myelin synthesis (NAA, NAAG), and in the methionine cycle and transsulfuration pathway (cystathionine, methionine). Their disturbances may contribute to the neurodevelopmental and neurological phenotype of HPP.
Collapse
Affiliation(s)
- Thomas Cruz
- Groupe de RMN Biomédicale, Laboratoire SPCMIB (CNRS UMR 5068), Université Paul Sabatier, Université de Toulouse, Toulouse Cedex, France
| | - Marie Gleizes
- Centre de Recherche Cerveau et Cognition (CerCo), Université de Toulouse UPS; CNRS UMR 5549, Toulouse, France
| | - Stéphane Balayssac
- Groupe de RMN Biomédicale, Laboratoire SPCMIB (CNRS UMR 5068), Université Paul Sabatier, Université de Toulouse, Toulouse Cedex, France
| | - Etienne Mornet
- Unité de Génétique Constitutionnelle Prénatale et Postnatale, Service de Biologie, Centre Hospitalier de Versailles, Le Chesnay, France
| | - Grégory Marsal
- Centre de Recherche Cerveau et Cognition (CerCo), Université de Toulouse UPS; CNRS UMR 5549, Toulouse, France
| | - José Luis Millán
- Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Myriam Malet-Martino
- Groupe de RMN Biomédicale, Laboratoire SPCMIB (CNRS UMR 5068), Université Paul Sabatier, Université de Toulouse, Toulouse Cedex, France
| | - Lionel G Nowak
- Centre de Recherche Cerveau et Cognition (CerCo), Université de Toulouse UPS; CNRS UMR 5549, Toulouse, France
| | - Véronique Gilard
- Groupe de RMN Biomédicale, Laboratoire SPCMIB (CNRS UMR 5068), Université Paul Sabatier, Université de Toulouse, Toulouse Cedex, France
| | - Caroline Fonta
- Centre de Recherche Cerveau et Cognition (CerCo), Université de Toulouse UPS; CNRS UMR 5549, Toulouse, France
| |
Collapse
|
2
|
Abstract
Hypophosphatasia (HPP) is an inherited systemic bone disease that is characterized by bone hypomineralization. HPP is classified into six forms according to the age of onset and severity as perinatal (lethal), perinatal benign, infantile, childhood, adult, and odontohypophosphatasia. The causative gene of the disease is the ALPL gene that encodes tissue-nonspecific alkaline phosphatase (TNAP). TNAP is expressed ubiquitously, and its physiological role is apparent in bone mineralization. A defect in bone mineralization can manifest in several ways, including rickets or osteomalacia in HPP patients. Patients with severe forms suffer from respiratory failure because of hypoplastic chest, which is the main cause of death. They sometimes present with seizures due to a defect in vitamin B6 metabolism resulting from the lack of alkaline phosphatase activity in neuronal cells, which is also lethal. Patients with a mild form of the disease exhibit rickets or osteomalacia and a functional defect of exercise. Odontohypophosphatasia shows only dental manifestations. To date, 302 mutations in the ALPL gene have been reported, mainly single-nucleotide substitutions, and the relationships between phenotype and genotype have been partially elucidated. An established treatment for HPP was not available until the recent development of enzyme replacement therapy. The first successful enzyme replacement therapy in model mice using a modified human TNAP protein (asfotase alfa) was reported in 2008, and subsequently success in patients with severe form of the disease was reported in 2012. In 2015, asfotase alfa was approved in Japan in July, followed by in the EU and Canada in August, and then by the US Food and Drug Administration in the USA in October. It is expected that therapy with asfotase alfa will drastically change treatments and prognosis of HPP.
Collapse
Affiliation(s)
- Hideo Orimo
- Division of Metabolism and Nutrition, Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
3
|
Almeida MR, Mabasa L, Crane C, Park CS, Venâncio VP, Bianchi MLP, Antunes LMG. Maternal vitamin B6deficient or supplemented diets on expression of genes related to GABAergic, serotonergic, or glutamatergic pathways in hippocampus of rat dams and their offspring. Mol Nutr Food Res 2016; 60:1615-24. [DOI: 10.1002/mnfr.201500950] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/17/2016] [Accepted: 02/19/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Mara Ribeiro Almeida
- School of Pharmaceutical Sciences of Ribeirão Preto; University of São Paulo; São Paulo Brazil
- Department of Animal Sciences; North Dakota State University; Fargo North Dakota USA
| | - Lawrence Mabasa
- Department of Animal Sciences; North Dakota State University; Fargo North Dakota USA
| | - Courtney Crane
- Department of Animal Sciences; North Dakota State University; Fargo North Dakota USA
| | - Chung S Park
- Department of Animal Sciences; North Dakota State University; Fargo North Dakota USA
| | - Vinícius Paula Venâncio
- School of Pharmaceutical Sciences of Ribeirão Preto; University of São Paulo; São Paulo Brazil
| | | | | |
Collapse
|
4
|
Abstract
Two observations stimulated the interest in vitamin B-6 and alkaline phosphatase in brain: the marked increase in plasma pyridoxal phosphate and the occurrence of pyridoxine responsive seizures in hypophosphatasia. The increase in plasma pyridoxal phosphate indicates the importance of tissue non-specific alkaline phosphatase (TNAP) in transferring vitamin B-6 into the tissues. Vitamin B-6 is involved in the biosynthesis of most of the neurotransmitters. Decreased gamma-aminobutyrate (GABA) appears to be most directly related to the development of seizures in vitamin B-6 deficiency. Cytosolic pyridoxal phosphatase/chronophin may interact with vitamin B-6 metabolism and neuronal development and function. Ethanolaminephosphate phospholyase interacts with phosphoethanolamine metabolism. Extracellular pyridoxal phosphate may interact with purinoceptors and calcium channels. In conclusion, TNAP clearly influences extracellular and intracellular metabolism of vitamin B-6 in brain, particularly during developmental stages. While effects on GABA metabolism appear to be the major contributor to seizures, multiple other intra- and extra-cellular metabolic systems may be affected directly and/or indirectly by altered vitamin B-6 hydrolysis and uptake resulting from variations in alkaline phosphatase activity.
Collapse
|
5
|
Nowak LG, Rosay B, Czégé D, Fonta C. Tetramisole and Levamisole Suppress Neuronal Activity Independently from Their Inhibitory Action on Tissue Non-specific Alkaline Phosphatase in Mouse Cortex. Subcell Biochem 2015. [PMID: 26219715 DOI: 10.1007/978-94-017-7197-9_12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tissue non-specific alkaline phosphatase (TNAP) may be involved in the synthesis of GABA and adenosine, which are the main inhibitory neurotransmitters in cortex. We explored this putative TNAP function through electrophysiological recording (local field potential ) in slices of mouse somatosensory cortex maintained in vitro. We used tetramisole, a well documented TNAP inhibitor, to block TNAP activity. We expected that inhibiting TNAP with tetramisole would lead to an increase of neuronal response amplitude, owing to a diminished availability of GABA and/or adenosine. Instead, we found that tetramisole reduced neuronal response amplitude in a dose-dependent manner. Tetramisole also decreased axonal conduction velocity. Levamisole had identical effects. Several control experiments demonstrated that these actions of tetramisole were independent from this compound acting on TNAP. In particular, tetramisole effects were not stereo-specific and they were not mimicked by another inhibitor of TNAP, MLS-0038949. The decrease of axonal conduction velocity and preliminary intracellular data suggest that tetramisole blocks voltage-dependent sodium channels. Our results imply that levamisole or tetramisole should not be used with the sole purpose of inhibiting TNAP in living excitable cells as it will also block all processes that are activity-dependent. Our data and a review of the literature indicate that tetramisole may have at least four different targets in the nervous system. We discuss these results with respect to the neurological side effects that were observed when levamisole and tetramisole were used for medical purposes, and that may recur nowadays due to the recent use of levamisole and tetramisole as cocaine adulterants.
Collapse
Affiliation(s)
- Lionel G Nowak
- Centre de Recherche Cerveau et Cognition (CerCo), Université de Toulouse UPS; CNRS UMR 5549 , Toulouse, France,
| | | | | | | |
Collapse
|
6
|
Sierra-Paredes G, Loureiro AI, Wright LC, Sierra-Marcuño G, Soares-da-Silva P. Effects of eslicarbazepine acetate on acute and chronic latrunculin A-induced seizures and extracellular amino acid levels in the mouse hippocampus. BMC Neurosci 2014; 15:134. [PMID: 25526768 PMCID: PMC4279694 DOI: 10.1186/s12868-014-0134-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 12/11/2014] [Indexed: 11/24/2022] Open
Abstract
Background Latrunculin A microperfusion of the hippocampus induces acute epileptic seizures and long-term biochemical changes leading to spontaneous seizures. This study tested the effect of eslicarbazepine acetate (ESL), a novel antiepileptic drug, on latrunculin A-induced acute and chronic seizures, and changes in brain amino acid extracellular levels. Hippocampi of Swiss mice were continuously perfused with a latrunculin A solution (4 μM, 1 μl/min, 7 h/day) with continuous EEG and videotape recording for 3 consecutive days. Microdialysate samples were analyzed by HPLC and fluorescence detection of taurine, glycine, aspartate, glutamate and GABA. Thereafter, mice were continuously video monitored for two months to identify chronic spontaneous seizures or behavioral changes. Control EEG recordings (8 h) were performed in all animals at least once a week for a minimum of one month. Results Oral administration of ESL (100 mg/kg), previous to latrunculin A microperfusion, completely prevented acute latrunculin A-induced seizures as well as chronic seizures and all EEG chronic signs of paroxysmal activity. Hippocampal extracellular levels of taurine, glycine and aspartate were significantly increased during latrunculin A microperfusion, while GABA and glutamate levels remained unchanged. ESL reversed the increases in extracellular taurine, glycine and aspartate concentrations to basal levels and significantly reduced glutamate levels. Plasma and brain bioanalysis showed that ESL was completely metabolized within 1 h after administration to mainly eslicarbazepine, its major active metabolite. Conclusion ESL treatment prevented acute latrunculin A-induced seizures as well as chronic seizures and all EEG chronic signs of paroxysmal activity, supporting a possible anti-epileptogenic effect of ESL in mice.
Collapse
Affiliation(s)
- Germán Sierra-Paredes
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain.
| | - Ana I Loureiro
- Department Research & Development, BIAL - Portela & Cª - S.A., 4745-457, S. Mamede do Coronado, Portugal.
| | - Lyndon C Wright
- Department Research & Development, BIAL - Portela & Cª - S.A., 4745-457, S. Mamede do Coronado, Portugal.
| | - Germán Sierra-Marcuño
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain.
| | - Patrício Soares-da-Silva
- Department Research & Development, BIAL - Portela & Cª - S.A., 4745-457, S. Mamede do Coronado, Portugal. .,Department Pharmacology & Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal. .,MedInUP - Center for Drug Discovery and Innovative Medicines, University of Porto, Porto, Portugal. .,Department of Research and Development, BIAL, À Av. da Siderurgia Nacional, 4745-457, S. Mamede do Coronado, Portugal.
| |
Collapse
|
7
|
Baird JS, Ravindranath TM. Vitamin B Deficiencies in a Critically Ill Autistic Child With a Restricted Diet. Nutr Clin Pract 2014; 30:100-3. [DOI: 10.1177/0884533614541483] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- J. Scott Baird
- Department of Pediatrics, Division of Critical Care Medicine, Columbia University, New York, New York
| | - Thyyar M. Ravindranath
- Department of Pediatrics, Division of Critical Care Medicine, Columbia University, New York, New York
| |
Collapse
|
8
|
Taurine and Its Neuroprotective Role. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 775:19-27. [DOI: 10.1007/978-1-4614-6130-2_2] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Burton NC, Schneider JS, Syversen T, Guilarte TR. Effects of chronic manganese exposure on glutamatergic and GABAergic neurotransmitter markers in the nonhuman primate brain. Toxicol Sci 2009; 111:131-9. [PMID: 19520674 DOI: 10.1093/toxsci/kfp124] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The neurological sequelae of chronic Mn exposure include psychiatric, cognitive, and motor deficits, suggesting the potential involvement of multiple neurotransmitter systems and brain regions. Available evidence in rodents suggests that Mn causes dysregulation of glutamatergic and gamma-aminobutyric acidergic (GABAergic) neurotransmitter systems. However, this has never been studied comprehensively in the nonhuman primate brain. Cynomolgus macaques were given weekly i.v. injections of 3.3-5.0 mg Mn/kg, 5.0-6.7 mg Mn/kg, or 8.3-10.0 mg Mn/kg for 7-59 weeks. Total glutamate, glycine, and GABA concentrations were measured by high performance liquid chromatography (HPLC) with fluorescence detection in 13 brain areas in Mn-treated and control monkeys. Neurotransmitter concentrations did not change with chronic Mn exposure. Quantitative autoradiography of the N-methyl-D-aspartate receptor, the GABAa receptor, and glutamate transporters was used to assess their regional distribution. Each of these neurotransmitter receptors remained almost universally unchanged with Mn treatment. Immunohistochemical analysis of glutamine synthetase (GS) demonstrated a selective Mn-induced decrease in the globus pallidus, which could potentially alter synaptic and/or astrocytic levels of glutamate. This study shows that in nonhuman primates with previous documentation of Mn-induced brain pathology, the glutamatergic and GABAergic systems appear to be mostly unaffected by chronic Mn exposure with the exception of reduced GS expression in the globus pallidus.
Collapse
Affiliation(s)
- Neal C Burton
- Department of Health Sciences, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
10
|
Wei IL, Huang YH, Wang GS. Vitamin B6 deficiency decreases the glucose utilization in cognitive brain structures of rats. J Nutr Biochem 2005; 10:525-31. [PMID: 15539332 DOI: 10.1016/s0955-2863(99)00040-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/1999] [Accepted: 06/11/1999] [Indexed: 11/20/2022]
Abstract
The effects of vitamin B(6) deficiency on metabolic activities of brain structures were studied. Male Sprague-Dawley weanling rats received one of the following diets: (1) 7 mg pyridoxine HCl/kg (control group); (2) 0 mg pyridoxine HCl/kg (vitamin B(6)-deficient group); or (3) 7 mg pyridoxine HCl/kg with food intake restricted in quantity to that consumed by the deficient group (pair-fed control group). After 8 weeks of dietary treatment, rats in all three groups received an intravenous injection of 2-deoxy-[(14)C] glucose (100 microCi/kg). Vitamin B(6) status was evaluated by plasma pyridoxal 5'-phosphate concentrations. The vitamin B(6)-deficient group had significantly lower levels of plasma pyridoxal 5'-phosphate than did the control and pair-fed groups. The local cerebral glucose utilization rates in structures of the limbic system, basal ganglia, sensory motor system, and hypothalamic system were determined. The local cerebral glucose utilization rates in each of the four brain regions in the deficient animals were approximately 50% lower (P < 0.05) than in the control group. Results of the present study suggest that serious cognitive deficit may occur in vitamin B(6)-deficient animals.
Collapse
Affiliation(s)
- I L Wei
- Laboratory of Nutrition, School of Nursing, Taipei, Taiwan
| | | | | |
Collapse
|
11
|
Plecko B, Hoeger H, Jakobs C, Struys E, Stromberger C, Leschnik M, Muehl A, Stoeckler-Ipsiroglu S. Pipecolic acid concentrations in brain tissue of nutritionally pyridoxine-deficient rats. J Inherit Metab Dis 2005; 28:689-93. [PMID: 16151899 DOI: 10.1007/s10545-005-0071-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Accepted: 02/22/2005] [Indexed: 11/28/2022]
Abstract
Elevated concentrations of pipecolic acid have been reported in plasma and CSF of patients with pyridoxine-dependent epilepsy, but its molecular background is unclear. To investigate any further association of pyridoxine and pipecolic acid metabolism, we have performed an animal trial and have measured the concentration of pipecolic acid in brain tissue of rats with nutritional pyridoxine deficiency and in control littermates. Concentrations of pyridoxal phosphate were significantly reduced in brain tissue of pyridoxine-deficient rats (p < 0.001), while concentrations of pipecolic acid were not significantly different from the normally nourished control group (p = 0.3). These data indicate that a direct association of pyridoxine and pipecolic acid metabolism is unlikely. We therefore assume that the characteristic elevation of pipecolic acid in pyridoxine-dependent epilepsy could rather be a secondary phenomenon with the primary defect of pyridoxine-dependent epilepsy being located outside the pipecolic acid pathway.
Collapse
Affiliation(s)
- B Plecko
- Department of Pediatrics, University Hospital Graz, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
van Gelder NM, Bowers RJ. Synthesis and characterization of N,N-dichlorinated amino acids: taurine, homotaurine, GABA and L-leucine. Neurochem Res 2001; 26:575-8. [PMID: 11519717 DOI: 10.1023/a:1010970816399] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Epilepsy, trauma and other circumstances leading to hyperexcitable conditions in the CNS tend neurochemically to be associated with excessive stimulated release of glutamic acid and/or a failure of GABA modulated inhibition. Somewhat to a lesser extent, taurine and its homologue homotaurine, have also been shown to antagonize the excitatory actions of glutamic acid. Here we report the successful synthesis and isolation in pure form of N,N-dichlorinated GABA, taurine, homotaurine and leucine. These compounds are much more lipophilic than their parent compounds and may therefore more readily penetrate the blood-brain barrier systems into the neural tissue, where they can be easily dechlorinated. Very preliminary biological testing shows that this may indeed occur. The synthesis and purification methodology will likely also be applicable to a number of other amino acids as well as certain peptides or selected proteins.
Collapse
Affiliation(s)
- N M van Gelder
- Deparment of Chemistry, Queen's University, Kingston, Ontario. Canada.
| | | |
Collapse
|
13
|
Gerster H. [The importance of vitamin B 6 for development of the infant. Human medical and animal experiment studies]. ZEITSCHRIFT FUR ERNAHRUNGSWISSENSCHAFT 1996; 35:309-17. [PMID: 9082654 DOI: 10.1007/bf01610548] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Vitamin B-6 is an important coenzyme in the biosynthesis of the neurotransmitters GABA, dopamine and serotonin and is therefore required for the normal perinatal development of the central nervous system. In rat studies, biochemical and morphological abnormalities (decreased dendritic arborization and reduced numbers of myelinated axons and synapses) in the brains of pups from vitamin B-6 deficient dams were associated with behavioral changes such as epileptiform seizures and movement disorders. In severely vitamin B-6 deficient human infants, similar behavioral abnormalities have been described. Marginally deficient neonates were found to have a lower birthweight and to display less mature reactive and adaptive behavior in the Brazleton Neonatal Assessment Scale than well-fed infants. While it is not yet possible to define the exact amount of vitamin B-6 required to support optimal brain development, pregnant and lactating women should be encouraged to consume a diet that is rich in vitamin B-6.
Collapse
Affiliation(s)
- H Gerster
- Abteilung für Vitaminforschung F. Hoffmann-La Roche AG, Basel, Schweiz
| |
Collapse
|
14
|
Waymire KG, Mahuren JD, Jaje JM, Guilarte TR, Coburn SP, MacGregor GR. Mice lacking tissue non-specific alkaline phosphatase die from seizures due to defective metabolism of vitamin B-6. Nat Genet 1995; 11:45-51. [PMID: 7550313 DOI: 10.1038/ng0995-45] [Citation(s) in RCA: 291] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In humans, deficiency of the tissue non-specific alkaline phosphatase (TNAP) gene is associated with defective skeletal mineralization. In contrast, mice lacking TNAP generated by homologous recombination using embryonic stem (ES) cells have normal skeletal development. However, at approximately two weeks after birth, homozygous mutant mice develop seizures which are subsequently fatal. Defective metabolism of pyridoxal 5'-phosphate (PLP), characterized by elevated serum PLP levels, results in reduced levels of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) in the brain. The mutant seizure phenotype can be rescued by the administration of pyridoxal and a semi-solid diet. Rescued animals subsequently develop defective dentition. This study reveals essential physiological functions of TNAP in the mouse.
Collapse
Affiliation(s)
- K G Waymire
- Department of Genetics and Molecular Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | |
Collapse
|
15
|
Santhosh-Kumar CR, Hassell KL, Deutsch JC, Kolhouse JF. Are neuropsychiatric manifestations of folate, cobalamin and pyridoxine deficiency mediated through imbalances in excitatory sulfur amino acids? Med Hypotheses 1994; 43:239-44. [PMID: 7838008 DOI: 10.1016/0306-9877(94)90073-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Folate, cobalamin and pyridoxine deficiency are associated with psychiatric or neurological symptomatology. Disturbances in sulfur amino acid metabolism leading to accumulation of homocysteine occurs in all three conditions as the metabolism of homocysteine depends on enzymes requiring these vitamins as cofactors. Oxidation products of homocysteine (homocysteine sulfinic acid and homocysteic acid) and cysteine (cysteine sulfinic acid and cysteic acid) are excitatory sulfur amino acids and may act as excitatory neurotransmitters, whereas taurine and hypotaurine (decarboxylation products of cysteic acid and cysteine sulfinic acid) may act as inhibitory transmitters. Homocysteic acid and cysteine sulfinic acid have been considered as endogenous ligands for the N-methyl-D-aspartate (NMDA) type of glutamate receptors. The profile of these sulfur amino acid neurotransmitters could be altered in a similar fashion in states of decreased availability of folate, cobalamin or pyridoxine. It is proposed that the mechanism of neuropsychiatric manifestations in all three conditions result from a combination of two insults to homocysteine catabolism in the brain.
Collapse
Affiliation(s)
- C R Santhosh-Kumar
- Department of Medicine, University of Colorado Health Sciences Center, Denver
| | | | | | | |
Collapse
|
16
|
Pilachowski J, Guilarte TR. Postnatal development and GABA allosteric modulation of benzodiazepine receptor binding in the vitamin B-6 deficient rat brain. Neurochem Res 1993; 18:1249-54. [PMID: 8272190 DOI: 10.1007/bf00975043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have measured the postnatal development and GABA modulation of benzodiazepine receptors in neuronal membranes from vitamin B-6 deficient and normal rats. In rats fed vitamin B-6 adequate and deficient diets there were age-dependent changes in [3H]flunitrazepam binding site affinity and in the number of binding sites. Vitamin B-6 deficiency produced a significant reduction in the potency of GABA to enhance [3H]flunitrazepam binding to cortical membranes prepared from 14 day old rats. These results suggests an uncoupling of the GABAa/benzodiazepine receptor at a developmental period when the animals are most susceptible to spontaneous seizures.
Collapse
Affiliation(s)
- J Pilachowski
- Department of Environmental Health Sciences, Johns Hopkins University, School of Hygiene and Public Health, Baltimore, Maryland 21205
| | | |
Collapse
|
17
|
Abstract
Numerous studies have suggested that pregnant and lactating women may have dietary intakes of vitamin B6 that are well below the recommended dietary allowance, which may affect the vitamin B6 status of their offspring. This nutrient is an essential cofactor in the developing central nervous system and may influence brain development and cognitive function. Recent work in animal models suggests that vitamin B6 deficiency during gestation and lactation alters the function of N-methyl-D-aspartate receptors, a subtype of receptors of the glutamatergic neurotransmitter system thought to play an important role in learning and memory.
Collapse
Affiliation(s)
- T R Guilarte
- Department of Environmental Health Sciences, Johns Hopkins University School of Hygiene and Public Health, Baltimore, MD 21205
| |
Collapse
|
18
|
Banay-Schwartz M, Palkovits M, Lajtha A. Heterogeneous distribution of functionally important amino acids in brain areas of adult and aging humans. Neurochem Res 1993; 18:417-23. [PMID: 8474566 DOI: 10.1007/bf00967245] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The regional distribution of seven amino acids thought to have inhibitory neurotransmitter or neurotransmitter precursor function--GABA, glycine, taurine, serine, threonine, phenylalanine, and tyrosine--was determined in 52 discrete areas from brain of adult and old humans. Significant heterogeneity was found, with 3- to 16-fold differences in levels in the various regions analyzed. The patterns of distribution were somewhat different from those in the adult or old rat brain. Relatively few changes were seen in old brain. Heterogeneity in distribution has to be taken into account in assessing physiological changes in amino acid levels and metabolism.
Collapse
Affiliation(s)
- M Banay-Schwartz
- Nathan S. Kline Institute for Psychiatric Research, Center for Neurochemistry, Orangeburg, NY 10962
| | | | | |
Collapse
|
19
|
Levels of amino acids in 52 discrete areas of postmortem brain of adult and aged humans. Amino Acids 1993; 5:273-87. [DOI: 10.1007/bf00805990] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/1992] [Accepted: 02/01/1993] [Indexed: 11/26/2022]
|
20
|
Eastman CL, Guilarte TR. Vitamin B-6, kynurenines, and central nervous system function: developmental aspects. J Nutr Biochem 1992. [DOI: 10.1016/0955-2863(92)90081-s] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
21
|
Simler S, Ciesielski L, Clement J, Rastegar A, Mandel P. Involvement of synaptosomal neurotransmitter amino acids in audiogenic seizure-susceptibility and-severity of Rb mice. Neurochem Res 1992; 17:953-9. [PMID: 1357566 DOI: 10.1007/bf00993272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The involvement of synaptosomal neurotransmitter amino-acids in seizure susceptibility and seizure severity was explored. The amino-acid contents of brain synaptosomes were determined in three sublines of Rb mice differing in their response to an acoustic stimulus: Rb1, clonic-tonic seizure-prone, Rb2, clonic seizure-prone, and Rb3, seizure-resistant. Synaptosomes were prepared from 6 brain areas considered to be involved in seizure activity: olfactory bulbs, amygdala, inferior colliculus, hippocampus, cerebellum, pons-medulla. The steady-state levels of GABA and glycine (Gly), inhibitory amino-acids, of taurine (Tau), an inhibitory neurotransmitter of neuromodulator, of aspartate (Asp) and glutamate (Glu), excitatory amino-acids, as well as of serine (Ser) and glutamine (Gln), two precursors of neurotransmitter amino-acids, were determined by HPLC. Low levels of Tau, GABA, and Ser in hippocampus, Gly in amygdala, Glu in hippocampus, inferior colliculus and pons, Gln and Asp in inferior colliculus appeared to correlate with seizure-susceptibility. GABA and Asp in olfactory bulb, Gln in amygdala, hippocampus and pons, ser in olfactory bulb and pons, appeared to be associated either with seizure-severity or -diversity. A strong involvement of hippocampus (Tau, GABA, Ser, Glu, and Gln) and inferior colliculus (Asp, Glu, Gln) in audiogenic seizure-susceptibility, and of olfactory bulb (GABA, Asp) in seizure-severity and/or -diversity is suggested.
Collapse
Affiliation(s)
- S Simler
- Centre de Neurochimie du CNRS, Strasbourg, France
| | | | | | | | | |
Collapse
|
22
|
Lombardini JB. Review: recent studies on taurine in the central nervous system. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1992; 315:245-51. [PMID: 1509946 DOI: 10.1007/978-1-4615-3436-5_29] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- J B Lombardini
- Department of Pharmacology, Texas Tech University Health Sciences Center, Lubbock 79430
| |
Collapse
|
23
|
Guilarte TR. Abnormal endogenous amino acid release in brain slices from vitamin B-6 restricted neonatal rats. Neurosci Lett 1991; 121:203-6. [PMID: 1673547 DOI: 10.1016/0304-3940(91)90685-m] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The basal and potassium-evoked efflux of glutamate, glycine, taurine, and gamma-aminobutyric acid (GABA) was measured in brain slices from vitamin B-6 restricted and sufficient 14-day-old rats. The results indicate a reduced level of basal glutamate, taurine, and GABA efflux in hippocampal slices and taurine and GABA in cortical slices from vitamin B-6 restricted animals. In the presence of depolarizing potassium concentrations, there was a reduced level of GABA efflux in hippocampal and cortical slices, and a marked reduction in the release of glutamate in cortical slices from B-6 restricted rats. The abnormalities in the secretion process of these neuroactive amino acids may be related to the neurological sequelae associated with neonatal vitamin B-6 restriction.
Collapse
Affiliation(s)
- T R Guilarte
- Department of Environmental Health Sciences, Johns Hopkins University School of Hygiene and Public Health, Baltimore, MD 21205
| |
Collapse
|
24
|
Guilarte TR. Reduced NMDA receptor-ion channel function in the vitamin B-6 restricted neonatal rat brain. Neurosci Lett 1991; 121:207-10. [PMID: 1708479 DOI: 10.1016/0304-3940(91)90686-n] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have measured the binding of [3H]-MK-801 to cortical and hippocampal membrane preparations from the vitamin B-6 restricted neonatal rat. The results indicate a reduced potency and efficacy of glutamate and glycine in enhancing [3H]-MK-801 binding to the N-methyl-D-aspartate (NMDA) receptor-ion channel. Scatchard analysis of [3H]-MK-801 binding isotherms showed a significantly lower number of [3H]-MK-801 binding sites in the cortex and hippocampus of vitamin B-6 restricted rats. These results indicate a reduced function of the NMDA receptor-ion channel in the brain of these animals.
Collapse
Affiliation(s)
- T R Guilarte
- Department of Environmental Health Sciences, Johns Hopkins University School of Hygiene and Public Health, Baltimore, MD 21025
| |
Collapse
|
25
|
Eastman CL, Guilarte TR. The role of hydrogen peroxide in the in vitro cytotoxicity of 3-hydroxykynurenine. Neurochem Res 1990; 15:1101-7. [PMID: 2089269 DOI: 10.1007/bf01101711] [Citation(s) in RCA: 101] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Previous studies have indicated that the generation of H2O2 may be a key step in the mechanism mediating the in vitro cytotoxicity of 3-hydroxykynurenine (3HK). An exposure protocol resulting in a delayed toxicity was utilized in order to further examine the role of H2O2 in the in vitro toxicity of 3HK in a neural hybrid cell line. 3HK-induced cell lysis was significantly attenuated by administration of catalase after termination of 3HK exposure and was abolished when intracellular peroxidase activity was elevated by pretreatment of cultures with horseradish peroxidase. In addition, a dose-dependent attenuation of 3HK toxicity was observed when cultures were exposed to 3HK in the presence of the iron chelator, desferrioxamine (DFO). Pretreatment with DFO also resulted in a significant attenuation of 3HK toxicity. These data suggest a direct role for H2O2 and metal ions in the cytotoxic action of 3HK and indicate that cell lysis results from the intracellular accumulation of toxic levels of H2O2.
Collapse
Affiliation(s)
- C L Eastman
- Dept. of Environmental Health Science, Johns Hopkins University, School of Hygiene and Public Health, Baltimore, MD 21205
| | | |
Collapse
|