1
|
Nam MH, Sa M, Ju YH, Park MG, Lee CJ. Revisiting the Role of Astrocytic MAOB in Parkinson's Disease. Int J Mol Sci 2022; 23:4453. [PMID: 35457272 PMCID: PMC9028367 DOI: 10.3390/ijms23084453] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/13/2022] [Accepted: 04/16/2022] [Indexed: 12/11/2022] Open
Abstract
Monoamine oxidase-B (MAOB) has been believed to mediate the degradation of monoamine neurotransmitters such as dopamine. However, this traditional belief has been challenged by demonstrating that it is not MAOB but MAOA which mediates dopamine degradation. Instead, MAOB mediates the aberrant synthesis of GABA and hydrogen peroxide (H2O2) in reactive astrocytes of Parkinson's disease (PD). Astrocytic GABA tonically suppresses the dopaminergic neuronal activity, whereas H2O2 aggravates astrocytic reactivity and dopaminergic neuronal death. Recently discovered reversible MAOB inhibitors reduce reactive astrogliosis and restore dopaminergic neuronal activity to alleviate PD symptoms in rodents. In this perspective, we redefine the role of MAOB for the aberrant suppression and deterioration of dopaminergic neurons through excessive GABA and H2O2 synthesis of reactive astrocytes in PD.
Collapse
Affiliation(s)
- Min-Ho Nam
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea;
- Department of KHU-KIST Convergence Science and Technology, Kyung Hee University, Seoul 02453, Korea
| | - Moonsun Sa
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea; (M.S.); (M.G.P.)
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Korea
| | - Yeon Ha Ju
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea;
| | - Mingu Gordon Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea; (M.S.); (M.G.P.)
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Korea
| | - C. Justin Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea; (M.S.); (M.G.P.)
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Korea
| |
Collapse
|
2
|
Cho HU, Kim S, Sim J, Yang S, An H, Nam MH, Jang DP, Lee CJ. Redefining differential roles of MAO-A in dopamine degradation and MAO-B in tonic GABA synthesis. Exp Mol Med 2021; 53:1148-1158. [PMID: 34244591 PMCID: PMC8333267 DOI: 10.1038/s12276-021-00646-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 12/21/2022] Open
Abstract
Monoamine oxidase (MAO) is believed to mediate the degradation of monoamine neurotransmitters, including dopamine, in the brain. Between the two types of MAO, MAO-B has been believed to be involved in dopamine degradation, which supports the idea that the therapeutic efficacy of MAO-B inhibitors in Parkinson's disease can be attributed to an increase in extracellular dopamine concentration. However, this belief has been controversial. Here, by utilizing in vivo phasic and basal electrochemical monitoring of extracellular dopamine with fast-scan cyclic voltammetry and multiple-cyclic square wave voltammetry and ex vivo fluorescence imaging of dopamine with GRABDA2m, we demonstrate that MAO-A, but not MAO-B, mainly contributes to striatal dopamine degradation. In contrast, our whole-cell patch-clamp results demonstrated that MAO-B, but not MAO-A, was responsible for astrocytic GABA-mediated tonic inhibitory currents in the rat striatum. We conclude that, in contrast to the traditional belief, MAO-A and MAO-B have profoundly different roles: MAO-A regulates dopamine levels, whereas MAO-B controls tonic GABA levels.
Collapse
Affiliation(s)
- Hyun-U Cho
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea
| | - Sunpil Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Korea
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Korea
| | - Jeongeun Sim
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea
| | - Seulkee Yang
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Korea
| | - Heeyoung An
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Korea
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Korea
| | - Min-Ho Nam
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Korea.
- Department of KHU-KIST Convergence Science and Technology, Kyung Hee University, Seoul, Korea.
| | - Dong-Pyo Jang
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea.
| | - C Justin Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Korea.
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Korea.
| |
Collapse
|
3
|
Ciesielska A, Sharma N, Beyer J, Forsayeth J, Bankiewicz K. Carbidopa-based modulation of the functional effect of the AAV2-hAADC gene therapy in 6-OHDA lesioned rats. PLoS One 2015; 10:e0122708. [PMID: 25860990 PMCID: PMC4393141 DOI: 10.1371/journal.pone.0122708] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 02/12/2015] [Indexed: 11/18/2022] Open
Abstract
Progressively blunted response to L-DOPA in Parkinson’s disease (PD) is a critical factor that complicates long-term pharmacotherapy in view of the central importance of this drug in management of the PD-related motor disturbance. This phenomenon is likely due to progressive loss of one of the key enzymes involved in the biosynthetic pathway for dopamine in the basal ganglia: aromatic L-amino acid decarboxylase (AADC). We have developed a gene therapy based on an adeno-associated virus encoding human AADC (AAV2-hAADC) infused into the Parkinsonian striatum. Although no adverse clinical effects of the AAV2-hAADC gene therapy have been observed so far, the ability to more precisely regulate transgene expression or transgene product activity could be an important long-term safety feature. The present study was designed to define pharmacological regulation of the functional activity of AAV2-hAADC transgene product by manipulating L-DOPA and carbidopa (AADC inhibitor) administration in hemi-parkinsonian rats. Thirty days after unilateral striatal infusion of AAV2-hAADC, animals displayed circling behavior and acceleration of dopamine metabolism in the lesioned striatum after administration of a low dose of L-DOPA (5 mg/kg) co-administered with 1.25 mg/kg of carbidopa. This phenomenon was not observed in control AAV2-GFP-treated rats. Withdrawal of carbidopa from a daily L-DOPA regimen decreased the peripheral L-DOPA pool, resulting in almost total loss of L-DOPA-induced behavioral response in AAV2-hAADC rats and a significant decline in striatal dopamine turnover. The serum L-DOPA level correlated with the magnitude of circling behavior in AAV2-hAADC rats. Additionally, AADC activity in homogenates of lesioned striata transduced by AAV2-AADC was 10-fold higher when compared with AAV2-GFP-treated control striata, confirming functional transduction. Our data suggests that the pharmacological regulation of circulating L-DOPA might be effective in the controlling of function of AAV2-hAADC transgene product in PD gene therapy.
Collapse
Affiliation(s)
- Agnieszka Ciesielska
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, United State of America
| | - Nitasha Sharma
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, United State of America
| | - Janine Beyer
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, United State of America
| | - John Forsayeth
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, United State of America
| | - Krystof Bankiewicz
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, United State of America
- * E-mail:
| |
Collapse
|
4
|
Sader-Mazbar O, Loboda Y, Rabey MJ, Finberg JPM. Increased L-DOPA-derived dopamine following selective MAO-A or -B inhibition in rat striatum depleted of dopaminergic and serotonergic innervation. Br J Pharmacol 2014; 170:999-1013. [PMID: 23992249 DOI: 10.1111/bph.12349] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 06/20/2013] [Accepted: 07/19/2013] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Selective MAO type B (MAO-B) inhibitors are effective in potentiation of the clinical effect of L-DOPA in Parkinson's disease, but dopamine (DA) is deaminated mainly by MAO type A (MAO-A) in rat brain. We sought to clarify the roles of MAO-A and MAO-B in deamination of DA formed from exogenous L-DOPA in rat striatum depleted of dopaminergic, or both dopaminergic and serotonergic innervations. We also studied the effect of organic cation transporter-3 (OCT-3) inhibition by decinium-22 on extracellular DA levels following L-DOPA. EXPERIMENTAL APPROACH Striatal dopaminergic and/or serotonergic neuronal innervations were lesioned by 6-hydroxydopamine or 5,7-dihydroxytryptamine respectively. Microdialysate DA levels after systemic L-DOPA were measured after inhibition of MAO-A or MAO-B by clorgyline or rasagiline respectively. MAO subtype localization in the striatum was determined by immunofluorescence. KEY RESULTS Rasagiline increased DA extracellular levels following L-DOPA to a greater extent in double- than in single-lesioned rats (2.8- and 1.8-fold increase, respectively, relative to saline treatment); however, clorgyline elevated DA levels in both models over 10-fold. MAO-A was strongly expressed in medium spiny neurons (MSNs) in intact and lesioned striata, while MAO-B was localized in glia and to a small extent in MSNs. Inhibition of OCT-3 increased DA levels in the double- more than the single-lesion animals. CONCLUSIONS AND IMPLICATIONS In striatum devoid of dopaminergic and serotonergic inputs, most deamination of L-DOPA-derived DA is mediated by MAO-A in MSN and a smaller amount by MAO-B in both MSN and glia. OCT-3 plays a significant role in uptake of DA from extracellular space. Inhibitors of OCT-3 are potential future targets for anti-Parkinsonian treatments.
Collapse
Affiliation(s)
- O Sader-Mazbar
- Department of Molecular Pharmacology, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | | | | | | |
Collapse
|
5
|
Richter F, Hamann M, Richter A. Moderate degeneration of nigral neurons after repeated but not after single intrastriatal injections of low doses of 6-hydroxydopamine in mice. Brain Res 2008; 1188:148-56. [DOI: 10.1016/j.brainres.2007.09.083] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2007] [Revised: 09/26/2007] [Accepted: 09/27/2007] [Indexed: 11/27/2022]
|
6
|
Grandy DK. Trace amine-associated receptor 1-Family archetype or iconoclast? Pharmacol Ther 2007; 116:355-90. [PMID: 17888514 PMCID: PMC2767338 DOI: 10.1016/j.pharmthera.2007.06.007] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Accepted: 06/25/2007] [Indexed: 01/25/2023]
Abstract
Interest has recently been rekindled in receptors that are activated by low molecular weight, noncatecholic, biogenic amines that are typically found as trace constituents of various vertebrate and invertebrate tissues and fluids. The timing of this resurgent focus on receptors activated by the "trace amines" (TA) beta-phenylethylamine (PEA), tyramine (TYR), octopamine (OCT), synephrine (SYN), and tryptamine (TRYP) is the direct result of 2 publications that appeared in 2001 describing the cloning of a novel G protein-coupled receptor (GPCR) referred to by their discoverers Borowsky et al. as TA1 and Bunzow et al. as TA receptor 1 (TAR1). When heterologously expressed in Xenopus laevis oocytes and various eukaryotic cell lines, recombinant rodent and human TAR dose-dependently couple to the stimulation of adenosine 3',5'-monophosphate (cAMP) production. Structure-activity profiling based on this functional response has revealed that in addition to the TA, other biologically active compounds containing a 2-carbon aliphatic side chain linking an amino group to at least 1 benzene ring are potent and efficacious TA receptor agonists with amphetamine (AMPH), methamphetamine, 3-iodothyronamine, thyronamine, and dopamine (DA) among the most notable. Almost 100 years after the search for TAR began, numerous TA1/TAR1-related sequences, now called TA-associated receptors (TAAR), have been identified in the genome of every species of vertebrate examined to date. Consequently, even though heterologously expressed TAAR1 fits the pharmacological criteria established for a bona fide TAR, a major challenge for those working in the field is to discern the in vivo pharmacology and physiology of each purported member of this extended family of GPCR. Only then will it be possible to establish whether TAAR1 is the family archetype or an iconoclast.
Collapse
Affiliation(s)
- David K Grandy
- Department of Physiology and Pharmacology, L334, School of Medicine, Oregon Health and Science University, Portland, OR 97239, United States.
| |
Collapse
|
7
|
Finberg JPM, Sader-Mazbar O. Modification of L-DOPA pharmacological activity by MAO inhibitors. J Neural Transm (Vienna) 2007; 114:801-5. [PMID: 17417741 DOI: 10.1007/s00702-007-0691-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2006] [Accepted: 11/01/2006] [Indexed: 12/30/2022]
Abstract
Dopamine behaves mainly as a MAO-A substrate in rodent brain, but selective inhibition of MAO-B results in an increased turning activity following L-DOPA administration in hemi-Parkinsonian rodents. Unilateral substantia nigra dopaminergic denervation results in serotonergic hyper-innervation which may increase the contribution of MAO-A in the denervated striatum. Possibly as a result of this, there was no change in striatal MAO-A activity when 95% of dopaminergic innervation was reduced by 6-hydroxydopamine, as assessed by apomorphine-induced turning activity. MAO-B as well as MAO-A may contribute to deamination of dopamine produced from L-DOPA.
Collapse
Affiliation(s)
- J P M Finberg
- Pharmacology Department, Rappaport Faculty of Medicine, Technion, Haifa, Israel.
| | | |
Collapse
|
8
|
Olds ME, Jacques DB, Kopyov O. Behavioral and anatomical effects of quinolinic acid in the striatum of the hemiparkinsonian rat. Synapse 2005; 55:26-36. [PMID: 15499610 DOI: 10.1002/syn.20082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Parkinson's disease (PD), a hypokinetic disorder, and Huntington's disease (HD), a hyperkinetic disorder, share the fact that in the motor pathways the dysfunction starts in the striatum. In PD the projection neurons are overactive due to decreased inhibitory regulation by lost dopamine afferents, while in HD the output from the striatum is insufficient due to loss of projection neurons. This study aimed to determine whether the introduction of a mild HD condition in the PD striatum can counter the hypokinetic condition. The experiment was carried out in the 6-OHDA rat model for PD in which amphetamine, 5 mg/kg, evokes an asymmetric rotation response toward the side of the 6-OHDA lesion (ipsilateral rotation). The response to amphetamine in this study was fractionated into multiple components and measured automatically. After baseline measurements, the subjects were divided into four groups. Group I was unilaterally sham-lesioned in medial, central, and lateral striatum. Group II was injected quinolinic acid (QA) 20 nM in medial, central, and lateral striatum. Group III was injected QA 60 nM in central striatum. Group IV was injected QA 120 nM in central striatum. The effects of QA were measured weekly. The sham lesions in Group I had no effects. In Group II, ipsilateral rotation was reduced and replaced by oral stereotypy, a competitive behavior. In Group III, ipsilateral rotation decreased, but to a lesser degree than in Group II. In Group IV, QA had no effects. Histological findings show a unilateral loss of tyrosine immunoreactive (TH) neurons in substantia nigra and of fibers in striatum in all subjects. In addition, in Group II the striatum was atrophied. These findings suggest that the shift in Group II from ipsilateral rotation to oral stereotypy after QA was due to reduced striatal output caused by a loss of projection neurons, a loss insufficient to induce HD symptoms, but sufficient to counter the PD condition.
Collapse
Affiliation(s)
- M E Olds
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA.
| | | | | |
Collapse
|
9
|
Moses D, Gross A, Finberg JPM. Rasagiline enhances l-DOPA-induced contralateral turning in the unilateral 6-hydroxydopamine-lesioned guinea-pig. Neuropharmacology 2004; 47:72-80. [PMID: 15165835 DOI: 10.1016/j.neuropharm.2004.02.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2003] [Revised: 02/04/2004] [Accepted: 02/20/2004] [Indexed: 10/26/2022]
Abstract
The modification of L-3,4-dihydrooxyphenylalanine- (L-DOPA-) induced turning response by the new selective monoamine oxidase type B (MAO-B) inhibitor rasagiline was studied in guinea-pigs bearing a unilateral 6-hydroxydopamine-induced lesion in the substantia nigra. In an initial experiment, it was established that contralateral turning is induced in lesioned guinea-pigs in response to apomorphine (18 mg/kg i.p.) and L-DOPA/carbidopa (15/3.5 mg/kg i.p.), while ipsilateral turning is induced by S(+)-methamphetamine (7 mg/kg i.p.). The effect of rasagiline was studied in a chronic treatment regimen, in which animals were treated with rasagiline (0.05 mg/kg s.c.) or saline s.c. daily commencing 2 weeks after lesioning, and L-DOPA/carbidopa (4:1 mg/kg) was administered once daily for 21 days. Only guinea-pigs with 95% or more depletion of striatal dopamine were included in this study. Guinea-pigs treated with rasagiline had a significantly increased intensity and duration of turning in response to L-DOPA (P <0.05 by repeated measures ANOVA) over the 21-day period. On day 21, turning averaged 806+/-105 (n=10) vs 442+/-123 (n=11) turns per 180 min for rasagiline and vehicle treated animals, respectively (P <0.05); turning duration half-time averaged 81+/-15.4 (n=10) as opposed to 33+/-7.6 (n=11) min for rasagiline and vehicle treatments (P <0.01). Concentration of dopamine in intact striatum was significantly increased (69.3+/-2.1 and 60.3+/-2.4 pmol/mg tissue for rasagiline and vehicle, P <0.05) and levels of dihydroxyphenylacetic acid and homovanillic acid were decreased by the rasagiline treatment. Activity of brain MAO-B was 8.6+/-2.9% and MAO-A was 71+/-1.5% that of control in rasagiline-treated animals. Chronic, selective inhibition of MAO-B by rasagiline potentiated L-DOPA-induced turning in this rodent model.
Collapse
Affiliation(s)
- David Moses
- Pharmacology Department, Rappaport Family Faculty of Medicine, Technion, P.O. Box 9649, 31096 Haifa, Israel
| | | | | |
Collapse
|
10
|
Shen H, Kannari K, Yamato H, Arai A, Matsunaga M. Effects of benserazide on L-DOPA-derived extracellular dopamine levels and aromatic L-amino acid decarboxylase activity in the striatum of 6-hydroxydopamine-lesioned rats. TOHOKU J EXP MED 2003; 199:149-59. [PMID: 12703659 DOI: 10.1620/tjem.199.149] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Benserazide is commonly used for Parkinson's disease in combination with L-DOPA as a peripheral aromatic L-amino acid decarboxylase (AADC) inhibitor. However, recent studies using intact animals indicate that benserazide acts also in the central nervous system. We determined the influence of benserazide on the central AADC activity in rats with dopaminergic denervation and observed changes in extracellular dopamine (DA) levels after benserazide and L-DOPA administration. First, using in vivo microdialysis technique, we measured extracellular DA levels in the striatum of 6-hydroxydopamine (6-OHDA)-lesioned rats treated with benserazide and L-DOPA. Second, we measured AADC activity in the striatal tissues after benserazide administration. Although administration of 5, 10 and 50 mg/kg benserazide to 6-OHDA-lesioned rats showed an identical increase in exogenous L-DOPA-derived extracellular DA levels, the time to reach the peak DA levels were significantly prolonged by benserazide dose-dependently. The AADC activity in the denervated striatal tissues showed a significant decrease by 10 mg/kg and 50 mg/kg benserazide. These results suggest that benserazide reduces the central AADC activity in the striatum of rats with nigrostriatal denervation, which leads to changes in the metabolism of exogenous L-DOPA. Central activity of AADC inhibitors should be taken into consideration when they are used both in experimental and clinical studies on Parkinson's disease.
Collapse
Affiliation(s)
- Huo Shen
- Department of Neurological Science, Institute of Brain Science, Hirosaki University School of Medicine, Hirosaki 036-8216, Japan
| | | | | | | | | |
Collapse
|
11
|
Abstract
Cloning of MAO (monoamine oxidase) A and B has demonstrated unequivocally that these enzymes are made up of different polypeptides, and our understanding of MAO structure, regulation, and function has been significantly advanced by studies using their cDNA. MAO A and B genes are located on the X-chromosome (Xp11.23) and comprise 15 exons with identical intron-exon organization, which suggests that they are derived from the same ancestral gene. MAO A and B knock-out mice exhibit distinct differences in neurotransmitter metabolism and behavior. MAO A knock-out mice have elevated brain levels of serotonin, norephinephrine, and dopamine and manifest aggressive behavior similar to human males with a deletion of MAO A. In contrast, MAO B knock-out mice do not exhibit aggression and only levels of phenylethylamine are increased. Mice lacking MAO B are resistant to the Parkinsongenic neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetra-hydropyridine. Both MAO A and B knock-out mice show increased reactivity to stress. These knock-out mice are valuable models for investigating the role of monoamines in psychoses and neurodegenerative and stress-related disorders.
Collapse
Affiliation(s)
- J C Shih
- Department of Molecular Pharmacology and Toxicology, School of Pharmacy, University of Southern California, Los Angeles 90033, USA.
| | | | | |
Collapse
|
12
|
Kotake Y, Tasaki Y, Hirobe M, Ohta S. Deprenyl decreases an endogenous parkinsonism-inducing compound, 1-benzyl-1,2,3,4-tetrahydroisoquinoline in mice: in vivo and in vitro studies. Brain Res 1998; 787:341-3. [PMID: 9518683 DOI: 10.1016/s0006-8993(97)01560-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We examined the effect of deprenyl, a promising drug for the therapy of Parkinson's disease on the formation of a parkinsonism-inducing compound, 1-benzyl-1,2,3,4-tetrahydroisoquinoline (1BnTIQ). The 1BnTIQ content was significantly decreased in the brain of deprenyl-treated mouse in vivo, and deprenyl also inhibited 1BnTIQ formation from phenethylamine by a mouse brain homogenate supernatant in vitro. In vivo, the content of a parkinsonism-preventing compound, 1-methyl-1,2,3, 4-tetrahydroisoquinoline (1MeTIQ) was slightly increased in mice injected with deprenyl. The marked decrease of the ratio of 1BnTIQ to 1MeTIQ might play a role in the clinical effect of deprenyl.
Collapse
Affiliation(s)
- Y Kotake
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113, Japan
| | | | | | | |
Collapse
|
13
|
Fischer KM. Parkinson's disease, amyotrophic lateral sclerosis and spinal muscular atrophy are caused by an unstable (CAG)n trinucleotide repeat microsatellite. Med Hypotheses 1997; 49:337-45. [PMID: 9352504 DOI: 10.1016/s0306-9877(97)90200-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
14
|
Fischer KM. Genes for Prader Willi syndrome/Angelman syndrome and fragile X syndrome are homologous, with genetic imprinting and unstable trinucleotide repeats causing mental retardation, autism and aggression. Med Hypotheses 1996; 47:289-98. [PMID: 8910878 DOI: 10.1016/s0306-9877(96)90069-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Genes for Prader Willi syndrome/Angelman syndrome are homologous to genes for fragile X syndrome. Genetic imprinting and expanded trinucleotide repeats cause mental retardation, autism and aggression.
Collapse
|
15
|
Schwarting RK, Huston JP. Unilateral 6-hydroxydopamine lesions of meso-striatal dopamine neurons and their physiological sequelae. Prog Neurobiol 1996; 49:215-66. [PMID: 8878304 DOI: 10.1016/s0301-0082(96)00015-9] [Citation(s) in RCA: 257] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
One of the primary approaches in experimental brain research is to investigate the effects of specific destruction of its parts. Here, several neurotoxins are available which can be used to eliminate neurons of a certain neurochemical type or family. With respect to the study of dopamine neurons in the brain, especially within the basal ganglia, the neurotoxin 6-hydroxydopamine (6-OHDA) provides an important tool. The most common version of lesion induced with this toxin is the unilateral lesion placed in the area of mesencephalic dopamine somata or their ascending fibers, which leads to a lateralized loss of striatal dopamine. This approach has contributed to neuroscientific knowledge at the basic and clinical levels, since it has been used to clarify the neuroanatomy, neurochemistry, and electrophysiology of mesencephalic dopamine neurons and their relationships with the basal ganglia. Furthermore, unilateral 6-OHDA lesions have been used to investigate the role of these dopamine neurons with respect to behavior, and to examine the brain's capacity to recover from or compensate for specific neurochemical depletions. Finally, in clinically-oriented research, the lesion has been used to model aspects of Parkinson's disease, a human neurodegenerative disease which is neuronally characterized by a severe loss of the meso-striatal dopamine neurons. In the present review, which is the first of two, the lesion's effects on physiological parameters are being dealt with, including histological manifestations, effects on dopaminergic measures, other neurotransmitters (e.g. GABA, acetylcholine, glutamate), neuromodulators (e.g. neuropeptides, neurotrophins), electrophysiological activity, and measures of energy consumption. The findings are being discussed especially in relation to time after lesion and in relation to lesion severeness, that is, the differential role of total versus partial depletions of dopamine and the possible mechanisms of compensation. Finally, the advantages and possible drawbacks of such a lateralized lesion model are discussed.
Collapse
Affiliation(s)
- R K Schwarting
- Institute of Physiological Psychology I, Heinrich-Heine University of Düsseldorf, Germany
| | | |
Collapse
|
16
|
Moser A, Scholz J, Bamberg H, Böhme V. The effect of N-methyl-norsalsolinol on monoamine oxidase of the rat caudate nucleus in vitro. Neurochem Int 1996; 28:109-12. [PMID: 8746770 DOI: 10.1016/0197-0186(95)00048-d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The effects of N-methyl-norsalsolinol on basal and inhibited activity of monoamine oxidase (MAO) in membrane preparations from the caudate nucleus of the rat have been studied. For the first time, the physiological step of dopamine oxidation to 3, 4 dihydroxyphenylacetic aldehyde (DPAA) was examined. N-methyl-norsalsolinol (2-MDTIQ) dose-dependently inhibited MAO activity with a IC50 of 33 microM. The MAO inhibitors clorgyline and deprenyl were also found to inhibit formation of DPAA. In this case, the inhibition of these antagonists, clorgyline and deprenyl, was additive. N-methyl-norsalsolinol modified neither the enzyme inhibition induced by clorgyline nor by deprenyl. These results suggest that 2-MDTIQ, the naturally occurring compound found in parkinsonian brain and cerebrospinal fluid, perturbs dopamine metabolism in basal ganglia.
Collapse
Affiliation(s)
- A Moser
- Department of Neurology, Medical University of Lübeck, Germany
| | | | | | | |
Collapse
|
17
|
Zhu MY, Juorio AV. Aromatic L-amino acid decarboxylase: biological characterization and functional role. GENERAL PHARMACOLOGY 1995; 26:681-96. [PMID: 7635243 DOI: 10.1016/0306-3623(94)00223-a] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
1. Aromatic L-amino acid decarboxylase is the enzyme responsible for the decarboxylation step in both the catecholamine and the indolamine synthetic pathways. Immunological and molecular biological studies suggest that it is a single enzyme with one catalytic site but with different locations for attachment of the substrates. The enzyme is widely distributed in the brain and in peripheral tissues. 2. Recent investigations have shown that the enzyme is regulated by short term mechanisms that may involve activation of adenyl cyclase or protein kinase C. In addition, a long-term mechanism of activation by altered gene expression has also been suggested.
Collapse
Affiliation(s)
- M Y Zhu
- Neuropsychiatric Research Unit, University of Saskatchewan, Saskatoon, Canada
| | | |
Collapse
|
18
|
Berry MD, Juorio AV, Paterson IA. Possible mechanisms of action of (-)deprenyl and other MAO-B inhibitors in some neurologic and psychiatric disorders. Prog Neurobiol 1994; 44:141-61. [PMID: 7831475 DOI: 10.1016/0301-0082(94)90036-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- M D Berry
- Neuropsychiatric Research Unit, University of Saskatchewan, Saskatoon, Canada
| | | | | |
Collapse
|