1
|
Ye XX, Jiang QY, Wu MJ, Ye QH, Zheng H. Transplant of fecal microbiota from healthy young mice relieves cognitive defects in late-stage diabetic mice by reducing metabolic disorders and neuroinflammation. Acta Pharmacol Sin 2024; 45:2513-2526. [PMID: 38992120 PMCID: PMC11579283 DOI: 10.1038/s41401-024-01340-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/14/2024] [Indexed: 07/13/2024]
Abstract
Fecal microbiota transplant (FMT) is becoming as a promising area of interest for treating refractory diseases. In this study, we investigated the effects of FMT on diabetes-associated cognitive defects in mice as well as the underlying mechanisms. Fecal microbiota was prepared from 8-week-aged healthy mice. Late-stage type 1 diabetics (T1D) mice with a 30-week history of streptozotocin-induced diabetics were treated with antibiotics for 7 days, and then were transplanted with bacterial suspension (100 μL, i.g.) once a day for 14 days. We found that FMT from healthy young mice significantly alleviated cognitive defects of late-stage T1D mice assessed in Morris water maze test. We revealed that FMT significantly reduced the relative abundance of Gram-negative bacteria in the gut microbiota and enhanced intestinal barrier integrity, mitigating LPS translocation into the bloodstream and NLRP3 inflammasome activation in the hippocampus, thereby reducing T1D-induced neuronal loss and astrocytic proliferation. FMT also reshaped the metabolic phenotypes in the hippocampus of T1D mice especially for alanine, aspartate and glutamate metabolism. Moreover, we showed that application of aspartate (0.1 mM) significantly inhibited NLRP3 inflammasome activation and IL-1β production in BV2 cells under a HG/LPS condition. We conclude that FMT can effectively relieve T1D-associated cognitive decline via reducing the gut-brain metabolic disorders and neuroinflammation, providing a potential therapeutic approach for diabetes-related brain disorders in clinic.
Collapse
Affiliation(s)
- Xian-Xi Ye
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Qiao-Ying Jiang
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Meng-Jun Wu
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Qing-Huai Ye
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hong Zheng
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
2
|
Gao J, Wang D, Zhu C, Wang J, Wang T, Xu Y, Ren X, Zhang K, Peng C, Guan J, Wang Y. 1H-MRS reveals abnormal energy metabolism and excitatory-inhibitory imbalance in a chronic migraine-like state induced by nitroglycerin in mice. J Headache Pain 2024; 25:163. [PMID: 39350002 PMCID: PMC11441011 DOI: 10.1186/s10194-024-01872-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Chronic migraine is closely related to the dysregulation of neurochemical substances in the brain, with metabolic imbalance being one of the proposed causes of chronic migraine. This study aims to evaluate the metabolic changes between energy metabolism and excitatory and inhibitory neurotransmitters in key brain regions of mice with chronic migraine-like state and to uncover the dysfunctional pathways of migraine. METHODS A chronic migraine-like state mouse model was established by repeated administration of nitroglycerin (NTG). We used von Frey filaments to assess the mechanical thresholds of the hind paw and periorbital in wild-type and familial hemiplegic migraine type 2 mice. After the experiments, tissue was collected from five brain regions: the somatosensory cortex (SSP), hippocampus, thalamus (TH), hypothalamus, and the spinal trigeminal nucleus caudalis (TNC). Proton magnetic resonance spectroscopy (1H-MRS) was employed to study the changes in brain metabolites associated with migraine, aiming to explore the mechanisms underlying metabolic imbalance in chronic migraine-like state. RESULTS In NTG-induced chronic migraine-like state model, we observed a significant reduction in energy metabolism during central sensitization, an increase in excitatory neurotransmitters such as glutamate, and a tendency for inhibitory neurotransmitters like GABA to decrease. The TNC and thalamus were the most affected regions. Furthermore, the consistency of N-acetylaspartate levels highlighted the importance of the TNC-TH-SSP pathway in the ascending nociceptive transmission of migraine. CONCLUSION Abnormal energy metabolism and neurotransmitter imbalance in the brain region of NTG-induced chronic migraine-like state model are crucial mechanisms contributing to the chronicity of migraine.
Collapse
Affiliation(s)
- Jinggui Gao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Da Wang
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Chenlu Zhu
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Jian Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Tianxiao Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yunhao Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xiao Ren
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Kaibo Zhang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Cheng Peng
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Jisong Guan
- School of Life Science and Technology & State Key Laboratory of Advanced Medical Materials and Device, ShanghaiTech University, Shanghai, China.
| | - Yonggang Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.
| |
Collapse
|
3
|
Al-Huthaifi AM, Radman BA, Al-Alawi AA, Mahmood F, Liu TB. Mechanisms and Virulence Factors of Cryptococcus neoformans Dissemination to the Central Nervous System. J Fungi (Basel) 2024; 10:586. [PMID: 39194911 DOI: 10.3390/jof10080586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/31/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
Cryptococcosis is a prevalent fungal infection of the central nervous system (CNS) caused by Cryptococcus neoformans, a yeast with a polysaccharide capsule in the basidiomycete group. Normally, C. neoformans infects the respiratory tract and then breaches the blood-brain barrier (BBB), leading to meningitis or meningoencephalitis, which leads to hundreds of thousands of deaths each year. Although the mechanism by which C. neoformans infiltrates the BBB to invade the brain has yet to be fully understood, research has revealed that C. neoformans can cross the BBB using transcellular penetration, paracellular traversal, and infected phagocytes (the "Trojan horse" mechanism). The secretion of multiple virulence factors by C. neoformans is crucial in facilitating the spread of infection after breaching the BBB and causing brain infections. Extensive research has shown that various virulence factors play a significant role in the dissemination of infection beyond the lungs. This review explores the mechanisms of C. neoformans entering the CNS and explains how it bypasses the BBB. Additionally, it aims to understand the interplay between the regulatory mechanisms and virulence factors of C. neoformans.
Collapse
Affiliation(s)
| | - Bakeel A Radman
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | | | - Fawad Mahmood
- Medical Research Institute, Southwest University, Chongqing 400715, China
| | - Tong-Bao Liu
- Medical Research Institute, Southwest University, Chongqing 400715, China
- Jinfeng Laboratory, Chongqing 401329, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing 400715, China
| |
Collapse
|
4
|
Radford-Smith D, Ng TT, Yates AG, Dunstan I, Claridge TDW, Anthony DC, Probert F. Ex-Vivo 13C NMR Spectroscopy of Rodent Brain: TNF Restricts Neuronal Utilization of Astrocyte-Derived Metabolites. J Proteome Res 2024; 23:3383-3392. [PMID: 38943617 PMCID: PMC11301676 DOI: 10.1021/acs.jproteome.4c00035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 07/01/2024]
Abstract
Tumor necrosis factor (TNF) has well-established roles in neuroinflammatory disorders, but the effect of TNF on the biochemistry of brain cells remains poorly understood. Here, we microinjected TNF into the brain to study its impact on glial and neuronal metabolism (glycolysis, pentose phosphate pathway, citric acid cycle, pyruvate dehydrogenase, and pyruvate carboxylase pathways) using 13C NMR spectroscopy on brain extracts following intravenous [1,2-13C]-glucose (to probe glia and neuron metabolism), [2-13C]-acetate (probing astrocyte-specific metabolites), or [3-13C]-lactate. An increase in [4,5-13C]-glutamine and [2,3-13C]-lactate coupled with a decrease in [4,5-13C]-glutamate was observed in the [1,2-13C]-glucose-infused animals treated with TNF. As glutamine is produced from glutamate by astrocyte-specific glutamine synthetase the increase in [4,5-13C]-glutamine reflects increased production of glutamine by astrocytes. This was confirmed by infusion with astrocyte substrate [2-13C]-acetate. As lactate is metabolized in the brain to produce glutamate, the simultaneous increase in [2,3-13C]-lactate and decrease in [4,5-13C]-glutamate suggests decreased lactate utilization, which was confirmed using [3-13C]-lactate as a metabolic precursor. These results suggest that TNF rearranges the metabolic network, disrupting the energy supply chain perturbing the glutamine-glutamate shuttle between astrocytes and the neurons. These insights pave the way for developing astrocyte-targeted therapeutic strategies aimed at modulating effects of TNF to restore metabolic homeostasis in neuroinflammatory disorders.
Collapse
Affiliation(s)
- Daniel Radford-Smith
- Department
of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
- Pharmacology
Department, University of Oxford, Oxford OX1 3QT, U.K.
| | - Tang T. Ng
- Department
of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
| | - Abi G. Yates
- Department
of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
- Pharmacology
Department, University of Oxford, Oxford OX1 3QT, U.K.
| | - Isobel Dunstan
- Pharmacology
Department, University of Oxford, Oxford OX1 3QT, U.K.
| | | | | | - Fay Probert
- Department
of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
| |
Collapse
|
5
|
Zhou Y, Huang Y, Yang C, Zang X, Deng H, Liu J, Zhao E, Tian T, Pan L, Xue X. The pathways and the mechanisms by which Cryptococcus enters the brain. Mycology 2024; 15:345-359. [PMID: 39247889 PMCID: PMC11376299 DOI: 10.1080/21501203.2023.2295409] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/11/2023] [Indexed: 09/10/2024] Open
Abstract
Generally, Cryptococcus initially infects the respiratory tract, but can spread, eventually crossing the blood-brain barrier (BBB) and causing meningitis or meningoencephalitis. Specifically, Cryptococcus invades the vascular endothelial cells of the BBB, from which it enters the brain. The main mechanisms through which Cryptococcus crosses the BBB are transcellular traversal, the paracellular pathway, and via Trojan horse. In this paper, the mechanisms by which Cryptococcus crosses the BBB were explained in detail. In addition to pathways of entry to the brain, this paper presents a discussion on some rare cryptococcal infections and provides some insights for future research directions.
Collapse
Affiliation(s)
- Yangyu Zhou
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yemei Huang
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Chen Yang
- Department of Respiratory and Critical Care, Weifang Medical College, Weifang, China
| | - Xuelei Zang
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Hengyu Deng
- Department of Laboratory Medicine, Chinese PLA General Hospital, the First Medical Centre, Beijing, China
| | - Jing Liu
- Department of Laboratory Medicine, Chinese PLA General Hospital, the First Medical Centre, Beijing, China
| | - Enqi Zhao
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Tingyue Tian
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Lei Pan
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xinying Xue
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Laboratory Medicine, Chinese PLA General Hospital, the First Medical Centre, Beijing, China
| |
Collapse
|
6
|
Tani H, Moxon-Emre I, Forde NJ, Neufeld NH, Bingham KS, Whyte EM, Meyers BS, Alexopoulos GS, Hoptman MJ, Rothschild AJ, Uchida H, Flint AJ, Mulsant BH, Voineskos AN. Brain metabolite levels in remitted psychotic depression with consideration of effects of antipsychotic medication. Brain Imaging Behav 2024; 18:117-129. [PMID: 37917311 PMCID: PMC10844359 DOI: 10.1007/s11682-023-00807-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND The neurobiology of psychotic depression is not well understood and can be confounded by antipsychotics. Magnetic resonance spectroscopy (MRS) is an ideal tool to measure brain metabolites non-invasively. We cross-sectionally assessed brain metabolites in patients with remitted psychotic depression and controls. We also longitudinally assessed the effects of olanzapine versus placebo on brain metabolites. METHODS Following remission, patients with psychotic depression were randomized to continue sertraline + olanzapine (n = 15) or switched to sertraline + placebo (n = 18), at which point they completed an MRS scan. Patients completed a second scan either 36 weeks later, relapse, or discontinuation. Where water-scaled metabolite levels were obtained and a Point-RESolved Spectroscopy sequence was utilized, choline, myo-inositol, glutamate + glutamine (Glx), N-acetylaspartate, and creatine were measured in the left dorsolateral prefrontal cortex (L-DLPFC) and dorsal anterior cingulate cortex (dACC). An ANCOVA was used to compare metabolites between patients (n = 40) and controls (n = 46). A linear mixed-model was used to compare olanzapine versus placebo groups. RESULTS Cross-sectionally, patients (compared to controls) had higher myo-inositol (standardized mean difference [SMD] = 0.84; 95%CI = 0.25-1.44; p = 0.005) in the dACC but not different Glx, choline, N-acetylaspartate, and creatine. Longitudinally, patients randomized to placebo (compared to olanzapine) showed a significantly greater change with a reduction of creatine (SMD = 1.51; 95%CI = 0.71-2.31; p = 0.0002) in the dACC but not glutamate + glutamine, choline, myo-inositol, and N-acetylaspartate. CONCLUSIONS Patients with remitted psychotic depression have higher myo-inositol than controls. Olanzapine may maintain creatine levels. Future studies are needed to further disentangle the mechanisms of action of olanzapine.
Collapse
Affiliation(s)
- Hideaki Tani
- Centre for Addiction and Mental Health and Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Iska Moxon-Emre
- Centre for Addiction and Mental Health and Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Natalie J Forde
- Centre for Addiction and Mental Health and Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
| | - Nicholas H Neufeld
- Centre for Addiction and Mental Health and Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Kathleen S Bingham
- University Health Network and Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Ellen M Whyte
- Department of Psychiatry, University of Pittsburgh School of Medicine and UPMC Western Psychiatric Hospital, Pittsburgh, PA, USA
| | - Barnett S Meyers
- Department of Psychiatry, Weill Medical College of Cornell University and New York Presbyterian Hospital, White Plains, NY, USA
| | - George S Alexopoulos
- Department of Psychiatry, Weill Medical College of Cornell University and New York Presbyterian Hospital, White Plains, NY, USA
| | - Matthew J Hoptman
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Anthony J Rothschild
- University of Massachusetts Medical School and UMass Memorial Health Care, Worcester, MA, USA
| | - Hiroyuki Uchida
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Alastair J Flint
- University Health Network and Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Benoit H Mulsant
- Centre for Addiction and Mental Health and Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Aristotle N Voineskos
- Centre for Addiction and Mental Health and Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada.
| |
Collapse
|
7
|
Huang Y, Chen J, Lu J, Luo H, Ying N, Dong W, Lin M, Zheng H. Transient neonatal hyperglycemia induces metabolic shifts in the rat hippocampus: a 1H NMR-based metabolomics analysis. Metab Brain Dis 2023; 38:2281-2288. [PMID: 37358727 DOI: 10.1007/s11011-023-01255-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/13/2023] [Indexed: 06/27/2023]
Abstract
Diabetes has been reported to induce brain metabolic disturbance, but the effect of transient neonatal hyperglycemia (TNH) on brain metabolism remains unclear. Herein the rats were treated with a single intraperitoneal injection of 100 µg/g body weight of streptozotocin within 12 h after birth and displayed a typical clinical characteristic of TNH. Then we used NMR-based metabolomics to examine the metabolic changes in the hippocampus between TNH and normal control (Ctrl) rats at postnatal 7 days (P7) and 21 days (P21). The results show that TNH rats had significantly increased levels of N-acetyl aspartate, glutamine, aspartate and choline in the hippocampus relative to Ctrl rats at P7. Moreover, we found that the levels of alanine, myo-inositol and choline were significantly lower in TNH rats, although their blood glucose levels have been recovered to the normal level at P21. Therefore, our results suggest that TNH may have a long-term effect on hippocampal metabolic changes mainly involving neurotransmitter metabolism and choline metabolism.
Collapse
Affiliation(s)
- Yinli Huang
- Department of Endocrinology, Pingyang Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325400, China
| | - Junli Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jiahui Lu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hanqi Luo
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Na Ying
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Wei Dong
- Department of Endocrinology, Pingyang Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325400, China
| | - Minjie Lin
- Department of Endocrinology, Pingyang Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325400, China
| | - Hong Zheng
- Department of Endocrinology, Pingyang Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325400, China.
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
8
|
Su XB, Ko ALA, Saiardi A. Regulations of myo-inositol homeostasis: Mechanisms, implications, and perspectives. Adv Biol Regul 2023; 87:100921. [PMID: 36272917 DOI: 10.1016/j.jbior.2022.100921] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
Phosphorylation is the most common module of cellular signalling pathways. The dynamic nature of phosphorylation, which is conferred by the balancing acts of kinases and phosphatases, allows this modification to finely control crucial cellular events such as growth, differentiation, and cell cycle progression. Although most research to date has focussed on protein phosphorylation, non-protein phosphorylation substrates also play vital roles in signal transduction. The most well-established substrate of non-protein phosphorylation is inositol, whose phosphorylation generates many important signalling molecules such as the second messenger IP3, a key factor in calcium signalling. A fundamental question to our understanding of inositol phosphorylation is how the levels of cellular inositol are controlled. While the availability of protein phosphorylation substrates is known to be readily controlled at the levels of transcription, translation, and/or protein degradation, the regulatory mechanisms that control the uptake, synthesis, and removal of inositol are underexplored. Potentially, such mechanisms serve as an important layer of regulation of cellular signal transduction pathways. There are two ways in which mammalian cells acquire inositol. The historic use of radioactive 3H-myo-inositol revealed that inositol is promptly imported from the extracellular environment by three specific symporters SMIT1/2, and HMIT, coupling sodium or proton entry, respectively. Inositol can also be synthesized de novo from glucose-6P, thanks to the enzymatic activity of ISYNA1. Intriguingly, emerging evidence suggests that in mammalian cells, de novo myo-inositol synthesis occurs irrespective of inositol availability in the environment, prompting the question of whether the two sources of inositol go through independent metabolic pathways, thus serving distinct functions. Furthermore, the metabolic stability of myo-inositol, coupled with the uptake and endogenous synthesis, determines that there must be exit pathways to remove this extraordinary sugar from the cells to maintain its homeostasis. This essay aims to review our current knowledge of myo-inositol homeostatic metabolism, since they are critical to the signalling events played by its phosphorylated forms.
Collapse
Affiliation(s)
- Xue Bessie Su
- Medical Research Council, Laboratory for Molecular Cell Biology, University College London, London, WC1E 6BT, UK
| | - An-Li Andrea Ko
- Medical Research Council, Laboratory for Molecular Cell Biology, University College London, London, WC1E 6BT, UK
| | - Adolfo Saiardi
- Medical Research Council, Laboratory for Molecular Cell Biology, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
9
|
Proton MR Spectroscopy of Pediatric Brain Disorders. Diagnostics (Basel) 2022; 12:diagnostics12061462. [PMID: 35741272 PMCID: PMC9222059 DOI: 10.3390/diagnostics12061462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/17/2022] Open
Abstract
In vivo MR spectroscopy is a non -invasive methodology that provides information about the biochemistry of tissues. It is available as a “push-button” application on state-of-the-art clinical MR scanners. MR spectroscopy has been used to study various brain diseases including tumors, stroke, trauma, degenerative disorders, epilepsy/seizures, inborn errors, neuropsychiatric disorders, and others. The purpose of this review is to provide an overview of MR spectroscopy findings in the pediatric population and its clinical use.
Collapse
|
10
|
Cebeci B, Alderliesten T, Wijnen JP, van der Aa NE, Benders MJNL, de Vries LS, van den Hoogen A, Groenendaal F. Brain proton magnetic resonance spectroscopy and neurodevelopment after preterm birth: a systematic review. Pediatr Res 2022; 91:1322-1333. [PMID: 33953356 DOI: 10.1038/s41390-021-01539-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 03/31/2021] [Accepted: 04/05/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Preterm infants are at risk of neurodevelopmental impairments. At present, proton magnetic resonance spectroscopy (1H-MRS) is used to evaluate brain metabolites in asphyxiated term infants. The aim of this review is to assess associations between cerebral 1H-MRS and neurodevelopment after preterm birth. METHODS PubMed and Embase were searched to identify studies using 1H-MRS and preterm birth. Eligible studies for this review included 1H-MRS of the brain, gestational age ≤32 weeks, and neurodevelopment assessed at a corrected age (CA) of at least 12 months up to the age of 18 years. RESULTS Twenty papers evaluated 1H-MRS in preterm infants at an age between near-term and 18 years and neurodevelopment. 1H-MRS was performed in both white (WM) and gray matter (GM) in 12 of 20 studies. The main regions were frontal and parietal lobe for WM and basal ganglia for GM. N-acetylaspartate/choline (NAA/Cho) measured in WM and/or GM is the most common metabolite ratio associated with motor, language, and cognitive outcome at 18-24 months CA. CONCLUSIONS NAA/Cho in WM assessed at term-equivalent age was associated with motor, cognitive, and language outcome, and NAA/Cho in deep GM was associated with language outcome at 18-24 months CA. IMPACT In preterm born infants, brain metabolism assessed using 1H-MRS at term-equivalent age is associated with motor, cognitive, and language outcomes at 18-24 months. 1H-MRS at term-equivalent age in preterm born infants may be used as an early indication of brain development. Specific findings relating to NAA were most predictive of outcome.
Collapse
Affiliation(s)
- Burcu Cebeci
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands.,Department of Neonatology, Health Sciences University, Haseki Training and Research Hospital, Istanbul, Turkey
| | - Thomas Alderliesten
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Jannie P Wijnen
- Department of Radiology, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Niek E van der Aa
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Manon J N L Benders
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Linda S de Vries
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Agnes van den Hoogen
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Floris Groenendaal
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands.
| |
Collapse
|
11
|
Huo M, Wang Z, Fu W, Tian L, Li W, Zhou Z, Chen Y, Wei J, Abliz Z. Spatially Resolved Metabolomics Based on Air-Flow-Assisted Desorption Electrospray Ionization-Mass Spectrometry Imaging Reveals Region-Specific Metabolic Alterations in Diabetic Encephalopathy. J Proteome Res 2021; 20:3567-3579. [PMID: 34137614 DOI: 10.1021/acs.jproteome.1c00179] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Spatially resolved metabolic profiling of brain is vital for elucidating tissue-specific molecular histology and pathology underlying diabetic encephalopathy (DE). In this study, a spatially resolved metabolomic method based on air-flow-assisted desorption electrospray ionization-mass spectrometry imaging (AFADESI-MSI) was developed for investigating the region-specific metabolic disturbances in the brain of DE model rats induced by a high-fat diet in combination with streptozotocin administration. A total of 19 discriminating metabolites associated with glycolysis and the pentose phosphate pathway (PPP); the glutamate/gamma aminobutyric acid-glutamine cycle and tricarboxylic acid cycle; nucleotide metabolism; lipid metabolism; carnitine homeostasis; and taurine, ascorbic acid, histidine, and choline metabolism were identified and located in the brains of the diabetic rats simultaneously for the first time. The results indicated that increased glycolytic and PPP activity; dysfunction of mitochondrial metabolism; dysregulation of adenosinergic, glutamatergic, dopaminergic, cholinergic, and histaminergic systems; disorder of osmotic regulation and antioxidant system; and disorder of lipid metabolism occur in a region-specific fashion in the brains of DE rats. Thus, this study provides valuable information regarding the molecular pathological signature of DE. These findings also underline the high potential of AFADESI-MSI for applications in various central nervous system diseases.
Collapse
Affiliation(s)
- Meiling Huo
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China.,Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, 27 Zhongguancun South Avenue, Beijing 100081, China
| | - Zhonghua Wang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China.,Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, 27 Zhongguancun South Avenue, Beijing 100081, China
| | - Wenqing Fu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China.,Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, 27 Zhongguancun South Avenue, Beijing 100081, China
| | - Lu Tian
- New Drug Safety Evaluation Center, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Wanfang Li
- New Drug Safety Evaluation Center, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Zhi Zhou
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China.,Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, 27 Zhongguancun South Avenue, Beijing 100081, China
| | - Yanhua Chen
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China.,Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, 27 Zhongguancun South Avenue, Beijing 100081, China
| | - Jinfeng Wei
- New Drug Safety Evaluation Center, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Zeper Abliz
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China.,Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, 27 Zhongguancun South Avenue, Beijing 100081, China.,Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing 100081, P. R. China
| |
Collapse
|
12
|
Jiang Q, Xu H, Yan J, Xu Q, Zheng Y, Li C, Zhao L, Gao H, Zheng H. Sex-specific metabolic alterations in the type 1 diabetic brain of mice revealed by an integrated method of metabolomics and mixed-model. Comput Struct Biotechnol J 2020; 18:2063-2074. [PMID: 32802278 PMCID: PMC7419581 DOI: 10.1016/j.csbj.2020.07.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022] Open
Abstract
Type 1 diabetes (T1D) can cause brain region-specific metabolic disorders, but whether gender influences T1D-related brain metabolic changes is rarely reported. Therefore, here we examined metabolic changes in six different brain regions of male and female mice under normal and T1D conditions using an integrated method of NMR-based metabolomics and linear mixed-model, and aimed to explore sex-specific metabolic changes from normal to T1D. The results demonstrate that metabolic differences occurred in all brain regions between two genders, while the hippocampal metabolism is more likely to be affected by T1D. At the 4th week after streptozotocin treatment, brain metabolic disorders mainly occurred in the cortex and hippocampus in female T1D mice, but the striatum and hippocampus in male T1D mice. In addition, anaerobic glycolysis was significantly altered in male mice, mainly in the striatum, midbrain, hypothalamus and hippocampus, but not in female mice. We also found that female mice exhibited a hypometabolism status relative to male mice from normal to T1D. Collectively, this study suggests that T1D affected brain region-specific metabolic alterations in a sex-specific manner, and may provide a metabolic view on diabetic brain diseases between genders.
Collapse
Key Words
- ADP, adenosine diphosphate
- AMP, adenosine monophosphate
- Ala, alanine
- Asp, aspartate
- Cho, choline
- Cortex
- Cre/pCre, creatine/phosphocreatine
- Diabetes
- GABA, γ-Aminobutyric acid
- Gender
- Gln, glutamine
- Glu, glutamate
- Gly, glycine
- Hippocampus
- IMP, inosine monophosphate
- Ino, inosine
- Lac, lactate
- Metabolomics
- Myo, myo-inositol
- NAA, N-acetylaspartate
- NAD+, nicotinamide adeninedinucleotide
- Neurotransmitter
- Suc, succinate
- Tau, taurine
Collapse
Affiliation(s)
- Qiaoying Jiang
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Hangying Xu
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Junjie Yan
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Qingqing Xu
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yafei Zheng
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Chen Li
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Liangcai Zhao
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Hongchang Gao
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Hong Zheng
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
13
|
Tran TT, Wei K, Cole S, Mena E, Csete M, King KS. Brain MR Spectroscopy Markers of Encephalopathy Due to Nonalcoholic Steatohepatitis. J Neuroimaging 2020; 30:697-703. [PMID: 32705733 DOI: 10.1111/jon.12728] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/22/2020] [Accepted: 05/06/2020] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE In hepatic encephalopathy (HE), osmotic stressors promoting brain edema result in a compensatory drop in the astrocyte metabolite myo-inositol (mI). Identifying differences between nonalcoholic steatohepatitis (NASH) with and without HE and healthy controls using proton magnetic resonance spectroscopy (MRS) and evaluating hypoalbuminemia and hyperammonemia as osmotic stressors that predict the reduction of mI allow further understanding of mechanisms that promote brain edema in HE. The aim of this study was to assess brain edema in HE using characteristic MRS markers and serum albumin. METHODS We evaluated between group differences among 19 NASH cirrhosis without HE (Crhs-HE) (age = 63 ± 8.7), 9 NASH cirrhosis with HE (Crhs+HE) (age = 63 ± 9.2), and 16 controls (age = 57.8 ± 11.7) using 1 H MRS. Glutamine (Gln/tCr) and serum albumin were evaluated as predictors of myo-inositol (mI/tCr) using linear regression. Statistical significance was set at P < .05 with adjustment for multiple comparisons. RESULTS Brain mI/tCr was decreased, and Gln/tCr increased in Crhs+HE compared to Crhs-HE and controls in both brain regions (P < .001 for all). Evaluated together as joint predictors, serum albumin but not Gln/tCr significantly predicted mI/tCr in GM (P = .02 and P = .2, respectively) and PWM (P = .01 and P = .1, respectively). CONCLUSION Low mI/tCr and increased Gln/tCr were characteristics of Crhs+HE. Low serum albumin was the strongest predictor of brain osmotic stress indicated by reduced mI/tCr, with no residual independent association seen for brain Gln/tCr concentration. This suggests that hypoalbuminemia in chronic liver disease may promote brain edema in HE.
Collapse
Affiliation(s)
| | - Ke Wei
- HMRI Imaging Center, Pasadena, CA
| | | | - Edward Mena
- California Liver Research Institute, Pasadena, CA
| | | | | |
Collapse
|
14
|
DDC expression is not regulated by NFAT5 (TonEBP) in dopaminergic neural cell lines. Gene 2020; 742:144569. [PMID: 32165301 DOI: 10.1016/j.gene.2020.144569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 01/21/2020] [Accepted: 03/08/2020] [Indexed: 11/30/2022]
Abstract
The nuclear factor of activated T-cells 5 (NFAT5), also known as tonicity-responsive enhancer-binding protein (TonEBP), is a transcription factor that regulates osmoadaptive response in multiple tissues and is highly expressed in the developing central nervous system. A former study reported that NFAT5 activation through hypertonic stress increases the expression of the dopa decarboxylase enzyme (DDC), also known as aromatic-l-amino-acid decarboxylase (AADC), in human renal proximal tubule cells, leading to an increase of dopamine synthesis. In a previous study, we identified NFAT5 as a candidate gene for cocaine dependence, a complex psychiatric disorder in which dopaminergic neurotransmission plays an important role. Therefore, to test the hypothesis that NFAT5 may also affect dopamine levels in the nervous system through the regulation of DDC expression, we examined this regulation using two neural dopaminergic cell lines, SH-SY5Y and PC12. The effect of NFAT5 on the expression of the neuronal isoform of DDC was evaluated by qRT-PCR. Upon hypertonic stress, NFAT5 was activated and accumulated into the nuclei and, subsequently, the expression of NFAT5 and its known targets sodium/myo-inositol cotransporter 1 (SMIT) and sodium chloride/taurine cotransporter (TAUT) increased, as expected. However, the expression of DDC decreased. When silencing the expression of NFAT5 with a specific shRNA we observed that the downregulation of DDC is independent from NFAT5 in both cell lines and is due to hypertonic stress. In conclusion, NFAT5 does not regulate the expression of the neuronal isoform of DDC in neural dopaminergic cell lines and, consequently, it does not modulate dopamine synthesis through DDC.
Collapse
|
15
|
Yang C, Zhang T, Wang W, Xiang Y, Huang Q, Xie C, Zhao L, Zheng H, Yang Y, Gao H. Brain-Region Specific Metabolic Abnormalities in Parkinson's Disease and Levodopa-Induced Dyskinesia. Front Aging Neurosci 2020; 12:75. [PMID: 32256342 PMCID: PMC7089871 DOI: 10.3389/fnagi.2020.00075] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 03/02/2020] [Indexed: 12/12/2022] Open
Abstract
Several lines of evidence point to alteration in brain metabolic homeostasis in Parkinson’s disease (PD) and levodopa-induced dyskinesia (LID), yet the metabolic mechanism in different brain regions underlying PD and LID remains largely unknown. The present study aimed to uncover the metabolic pathways across anatomical regions in the brain of PD and LID. Using an NMR-based metabolomic approach, we generated the metabolomics profiling data from six different brain regions of PD rats and following the onset of LIDs. The diversity of metabolite patterns across the brain and its relation to PD and LID were further investigated through principal component analysis (PCA) and multivariate general linear model. Compared with control rats, dopamine loss in PD rats produced a marked and persistent metabolic disturbance in neurotransmitter metabolism and energy pathway, resulting in a metabolic imbalance among different brain regions. In LID rats, levodopa replacement did not restore the midbrain-striatum metabolic crosstalk and metabolic disturbance throughout the brain was involved in levodopa related involuntary movements. Most notably, the midbrain and right cortex were identified as the primary regions of metabolic abnormalities in PD and LID rats. Neurochemical differences in metabolic phenotypes were mainly defined by various neurotransmitters including glutamate, glutamine and aspartate. Accordingly, we found that the PD and LID rats exhibited lower levels of synaptophysin (SYP), a marker for synaptic plasticity, compared with control rats. These findings provide key insights into the metabolic mechanism underlying PD and LID by defining brain-region specific metabolic phenotype, with implications for developing targeted therapies.
Collapse
Affiliation(s)
- Changwei Yang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Tingting Zhang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China.,Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wuqiong Wang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Yilan Xiang
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qun Huang
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chenglong Xie
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liangcai Zhao
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Hong Zheng
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Yunjun Yang
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hongchang Gao
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
16
|
Gao H, Jiang Q, Ji H, Ning J, Li C, Zheng H. Type 1 diabetes induces cognitive dysfunction in rats associated with alterations of the gut microbiome and metabolomes in serum and hippocampus. Biochim Biophys Acta Mol Basis Dis 2019; 1865:165541. [DOI: 10.1016/j.bbadis.2019.165541] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 12/14/2022]
|
17
|
Vazquez-Levin M, Verón G. Myo‐inositol in health and disease: its impact on semen parameters and male fertility. Andrology 2019; 8:277-298. [DOI: 10.1111/andr.12718] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/12/2019] [Accepted: 10/16/2019] [Indexed: 02/06/2023]
Affiliation(s)
- M.H. Vazquez-Levin
- Laboratorio de Estudios de Interacción Celular en Reproducción y Cáncer Instituto de Biología y Medicina Experimental (IBYME)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)‐ Fundación IBYME (FIBYME) Ciudad Autónoma de Buenos Aires Argentina
| | - G.L. Verón
- Laboratorio de Estudios de Interacción Celular en Reproducción y Cáncer Instituto de Biología y Medicina Experimental (IBYME)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)‐ Fundación IBYME (FIBYME) Ciudad Autónoma de Buenos Aires Argentina
| |
Collapse
|
18
|
Lei H, Montessuit S, Herzig S, Martinou JC. Feasibility of neurochemically profiling mouse embryonic brain and its development in utero using 1 H MRS at 14.1 T. NMR IN BIOMEDICINE 2019; 32:e4163. [PMID: 31424145 DOI: 10.1002/nbm.4163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 06/10/2023]
Abstract
We aimed to evaluate the feasibility of neurochemical profiling of embryonic mouse brain developments in utero and to seek potential in vivo evidence of an energy shift in a mitochondrial pyruvate carrier 1 (MPC1) deficient mouse model. C57BL/6 embryonic mouse brains were studied in utero by anatomical MRI and short echo localized proton (1 H) MRS at 14.1 T. Two embryonic stages were studied, the energy shift (e.g., embryonic day 12.5-13, E12.5-13) and close to the birth (E17.5-18). In addition, embryonic brains devoid of MPC1 were studied at E12.5-13. The MRI provided sufficient anatomical contrasts for visualization of embryonic brain. Localized 1 H MRS offered abundant metabolites through the embryonic development from E12.5 and close to the birth, e.g., E17.5 and beyond. The abundant neurochemical information at E12.5 provided metabolic status and processes relating to cellular development at this stage, i.e., the energy shift from glycolysis to oxidative phosphorylation, evidenced by accumulation of lactate in E12.5-13 embryonic brain devoid of MPC1. The further evolution of the neurochemical profile of embryonic brains at E17.5-18 is consistent with cellular and metabolic processes towards the birth. Localized 1 H MRS study of embryonic brain development in utero is feasible, and longitudinal neurochemical profiling of embryonic brains offers valuable insight into early brain development.
Collapse
Affiliation(s)
- Hongxia Lei
- Faculty of Medicine, University of Geneva, Switzerland
- Centre for Biomedical Imaging (CIBM), EcolePolytechnique Fédérale de Lausanne, Switzerland
| | | | | | | |
Collapse
|
19
|
Tamrazi B, Venneti S, Margol A, Hawes D, Cen SY, Nelson M, Judkins A, Biegel J, Blüml S. Pediatric Atypical Teratoid/Rhabdoid Tumors of the Brain: Identification of Metabolic Subgroups Using In Vivo 1H-MR Spectroscopy. AJNR Am J Neuroradiol 2019; 40:872-877. [PMID: 30948375 DOI: 10.3174/ajnr.a6024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/27/2019] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Atypical teratoid/rhabdoid tumors are rare, aggressive central nervous system tumors that are predominantly encountered in very young children. Our aim was to determine whether in vivo metabolic profiles correlate with molecular features of central nervous system pediatric atypical teratoid/rhabdoid tumors. MATERIALS AND METHODS Twenty confirmed patients with atypical teratoid/rhabdoid tumors who underwent MR spectroscopy were included in this study. In vivo metabolite levels of atypical teratoid/rhabdoid tumors were compared with molecular subtypes assessed by achaete-scute homolog 1 expression. Additionally, brain-specific creatine kinase levels were determined in tissue samples. RESULTS In vivo creatine concentrations were higher in tumors that demonstrated achaete-scute homolog 1 expression compared with those without achaete-scute homolog 1 expression (3.42 ± 1.1 versus 1.8 ± 0.8 IU, P < .01). Additionally, levels of myo-inositol (mI) (9.0 ± 1.5 versus 4.7 ± 3.6 IU, P < .05) were significantly different, whereas lipids approached significance (44 ± 20 versus 80 ± 30 IU, P = .07) in these 2 cohorts. Higher brain-specific creatine kinase levels were observed in the cohort with achaete-scute homolog 1 expression (P < .05). Pearson correlation analysis showed a significant positive correlation of brain-specific creatine kinase with absolute creatine (P < .05) and myo-inositol (P < .05) concentrations. CONCLUSIONS In vivo MR spectroscopy may predict key molecular features of atypical teratoid/rhabdoid tumors at initial diagnosis, leading to timely patient risk stratification and accelerating the development of targeted therapies.
Collapse
Affiliation(s)
- B Tamrazi
- From the Departments of Radiology (B.T., M.N., S.B.)
| | - S Venneti
- Department of Pathology (S.V.), University of Michigan, Ann Arbor, Michigan
| | - A Margol
- Pediatrics (A.M.) and Division of Hematology Oncology
| | - D Hawes
- Pathology (D.H., A.J., J.B.), Children's Hospital Los Angeles, Los Angeles, California
| | - S Y Cen
- Department of Radiology and Neurology (S.Y.C.), University of Southern California, Los Angeles, California
| | - M Nelson
- From the Departments of Radiology (B.T., M.N., S.B.)
| | - A Judkins
- Pathology (D.H., A.J., J.B.), Children's Hospital Los Angeles, Los Angeles, California
| | - J Biegel
- Pathology (D.H., A.J., J.B.), Children's Hospital Los Angeles, Los Angeles, California
| | - S Blüml
- From the Departments of Radiology (B.T., M.N., S.B.).,Rudi Schulte Research Institute (S.B.), Santa Barbara, California
| |
Collapse
|
20
|
Abstract
Posttraumatic stress disorder is a serious and often disabling syndrome that develops in response to a traumatic event. Many individuals who initially develop the disorder go on to experience a chronic form of the condition that in some cases can last for many years. Among these patients, psychiatric and medical comorbidities are common, including early onset of age-related conditions such as chronic pain, cardiometabolic disease, neurocognitive disorders, and dementia. The hallmark symptoms of posttraumatic stress-recurrent sensory-memory reexperiencing of the trauma(s)-are associated with concomitant activations of threat- and stress-related neurobiological pathways that occur against a tonic backdrop of sleep disturbance and heightened physiological arousal. Emerging evidence suggests that the molecular consequences of this stress-perpetuating syndrome include elevated systemic levels of oxidative stress and inflammation. In this article we review evidence for the involvement of oxidative stress and inflammation in chronic PTSD and the neurobiological consequences of these processes, including accelerated cellular aging and neuroprogression. Our aim is to update and expand upon previous reviews of this rapidly developing literature and to discuss magnetic resonance spectroscopy as an imaging technology uniquely suited to measuring oxidative stress and inflammatory markers in vivo. Finally, we highlight future directions for research and avenues for the development of novel therapeutics targeting oxidative stress and inflammation in patients with PTSD.
Collapse
Affiliation(s)
- Mark W Miller
- From the Department of Psychiatry, Boston University School of Medicine (Drs. M. W. Miller, Wolf, and D. R. Miller); National Center for PTSD, Behavioral Science Division, VA Boston Healthcare System, Boston, MA (Drs. M. W. Miller, Wolf, and D. R. Miller); Harvard Medical School and Department of Radiology, Brigham & Women's Hospital, Boston, MA (Dr. Lin)
| | | | | | | |
Collapse
|
21
|
Metabolism and metabolomics of opiates: A long way of forensic implications to unravel. J Forensic Leg Med 2019; 61:128-140. [DOI: 10.1016/j.jflm.2018.12.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 12/15/2018] [Accepted: 12/17/2018] [Indexed: 12/27/2022]
|
22
|
Roles of volume-regulatory anion channels, VSOR and Maxi-Cl, in apoptosis, cisplatin resistance, necrosis, ischemic cell death, stroke and myocardial infarction. CURRENT TOPICS IN MEMBRANES 2019; 83:205-283. [PMID: 31196606 DOI: 10.1016/bs.ctm.2019.03.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
23
|
Meisel CL, Bainbridge P, Mitsouras D, Wong JY. Targeted Nanoparticle Binding to Hydroxyapatite in a High Serum Environment for Early Detection of Heart Disease. ACS APPLIED NANO MATERIALS 2018; 1:4927-4939. [PMID: 31867573 PMCID: PMC6924636 DOI: 10.1021/acsanm.8b01099] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The impact of the protein-rich in vivo environment on targeted binding of functionalized nanoparticles has been an active field of research over the past several years. Current research aims at better understanding the nature of the protein corona and how it may be possible for targeted binding to occur even in the presence of serum. Much of the current research focuses on nanoparticles targeted to particular cell receptors or features with the aim of cellular uptake. However, similar research has not been performed on nanoparticles that are targeted to non-protein disease features, such as hydroxyapatite (HA). HA is a crystalline calcium-phosphate mineral that is present in large quantities in bone, and in smaller quantities in diseased cardiovascular tissue in cases of atherosclerosis or various stenoses. Our work aims to gain a better understanding of the behavior of PEGylated, peptide-coated superparamagnetic iron oxide nanoparticles (SPIONs) in a biologically-relevant high-protein environment (50% serum). We first determined that specific binding to HA occurs at significantly higher rates than non-specific binding in the absence of serum protein. We then examined nanoparticle interactions with serum proteins, including determination of the relative quantities of protein in the hard vs. soft protein corona. Finally, we examined specific and non-specific binding of targeted SPIONs in 50% serum, and determined that targeted binding may still occur with significant (p < 0.05) selectivity. We hypothesize that this may be because the nature of the binding interactions between the peptides and the HA are, by definition, less specific than the protein-protein interactions required for nanoparticles to bind to specific cells or cell features. These results suggest that these targeted SPIONs may be further developed for use in early detection of heart diseases such as atherosclerosis and aortic stenosis.
Collapse
Affiliation(s)
- Cari L. Meisel
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215
| | - Polly Bainbridge
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215
| | - Dimitrios Mitsouras
- Applied Imaging Science Laboratory, Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02215
- Department of Biochemistry Microbiology and Immunology, The University of Ottawa, Faculty of Medicine, 501 Smyth Rd., Ottowa, ON K1H 3L7 Canada
| | - Joyce Y. Wong
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215
| |
Collapse
|
24
|
Ryan MC, Kochunov P, Sherman PM, Rowland LM, Wijtenburg SA, Acheson A, Hong LE, Sladky J, McGuire S. Miniature pig magnetic resonance spectroscopy model of normal adolescent brain development. J Neurosci Methods 2018; 308:173-182. [PMID: 30099002 DOI: 10.1016/j.jneumeth.2018.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 08/07/2018] [Accepted: 08/08/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND We are developing the miniature pig (Sus scrofa domestica), an in-vivo translational, gyrencephalic model for brain development, as an alternative to laboratory rodents/non-human primates. We analyzed longitudinal changes in adolescent pigs using proton magnetic resonance spectroscopy (1H-MRS) and examined the relationship with white matter (WM) integrity derived from diffusion weighted imaging (DWI). NEW METHOD Twelve female Sinclair™ pigs underwent three imaging/spectroscopy sessions every 23.95 ± 3.73 days beginning at three months of age using a clinical 3 T scanner. 1H-MRS data were collected using 1.2 × 1.0 × 3.0 cm voxels placed in left and right hemisphere WM using a Point Resolved Spectroscopy sequence (TR = 2000 ms, TE = 30 ms). Concentrations of N-acetylaspartate, myo-inositol (MI), glutamate + glutamine, choline, creatine, and macromolecules (MM) 09 and 14 were averaged from both hemispheres. DWI data were collected using 15 shells of b-values (b = 0-3500 s/mm2) with 32 directions/shell and fit using the WM Tract Integrity model to calculate fractional anisotropy (FA), kurtosis anisotropy (KA) and permeability-diffusivity index. RESULTS MI and MM09 significantly declined with age. Increased FA and KA significantly correlated with decline in MI and MM09. Correlations lost significance once corrected for age. COMPARISON WITH EXISTING METHODS MRI scanners/protocols can be used to collect 1H-MRS and DWI data in pigs. Pigs have a larger, more complex, gyrencephalic brain than laboratory rodents but are less complex than non-human primates, thus satisfying the "replacement" principle of animal research. CONCLUSIONS Longitudinal effects in MRS measurements were similar to those reported in adolescent humans. MRS changes correlated with diffusion measurements indicating ongoing WM myelination/maturation.
Collapse
Affiliation(s)
- Meghann C Ryan
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, 55 Wade Avenue, Catonsville, MD 21228, United States.
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, 55 Wade Avenue, Catonsville, MD 21228, United States.
| | - Paul M Sherman
- U.S. Air Force School of Aerospace Medicine, Aeromedical Research Department, 2510 5th Street, Building 840, Wright-Patterson AFB, OH 45433-7913, United States; Department of Radiology, 59thMedical Wing, 1100 Wilford Hall Loop, Bldg 4551, Joint Base San Antonio, TX, 78236, United States.
| | - Laura M Rowland
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, 55 Wade Avenue, Catonsville, MD 21228, United States.
| | - S Andrea Wijtenburg
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, 55 Wade Avenue, Catonsville, MD 21228, United States.
| | - Ashley Acheson
- Department of Psychiatry, University of Arkansas for Medical Sciences, 4301 W Markham St., Little Rock, AR, 72205, United States.
| | - L Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, 55 Wade Avenue, Catonsville, MD 21228, United States.
| | - John Sladky
- U.S. Air Force School of Aerospace Medicine, Aeromedical Research Department, 2510 5th Street, Building 840, Wright-Patterson AFB, OH 45433-7913, United States; Department of Neurology, 59th Medical Wing, 1100 Wilford Hall Loop, Bldg 4551, Joint Base San Antonio, Lackland AFB, TX, 78236, United States.
| | - Stephen McGuire
- Department of Neurology, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States.
| |
Collapse
|
25
|
Zheng H, Zhou Q, Du Y, Li C, Xu P, Lin L, Xiao J, Gao H. The hypothalamus as the primary brain region of metabolic abnormalities in APP/PS1 transgenic mouse model of Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2018; 1864:263-273. [DOI: 10.1016/j.bbadis.2017.10.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 10/25/2017] [Accepted: 10/25/2017] [Indexed: 12/24/2022]
|
26
|
Cui MH, Suzuka SM, Branch NA, Ambadipudi K, Thangaswamy S, Acharya SA, Billett HH, Branch CA. Brain neurochemical and hemodynamic findings in the NY1DD mouse model of mild sickle cell disease. NMR IN BIOMEDICINE 2017; 30:e3692. [PMID: 28186661 DOI: 10.1002/nbm.3692] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 11/10/2016] [Accepted: 12/14/2016] [Indexed: 06/06/2023]
Abstract
To characterize the cerebral profile associated with sickle cell disease (SCD), we used in vivo proton MRI and MRS to quantify hemodynamics and neurochemicals in the thalamus of NY1DD mice, a mild model of SCD, and compared them with wild-type (WT) control mice. Compared with WT mice, NY1DD mice at steady state had elevated cerebral blood flow (CBF) and concentrations of N-acetylaspartate (NAA), glutamate (Glu), alanine, total creatine and N-acetylaspartylglutamate. Concentrations of glutathione (GSH) at steady state showed a negative correlation with BOLD signal change in response to 100% oxygen, a marker for oxidative stress, and mean diffusivity assessed using diffusion-tensor imaging, a marker for edematous inflammation. In NY1DD mice, elevated basal CBF was correlated negatively with [NAA], but positively with concentration of glutamine ([Gln]). Immediately after experimental hypoxia (at reoxygenation after 18 hours of 8% O2 ), concentrations of NAA, Glu, GSH, Gln and taurine (Tau) increased only in NY1DD mice. [NAA], [Glu], [GSH] and [Tau] all returned to baseline levels two weeks after the hypoxic episode. The altered neurochemical profile in the NY1DD mouse model of SCD at steady state and following experimental hypoxia/reoxygenation suggests a state of chronic oxidative stress leading to compensatory cerebral metabolic adjustments.
Collapse
Affiliation(s)
- Min-Hui Cui
- Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Radiology, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Sandra M Suzuka
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Nicholas A Branch
- Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Aerospace Engineering, Georgia Tech, Atlanta, GA, USA
| | - Kamalakar Ambadipudi
- Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Sangeetha Thangaswamy
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Seetharama A Acharya
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Medicine (Hematology), Albert Einstein College of Medicine, Bronx, New York, USA
| | - Henny H Billett
- Department of Medicine (Hematology), Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Craig A Branch
- Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Radiology, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
27
|
Zheng H, Lin Q, Wang D, Xu P, Zhao L, Hu W, Bai G, Yan Z, Gao H. NMR-based metabolomics reveals brain region-specific metabolic alterations in streptozotocin-induced diabetic rats with cognitive dysfunction. Metab Brain Dis 2017; 32:585-593. [PMID: 28070703 DOI: 10.1007/s11011-016-9949-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 12/30/2016] [Indexed: 01/21/2023]
Abstract
Diabetes mellitus (DM) can result in cognitive dysfunction, but its potential metabolic mechanisms remain unclear. In the present study, we analyzed the metabolite profiling in eight different brain regions of the normal rats and the streptozotocin (STZ)-induced diabetic rats accompanied by cognitive dysfunction using a 1H NMR-based metabolomic approach. A mixed linear model analysis was performed to assess the effects of DM, brain region and their interaction on metabolic changes. We found that different brain regions in rats displayed significant metabolic differences. In addition, the hippocampus was more susceptible to DM compared with other brain regions in rats. More interestingly, significant interaction effects of DM and brain region were observed on alanine, creatine/creatine-phosphate, lactate, succinate, aspartate, glutamate, glutamine, γ-aminobutyric acid, glycine, choline, N-acetylaspartate, myo-inositol and taurine. Based on metabolic pathway analysis, we speculate that cognitive dysfunction in the STZ-induced diabetic rats may be associated with brain region-specific metabolic alterations involving energy metabolism, neurotransmitters, membrane metabolism and osmoregulation.
Collapse
Affiliation(s)
- Hong Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Qiuting Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Dan Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Pengtao Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Liangcai Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Wenyi Hu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Guanghui Bai
- Radiology Department of the Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Zhihan Yan
- Radiology Department of the Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Hongchang Gao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
28
|
Zheng H, Zheng Y, Zhao L, Chen M, Bai G, Hu Y, Hu W, Yan Z, Gao H. Cognitive decline in type 2 diabetic db/db mice may be associated with brain region-specific metabolic disorders. Biochim Biophys Acta Mol Basis Dis 2017; 1863:266-273. [DOI: 10.1016/j.bbadis.2016.11.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/28/2016] [Accepted: 11/02/2016] [Indexed: 11/30/2022]
|
29
|
NMR-Based Metabolomics Reveal a Recovery from Metabolic Changes in the Striatum of 6-OHDA-Induced Rats Treated with Basic Fibroblast Growth Factor. Mol Neurobiol 2015; 53:6690-6697. [DOI: 10.1007/s12035-015-9579-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/29/2015] [Indexed: 12/28/2022]
|
30
|
Wei L, Xue R, Zhang P, Wu Y, Li X, Pei F. (1)H NMR-Based Metabolomics and Neurotoxicity Study of Cerebrum and Cerebellum in Rats Treated with Cinnabar, a Traditional Chinese Medicine. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2015; 19:490-8. [PMID: 26110755 DOI: 10.1089/omi.2015.0042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cinnabar, an important traditional Chinese mineral medicine, has been widely used as a Chinese patent medicine ingredient for sedative therapy. Nevertheless, the neurotoxic effects of cinnabar have also been noted. In this study, (1)H NMR-based metabolomics, combined with multivariate pattern recognition, were applied to investigate the neurotoxic effects of cinnabar after intragastrical administration (dosed at 2 and 5 g/kg body weight) on male Wistar rats. The metabolite variations induced by cinnabar were characterized by increased levels of glutamate, glutamine, myo-inositol, and choline, as well as decreased levels of GABA, taurine, NAA, and NAAG in tissue extracts of the cerebellum and cerebrum. These findings suggested that cinnabar induced glutamate excitotoxicity, neuronal cell loss, osmotic state changes, membrane fluidity disruption, and oxidative injury in the brain. We also show here that there is a dose- and time-dependent neurotoxicity of cinnabar, and that cerebellum was more sensitive to cinnabar induction than cerebrum. This work illustrates the utility and reliability of (1)H NMR-based metabolomics approach for examining the potential neurotoxic effects of cinnabar and other traditional Chinese medicines.
Collapse
Affiliation(s)
- Lai Wei
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun, People's Republic of China
| | - Rong Xue
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun, People's Republic of China
| | - Panpan Zhang
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun, People's Republic of China
| | - Yijie Wu
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun, People's Republic of China
| | - Xiaojing Li
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun, People's Republic of China
| | - Fengkui Pei
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun, People's Republic of China
| |
Collapse
|
31
|
Hu W, Cheng X, Ye X, Zhao L, Huang Y, Zhu H, Yan Z, Wang X, Wang X, Bai G, Gao H. Ex vivo (1)H nuclear magnetic resonance spectroscopy reveals systematic alterations in cerebral metabolites as the key pathogenetic mechanism of bilirubin encephalopathy. Mol Brain 2014; 7:87. [PMID: 25424547 PMCID: PMC4252999 DOI: 10.1186/s13041-014-0087-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 11/13/2014] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Bilirubin encephalopathy (BE) is a severe neurologic sequelae induced by hyperbilirubinemia in newborns. However, the pathogenetic mechanisms underlying the clinical syndromes of BE remain ambiguous. Ex vivo (1)H nuclear magnetic resonance (NMR) spectroscopy was used to measure changes in the concentrations of cerebral metabolites in various brain areas of newborn 9-day-old rats subjected to bilirubin to explore the related mechanisms of BE. RESULTS When measured 0.5 hr after injection of bilirubin, levels of the amino acid neurotransmitters glutamate (Glu), glutamine (Gln), and γ-aminobutyric acid (GABA) in hippocampus and occipital cortex significantly decreased, by contrast, levels of aspartate (Asp) considerably increased. In the cerebellum, Glu and Gln levels significantly decreased, while GABA, and Asp levels showed no significant differences. In BE 24 hr rats, all of the metabolic changes observed returned to normal in the hippocampus and occipital cortex; however, levels of Glu, Gln, GABA, and glycine significantly increased in the cerebellum. CONCLUSIONS These metabolic changes for the neurotransmitters are mostly likely the result of a shift in the steady-state equilibrium of the Gln-Glu-GABA metabolic cycle between astrocytes and neurons, in a region-specific manner. Changes in energy metabolism and the tricarboxylic acid cycle may also be involved in the pathogenesis of BE.
Collapse
Affiliation(s)
- Wenyi Hu
- Radiology Department of the Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Xiaojie Cheng
- Radiology Department of the Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| | - Xinjian Ye
- Radiology Department of the Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| | - Liangcai Zhao
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Yanan Huang
- Radiology Department of the Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| | - Huanle Zhu
- Radiology Department of the Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| | - Zhihan Yan
- Radiology Department of the Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| | - Xuebao Wang
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Xiaojie Wang
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Guanghui Bai
- Radiology Department of the Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| | - Hongchang Gao
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
32
|
Oenarto J, Görg B, Moos M, Bidmon HJ, Häussinger D. Expression of organic osmolyte transporters in cultured rat astrocytes and rat and human cerebral cortex. Arch Biochem Biophys 2014; 560:59-72. [DOI: 10.1016/j.abb.2014.06.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 06/18/2014] [Accepted: 06/21/2014] [Indexed: 01/21/2023]
|
33
|
Bolognin S, Buffelli M, Puoliväli J, Iqbal K. Rescue of cognitive-aging by administration of a neurogenic and/or neurotrophic compound. Neurobiol Aging 2014; 35:2134-46. [PMID: 24702821 DOI: 10.1016/j.neurobiolaging.2014.02.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 02/18/2014] [Accepted: 02/26/2014] [Indexed: 10/25/2022]
Abstract
Aging is characterized by a progressive decline of cognitive performance, which has been partially attributed to structural and functional alterations of hippocampus. Importantly, aging is the major risk factor for the development of neurodegenerative diseases, especially Alzheimer's disease. An important therapeutic approach to counteract the age-associated memory dysfunctions is to maintain an appropriate microenvironment for successful neurogenesis and synaptic plasticity. In this study, we show that chronic oral administration of peptide 021 (P021), a small peptidergic neurotrophic compound derived from the ciliary neurotrophic factor, significantly reduced the age-dependent decline in learning and memory in 22 to 24-month-old Fisher rats. Treatment with P021 inhibited the deficit in neurogenesis in the aged rats and increased the expression of brain derived neurotrophic factor. Furthermore, P021 restored synaptic deficits both in the cortex and the hippocampus. In vivo magnetic resonance spectroscopy revealed age-dependent alterations in hippocampal content of several metabolites. Remarkably, P021 was effective in significantly reducing myoinositol (INS) concentration, which was increased in aged compared with young rats. These findings suggest that stimulating endogenous neuroprotective mechanisms is a potential therapeutic approach to cognitive aging, Alzheimer's disease, and associated neurodegenerative disorders and P021 is a promising compound for this purpose.
Collapse
Affiliation(s)
- Silvia Bolognin
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Mario Buffelli
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Jukka Puoliväli
- Department of Behavioral Studies, Charles River Finland, Kuopio, Finland
| | - Khalid Iqbal
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA.
| |
Collapse
|
34
|
Tunc-Skarka N, Meier S, Demirakca T, Sack M, Weber-Fahr W, Brusniak W, Wolf I, Matthäus F, Schulze TG, Diener C, Ende G. Effects of normal aging and SCN1A risk-gene expression on brain metabolites: evidence for an association between SCN1A and myo-inositol. NMR IN BIOMEDICINE 2014; 27:228-234. [PMID: 24357141 DOI: 10.1002/nbm.3057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 10/29/2013] [Accepted: 11/04/2013] [Indexed: 06/03/2023]
Abstract
Previously reported MRS findings in the aging brain include lower N-acetylaspartate (NAA) and higher myo-inositol (mI), total creatine (Cr) and choline-containing compound (Cho) concentrations. Alterations in the sodium channel voltage gated type I, alpha subunit SCN1A variant rs10930201 have been reported to be associated with several neurological disorders with cognitive deficits. MRS studies in SCN1A-related diseases have reported striking differences in the mI concentrations between patients and controls. In a study on 'healthy aging', we investigated metabolite spectra in a sample of 83 healthy volunteers and determined their age dependence. We also investigated a potential link between SCN1A and mI. We observed a significantly negative association of NAA (p = 0.004) and significantly positive associations of mI (p ≤ 0.001), Cr (p ≤ 0.001) and Cho (p = 0.034) with age in frontal white matter. The linear association of Cho ends at the age of about 50 years and is followed by an inverted 'U'-shaped curve. Further, mI was higher in C allele carriers of the SCN1A variant rs10930201. Our results corroborated the age-related changes in metabolite concentrations, and found evidence for a link between SCN1A and frontal white matter mI in healthy subjects.
Collapse
Affiliation(s)
- Nuran Tunc-Skarka
- Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty of Mannheim/Heidelberg University, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Liu K, Ye XJ, Hu WY, Zhang GY, Bai GH, Zhao LC, He JW, Zhu H, Shao JB, Yan ZH, Gao HC. Neurochemical changes in the rat occipital cortex and hippocampus after repetitive and profound hypoglycemia during the neonatal period: an ex vivo ¹H magnetic resonance spectroscopy study. Mol Neurobiol 2013; 48:729-36. [PMID: 23553314 DOI: 10.1007/s12035-013-8446-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 03/13/2013] [Indexed: 01/06/2023]
Abstract
The brain of a human neonate is more vulnerable to hypoglycemia than that of pediatric and adult patients. Repetitive and profound hypoglycemia during the neonatal period (RPHN) causes brain damage and leads to severe neurologic sequelae. Ex vivo high-resolution (1)H nuclear magnetic resonance (NMR) spectroscopy was carried out in the present study to detect metabolite alterations in newborn and adolescent rats and investigate the effects of RPHN on their occipital cortex and hippocampus. Results showed that RPHN induces significant changes in a number of cerebral metabolites, and such changes are region-specific. Among the 16 metabolites detected by ex vivo (1)H NMR, RPHN significantly increased the levels of creatine, glutamate, glutamine, γ-aminobutyric acid, and aspartate, as well as other metabolites, including succine, taurine, and myo-inositol, in the occipital cortex of neonatal rats compared with the control. By contrast, changes in these neurochemicals were not significant in the hippocampus of neonatal rats. When the rats had developed into adolescence, the changes above were maintained and the levels of other metabolites, including lactate, N-acetyl aspartate, alanine, choline, glycine, acetate, and ascorbate, increased in the occipital cortex. By contrast, most of these metabolites were reduced in the hippocampus. These metabolic changes suggest that complementary mechanisms exist between these two brain areas. RPHN appears to affect occipital cortex and hippocampal activities, neurotransmitter transition, energy metabolism, and other metabolic equilibria in newborn rats; these effects are further aggravated when the newborn rats develop into adolescence. Changes in the metabolism of neurotransmitter system may be an adaptive measure of the central nervous system in response to RPHN.
Collapse
Affiliation(s)
- Kun Liu
- Radiology Department of the Second Affiliated Hospital, Wenzhou Medical College, Wenzhou, 325035, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Liu TB, Kim JC, Wang Y, Toffaletti DL, Eugenin E, Perfect JR, Kim KJ, Xue C. Brain inositol is a novel stimulator for promoting Cryptococcus penetration of the blood-brain barrier. PLoS Pathog 2013; 9:e1003247. [PMID: 23592982 PMCID: PMC3617100 DOI: 10.1371/journal.ppat.1003247] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 02/01/2013] [Indexed: 11/17/2022] Open
Abstract
Cryptococcus neoformans is the most common cause of fungal meningitis, with high mortality and morbidity. The reason for the frequent occurrence of Cryptococcus infection in the central nervous system (CNS) is poorly understood. The facts that human and animal brains contain abundant inositol and that Cryptococcus has a sophisticated system for the acquisition of inositol from the environment suggests that host inositol utilization may contribute to the development of cryptococcal meningitis. In this study, we found that inositol plays an important role in Cryptococcus traversal across the blood-brain barrier (BBB) both in an in vitro human BBB model and in in vivo animal models. The capacity of inositol to stimulate BBB crossing was dependent upon fungal inositol transporters, indicated by a 70% reduction in transmigration efficiency in mutant strains lacking two major inositol transporters, Itr1a and Itr3c. Upregulation of genes involved in the inositol catabolic pathway was evident in a microarray analysis following inositol treatment. In addition, inositol increased the production of hyaluronic acid in Cryptococcus cells, which is a ligand known to binding host CD44 receptor for their invasion. These studies suggest an inositol-dependent Cryptococcus traversal of the BBB, and support our hypothesis that utilization of host-derived inositol by Cryptococcus contributes to CNS infection. Cryptococcus neoformans is an AIDS-associated human fungal pathogen that annually causes over 1 million cases of meningitis world-wide, and more than 600,000 attributable deaths. Cryptococcus often causes lung and brain infection and is the leading cause of fungal meningitis in immunosuppressed patients. Why Cryptococcus frequently infects the central nervous system to cause fatal meningitis is an unanswered critical question. Our previous studies revealed a sophisticated inositol acquisition system in Cryptococcus that plays a central role in utilizing environmental inositol to complete its sexual cycle. Here we further demonstrate that inositol acquisition is also important for fungal infection in the brain, where abundant inositol is available. We found that inositol promotes the traversal of Cryptococcus across the blood-brain barrier (BBB), and such stimulation is fungal inositol transporter dependent. We also identified the effects of host inositol on fungal cellular functions that contribute to the stimulation of fungal penetration of the BBB. We propose that inositol utilization is a novel virulence factor for CNS cryptococcosis. Our work lays an important foundation for understanding how fungi respond to available host inositol and indicates the impact of host inositol acquisition on the development of cryptococcal meningitis.
Collapse
Affiliation(s)
- Tong-Bao Liu
- Public Health Research Institute Center, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Potential of MR spectroscopy for assessment of glioma grading. Clin Neurol Neurosurg 2012; 115:146-53. [PMID: 23237636 DOI: 10.1016/j.clineuro.2012.11.002] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 10/21/2012] [Accepted: 11/07/2012] [Indexed: 11/23/2022]
Abstract
BACKGROUND Magnetic resonance spectroscopy (MRS) is an imaging diagnostic method based that allows non-invasive measurement of metabolites in tissues. There are a number of metabolites that can be identified by standard brain proton MRS but only a few of them has a clinical significance in diagnosis of gliomas including N-acetylaspartate, choline, creatine, myo-inositol, lactate, and lipids. METHODS In this review, we describe potential of MRS for grading of gliomas. RESULTS Low-grade gliomas are generally characterized by a relatively high concentration of N-acetylaspartate, low level of choline and absence of lactate and lipids. The increase in creatine concentration indicates low-grade gliomas with earlier progression and malignant transformation. Progression in grade of a glioma is reflected in the progressive decrease in the N-acetylaspartate and myo-inositol levels on the one hand and elevation in choline level up to grade III on the other. Malignant transformation of the glial tumors is also accompanied by the presence of lactate and lipids in MR spectra of grade III but mainly grade IV gliomas. It follows that MRS is a helpful method for detection of glioma regions with aggressive growth or upgrading due to favorable correlation of the choline and N-acetylaspartate levels with histopathological proliferation index Ki-67. Thus, magnetic resonance spectroscopy is also a suitable method for the targeting of brain biopsies. CONCLUSIONS Gliomas of each grade have some specific MRS features that can be used for improvement of the diagnostic value of conventional magnetic resonance imaging in non-invasive assessment of glioma grade.
Collapse
|
38
|
Blüml S, Wisnowski JL, Nelson MD, Paquette L, Gilles FH, Kinney HC, Panigrahy A. Metabolic maturation of the human brain from birth through adolescence: insights from in vivo magnetic resonance spectroscopy. Cereb Cortex 2012; 23:2944-55. [PMID: 22952278 DOI: 10.1093/cercor/bhs283] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Between birth and late adolescence, the human brain undergoes exponential maturational changes. Using in vivo magnetic resonance spectroscopy, we determined the developmental profile for 6 metabolites in 5 distinct brain regions based on spectra from 309 children from 0 to 18 years of age. The concentrations of N-acetyl-aspartate (an indicator for adult-type neurons and axons), creatine (energy metabolite), and glutamate (excitatory neurotransmitter) increased rapidly between birth and 3 months, a period of rapid axonal growth and synapse formation. Myo-inositol, implicated in cell signaling and a precursor of membrane phospholipid, as well as an osmolyte and astrocyte marker, declined rapidly during this period. Choline, a membrane metabolite and indicator for de novo myelin and cell membrane synthesis, peaked from birth until approximately 3 months, and then declined gradually, reaching a plateau at early childhood. Similarly, taurine, involved in neuronal excitability, synaptic potentiation, and osmoregulation, was high until approximately 3 months and thereafter declined. These data indicate that the first 3 months of postnatal life are a critical period of rapid metabolic changes in the development of the human brain. This study of the developmental profiles of the major brain metabolites provides essential baseline information for future analyses of the pediatric health and disease.
Collapse
|
39
|
Gao HC, Zhu H, Song CY, Lin L, Xiang Y, Yan ZH, Bai GH, Ye FQ, Li XK. Metabolic changes detected by ex vivo high resolution 1H NMR spectroscopy in the striatum of 6-OHDA-induced Parkinson's rat. Mol Neurobiol 2012; 47:123-30. [PMID: 22936308 DOI: 10.1007/s12035-012-8336-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Accepted: 08/16/2012] [Indexed: 10/28/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the progressive loss of the dopaminergic neurons; however, its crucial mechanism of the metabolic changes of neurotransmitters remains ambiguous. The pathological mechanism of PD might involve cerebral metabolism perturbations. In this study, ex vivo proton nuclear magnetic resonance ((1)H NMR) was used to determine the level changes of 13 metabolites in the bilateral striatum of 6-hydroxydopamine (6-OHDA)-induced PD rats. The results showed that, in the right striatum of 6-OHDA-induced PD rats, increased levels of glutamate (Glu) and γ-aminobutyric acid (GABA) concomitantly with decreased level of glutamine (Gln) were observed compared to the control. Whereas, in the left striatum of 6-OHDA-induced PD rats, increased level of Glu with decreased level of GABA and unchanged Gln were observed. Other cerebral metabolites including lactate, alanine, creatine, succinate, taurine, and glycine were also found to have some perturbations. The observed metabolic changes for Glu, Gln, and GABA are mostly likely the result of a shift in the steady-state equilibrium of the Gln-Glu-GABA metabolic cycle between astrocytes and neurons. The altered Gln and GABA levels are most likely as a strategy to protect neurons from Glu excitotoxic injury after striatal dopamine depletion. Changes in energy metabolism and tricarboxylic acid cycle might be involved in the pathogenesis of PD.
Collapse
Affiliation(s)
- Hong-Chang Gao
- School of Pharmacy, Wenzhou Medical College, Wenzhou, 325035, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Deng Y, Bu Q, Hu Z, Deng P, Yan G, Duan J, Hu C, Zhou J, Shao X, Zhao J, Li Y, Zhu R, Zhao Y, Cen X. (1) H-nuclear magnetic resonance-based metabonomic analysis of brain in rhesus monkeys with morphine treatment and withdrawal intervention. J Neurosci Res 2012; 90:2154-62. [PMID: 22847893 DOI: 10.1002/jnr.23109] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 03/23/2012] [Accepted: 06/06/2012] [Indexed: 02/05/2023]
Abstract
Comprehensive cerebral metabolites involved in morphine dependence have not been well explored. To gain a better understanding of morphine dependence and withdrawal therapy in a model highly related to humans, metabolic changes in brain hippocampus and prefrontal cortex (PFC) of rhesus monkeys were measured by (1) H-nuclear magnetic resonance spectroscopy, coupled with partial least squares and orthogonal signal correction analysis. The results showed that concentrations of myoinositol (M-Ins) and taurine were significantly reduced, whereas lactic acid was increased in hippocampus and PFC of morphine-dependent monkeys. Phosphocholine and creatine increased in PFC but decreased in hippocampus after chronic treatment of morphine. Moreover, N-acetyl aspartate (NAA), γ-aminobutyric acid, glutamate, glutathione, methionine, and homocysteic acid also changed in these brain regions. These results suggest that chronic morphine exposure causes profound disturbances of neurotransmitters, membrane, and energy metabolism in the brain. Notably, morphine-induced dysregulations in NAA, creatine, lactic acid, taurine, M-Ins, and phosphocholine were clearly reversed after intervention with methadone or clonidine. Our study highlights the potential of metabolic profiling to enhance our understanding of metabolite alteration and neurobiological actions associated with morphine addiction and withdrawal therapy in primates.
Collapse
Affiliation(s)
- Yi Deng
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Macrì S, Ceci C, Canese R, Laviola G. Prenatal stress and peripubertal stimulation of the endocannabinoid system differentially regulate emotional responses and brain metabolism in mice. PLoS One 2012; 7:e41821. [PMID: 22848620 PMCID: PMC3405010 DOI: 10.1371/journal.pone.0041821] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 06/26/2012] [Indexed: 12/22/2022] Open
Abstract
The central endocannabinoid system (ECS) and the hypothalamic-pituitary-adrenal-axis mediate individual responses to emotionally salient stimuli. Their altered developmental adjustment may relate to the emergence of emotional disturbances. Although environmental influences regulate the individual phenotype throughout the entire lifespan, their effects may result particularly persistent during plastic developmental stages (e.g. prenatal life and adolescence). Here, we investigated whether prenatal stress – in the form of gestational exposure to corticosterone supplemented in the maternal drinking water (100 mg/l) during the last week of pregnancy – combined with a pharmacological stimulation of the ECS during adolescence (daily fatty acid amide hydrolase URB597 i.p. administration - 0.4 mg/kg - between postnatal days 29–38), influenced adult mouse emotional behaviour and brain metabolism measured through in vivo quantitative magnetic resonance spectroscopy. Compared to control mice, URB597-treated subjects showed, in the short-term, reduced locomotion and, in the long term, reduced motivation to execute operant responses to obtain palatable rewards paralleled by reduced levels of inositol and taurine in the prefrontal cortex. Adult mice exposed to prenatal corticosterone showed increased behavioural anxiety and reduced locomotion in the elevated zero maze, and altered brain metabolism (increased glutamate and reduced taurine in the hippocampus; reduced inositol and N-Acetyl-Aspartate in the hypothalamus). Present data further corroborate the view that prenatal stress and pharmacological ECS stimulation during adolescence persistently regulate emotional responses in adulthood. Yet, whilst we hypothesized these factors to be interactive in nature, we observed that the consequences of prenatal corticosterone administration were independent from those of ECS drug-induced stimulation during adolescence.
Collapse
Affiliation(s)
- Simone Macrì
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Roma, Italy.
| | | | | | | |
Collapse
|
42
|
Fu H, Li B, Hertz L, Peng L. Contributions in astrocytes of SMIT1/2 and HMIT to myo-inositol uptake at different concentrations and pH. Neurochem Int 2012; 61:187-94. [PMID: 22564531 DOI: 10.1016/j.neuint.2012.04.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 04/09/2012] [Accepted: 04/11/2012] [Indexed: 12/21/2022]
Abstract
myo-Inositol is important for cell signaling both in cytoplasm and in intracellular organelles. It is required in the plasma membrane and cytoplasm for maintained synthesis of the second messengers, inositoltrisphosphate (IP(3)) and diacylglycerol (DAG) from phosphatidylinositol bisphosphate (PIP(2)), and in organelles as precursor for synthesis of complex signaling phospholipids and inositolphosphates from IP(3) and PIP(2). myo-Inositol must be taken up into the cell where its is used, because neither neurons nor astrocytes synthesize it. It is also an osmolyte, taken up in response to surrounding hyperosmolarity and released during hypo-osmolarity. There are three myo-inositol transporters, the Na(+)-dependent SMIT1 and SMIT2, and HMIT, which co-transports myo-inositol with H(+). Their relative expressions in astrocytes and neurons are unknown. Uptake kinetics for myo-inositol in astrocytes has repeatedly been determined, but always on the assumption of only one component, leaving kinetics for the individual transporters unknown. This paper demonstrates that astrocytes obtained directly from the brain express SMIT1 and HMIT, but little SMIT2, and that all three transporters are expressed in neurons. Cultured mouse astrocytes show a high-affinity/low-capacity myo-inositol uptake (V(max): 60.0 ± 3.0 pmol/min per mg protein; K(m): 16.7 ± 2.6 μM), mediated by SMIT1 and perhaps partly by SMIT2. It was determined in cells pre-treated with HMIT-siRNA and confirmed by specific inhibition of SMIT. However at physiologically relevant myo-inositol concentrations most uptake is by a lower-affinity/higher-capacity uptake, mediated by HMIT (V(max): 358 ± 60 pmol/min per mg protein; K(m): 143 ± 36 μM) and determined by subtraction of SMIT-mediated from total uptake. At high myo-inositol concentrations, its uptake is inhibited by incubation in medium with increased pH, and increased during intracellular acidification with NH(4)Cl. This is in agreement with literature data for HMIT alone. At low concentration, where SMIT1/2 activity gains importance, myo-inositol uptake is reduced by ammonia-induced intracellular acidification, consistent with the transporter's pH sensitivity reported in the literature.
Collapse
Affiliation(s)
- Hui Fu
- Department of Clinical Pharmacology, College of Basic Medical Sciences, China Medical University, Shenyang, PR China
| | | | | | | |
Collapse
|
43
|
Husarova V, Bittsansky M, Ondrejka I, Kerna V, Dobrota D. Hippocampal neurometabolite changes in depression treatment: a (1)H magnetic resonance spectroscopy study. Psychiatry Res 2012; 201:206-13. [PMID: 22507761 DOI: 10.1016/j.pscychresns.2011.07.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 05/31/2011] [Accepted: 07/10/2011] [Indexed: 01/08/2023]
Abstract
Previous studies using magnetic resonance spectroscopy have related abnormalities in hippocampal metabolism to depression. Current evidence is consistent with the conclusion that the hippocampal formation plays an important role in the presentation of depressive symptoms. Eighteen adult patients with major depressive disorder, aged 20 to 60 years, underwent magnetic resonance spectroscopy of the hippocampus during a period of depressive symptomatology and after 7-11 weeks of antidepressant medication with at least 50% reduction in the Montgomery-Åsberg Depression Rating Scale ()MADRS score. During therapy, we found a significantly decreased Lac/Cr ratio in the left hippocampus. The Ins/Cr ratio showed a significant negative correlation with the severity of depression as assessed by the MADRS at baseline. Moreover, we found a negative association of NAA/Cho with age and a positive association of Cho/Cr with age, both on the left and right sides at baseline. In light of our findings and previous studies results we hypothesize that mitochondrial dysfunction leading to predominantly anaerobic glycolysis in connection with the intracellular signaling pathways disturbances and decreased astrocytic function/number might subsequently lead to decreased brain neuroplasticity in depression. These mechanisms could be positively influenced by antidepressant treatment with selective serotonin or norepineprine reuptake inhibitors, with potential effects on untimely neuronal aging in depression.
Collapse
|
44
|
Hu Z, Deng Y, Hu C, Deng P, Bu Q, Yan G, Zhou J, Shao X, Zhao J, Li Y, Zhu R, Xu Y, Zhao Y, Cen X. ¹H NMR-based metabonomic analysis of brain in rats of morphine dependence and withdrawal intervention. Behav Brain Res 2012; 231:11-9. [PMID: 22391120 DOI: 10.1016/j.bbr.2012.02.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 02/13/2012] [Accepted: 02/17/2012] [Indexed: 02/05/2023]
Abstract
Metabolic consequences of morphine dependence and withdrawal intervention have not been well explored. In the present study, the metabolic changes in brain hippocampus, nucleus accumbens (NAc), prefrontal cortex (PFC) and striatum of rats with morphine dependence and withdrawal intervention were explored by using ¹H nuclear magnetic resonance coupled with principal component analysis, partial least squares and orthogonal signal correction analysis. We found that the concentrations of neurotransmitters including glutamate, glutamine and gamma-aminobutyric acid changed differentially in hippocampus, NAc, PFC and striatum after repeated morphine treatment. Significant changes were also found in a number of cerebral metabolites including N-acetyl aspartate (NAA), lactic acid, creatine, myo-inositol and taurine. These findings indicate the profound disturbances of energy metabolism, amino acid metabolism and neurotransmitters caused by chronic morphine treatment. Interestingly, morphine-induced changes in lactic acid, creatine and NAA were clearly reversed by intervention of methadone or clonidine. Our study provides a comprehensive understanding of the metabolic alteration associated with morphine addiction and withdrawal therapy, which may help to develop new pharmacotherapies.
Collapse
Affiliation(s)
- Zhengtao Hu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Meng J, Zhang X, Wu H, Bu J, Shi C, Deng C, Mao Y. Morphine-induced conditioned place preference in mice: Metabolomic profiling of brain tissue to find “molecular switch” of drug abuse by gas chromatography/mass spectrometry. Anal Chim Acta 2012; 710:125-30. [DOI: 10.1016/j.aca.2011.09.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Revised: 09/07/2011] [Accepted: 09/28/2011] [Indexed: 01/10/2023]
|
46
|
Traudt CM, Tkac I, Ennis KM, Sutton LM, Mammel DM, Rao R. Postnatal morphine administration alters hippocampal development in rats. J Neurosci Res 2011; 90:307-14. [PMID: 21971612 DOI: 10.1002/jnr.22750] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 06/23/2011] [Accepted: 06/28/2011] [Indexed: 11/10/2022]
Abstract
Morphine is frequently used as an analgesic and sedative in preterm infants. Adult rats exposed to morphine have an altered hippocampal neurochemical profile and decreased neurogenesis in the dentate gyrus of the hippocampus. To evaluate whether neonatal rats are similarly affected, rat pups were injected twice daily with 2 mg/kg morphine or normal saline from postnatal days 3 to 7. On postnatal day 8, the hippocampal neurochemical profile was determined using in vivo (1)H NMR spectroscopy. The mRNA and protein concentrations of specific analytes were measured in hippocampus, and cell division in dentate gyrus was assessed using bromodeoxyuridine. The concentrations of γ-aminobutyric acid (GABA), taurine, and myo-insotol were decreased, whereas concentrations of glutathione, phosphoethanolamine, and choline-containing compounds were increased in morphine-exposed rats relative to control rats. Morphine decreased glutamic acid decarboxylase enzyme levels and myelin basic protein mRNA expression in the hippocampus. Bromodeoxyuridine labeling in the dentate gyrus was decreased by 60-70% in morphine-exposed rats. These results suggest that recurrent morphine administration during brain development alters hippocampal structure.
Collapse
Affiliation(s)
- Christopher M Traudt
- Department of Pediatrics, Division of Neonatology, University of Minnesota, Minneapolis, Minnesota, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Feraco P, Bacci A, Pedrabissi F, Passamonti L, Zampogna G, Pedrabissi F, Malavolta N, Leonardi M. Metabolic abnormalities in pain-processing regions of patients with fibromyalgia: a 3T MR spectroscopy study. AJNR Am J Neuroradiol 2011; 32:1585-90. [PMID: 21799042 DOI: 10.3174/ajnr.a2550] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE A growing body of evidence suggests the involvement of the brain in FM. The purpose of this proton MRS study was to test the hypothesis that there are metabolic alterations in some brain regions processing pain (VLPFC and thalamus) in patients with FM compared with HC. MATERIALS AND METHODS Twelve patients with FM (30-54 years of age; mean age, 43.2 years), and 12 HC, matched for age and sex, underwent 1 session of single-voxel MRS performed on a 3T MR imaging scanner. MRS spectra were acquired with a PRESS for localization. The raw data from each spectrum was evaluated with an LCModel. T tests were used to evaluate differences of brain metabolites between groups. The Pearson correlation tested the relationship of metabolite ratios and clinical symptoms. RESULTS Glx/Cr and Glu/Cr ratios within the VLPFC of both sides were significantly higher in patients than in HC (P < .01). No significant differences of metabolites between groups were found in the thalami. Positive correlations were found between Glu/Cr in the left thalamus and the VAS for pain (r = 0.730, P = .007) and between mIns/Cr in the right VLPFC and the VAS for pain (r = 0.607, P = .037) and the FIQ (r = 0.719, P = .008). CONCLUSIONS The presence of elevated Glu/Cr levels in VLPFC strengthens the opinion that a complex neurophysiologic imbalance of different brain areas involved in pain processing underlies FM. These data may be useful in the diagnosis and development of more effective pharmacologic treatments.
Collapse
Affiliation(s)
- P Feraco
- Department of Neuroradiology, Bellaria Hospital, Bologna, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Rowley NM, Smith MD, Lamb JG, Schousboe A, White HS. Hippocampal betaine/GABA transporter mRNA expression is not regulated by inflammation or dehydration post-status epilepticus. J Neurochem 2011; 117:82-90. [PMID: 21219332 DOI: 10.1111/j.1471-4159.2011.07174.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Seizure activity can alter GABA transporter and osmoprotective gene expression, which may be involved in the pathogenesis of epilepsy. However, the response of the betaine/GABA transporter (BGT1) is unknown. The goal of the present study was to compare the expression of BGT1 mRNA to that of other osmoprotective genes and GABA transporters following status epilepticus (SE). The possible contributory role of dehydration and inflammation was also investigated because both have been shown to be involved in the regulation of GABA transporter and/or osmoprotective gene expression. BGT1 mRNA was increased 24 h post-SE, as were osmoprotective genes. BGT1 was decreased 72 h and 4 weeks post-SE, as were the GABA transporter mRNAs. The mRNA values for osmoprotective genes following 24-h water withdrawal were significantly lower than the values obtained 24 h post-SE despite similarities in their plasma osmolality values. BGT1 mRNA was not altered by lipopolysaccharide-induced inflammation while the transcription factor tonicity-responsive enhancer binding protein and the GABA transporters 1 and 3 were. These results suggest that neither plasma osmolality nor inflammation fully account for the changes seen in BGT1 mRNA expression post-SE. However, it is evident that BGT1 mRNA expression is altered by SE and displays a temporal pattern with similarities to both GABA and osmolyte transporters. Further investigation of BGT1 regulation in the brain is warranted.
Collapse
Affiliation(s)
- Nicole M Rowley
- Anticonvulsant Drug Development Program, Department of Pharmacology Toxicology, University of Utah, Salt Lake City, Utah 84108, USA
| | | | | | | | | |
Collapse
|
49
|
Stein CS, Yancey PH, Martins I, Sigmund RD, Stokes JB, Davidson BL. Osmoregulation of ceroid neuronal lipofuscinosis type 3 in the renal medulla. Am J Physiol Cell Physiol 2010; 298:C1388-400. [PMID: 20219947 DOI: 10.1152/ajpcell.00272.2009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recessive inheritance of mutations in ceroid neuronal lipofuscinosis type 3 (CLN3) results in juvenile neuronal ceroid lipofuscinosis (JNCL), a childhood neurodegenerative disease with symptoms including loss of vision, seizures, and motor and mental decline. CLN3p is a transmembrane protein with undefined function. Using a Cln3 reporter mouse harboring a nuclear-localized bacterial beta-galactosidase (beta-Gal) gene driven by the native Cln3 promoter, we detected beta-Gal most prominently in epithelial cells of skin, colon, lung, and kidney. In the kidney, beta-Gal-positive nuclei were predominant in medullary collecting duct principal cells, with increased expression along the medullary osmotic gradient. Quantification of Cln3 transcript levels from kidneys of wild-type (Cln3(+/+)) mice corroborated this expression gradient. Reporter mouse-derived renal epithelial cultures demonstrated a tonicity-dependent increase in beta-Gal expression. RT-quantitative PCR determination of Cln3 transcript levels further supported osmoregulation at the Cln3 locus. In vivo, osmoresponsiveness of Cln3 was demonstrated by reduction of medullary Cln3 transcript abundance after furosemide administration. Primary cultures of epithelial cells of the inner medulla from Cln3(lacZ/lacZ) (CLN3p-null) mice showed no defect in osmolyte accumulation or taurine flux, arguing against a requirement for CLN3p in osmolyte import or synthesis. CLN3p-deficient mice with free access to water showed a mild urine-concentrating defect but, upon water deprivation, were able to concentrate their urine normally. Unexpectedly, we found that CLN3p-deficient mice were hyperkalemic and had a low fractional excretion of K(+). Together, these findings suggest an osmoregulated role for CLN3p in renal control of water and K(+) balance.
Collapse
Affiliation(s)
- Colleen S Stein
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Paban V, Fauvelle F, Alescio-Lautier B. Age-related changes in metabolic profiles of rat hippocampus and cortices. Eur J Neurosci 2010; 31:1063-73. [DOI: 10.1111/j.1460-9568.2010.07126.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|